]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/MC/MCInstrDesc.h
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / MC / MCInstrDesc.h
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17
18 #include "llvm/MC/MCRegisterInfo.h"
19 #include "llvm/Support/DataTypes.h"
20 #include <string>
21
22 namespace llvm {
23   class MCInst;
24   class MCSubtargetInfo;
25   class FeatureBitset;
26
27 //===----------------------------------------------------------------------===//
28 // Machine Operand Flags and Description
29 //===----------------------------------------------------------------------===//
30
31 namespace MCOI {
32 // Operand constraints
33 enum OperandConstraint {
34   TIED_TO = 0,  // Must be allocated the same register as.
35   EARLY_CLOBBER // Operand is an early clobber register operand
36 };
37
38 /// \brief These are flags set on operands, but should be considered
39 /// private, all access should go through the MCOperandInfo accessors.
40 /// See the accessors for a description of what these are.
41 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42
43 /// \brief Operands are tagged with one of the values of this enum.
44 enum OperandType {
45   OPERAND_UNKNOWN = 0,
46   OPERAND_IMMEDIATE = 1,
47   OPERAND_REGISTER = 2,
48   OPERAND_MEMORY = 3,
49   OPERAND_PCREL = 4,
50
51   OPERAND_FIRST_GENERIC = 6,
52   OPERAND_GENERIC_0 = 6,
53   OPERAND_GENERIC_1 = 7,
54   OPERAND_GENERIC_2 = 8,
55   OPERAND_GENERIC_3 = 9,
56   OPERAND_GENERIC_4 = 10,
57   OPERAND_GENERIC_5 = 11,
58   OPERAND_LAST_GENERIC = 11,
59
60   OPERAND_FIRST_TARGET = 12,
61 };
62
63 enum GenericOperandType {
64 };
65
66 }
67
68 /// \brief This holds information about one operand of a machine instruction,
69 /// indicating the register class for register operands, etc.
70 class MCOperandInfo {
71 public:
72   /// \brief This specifies the register class enumeration of the operand
73   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
74   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
75   /// get a dynamic register class.
76   int16_t RegClass;
77
78   /// \brief These are flags from the MCOI::OperandFlags enum.
79   uint8_t Flags;
80
81   /// \brief Information about the type of the operand.
82   uint8_t OperandType;
83   /// \brief The lower 16 bits are used to specify which constraints are set.
84   /// The higher 16 bits are used to specify the value of constraints (4 bits
85   /// each).
86   uint32_t Constraints;
87
88   /// \brief Set if this operand is a pointer value and it requires a callback
89   /// to look up its register class.
90   bool isLookupPtrRegClass() const {
91     return Flags & (1 << MCOI::LookupPtrRegClass);
92   }
93
94   /// \brief Set if this is one of the operands that made up of the predicate
95   /// operand that controls an isPredicable() instruction.
96   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
97
98   /// \brief Set if this operand is a optional def.
99   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
100
101   bool isGenericType() const {
102     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
103            OperandType <= MCOI::OPERAND_LAST_GENERIC;
104   }
105
106   unsigned getGenericTypeIndex() const {
107     assert(isGenericType() && "non-generic types don't have an index");
108     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
109   }
110 };
111
112 //===----------------------------------------------------------------------===//
113 // Machine Instruction Flags and Description
114 //===----------------------------------------------------------------------===//
115
116 namespace MCID {
117 /// \brief These should be considered private to the implementation of the
118 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
119 /// not use these directly.  These all correspond to bitfields in the
120 /// MCInstrDesc::Flags field.
121 enum Flag {
122   Variadic = 0,
123   HasOptionalDef,
124   Pseudo,
125   Return,
126   Call,
127   Barrier,
128   Terminator,
129   Branch,
130   IndirectBranch,
131   Compare,
132   MoveImm,
133   Bitcast,
134   Select,
135   DelaySlot,
136   FoldableAsLoad,
137   MayLoad,
138   MayStore,
139   Predicable,
140   NotDuplicable,
141   UnmodeledSideEffects,
142   Commutable,
143   ConvertibleTo3Addr,
144   UsesCustomInserter,
145   HasPostISelHook,
146   Rematerializable,
147   CheapAsAMove,
148   ExtraSrcRegAllocReq,
149   ExtraDefRegAllocReq,
150   RegSequence,
151   ExtractSubreg,
152   InsertSubreg,
153   Convergent,
154   Add
155 };
156 }
157
158 /// \brief Describe properties that are true of each instruction in the target
159 /// description file.  This captures information about side effects, register
160 /// use and many other things.  There is one instance of this struct for each
161 /// target instruction class, and the MachineInstr class points to this struct
162 /// directly to describe itself.
163 class MCInstrDesc {
164 public:
165   unsigned short Opcode;         // The opcode number
166   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
167   unsigned char NumDefs;         // Num of args that are definitions
168   unsigned char Size;            // Number of bytes in encoding.
169   unsigned short SchedClass;     // enum identifying instr sched class
170   uint64_t Flags;                // Flags identifying machine instr class
171   uint64_t TSFlags;              // Target Specific Flag values
172   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
173   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
174   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
175   // Subtarget feature that this is deprecated on, if any
176   // -1 implies this is not deprecated by any single feature. It may still be 
177   // deprecated due to a "complex" reason, below.
178   int64_t DeprecatedFeature;
179
180   // A complex method to determine is a certain is deprecated or not, and return
181   // the reason for deprecation.
182   bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
183                                  std::string &);
184
185   /// \brief Returns the value of the specific constraint if
186   /// it is set. Returns -1 if it is not set.
187   int getOperandConstraint(unsigned OpNum,
188                            MCOI::OperandConstraint Constraint) const {
189     if (OpNum < NumOperands &&
190         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
191       unsigned Pos = 16 + Constraint * 4;
192       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
193     }
194     return -1;
195   }
196
197   /// \brief Returns true if a certain instruction is deprecated and if so
198   /// returns the reason in \p Info.
199   bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
200                          std::string &Info) const;
201
202   /// \brief Return the opcode number for this descriptor.
203   unsigned getOpcode() const { return Opcode; }
204
205   /// \brief Return the number of declared MachineOperands for this
206   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
207   /// instructions may have additional operands at the end of the list, and note
208   /// that the machine instruction may include implicit register def/uses as
209   /// well.
210   unsigned getNumOperands() const { return NumOperands; }
211
212   using const_opInfo_iterator = const MCOperandInfo *;
213
214   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
215   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
216
217   iterator_range<const_opInfo_iterator> operands() const {
218     return make_range(opInfo_begin(), opInfo_end());
219   }
220
221   /// \brief Return the number of MachineOperands that are register
222   /// definitions.  Register definitions always occur at the start of the
223   /// machine operand list.  This is the number of "outs" in the .td file,
224   /// and does not include implicit defs.
225   unsigned getNumDefs() const { return NumDefs; }
226
227   /// \brief Return flags of this instruction.
228   uint64_t getFlags() const { return Flags; }
229
230   /// \brief Return true if this instruction can have a variable number of
231   /// operands.  In this case, the variable operands will be after the normal
232   /// operands but before the implicit definitions and uses (if any are
233   /// present).
234   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
235
236   /// \brief Set if this instruction has an optional definition, e.g.
237   /// ARM instructions which can set condition code if 's' bit is set.
238   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
239
240   /// \brief Return true if this is a pseudo instruction that doesn't
241   /// correspond to a real machine instruction.
242   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
243
244   /// \brief Return true if the instruction is a return.
245   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
246
247   /// \brief Return true if the instruction is an add instruction.
248   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
249
250   /// \brief  Return true if the instruction is a call.
251   bool isCall() const { return Flags & (1ULL << MCID::Call); }
252
253   /// \brief Returns true if the specified instruction stops control flow
254   /// from executing the instruction immediately following it.  Examples include
255   /// unconditional branches and return instructions.
256   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
257
258   /// \brief Returns true if this instruction part of the terminator for
259   /// a basic block.  Typically this is things like return and branch
260   /// instructions.
261   ///
262   /// Various passes use this to insert code into the bottom of a basic block,
263   /// but before control flow occurs.
264   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
265
266   /// \brief Returns true if this is a conditional, unconditional, or
267   /// indirect branch.  Predicates below can be used to discriminate between
268   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
269   /// get more information.
270   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
271
272   /// \brief Return true if this is an indirect branch, such as a
273   /// branch through a register.
274   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
275
276   /// \brief Return true if this is a branch which may fall
277   /// through to the next instruction or may transfer control flow to some other
278   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
279   /// information about this branch.
280   bool isConditionalBranch() const {
281     return isBranch() & !isBarrier() & !isIndirectBranch();
282   }
283
284   /// \brief Return true if this is a branch which always
285   /// transfers control flow to some other block.  The
286   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
287   /// about this branch.
288   bool isUnconditionalBranch() const {
289     return isBranch() & isBarrier() & !isIndirectBranch();
290   }
291
292   /// \brief Return true if this is a branch or an instruction which directly
293   /// writes to the program counter. Considered 'may' affect rather than
294   /// 'does' affect as things like predication are not taken into account.
295   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
296
297   /// \brief Return true if this instruction has a predicate operand
298   /// that controls execution. It may be set to 'always', or may be set to other
299   /// values. There are various methods in TargetInstrInfo that can be used to
300   /// control and modify the predicate in this instruction.
301   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
302
303   /// \brief Return true if this instruction is a comparison.
304   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
305
306   /// \brief Return true if this instruction is a move immediate
307   /// (including conditional moves) instruction.
308   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
309
310   /// \brief Return true if this instruction is a bitcast instruction.
311   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
312
313   /// \brief Return true if this is a select instruction.
314   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
315
316   /// \brief Return true if this instruction cannot be safely
317   /// duplicated.  For example, if the instruction has a unique labels attached
318   /// to it, duplicating it would cause multiple definition errors.
319   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
320
321   /// \brief Returns true if the specified instruction has a delay slot which
322   /// must be filled by the code generator.
323   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
324
325   /// \brief Return true for instructions that can be folded as memory operands
326   /// in other instructions. The most common use for this is instructions that
327   /// are simple loads from memory that don't modify the loaded value in any
328   /// way, but it can also be used for instructions that can be expressed as
329   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
330   /// folded when it is beneficial.  This should only be set on instructions
331   /// that return a value in their only virtual register definition.
332   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
333
334   /// \brief Return true if this instruction behaves
335   /// the same way as the generic REG_SEQUENCE instructions.
336   /// E.g., on ARM,
337   /// dX VMOVDRR rY, rZ
338   /// is equivalent to
339   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
340   ///
341   /// Note that for the optimizers to be able to take advantage of
342   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
343   /// override accordingly.
344   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
345
346   /// \brief Return true if this instruction behaves
347   /// the same way as the generic EXTRACT_SUBREG instructions.
348   /// E.g., on ARM,
349   /// rX, rY VMOVRRD dZ
350   /// is equivalent to two EXTRACT_SUBREG:
351   /// rX = EXTRACT_SUBREG dZ, ssub_0
352   /// rY = EXTRACT_SUBREG dZ, ssub_1
353   ///
354   /// Note that for the optimizers to be able to take advantage of
355   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
356   /// override accordingly.
357   bool isExtractSubregLike() const {
358     return Flags & (1ULL << MCID::ExtractSubreg);
359   }
360
361   /// \brief Return true if this instruction behaves
362   /// the same way as the generic INSERT_SUBREG instructions.
363   /// E.g., on ARM,
364   /// dX = VSETLNi32 dY, rZ, Imm
365   /// is equivalent to a INSERT_SUBREG:
366   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
367   ///
368   /// Note that for the optimizers to be able to take advantage of
369   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
370   /// override accordingly.
371   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
372
373
374   /// \brief Return true if this instruction is convergent.
375   ///
376   /// Convergent instructions may not be made control-dependent on any
377   /// additional values.
378   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
379
380   //===--------------------------------------------------------------------===//
381   // Side Effect Analysis
382   //===--------------------------------------------------------------------===//
383
384   /// \brief Return true if this instruction could possibly read memory.
385   /// Instructions with this flag set are not necessarily simple load
386   /// instructions, they may load a value and modify it, for example.
387   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
388
389   /// \brief Return true if this instruction could possibly modify memory.
390   /// Instructions with this flag set are not necessarily simple store
391   /// instructions, they may store a modified value based on their operands, or
392   /// may not actually modify anything, for example.
393   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
394
395   /// \brief Return true if this instruction has side
396   /// effects that are not modeled by other flags.  This does not return true
397   /// for instructions whose effects are captured by:
398   ///
399   ///  1. Their operand list and implicit definition/use list.  Register use/def
400   ///     info is explicit for instructions.
401   ///  2. Memory accesses.  Use mayLoad/mayStore.
402   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
403   ///
404   /// Examples of side effects would be modifying 'invisible' machine state like
405   /// a control register, flushing a cache, modifying a register invisible to
406   /// LLVM, etc.
407   bool hasUnmodeledSideEffects() const {
408     return Flags & (1ULL << MCID::UnmodeledSideEffects);
409   }
410
411   //===--------------------------------------------------------------------===//
412   // Flags that indicate whether an instruction can be modified by a method.
413   //===--------------------------------------------------------------------===//
414
415   /// \brief Return true if this may be a 2- or 3-address instruction (of the
416   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
417   /// exchanged.  If this flag is set, then the
418   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
419   /// instruction.
420   ///
421   /// Note that this flag may be set on instructions that are only commutable
422   /// sometimes.  In these cases, the call to commuteInstruction will fail.
423   /// Also note that some instructions require non-trivial modification to
424   /// commute them.
425   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
426
427   /// \brief Return true if this is a 2-address instruction which can be changed
428   /// into a 3-address instruction if needed.  Doing this transformation can be
429   /// profitable in the register allocator, because it means that the
430   /// instruction can use a 2-address form if possible, but degrade into a less
431   /// efficient form if the source and dest register cannot be assigned to the
432   /// same register.  For example, this allows the x86 backend to turn a "shl
433   /// reg, 3" instruction into an LEA instruction, which is the same speed as
434   /// the shift but has bigger code size.
435   ///
436   /// If this returns true, then the target must implement the
437   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
438   /// is allowed to fail if the transformation isn't valid for this specific
439   /// instruction (e.g. shl reg, 4 on x86).
440   ///
441   bool isConvertibleTo3Addr() const {
442     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
443   }
444
445   /// \brief Return true if this instruction requires custom insertion support
446   /// when the DAG scheduler is inserting it into a machine basic block.  If
447   /// this is true for the instruction, it basically means that it is a pseudo
448   /// instruction used at SelectionDAG time that is expanded out into magic code
449   /// by the target when MachineInstrs are formed.
450   ///
451   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
452   /// is used to insert this into the MachineBasicBlock.
453   bool usesCustomInsertionHook() const {
454     return Flags & (1ULL << MCID::UsesCustomInserter);
455   }
456
457   /// \brief Return true if this instruction requires *adjustment* after
458   /// instruction selection by calling a target hook. For example, this can be
459   /// used to fill in ARM 's' optional operand depending on whether the
460   /// conditional flag register is used.
461   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
462
463   /// \brief Returns true if this instruction is a candidate for remat. This
464   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
465   ///
466   /// If this flag is set, the isReallyTriviallyReMaterializable()
467   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
468   /// the instruction is really rematable.
469   bool isRematerializable() const {
470     return Flags & (1ULL << MCID::Rematerializable);
471   }
472
473   /// \brief Returns true if this instruction has the same cost (or less) than a
474   /// move instruction. This is useful during certain types of optimizations
475   /// (e.g., remat during two-address conversion or machine licm) where we would
476   /// like to remat or hoist the instruction, but not if it costs more than
477   /// moving the instruction into the appropriate register. Note, we are not
478   /// marking copies from and to the same register class with this flag.
479   ///
480   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
481   /// for different subtargets.
482   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
483
484   /// \brief Returns true if this instruction source operands have special
485   /// register allocation requirements that are not captured by the operand
486   /// register classes. e.g. ARM::STRD's two source registers must be an even /
487   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
488   /// allocation passes should not attempt to change allocations for sources of
489   /// instructions with this flag.
490   bool hasExtraSrcRegAllocReq() const {
491     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
492   }
493
494   /// \brief Returns true if this instruction def operands have special register
495   /// allocation requirements that are not captured by the operand register
496   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
497   /// ARM::LDM registers have to be in ascending order.  Post-register
498   /// allocation passes should not attempt to change allocations for definitions
499   /// of instructions with this flag.
500   bool hasExtraDefRegAllocReq() const {
501     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
502   }
503
504   /// \brief Return a list of registers that are potentially read by any
505   /// instance of this machine instruction.  For example, on X86, the "adc"
506   /// instruction adds two register operands and adds the carry bit in from the
507   /// flags register.  In this case, the instruction is marked as implicitly
508   /// reading the flags.  Likewise, the variable shift instruction on X86 is
509   /// marked as implicitly reading the 'CL' register, which it always does.
510   ///
511   /// This method returns null if the instruction has no implicit uses.
512   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
513
514   /// \brief Return the number of implicit uses this instruction has.
515   unsigned getNumImplicitUses() const {
516     if (!ImplicitUses)
517       return 0;
518     unsigned i = 0;
519     for (; ImplicitUses[i]; ++i) /*empty*/
520       ;
521     return i;
522   }
523
524   /// \brief Return a list of registers that are potentially written by any
525   /// instance of this machine instruction.  For example, on X86, many
526   /// instructions implicitly set the flags register.  In this case, they are
527   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
528   /// their result in a physical register.  For example, the X86 divide
529   /// instruction always deposits the quotient and remainder in the EAX/EDX
530   /// registers.  For that instruction, this will return a list containing the
531   /// EAX/EDX/EFLAGS registers.
532   ///
533   /// This method returns null if the instruction has no implicit defs.
534   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
535
536   /// \brief Return the number of implicit defs this instruct has.
537   unsigned getNumImplicitDefs() const {
538     if (!ImplicitDefs)
539       return 0;
540     unsigned i = 0;
541     for (; ImplicitDefs[i]; ++i) /*empty*/
542       ;
543     return i;
544   }
545
546   /// \brief Return true if this instruction implicitly
547   /// uses the specified physical register.
548   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
549     if (const MCPhysReg *ImpUses = ImplicitUses)
550       for (; *ImpUses; ++ImpUses)
551         if (*ImpUses == Reg)
552           return true;
553     return false;
554   }
555
556   /// \brief Return true if this instruction implicitly
557   /// defines the specified physical register.
558   bool hasImplicitDefOfPhysReg(unsigned Reg,
559                                const MCRegisterInfo *MRI = nullptr) const;
560
561   /// \brief Return the scheduling class for this instruction.  The
562   /// scheduling class is an index into the InstrItineraryData table.  This
563   /// returns zero if there is no known scheduling information for the
564   /// instruction.
565   unsigned getSchedClass() const { return SchedClass; }
566
567   /// \brief Return the number of bytes in the encoding of this instruction,
568   /// or zero if the encoding size cannot be known from the opcode.
569   unsigned getSize() const { return Size; }
570
571   /// \brief Find the index of the first operand in the
572   /// operand list that is used to represent the predicate. It returns -1 if
573   /// none is found.
574   int findFirstPredOperandIdx() const {
575     if (isPredicable()) {
576       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
577         if (OpInfo[i].isPredicate())
578           return i;
579     }
580     return -1;
581   }
582
583 private:
584
585   /// \brief Return true if this instruction defines the specified physical
586   /// register, either explicitly or implicitly.
587   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
588                        const MCRegisterInfo &RI) const;
589 };
590
591 } // end namespace llvm
592
593 #endif