]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/CFLGraph.h
MFV r338797:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / CFLGraph.h
1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based
12 /// alias analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
17 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H
18
19 #include "AliasAnalysisSummary.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45
46 namespace llvm {
47 namespace cflaa {
48
49 /// \brief The Program Expression Graph (PEG) of CFL analysis
50 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
51 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
52 /// the main purpose of this graph is to abstract away unrelated facts and
53 /// translate the rest into a form that can be easily digested by CFL analyses.
54 /// Each Node in the graph is an InstantiatedValue, and each edge represent a
55 /// pointer assignment between InstantiatedValue. Pointer
56 /// references/dereferences are not explicitly stored in the graph: we
57 /// implicitly assume that for each node (X, I) it has a dereference edge to (X,
58 /// I+1) and a reference edge to (X, I-1).
59 class CFLGraph {
60 public:
61   using Node = InstantiatedValue;
62
63   struct Edge {
64     Node Other;
65     int64_t Offset;
66   };
67
68   using EdgeList = std::vector<Edge>;
69
70   struct NodeInfo {
71     EdgeList Edges, ReverseEdges;
72     AliasAttrs Attr;
73   };
74
75   class ValueInfo {
76     std::vector<NodeInfo> Levels;
77
78   public:
79     bool addNodeToLevel(unsigned Level) {
80       auto NumLevels = Levels.size();
81       if (NumLevels > Level)
82         return false;
83       Levels.resize(Level + 1);
84       return true;
85     }
86
87     NodeInfo &getNodeInfoAtLevel(unsigned Level) {
88       assert(Level < Levels.size());
89       return Levels[Level];
90     }
91     const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
92       assert(Level < Levels.size());
93       return Levels[Level];
94     }
95
96     unsigned getNumLevels() const { return Levels.size(); }
97   };
98
99 private:
100   using ValueMap = DenseMap<Value *, ValueInfo>;
101
102   ValueMap ValueImpls;
103
104   NodeInfo *getNode(Node N) {
105     auto Itr = ValueImpls.find(N.Val);
106     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
107       return nullptr;
108     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
109   }
110
111 public:
112   using const_value_iterator = ValueMap::const_iterator;
113
114   bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
115     assert(N.Val != nullptr);
116     auto &ValInfo = ValueImpls[N.Val];
117     auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
118     ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
119     return Changed;
120   }
121
122   void addAttr(Node N, AliasAttrs Attr) {
123     auto *Info = getNode(N);
124     assert(Info != nullptr);
125     Info->Attr |= Attr;
126   }
127
128   void addEdge(Node From, Node To, int64_t Offset = 0) {
129     auto *FromInfo = getNode(From);
130     assert(FromInfo != nullptr);
131     auto *ToInfo = getNode(To);
132     assert(ToInfo != nullptr);
133
134     FromInfo->Edges.push_back(Edge{To, Offset});
135     ToInfo->ReverseEdges.push_back(Edge{From, Offset});
136   }
137
138   const NodeInfo *getNode(Node N) const {
139     auto Itr = ValueImpls.find(N.Val);
140     if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
141       return nullptr;
142     return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
143   }
144
145   AliasAttrs attrFor(Node N) const {
146     auto *Info = getNode(N);
147     assert(Info != nullptr);
148     return Info->Attr;
149   }
150
151   iterator_range<const_value_iterator> value_mappings() const {
152     return make_range<const_value_iterator>(ValueImpls.begin(),
153                                             ValueImpls.end());
154   }
155 };
156
157 ///\brief A builder class used to create CFLGraph instance from a given function
158 /// The CFL-AA that uses this builder must provide its own type as a template
159 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder
160 /// needs a way of obtaining the summary of other functions when callinsts are
161 /// encountered.
162 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
163 /// member function that takes a Function& and returns the corresponding summary
164 /// as a const AliasSummary*.
165 template <typename CFLAA> class CFLGraphBuilder {
166   // Input of the builder
167   CFLAA &Analysis;
168   const TargetLibraryInfo &TLI;
169
170   // Output of the builder
171   CFLGraph Graph;
172   SmallVector<Value *, 4> ReturnedValues;
173
174   // Helper class
175   /// Gets the edges our graph should have, based on an Instruction*
176   class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
177     CFLAA &AA;
178     const DataLayout &DL;
179     const TargetLibraryInfo &TLI;
180
181     CFLGraph &Graph;
182     SmallVectorImpl<Value *> &ReturnValues;
183
184     static bool hasUsefulEdges(ConstantExpr *CE) {
185       // ConstantExpr doesn't have terminators, invokes, or fences, so only
186       // needs
187       // to check for compares.
188       return CE->getOpcode() != Instruction::ICmp &&
189              CE->getOpcode() != Instruction::FCmp;
190     }
191
192     // Returns possible functions called by CS into the given SmallVectorImpl.
193     // Returns true if targets found, false otherwise.
194     static bool getPossibleTargets(CallSite CS,
195                                    SmallVectorImpl<Function *> &Output) {
196       if (auto *Fn = CS.getCalledFunction()) {
197         Output.push_back(Fn);
198         return true;
199       }
200
201       // TODO: If the call is indirect, we might be able to enumerate all
202       // potential
203       // targets of the call and return them, rather than just failing.
204       return false;
205     }
206
207     void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
208       assert(Val != nullptr && Val->getType()->isPointerTy());
209       if (auto GVal = dyn_cast<GlobalValue>(Val)) {
210         if (Graph.addNode(InstantiatedValue{GVal, 0},
211                           getGlobalOrArgAttrFromValue(*GVal)))
212           Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
213       } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
214         if (hasUsefulEdges(CExpr)) {
215           if (Graph.addNode(InstantiatedValue{CExpr, 0}))
216             visitConstantExpr(CExpr);
217         }
218       } else
219         Graph.addNode(InstantiatedValue{Val, 0}, Attr);
220     }
221
222     void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
223       assert(From != nullptr && To != nullptr);
224       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
225         return;
226       addNode(From);
227       if (To != From) {
228         addNode(To);
229         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
230                       Offset);
231       }
232     }
233
234     void addDerefEdge(Value *From, Value *To, bool IsRead) {
235       assert(From != nullptr && To != nullptr);
236       // FIXME: This is subtly broken, due to how we model some instructions
237       // (e.g. extractvalue, extractelement) as loads. Since those take
238       // non-pointer operands, we'll entirely skip adding edges for those.
239       //
240       // addAssignEdge seems to have a similar issue with insertvalue, etc.
241       if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
242         return;
243       addNode(From);
244       addNode(To);
245       if (IsRead) {
246         Graph.addNode(InstantiatedValue{From, 1});
247         Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
248       } else {
249         Graph.addNode(InstantiatedValue{To, 1});
250         Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
251       }
252     }
253
254     void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
255     void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
256
257   public:
258     GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
259         : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
260           ReturnValues(Builder.ReturnedValues) {}
261
262     void visitInstruction(Instruction &) {
263       llvm_unreachable("Unsupported instruction encountered");
264     }
265
266     void visitReturnInst(ReturnInst &Inst) {
267       if (auto RetVal = Inst.getReturnValue()) {
268         if (RetVal->getType()->isPointerTy()) {
269           addNode(RetVal);
270           ReturnValues.push_back(RetVal);
271         }
272       }
273     }
274
275     void visitPtrToIntInst(PtrToIntInst &Inst) {
276       auto *Ptr = Inst.getOperand(0);
277       addNode(Ptr, getAttrEscaped());
278     }
279
280     void visitIntToPtrInst(IntToPtrInst &Inst) {
281       auto *Ptr = &Inst;
282       addNode(Ptr, getAttrUnknown());
283     }
284
285     void visitCastInst(CastInst &Inst) {
286       auto *Src = Inst.getOperand(0);
287       addAssignEdge(Src, &Inst);
288     }
289
290     void visitBinaryOperator(BinaryOperator &Inst) {
291       auto *Op1 = Inst.getOperand(0);
292       auto *Op2 = Inst.getOperand(1);
293       addAssignEdge(Op1, &Inst);
294       addAssignEdge(Op2, &Inst);
295     }
296
297     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
298       auto *Ptr = Inst.getPointerOperand();
299       auto *Val = Inst.getNewValOperand();
300       addStoreEdge(Val, Ptr);
301     }
302
303     void visitAtomicRMWInst(AtomicRMWInst &Inst) {
304       auto *Ptr = Inst.getPointerOperand();
305       auto *Val = Inst.getValOperand();
306       addStoreEdge(Val, Ptr);
307     }
308
309     void visitPHINode(PHINode &Inst) {
310       for (Value *Val : Inst.incoming_values())
311         addAssignEdge(Val, &Inst);
312     }
313
314     void visitGEP(GEPOperator &GEPOp) {
315       uint64_t Offset = UnknownOffset;
316       APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
317                      0);
318       if (GEPOp.accumulateConstantOffset(DL, APOffset))
319         Offset = APOffset.getSExtValue();
320
321       auto *Op = GEPOp.getPointerOperand();
322       addAssignEdge(Op, &GEPOp, Offset);
323     }
324
325     void visitGetElementPtrInst(GetElementPtrInst &Inst) {
326       auto *GEPOp = cast<GEPOperator>(&Inst);
327       visitGEP(*GEPOp);
328     }
329
330     void visitSelectInst(SelectInst &Inst) {
331       // Condition is not processed here (The actual statement producing
332       // the condition result is processed elsewhere). For select, the
333       // condition is evaluated, but not loaded, stored, or assigned
334       // simply as a result of being the condition of a select.
335
336       auto *TrueVal = Inst.getTrueValue();
337       auto *FalseVal = Inst.getFalseValue();
338       addAssignEdge(TrueVal, &Inst);
339       addAssignEdge(FalseVal, &Inst);
340     }
341
342     void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
343
344     void visitLoadInst(LoadInst &Inst) {
345       auto *Ptr = Inst.getPointerOperand();
346       auto *Val = &Inst;
347       addLoadEdge(Ptr, Val);
348     }
349
350     void visitStoreInst(StoreInst &Inst) {
351       auto *Ptr = Inst.getPointerOperand();
352       auto *Val = Inst.getValueOperand();
353       addStoreEdge(Val, Ptr);
354     }
355
356     void visitVAArgInst(VAArgInst &Inst) {
357       // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
358       // does
359       // two things:
360       //  1. Loads a value from *((T*)*Ptr).
361       //  2. Increments (stores to) *Ptr by some target-specific amount.
362       // For now, we'll handle this like a landingpad instruction (by placing
363       // the
364       // result in its own group, and having that group alias externals).
365       if (Inst.getType()->isPointerTy())
366         addNode(&Inst, getAttrUnknown());
367     }
368
369     static bool isFunctionExternal(Function *Fn) {
370       return !Fn->hasExactDefinition();
371     }
372
373     bool tryInterproceduralAnalysis(CallSite CS,
374                                     const SmallVectorImpl<Function *> &Fns) {
375       assert(Fns.size() > 0);
376
377       if (CS.arg_size() > MaxSupportedArgsInSummary)
378         return false;
379
380       // Exit early if we'll fail anyway
381       for (auto *Fn : Fns) {
382         if (isFunctionExternal(Fn) || Fn->isVarArg())
383           return false;
384         // Fail if the caller does not provide enough arguments
385         assert(Fn->arg_size() <= CS.arg_size());
386         if (!AA.getAliasSummary(*Fn))
387           return false;
388       }
389
390       for (auto *Fn : Fns) {
391         auto Summary = AA.getAliasSummary(*Fn);
392         assert(Summary != nullptr);
393
394         auto &RetParamRelations = Summary->RetParamRelations;
395         for (auto &Relation : RetParamRelations) {
396           auto IRelation = instantiateExternalRelation(Relation, CS);
397           if (IRelation.hasValue()) {
398             Graph.addNode(IRelation->From);
399             Graph.addNode(IRelation->To);
400             Graph.addEdge(IRelation->From, IRelation->To);
401           }
402         }
403
404         auto &RetParamAttributes = Summary->RetParamAttributes;
405         for (auto &Attribute : RetParamAttributes) {
406           auto IAttr = instantiateExternalAttribute(Attribute, CS);
407           if (IAttr.hasValue())
408             Graph.addNode(IAttr->IValue, IAttr->Attr);
409         }
410       }
411
412       return true;
413     }
414
415     void visitCallSite(CallSite CS) {
416       auto Inst = CS.getInstruction();
417
418       // Make sure all arguments and return value are added to the graph first
419       for (Value *V : CS.args())
420         if (V->getType()->isPointerTy())
421           addNode(V);
422       if (Inst->getType()->isPointerTy())
423         addNode(Inst);
424
425       // Check if Inst is a call to a library function that
426       // allocates/deallocates
427       // on the heap. Those kinds of functions do not introduce any aliases.
428       // TODO: address other common library functions such as realloc(),
429       // strdup(),
430       // etc.
431       if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI))
432         return;
433
434       // TODO: Add support for noalias args/all the other fun function
435       // attributes
436       // that we can tack on.
437       SmallVector<Function *, 4> Targets;
438       if (getPossibleTargets(CS, Targets))
439         if (tryInterproceduralAnalysis(CS, Targets))
440           return;
441
442       // Because the function is opaque, we need to note that anything
443       // could have happened to the arguments (unless the function is marked
444       // readonly or readnone), and that the result could alias just about
445       // anything, too (unless the result is marked noalias).
446       if (!CS.onlyReadsMemory())
447         for (Value *V : CS.args()) {
448           if (V->getType()->isPointerTy()) {
449             // The argument itself escapes.
450             Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
451             // The fate of argument memory is unknown. Note that since
452             // AliasAttrs is transitive with respect to dereference, we only
453             // need to specify it for the first-level memory.
454             Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
455           }
456         }
457
458       if (Inst->getType()->isPointerTy()) {
459         auto *Fn = CS.getCalledFunction();
460         if (Fn == nullptr || !Fn->returnDoesNotAlias())
461           // No need to call addNode() since we've added Inst at the
462           // beginning of this function and we know it is not a global.
463           Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
464       }
465     }
466
467     /// Because vectors/aggregates are immutable and unaddressable, there's
468     /// nothing we can do to coax a value out of them, other than calling
469     /// Extract{Element,Value}. We can effectively treat them as pointers to
470     /// arbitrary memory locations we can store in and load from.
471     void visitExtractElementInst(ExtractElementInst &Inst) {
472       auto *Ptr = Inst.getVectorOperand();
473       auto *Val = &Inst;
474       addLoadEdge(Ptr, Val);
475     }
476
477     void visitInsertElementInst(InsertElementInst &Inst) {
478       auto *Vec = Inst.getOperand(0);
479       auto *Val = Inst.getOperand(1);
480       addAssignEdge(Vec, &Inst);
481       addStoreEdge(Val, &Inst);
482     }
483
484     void visitLandingPadInst(LandingPadInst &Inst) {
485       // Exceptions come from "nowhere", from our analysis' perspective.
486       // So we place the instruction its own group, noting that said group may
487       // alias externals
488       if (Inst.getType()->isPointerTy())
489         addNode(&Inst, getAttrUnknown());
490     }
491
492     void visitInsertValueInst(InsertValueInst &Inst) {
493       auto *Agg = Inst.getOperand(0);
494       auto *Val = Inst.getOperand(1);
495       addAssignEdge(Agg, &Inst);
496       addStoreEdge(Val, &Inst);
497     }
498
499     void visitExtractValueInst(ExtractValueInst &Inst) {
500       auto *Ptr = Inst.getAggregateOperand();
501       addLoadEdge(Ptr, &Inst);
502     }
503
504     void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
505       auto *From1 = Inst.getOperand(0);
506       auto *From2 = Inst.getOperand(1);
507       addAssignEdge(From1, &Inst);
508       addAssignEdge(From2, &Inst);
509     }
510
511     void visitConstantExpr(ConstantExpr *CE) {
512       switch (CE->getOpcode()) {
513       case Instruction::GetElementPtr: {
514         auto GEPOp = cast<GEPOperator>(CE);
515         visitGEP(*GEPOp);
516         break;
517       }
518       case Instruction::PtrToInt: {
519         auto *Ptr = CE->getOperand(0);
520         addNode(Ptr, getAttrEscaped());
521         break;
522       }
523       case Instruction::IntToPtr:
524         addNode(CE, getAttrUnknown());
525         break;
526
527       case Instruction::BitCast:
528       case Instruction::AddrSpaceCast:
529       case Instruction::Trunc:
530       case Instruction::ZExt:
531       case Instruction::SExt:
532       case Instruction::FPExt:
533       case Instruction::FPTrunc:
534       case Instruction::UIToFP:
535       case Instruction::SIToFP:
536       case Instruction::FPToUI:
537       case Instruction::FPToSI: {
538         auto *Src = CE->getOperand(0);
539         addAssignEdge(Src, CE);
540         break;
541       }
542       case Instruction::Select: {
543         auto *TrueVal = CE->getOperand(0);
544         auto *FalseVal = CE->getOperand(1);
545         addAssignEdge(TrueVal, CE);
546         addAssignEdge(FalseVal, CE);
547         break;
548       }
549       case Instruction::InsertElement: {
550         auto *Vec = CE->getOperand(0);
551         auto *Val = CE->getOperand(1);
552         addAssignEdge(Vec, CE);
553         addStoreEdge(Val, CE);
554         break;
555       }
556       case Instruction::ExtractElement: {
557         auto *Ptr = CE->getOperand(0);
558         addLoadEdge(Ptr, CE);
559         break;
560       }
561       case Instruction::InsertValue: {
562         auto *Agg = CE->getOperand(0);
563         auto *Val = CE->getOperand(1);
564         addAssignEdge(Agg, CE);
565         addStoreEdge(Val, CE);
566         break;
567       }
568       case Instruction::ExtractValue: {
569         auto *Ptr = CE->getOperand(0);
570         addLoadEdge(Ptr, CE);
571         break;
572       }
573       case Instruction::ShuffleVector: {
574         auto *From1 = CE->getOperand(0);
575         auto *From2 = CE->getOperand(1);
576         addAssignEdge(From1, CE);
577         addAssignEdge(From2, CE);
578         break;
579       }
580       case Instruction::Add:
581       case Instruction::Sub:
582       case Instruction::FSub:
583       case Instruction::Mul:
584       case Instruction::FMul:
585       case Instruction::UDiv:
586       case Instruction::SDiv:
587       case Instruction::FDiv:
588       case Instruction::URem:
589       case Instruction::SRem:
590       case Instruction::FRem:
591       case Instruction::And:
592       case Instruction::Or:
593       case Instruction::Xor:
594       case Instruction::Shl:
595       case Instruction::LShr:
596       case Instruction::AShr:
597       case Instruction::ICmp:
598       case Instruction::FCmp:
599         addAssignEdge(CE->getOperand(0), CE);
600         addAssignEdge(CE->getOperand(1), CE);
601         break;
602
603       default:
604         llvm_unreachable("Unknown instruction type encountered!");
605       }
606     }
607   };
608
609   // Helper functions
610
611   // Determines whether or not we an instruction is useless to us (e.g.
612   // FenceInst)
613   static bool hasUsefulEdges(Instruction *Inst) {
614     bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
615                                     !isa<InvokeInst>(Inst) &&
616                                     !isa<ReturnInst>(Inst);
617     return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
618            !IsNonInvokeRetTerminator;
619   }
620
621   void addArgumentToGraph(Argument &Arg) {
622     if (Arg.getType()->isPointerTy()) {
623       Graph.addNode(InstantiatedValue{&Arg, 0},
624                     getGlobalOrArgAttrFromValue(Arg));
625       // Pointees of a formal parameter is known to the caller
626       Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
627     }
628   }
629
630   // Given an Instruction, this will add it to the graph, along with any
631   // Instructions that are potentially only available from said Instruction
632   // For example, given the following line:
633   //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
634   // addInstructionToGraph would add both the `load` and `getelementptr`
635   // instructions to the graph appropriately.
636   void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
637     if (!hasUsefulEdges(&Inst))
638       return;
639
640     Visitor.visit(Inst);
641   }
642
643   // Builds the graph needed for constructing the StratifiedSets for the given
644   // function
645   void buildGraphFrom(Function &Fn) {
646     GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
647
648     for (auto &Bb : Fn.getBasicBlockList())
649       for (auto &Inst : Bb.getInstList())
650         addInstructionToGraph(Visitor, Inst);
651
652     for (auto &Arg : Fn.args())
653       addArgumentToGraph(Arg);
654   }
655
656 public:
657   CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
658       : Analysis(Analysis), TLI(TLI) {
659     buildGraphFrom(Fn);
660   }
661
662   const CFLGraph &getCFLGraph() const { return Graph; }
663   const SmallVector<Value *, 4> &getReturnValues() const {
664     return ReturnedValues;
665   }
666 };
667
668 } // end namespace cflaa
669 } // end namespace llvm
670
671 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H