]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/Transforms/Utils/Local.h
MFV r312333: zlib 1.2.11.
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / Transforms / Utils / Local.h
1 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
17
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25
26 namespace llvm {
27
28 class User;
29 class BasicBlock;
30 class Function;
31 class BranchInst;
32 class Instruction;
33 class CallInst;
34 class DbgDeclareInst;
35 class StoreInst;
36 class LoadInst;
37 class Value;
38 class PHINode;
39 class AllocaInst;
40 class AssumptionCache;
41 class ConstantExpr;
42 class DataLayout;
43 class TargetLibraryInfo;
44 class TargetTransformInfo;
45 class DIBuilder;
46 class DominatorTree;
47 class LazyValueInfo;
48
49 template<typename T> class SmallVectorImpl;
50
51 //===----------------------------------------------------------------------===//
52 //  Local constant propagation.
53 //
54
55 /// If a terminator instruction is predicated on a constant value, convert it
56 /// into an unconditional branch to the constant destination.
57 /// This is a nontrivial operation because the successors of this basic block
58 /// must have their PHI nodes updated.
59 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
60 /// conditions and indirectbr addresses this might make dead if
61 /// DeleteDeadConditions is true.
62 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
63                             const TargetLibraryInfo *TLI = nullptr);
64
65 //===----------------------------------------------------------------------===//
66 //  Local dead code elimination.
67 //
68
69 /// Return true if the result produced by the instruction is not used, and the
70 /// instruction has no side effects.
71 bool isInstructionTriviallyDead(Instruction *I,
72                                 const TargetLibraryInfo *TLI = nullptr);
73
74 /// If the specified value is a trivially dead instruction, delete it.
75 /// If that makes any of its operands trivially dead, delete them too,
76 /// recursively. Return true if any instructions were deleted.
77 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
78                                         const TargetLibraryInfo *TLI = nullptr);
79
80 /// If the specified value is an effectively dead PHI node, due to being a
81 /// def-use chain of single-use nodes that either forms a cycle or is terminated
82 /// by a trivially dead instruction, delete it. If that makes any of its
83 /// operands trivially dead, delete them too, recursively. Return true if a
84 /// change was made.
85 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
86                                   const TargetLibraryInfo *TLI = nullptr);
87
88 /// Scan the specified basic block and try to simplify any instructions in it
89 /// and recursively delete dead instructions.
90 ///
91 /// This returns true if it changed the code, note that it can delete
92 /// instructions in other blocks as well in this block.
93 bool SimplifyInstructionsInBlock(BasicBlock *BB,
94                                  const TargetLibraryInfo *TLI = nullptr);
95
96 //===----------------------------------------------------------------------===//
97 //  Control Flow Graph Restructuring.
98 //
99
100 /// Like BasicBlock::removePredecessor, this method is called when we're about
101 /// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
102 /// drops the entries in the PHI nodes for Pred.
103 ///
104 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
105 /// nodes that collapse into identity values.  For example, if we have:
106 ///   x = phi(1, 0, 0, 0)
107 ///   y = and x, z
108 ///
109 /// .. and delete the predecessor corresponding to the '1', this will attempt to
110 /// recursively fold the 'and' to 0.
111 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred);
112
113 /// BB is a block with one predecessor and its predecessor is known to have one
114 /// successor (BB!). Eliminate the edge between them, moving the instructions in
115 /// the predecessor into BB. This deletes the predecessor block.
116 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr);
117
118 /// BB is known to contain an unconditional branch, and contains no instructions
119 /// other than PHI nodes, potential debug intrinsics and the branch. If
120 /// possible, eliminate BB by rewriting all the predecessors to branch to the
121 /// successor block and return true. If we can't transform, return false.
122 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
123
124 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
125 /// to be clever about PHI nodes which differ only in the order of the incoming
126 /// values, but instcombine orders them so it usually won't matter.
127 bool EliminateDuplicatePHINodes(BasicBlock *BB);
128
129 /// This function is used to do simplification of a CFG.  For
130 /// example, it adjusts branches to branches to eliminate the extra hop, it
131 /// eliminates unreachable basic blocks, and does other "peephole" optimization
132 /// of the CFG.  It returns true if a modification was made, possibly deleting
133 /// the basic block that was pointed to. LoopHeaders is an optional input
134 /// parameter, providing the set of loop header that SimplifyCFG should not
135 /// eliminate.
136 bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
137                  unsigned BonusInstThreshold, AssumptionCache *AC = nullptr,
138                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);
139
140 /// This function is used to flatten a CFG. For example, it uses parallel-and
141 /// and parallel-or mode to collapse if-conditions and merge if-regions with
142 /// identical statements.
143 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
144
145 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
146 /// branches to us and one of our successors, fold the setcc into the
147 /// predecessor and use logical operations to pick the right destination.
148 bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
149
150 /// This function takes a virtual register computed by an Instruction and
151 /// replaces it with a slot in the stack frame, allocated via alloca.
152 /// This allows the CFG to be changed around without fear of invalidating the
153 /// SSA information for the value. It returns the pointer to the alloca inserted
154 /// to create a stack slot for X.
155 AllocaInst *DemoteRegToStack(Instruction &X,
156                              bool VolatileLoads = false,
157                              Instruction *AllocaPoint = nullptr);
158
159 /// This function takes a virtual register computed by a phi node and replaces
160 /// it with a slot in the stack frame, allocated via alloca. The phi node is
161 /// deleted and it returns the pointer to the alloca inserted.
162 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
163
164 /// If the specified pointer has an alignment that we can determine, return it,
165 /// otherwise return 0. If PrefAlign is specified, and it is more than the
166 /// alignment of the ultimate object, see if we can increase the alignment of
167 /// the ultimate object, making this check succeed.
168 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
169                                     const DataLayout &DL,
170                                     const Instruction *CxtI = nullptr,
171                                     AssumptionCache *AC = nullptr,
172                                     const DominatorTree *DT = nullptr);
173
174 /// Try to infer an alignment for the specified pointer.
175 static inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
176                                          const Instruction *CxtI = nullptr,
177                                          AssumptionCache *AC = nullptr,
178                                          const DominatorTree *DT = nullptr) {
179   return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
180 }
181
182 /// Given a getelementptr instruction/constantexpr, emit the code necessary to
183 /// compute the offset from the base pointer (without adding in the base
184 /// pointer). Return the result as a signed integer of intptr size.
185 /// When NoAssumptions is true, no assumptions about index computation not
186 /// overflowing is made.
187 template <typename IRBuilderTy>
188 Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
189                      bool NoAssumptions = false) {
190   GEPOperator *GEPOp = cast<GEPOperator>(GEP);
191   Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
192   Value *Result = Constant::getNullValue(IntPtrTy);
193
194   // If the GEP is inbounds, we know that none of the addressing operations will
195   // overflow in an unsigned sense.
196   bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
197
198   // Build a mask for high order bits.
199   unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
200   uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
201
202   gep_type_iterator GTI = gep_type_begin(GEP);
203   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
204        ++i, ++GTI) {
205     Value *Op = *i;
206     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
207     if (Constant *OpC = dyn_cast<Constant>(Op)) {
208       if (OpC->isZeroValue())
209         continue;
210
211       // Handle a struct index, which adds its field offset to the pointer.
212       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
213         if (OpC->getType()->isVectorTy())
214           OpC = OpC->getSplatValue();
215
216         uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue();
217         Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
218
219         if (Size)
220           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
221                                       GEP->getName()+".offs");
222         continue;
223       }
224
225       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
226       Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
227       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
228       // Emit an add instruction.
229       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
230       continue;
231     }
232     // Convert to correct type.
233     if (Op->getType() != IntPtrTy)
234       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
235     if (Size != 1) {
236       // We'll let instcombine(mul) convert this to a shl if possible.
237       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
238                               GEP->getName()+".idx", isInBounds /*NUW*/);
239     }
240
241     // Emit an add instruction.
242     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
243   }
244   return Result;
245 }
246
247 ///===---------------------------------------------------------------------===//
248 ///  Dbg Intrinsic utilities
249 ///
250
251 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
252 /// that has an associated llvm.dbg.decl intrinsic.
253 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
254                                      StoreInst *SI, DIBuilder &Builder);
255
256 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
257 /// that has an associated llvm.dbg.decl intrinsic.
258 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
259                                      LoadInst *LI, DIBuilder &Builder);
260
261 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
262 /// llvm.dbg.value intrinsics.
263 bool LowerDbgDeclare(Function &F);
264
265 /// Finds the llvm.dbg.declare intrinsic corresponding to an alloca, if any.
266 DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
267
268 /// Replaces llvm.dbg.declare instruction when the address it describes
269 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
270 /// prepended to the expression. If Offset is non-zero, a constant displacement
271 /// is added to the expression (after the optional Deref). Offset can be
272 /// negative.
273 bool replaceDbgDeclare(Value *Address, Value *NewAddress,
274                        Instruction *InsertBefore, DIBuilder &Builder,
275                        bool Deref, int Offset);
276
277 /// Replaces llvm.dbg.declare instruction when the alloca it describes
278 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
279 /// prepended to the expression. If Offset is non-zero, a constant displacement
280 /// is added to the expression (after the optional Deref). Offset can be
281 /// negative. New llvm.dbg.declare is inserted immediately before AI.
282 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
283                                 DIBuilder &Builder, bool Deref, int Offset = 0);
284
285 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
286 /// is replaced with a new value. If Offset is non-zero, a constant displacement
287 /// is added to the expression (after the mandatory Deref). Offset can be
288 /// negative. New llvm.dbg.value instructions are inserted at the locations of
289 /// the instructions they replace.
290 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
291                               DIBuilder &Builder, int Offset = 0);
292
293 /// Remove all instructions from a basic block other than it's terminator
294 /// and any present EH pad instructions.
295 unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
296
297 /// Insert an unreachable instruction before the specified
298 /// instruction, making it and the rest of the code in the block dead.
299 unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap);
300
301 /// Replace 'BB's terminator with one that does not have an unwind successor
302 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
303 /// successor.
304 ///
305 /// \param BB  Block whose terminator will be replaced.  Its terminator must
306 ///            have an unwind successor.
307 void removeUnwindEdge(BasicBlock *BB);
308
309 /// Remove all blocks that can not be reached from the function's entry.
310 ///
311 /// Returns true if any basic block was removed.
312 bool removeUnreachableBlocks(Function &F, LazyValueInfo *LVI = nullptr);
313
314 /// Combine the metadata of two instructions so that K can replace J
315 ///
316 /// Metadata not listed as known via KnownIDs is removed
317 void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
318
319 /// Replace each use of 'From' with 'To' if that use is dominated by
320 /// the given edge.  Returns the number of replacements made.
321 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
322                                   const BasicBlockEdge &Edge);
323 /// Replace each use of 'From' with 'To' if that use is dominated by
324 /// the end of the given BasicBlock. Returns the number of replacements made.
325 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
326                                   const BasicBlock *BB);
327
328
329 /// Return true if the CallSite CS calls a gc leaf function.
330 ///
331 /// A leaf function is a function that does not safepoint the thread during its
332 /// execution.  During a call or invoke to such a function, the callers stack
333 /// does not have to be made parseable.
334 ///
335 /// Most passes can and should ignore this information, and it is only used
336 /// during lowering by the GC infrastructure.
337 bool callsGCLeafFunction(ImmutableCallSite CS);
338
339 //===----------------------------------------------------------------------===//
340 //  Intrinsic pattern matching
341 //
342
343 /// Try and match a bswap or bitreverse idiom.
344 ///
345 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
346 /// instructions are returned in \c InsertedInsts. They will all have been added
347 /// to a basic block.
348 ///
349 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
350 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
351 /// to BW / 4 nodes to be searched, so is significantly faster.
352 ///
353 /// This function returns true on a successful match or false otherwise.
354 bool recognizeBSwapOrBitReverseIdiom(
355     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
356     SmallVectorImpl<Instruction *> &InsertedInsts);
357
358 //===----------------------------------------------------------------------===//
359 //  Sanitizer utilities
360 //
361
362 /// Given a CallInst, check if it calls a string function known to CodeGen,
363 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
364 /// to intercept string functions and want to avoid converting them to target
365 /// specific instructions.
366 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
367                                             const TargetLibraryInfo *TLI);
368
369 } // End llvm namespace
370
371 #endif