]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/CFLGraph.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / CFLGraph.h
1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
12 /// alias analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
17 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
18
19 #include "AliasAnalysisSummary.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45
46 namespace llvm {
47 namespace cflaa {
48
49 /// The Program Expression Graph (PEG) of CFL analysis
50 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
51 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
52 /// the main purpose of this graph is to abstract away unrelated facts and
53 /// translate the rest into a form that can be easily digested by CFL analyses.
54 /// Each Node in the graph is an InstantiatedValue, and each edge represent a
55 /// pointer assignment between InstantiatedValue. Pointer
56 /// references/dereferences are not explicitly stored in the graph: we
57 /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
58 /// I+1) and a reference edge to (X, I-1).
59 class CFLGraph {
60 public:
61   using Node = InstantiatedValue;
62
63   struct Edge {
64     Node Other;
65     int64_t Offset;
66   };
67
68   using EdgeList = std::vector<Edge>;
69
70   struct NodeInfo {
71     EdgeList Edges, ReverseEdges;
72     AliasAttrs Attr;
73   };
74
75   class ValueInfo {
76     std::vector<NodeInfo> Levels;
77
78   public:
79     bool addNodeToLevel(unsigned Level) {
80       auto NumLevels = Levels.size();
81       if (NumLevels > Level)
82         return false;
83       Levels.resize(Level + 1);
84       return true;
85     }
86
87     NodeInfo &getNodeInfoAtLevel(unsigned Level) {
88       assert(Level < Levels.size());
89       return Levels[Level];
90     }
91     const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
92       assert(Level < Levels.size());
93       return Levels[Level];
94     }
95
96     unsigned getNumLevels() const { return Levels.size(); }
97   };
98
99 private:
100   using ValueMap = DenseMap<Value *, ValueInfo>;
101
102   ValueMap ValueImpls;
103
104   NodeInfo *getNode(Node N) {
105     auto Itr = ValueImpls.find(N.Val);
106     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
107       return nullptr;
108     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
109   }
110
111 public:
112   using const_value_iterator = ValueMap::const_iterator;
113
114   bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
115     assert(N.Val != nullptr);
116     auto &ValInfo = ValueImpls[N.Val];
117     auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
118     ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
119     return Changed;
120   }
121
122   void addAttr(Node N, AliasAttrs Attr) {
123     auto *Info = getNode(N);
124     assert(Info != nullptr);
125     Info->Attr |= Attr;
126   }
127
128   void addEdge(Node From, Node To, int64_t Offset = 0) {
129     auto *FromInfo = getNode(From);
130     assert(FromInfo != nullptr);
131     auto *ToInfo = getNode(To);
132     assert(ToInfo != nullptr);
133
134     FromInfo->Edges.push_back(Edge{To, Offset});
135     ToInfo->ReverseEdges.push_back(Edge{From, Offset});
136   }
137
138   const NodeInfo *getNode(Node N) const {
139     auto Itr = ValueImpls.find(N.Val);
140     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
141       return nullptr;
142     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
143   }
144
145   AliasAttrs attrFor(Node N) const {
146     auto *Info = getNode(N);
147     assert(Info != nullptr);
148     return Info->Attr;
149   }
150
151   iterator_range<const_value_iterator> value_mappings() const {
152     return make_range<const_value_iterator>(ValueImpls.begin(),
153                                             ValueImpls.end());
154   }
155 };
156
157 ///A builder class used to create CFLGraph instance from a given function
158 /// The CFL-AA that uses this builder must provide its own type as a template
159 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
160 /// needs a way of obtaining the summary of other functions when callinsts are
161 /// encountered.
162 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
163 /// member function that takes a Function& and returns the corresponding summary
164 /// as a const AliasSummary*.
165 template <typename CFLAA> class CFLGraphBuilder {
166   // Input of the builder
167   CFLAA &Analysis;
168   const TargetLibraryInfo &TLI;
169
170   // Output of the builder
171   CFLGraph Graph;
172   SmallVector<Value *, 4> ReturnedValues;
173
174   // Helper class
175   /// Gets the edges our graph should have, based on an Instruction*
176   class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
177     CFLAA &AA;
178     const DataLayout &DL;
179     const TargetLibraryInfo &TLI;
180
181     CFLGraph &Graph;
182     SmallVectorImpl<Value *> &ReturnValues;
183
184     static bool hasUsefulEdges(ConstantExpr *CE) {
185       // ConstantExpr doesn't have terminators, invokes, or fences, so only
186       // needs
187       // to check for compares.
188       return CE->getOpcode() != Instruction::ICmp &&
189              CE->getOpcode() != Instruction::FCmp;
190     }
191
192     // Returns possible functions called by CS into the given SmallVectorImpl.
193     // Returns true if targets found, false otherwise.
194     static bool getPossibleTargets(CallSite CS,
195                                    SmallVectorImpl<Function *> &Output) {
196       if (auto *Fn = CS.getCalledFunction()) {
197         Output.push_back(Fn);
198         return true;
199       }
200
201       // TODO: If the call is indirect, we might be able to enumerate all
202       // potential
203       // targets of the call and return them, rather than just failing.
204       return false;
205     }
206
207     void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
208       assert(Val != nullptr && Val->getType()->isPointerTy());
209       if (auto GVal = dyn_cast<GlobalValue>(Val)) {
210         if (Graph.addNode(InstantiatedValue{GVal, 0},
211                           getGlobalOrArgAttrFromValue(*GVal)))
212           Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
213       } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
214         if (hasUsefulEdges(CExpr)) {
215           if (Graph.addNode(InstantiatedValue{CExpr, 0}))
216             visitConstantExpr(CExpr);
217         }
218       } else
219         Graph.addNode(InstantiatedValue{Val, 0}, Attr);
220     }
221
222     void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
223       assert(From != nullptr && To != nullptr);
224       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
225         return;
226       addNode(From);
227       if (To != From) {
228         addNode(To);
229         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
230                       Offset);
231       }
232     }
233
234     void addDerefEdge(Value *From, Value *To, bool IsRead) {
235       assert(From != nullptr && To != nullptr);
236       // FIXME: This is subtly broken, due to how we model some instructions
237       // (e.g. extractvalue, extractelement) as loads. Since those take
238       // non-pointer operands, we'll entirely skip adding edges for those.
239       //
240       // addAssignEdge seems to have a similar issue with insertvalue, etc.
241       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
242         return;
243       addNode(From);
244       addNode(To);
245       if (IsRead) {
246         Graph.addNode(InstantiatedValue{From, 1});
247         Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
248       } else {
249         Graph.addNode(InstantiatedValue{To, 1});
250         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
251       }
252     }
253
254     void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
255     void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
256
257   public:
258     GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
259         : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
260           ReturnValues(Builder.ReturnedValues) {}
261
262     void visitInstruction(Instruction &) {
263       llvm_unreachable("Unsupported instruction encountered");
264     }
265
266     void visitReturnInst(ReturnInst &Inst) {
267       if (auto RetVal = Inst.getReturnValue()) {
268         if (RetVal->getType()->isPointerTy()) {
269           addNode(RetVal);
270           ReturnValues.push_back(RetVal);
271         }
272       }
273     }
274
275     void visitPtrToIntInst(PtrToIntInst &Inst) {
276       auto *Ptr = Inst.getOperand(0);
277       addNode(Ptr, getAttrEscaped());
278     }
279
280     void visitIntToPtrInst(IntToPtrInst &Inst) {
281       auto *Ptr = &Inst;
282       addNode(Ptr, getAttrUnknown());
283     }
284
285     void visitCastInst(CastInst &Inst) {
286       auto *Src = Inst.getOperand(0);
287       addAssignEdge(Src, &Inst);
288     }
289
290     void visitBinaryOperator(BinaryOperator &Inst) {
291       auto *Op1 = Inst.getOperand(0);
292       auto *Op2 = Inst.getOperand(1);
293       addAssignEdge(Op1, &Inst);
294       addAssignEdge(Op2, &Inst);
295     }
296
297     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
298       auto *Ptr = Inst.getPointerOperand();
299       auto *Val = Inst.getNewValOperand();
300       addStoreEdge(Val, Ptr);
301     }
302
303     void visitAtomicRMWInst(AtomicRMWInst &Inst) {
304       auto *Ptr = Inst.getPointerOperand();
305       auto *Val = Inst.getValOperand();
306       addStoreEdge(Val, Ptr);
307     }
308
309     void visitPHINode(PHINode &Inst) {
310       for (Value *Val : Inst.incoming_values())
311         addAssignEdge(Val, &Inst);
312     }
313
314     void visitGEP(GEPOperator &GEPOp) {
315       uint64_t Offset = UnknownOffset;
316       APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
317                      0);
318       if (GEPOp.accumulateConstantOffset(DL, APOffset))
319         Offset = APOffset.getSExtValue();
320
321       auto *Op = GEPOp.getPointerOperand();
322       addAssignEdge(Op, &GEPOp, Offset);
323     }
324
325     void visitGetElementPtrInst(GetElementPtrInst &Inst) {
326       auto *GEPOp = cast<GEPOperator>(&Inst);
327       visitGEP(*GEPOp);
328     }
329
330     void visitSelectInst(SelectInst &Inst) {
331       // Condition is not processed here (The actual statement producing
332       // the condition result is processed elsewhere). For select, the
333       // condition is evaluated, but not loaded, stored, or assigned
334       // simply as a result of being the condition of a select.
335
336       auto *TrueVal = Inst.getTrueValue();
337       auto *FalseVal = Inst.getFalseValue();
338       addAssignEdge(TrueVal, &Inst);
339       addAssignEdge(FalseVal, &Inst);
340     }
341
342     void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
343
344     void visitLoadInst(LoadInst &Inst) {
345       auto *Ptr = Inst.getPointerOperand();
346       auto *Val = &Inst;
347       addLoadEdge(Ptr, Val);
348     }
349
350     void visitStoreInst(StoreInst &Inst) {
351       auto *Ptr = Inst.getPointerOperand();
352       auto *Val = Inst.getValueOperand();
353       addStoreEdge(Val, Ptr);
354     }
355
356     void visitVAArgInst(VAArgInst &Inst) {
357       // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
358       // does
359       // two things:
360       //  1. Loads a value from *((T*)*Ptr).
361       //  2. Increments (stores to) *Ptr by some target-specific amount.
362       // For now, we'll handle this like a landingpad instruction (by placing
363       // the
364       // result in its own group, and having that group alias externals).
365       if (Inst.getType()->isPointerTy())
366         addNode(&Inst, getAttrUnknown());
367     }
368
369     static bool isFunctionExternal(Function *Fn) {
370       return !Fn->hasExactDefinition();
371     }
372
373     bool tryInterproceduralAnalysis(CallSite CS,
374                                     const SmallVectorImpl<Function *> &Fns) {
375       assert(Fns.size() > 0);
376
377       if (CS.arg_size() > MaxSupportedArgsInSummary)
378         return false;
379
380       // Exit early if we'll fail anyway
381       for (auto *Fn : Fns) {
382         if (isFunctionExternal(Fn) || Fn->isVarArg())
383           return false;
384         // Fail if the caller does not provide enough arguments
385         assert(Fn->arg_size() <= CS.arg_size());
386         if (!AA.getAliasSummary(*Fn))
387           return false;
388       }
389
390       for (auto *Fn : Fns) {
391         auto Summary = AA.getAliasSummary(*Fn);
392         assert(Summary != nullptr);
393
394         auto &RetParamRelations = Summary->RetParamRelations;
395         for (auto &Relation : RetParamRelations) {
396           auto IRelation = instantiateExternalRelation(Relation, CS);
397           if (IRelation.hasValue()) {
398             Graph.addNode(IRelation->From);
399             Graph.addNode(IRelation->To);
400             Graph.addEdge(IRelation->From, IRelation->To);
401           }
402         }
403
404         auto &RetParamAttributes = Summary->RetParamAttributes;
405         for (auto &Attribute : RetParamAttributes) {
406           auto IAttr = instantiateExternalAttribute(Attribute, CS);
407           if (IAttr.hasValue())
408             Graph.addNode(IAttr->IValue, IAttr->Attr);
409         }
410       }
411
412       return true;
413     }
414
415     void visitCallSite(CallSite CS) {
416       auto Inst = CS.getInstruction();
417
418       // Make sure all arguments and return value are added to the graph first
419       for (Value *V : CS.args())
420         if (V->getType()->isPointerTy())
421           addNode(V);
422       if (Inst->getType()->isPointerTy())
423         addNode(Inst);
424
425       // Check if Inst is a call to a library function that
426       // allocates/deallocates on the heap. Those kinds of functions do not
427       // introduce any aliases.
428       // TODO: address other common library functions such as realloc(),
429       // strdup(), etc.
430       if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI))
431         return;
432
433       // TODO: Add support for noalias args/all the other fun function
434       // attributes that we can tack on.
435       SmallVector<Function *, 4> Targets;
436       if (getPossibleTargets(CS, Targets))
437         if (tryInterproceduralAnalysis(CS, Targets))
438           return;
439
440       // Because the function is opaque, we need to note that anything
441       // could have happened to the arguments (unless the function is marked
442       // readonly or readnone), and that the result could alias just about
443       // anything, too (unless the result is marked noalias).
444       if (!CS.onlyReadsMemory())
445         for (Value *V : CS.args()) {
446           if (V->getType()->isPointerTy()) {
447             // The argument itself escapes.
448             Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
449             // The fate of argument memory is unknown. Note that since
450             // AliasAttrs is transitive with respect to dereference, we only
451             // need to specify it for the first-level memory.
452             Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
453           }
454         }
455
456       if (Inst->getType()->isPointerTy()) {
457         auto *Fn = CS.getCalledFunction();
458         if (Fn == nullptr || !Fn->returnDoesNotAlias())
459           // No need to call addNode() since we've added Inst at the
460           // beginning of this function and we know it is not a global.
461           Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
462       }
463     }
464
465     /// Because vectors/aggregates are immutable and unaddressable, there's
466     /// nothing we can do to coax a value out of them, other than calling
467     /// Extract{Element,Value}. We can effectively treat them as pointers to
468     /// arbitrary memory locations we can store in and load from.
469     void visitExtractElementInst(ExtractElementInst &Inst) {
470       auto *Ptr = Inst.getVectorOperand();
471       auto *Val = &Inst;
472       addLoadEdge(Ptr, Val);
473     }
474
475     void visitInsertElementInst(InsertElementInst &Inst) {
476       auto *Vec = Inst.getOperand(0);
477       auto *Val = Inst.getOperand(1);
478       addAssignEdge(Vec, &Inst);
479       addStoreEdge(Val, &Inst);
480     }
481
482     void visitLandingPadInst(LandingPadInst &Inst) {
483       // Exceptions come from "nowhere", from our analysis' perspective.
484       // So we place the instruction its own group, noting that said group may
485       // alias externals
486       if (Inst.getType()->isPointerTy())
487         addNode(&Inst, getAttrUnknown());
488     }
489
490     void visitInsertValueInst(InsertValueInst &Inst) {
491       auto *Agg = Inst.getOperand(0);
492       auto *Val = Inst.getOperand(1);
493       addAssignEdge(Agg, &Inst);
494       addStoreEdge(Val, &Inst);
495     }
496
497     void visitExtractValueInst(ExtractValueInst &Inst) {
498       auto *Ptr = Inst.getAggregateOperand();
499       addLoadEdge(Ptr, &Inst);
500     }
501
502     void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
503       auto *From1 = Inst.getOperand(0);
504       auto *From2 = Inst.getOperand(1);
505       addAssignEdge(From1, &Inst);
506       addAssignEdge(From2, &Inst);
507     }
508
509     void visitConstantExpr(ConstantExpr *CE) {
510       switch (CE->getOpcode()) {
511       case Instruction::GetElementPtr: {
512         auto GEPOp = cast<GEPOperator>(CE);
513         visitGEP(*GEPOp);
514         break;
515       }
516
517       case Instruction::PtrToInt: {
518         addNode(CE->getOperand(0), getAttrEscaped());
519         break;
520       }
521
522       case Instruction::IntToPtr: {
523         addNode(CE, getAttrUnknown());
524         break;
525       }
526
527       case Instruction::BitCast:
528       case Instruction::AddrSpaceCast:
529       case Instruction::Trunc:
530       case Instruction::ZExt:
531       case Instruction::SExt:
532       case Instruction::FPExt:
533       case Instruction::FPTrunc:
534       case Instruction::UIToFP:
535       case Instruction::SIToFP:
536       case Instruction::FPToUI:
537       case Instruction::FPToSI: {
538         addAssignEdge(CE->getOperand(0), CE);
539         break;
540       }
541
542       case Instruction::Select: {
543         addAssignEdge(CE->getOperand(1), CE);
544         addAssignEdge(CE->getOperand(2), CE);
545         break;
546       }
547
548       case Instruction::InsertElement:
549       case Instruction::InsertValue: {
550         addAssignEdge(CE->getOperand(0), CE);
551         addStoreEdge(CE->getOperand(1), CE);
552         break;
553       }
554
555       case Instruction::ExtractElement:
556       case Instruction::ExtractValue: {
557         addLoadEdge(CE->getOperand(0), CE);
558         break;
559       }
560
561       case Instruction::Add:
562       case Instruction::Sub:
563       case Instruction::FSub:
564       case Instruction::Mul:
565       case Instruction::FMul:
566       case Instruction::UDiv:
567       case Instruction::SDiv:
568       case Instruction::FDiv:
569       case Instruction::URem:
570       case Instruction::SRem:
571       case Instruction::FRem:
572       case Instruction::And:
573       case Instruction::Or:
574       case Instruction::Xor:
575       case Instruction::Shl:
576       case Instruction::LShr:
577       case Instruction::AShr:
578       case Instruction::ICmp:
579       case Instruction::FCmp:
580       case Instruction::ShuffleVector: {
581         addAssignEdge(CE->getOperand(0), CE);
582         addAssignEdge(CE->getOperand(1), CE);
583         break;
584       }
585
586       default:
587         llvm_unreachable("Unknown instruction type encountered!");
588       }
589     }
590   };
591
592   // Helper functions
593
594   // Determines whether or not we an instruction is useless to us (e.g.
595   // FenceInst)
596   static bool hasUsefulEdges(Instruction *Inst) {
597     bool IsNonInvokeRetTerminator = Inst->isTerminator() &&
598                                     !isa<InvokeInst>(Inst) &&
599                                     !isa<ReturnInst>(Inst);
600     return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
601            !IsNonInvokeRetTerminator;
602   }
603
604   void addArgumentToGraph(Argument &Arg) {
605     if (Arg.getType()->isPointerTy()) {
606       Graph.addNode(InstantiatedValue{&Arg, 0},
607                     getGlobalOrArgAttrFromValue(Arg));
608       // Pointees of a formal parameter is known to the caller
609       Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
610     }
611   }
612
613   // Given an Instruction, this will add it to the graph, along with any
614   // Instructions that are potentially only available from said Instruction
615   // For example, given the following line:
616   //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
617   // addInstructionToGraph would add both the `load` and `getelementptr`
618   // instructions to the graph appropriately.
619   void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
620     if (!hasUsefulEdges(&Inst))
621       return;
622
623     Visitor.visit(Inst);
624   }
625
626   // Builds the graph needed for constructing the StratifiedSets for the given
627   // function
628   void buildGraphFrom(Function &Fn) {
629     GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
630
631     for (auto &Bb : Fn.getBasicBlockList())
632       for (auto &Inst : Bb.getInstList())
633         addInstructionToGraph(Visitor, Inst);
634
635     for (auto &Arg : Fn.args())
636       addArgumentToGraph(Arg);
637   }
638
639 public:
640   CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
641       : Analysis(Analysis), TLI(TLI) {
642     buildGraphFrom(Fn);
643   }
644
645   const CFLGraph &getCFLGraph() const { return Graph; }
646   const SmallVector<Value *, 4> &getReturnValues() const {
647     return ReturnedValues;
648   }
649 };
650
651 } // end namespace cflaa
652 } // end namespace llvm
653
654 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H