]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/LazyCallGraph.cpp
MFV r344088 (libarchive):
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / LazyCallGraph.cpp
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/ADT/Sequence.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <iterator>
35 #include <string>
36 #include <tuple>
37 #include <utility>
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "lcg"
42
43 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
44                                                      Edge::Kind EK) {
45   EdgeIndexMap.insert({&TargetN, Edges.size()});
46   Edges.emplace_back(TargetN, EK);
47 }
48
49 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
50   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
51 }
52
53 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
54   auto IndexMapI = EdgeIndexMap.find(&TargetN);
55   if (IndexMapI == EdgeIndexMap.end())
56     return false;
57
58   Edges[IndexMapI->second] = Edge();
59   EdgeIndexMap.erase(IndexMapI);
60   return true;
61 }
62
63 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
64                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
65                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
66   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
67     return;
68
69   LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
70   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
71 }
72
73 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
74   assert(!Edges && "Must not have already populated the edges for this node!");
75
76   LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
77                     << "' to the graph.\n");
78
79   Edges = EdgeSequence();
80
81   SmallVector<Constant *, 16> Worklist;
82   SmallPtrSet<Function *, 4> Callees;
83   SmallPtrSet<Constant *, 16> Visited;
84
85   // Find all the potential call graph edges in this function. We track both
86   // actual call edges and indirect references to functions. The direct calls
87   // are trivially added, but to accumulate the latter we walk the instructions
88   // and add every operand which is a constant to the worklist to process
89   // afterward.
90   //
91   // Note that we consider *any* function with a definition to be a viable
92   // edge. Even if the function's definition is subject to replacement by
93   // some other module (say, a weak definition) there may still be
94   // optimizations which essentially speculate based on the definition and
95   // a way to check that the specific definition is in fact the one being
96   // used. For example, this could be done by moving the weak definition to
97   // a strong (internal) definition and making the weak definition be an
98   // alias. Then a test of the address of the weak function against the new
99   // strong definition's address would be an effective way to determine the
100   // safety of optimizing a direct call edge.
101   for (BasicBlock &BB : *F)
102     for (Instruction &I : BB) {
103       if (auto CS = CallSite(&I))
104         if (Function *Callee = CS.getCalledFunction())
105           if (!Callee->isDeclaration())
106             if (Callees.insert(Callee).second) {
107               Visited.insert(Callee);
108               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
109                       LazyCallGraph::Edge::Call);
110             }
111
112       for (Value *Op : I.operand_values())
113         if (Constant *C = dyn_cast<Constant>(Op))
114           if (Visited.insert(C).second)
115             Worklist.push_back(C);
116     }
117
118   // We've collected all the constant (and thus potentially function or
119   // function containing) operands to all of the instructions in the function.
120   // Process them (recursively) collecting every function found.
121   visitReferences(Worklist, Visited, [&](Function &F) {
122     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
123             LazyCallGraph::Edge::Ref);
124   });
125
126   // Add implicit reference edges to any defined libcall functions (if we
127   // haven't found an explicit edge).
128   for (auto *F : G->LibFunctions)
129     if (!Visited.count(F))
130       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
131               LazyCallGraph::Edge::Ref);
132
133   return *Edges;
134 }
135
136 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
137   assert(F != &NewF && "Must not replace a function with itself!");
138   F = &NewF;
139 }
140
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
142 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
143   dbgs() << *this << '\n';
144 }
145 #endif
146
147 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
148   LibFunc LF;
149
150   // Either this is a normal library function or a "vectorizable" function.
151   return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
152 }
153
154 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
155   LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
156                     << "\n");
157   for (Function &F : M) {
158     if (F.isDeclaration())
159       continue;
160     // If this function is a known lib function to LLVM then we want to
161     // synthesize reference edges to it to model the fact that LLVM can turn
162     // arbitrary code into a library function call.
163     if (isKnownLibFunction(F, TLI))
164       LibFunctions.insert(&F);
165
166     if (F.hasLocalLinkage())
167       continue;
168
169     // External linkage defined functions have edges to them from other
170     // modules.
171     LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
172                       << "' to entry set of the graph.\n");
173     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
174   }
175
176   // Now add entry nodes for functions reachable via initializers to globals.
177   SmallVector<Constant *, 16> Worklist;
178   SmallPtrSet<Constant *, 16> Visited;
179   for (GlobalVariable &GV : M.globals())
180     if (GV.hasInitializer())
181       if (Visited.insert(GV.getInitializer()).second)
182         Worklist.push_back(GV.getInitializer());
183
184   LLVM_DEBUG(
185       dbgs() << "  Adding functions referenced by global initializers to the "
186                 "entry set.\n");
187   visitReferences(Worklist, Visited, [&](Function &F) {
188     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
189             LazyCallGraph::Edge::Ref);
190   });
191 }
192
193 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
194     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
195       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
196       SCCMap(std::move(G.SCCMap)),
197       LibFunctions(std::move(G.LibFunctions)) {
198   updateGraphPtrs();
199 }
200
201 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
202   BPA = std::move(G.BPA);
203   NodeMap = std::move(G.NodeMap);
204   EntryEdges = std::move(G.EntryEdges);
205   SCCBPA = std::move(G.SCCBPA);
206   SCCMap = std::move(G.SCCMap);
207   LibFunctions = std::move(G.LibFunctions);
208   updateGraphPtrs();
209   return *this;
210 }
211
212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
213 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
214   dbgs() << *this << '\n';
215 }
216 #endif
217
218 #ifndef NDEBUG
219 void LazyCallGraph::SCC::verify() {
220   assert(OuterRefSCC && "Can't have a null RefSCC!");
221   assert(!Nodes.empty() && "Can't have an empty SCC!");
222
223   for (Node *N : Nodes) {
224     assert(N && "Can't have a null node!");
225     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
226            "Node does not map to this SCC!");
227     assert(N->DFSNumber == -1 &&
228            "Must set DFS numbers to -1 when adding a node to an SCC!");
229     assert(N->LowLink == -1 &&
230            "Must set low link to -1 when adding a node to an SCC!");
231     for (Edge &E : **N)
232       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
233   }
234 }
235 #endif
236
237 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
238   if (this == &C)
239     return false;
240
241   for (Node &N : *this)
242     for (Edge &E : N->calls())
243       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
244         return true;
245
246   // No edges found.
247   return false;
248 }
249
250 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
251   if (this == &TargetC)
252     return false;
253
254   LazyCallGraph &G = *OuterRefSCC->G;
255
256   // Start with this SCC.
257   SmallPtrSet<const SCC *, 16> Visited = {this};
258   SmallVector<const SCC *, 16> Worklist = {this};
259
260   // Walk down the graph until we run out of edges or find a path to TargetC.
261   do {
262     const SCC &C = *Worklist.pop_back_val();
263     for (Node &N : C)
264       for (Edge &E : N->calls()) {
265         SCC *CalleeC = G.lookupSCC(E.getNode());
266         if (!CalleeC)
267           continue;
268
269         // If the callee's SCC is the TargetC, we're done.
270         if (CalleeC == &TargetC)
271           return true;
272
273         // If this is the first time we've reached this SCC, put it on the
274         // worklist to recurse through.
275         if (Visited.insert(CalleeC).second)
276           Worklist.push_back(CalleeC);
277       }
278   } while (!Worklist.empty());
279
280   // No paths found.
281   return false;
282 }
283
284 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
285
286 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
287 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
288   dbgs() << *this << '\n';
289 }
290 #endif
291
292 #ifndef NDEBUG
293 void LazyCallGraph::RefSCC::verify() {
294   assert(G && "Can't have a null graph!");
295   assert(!SCCs.empty() && "Can't have an empty SCC!");
296
297   // Verify basic properties of the SCCs.
298   SmallPtrSet<SCC *, 4> SCCSet;
299   for (SCC *C : SCCs) {
300     assert(C && "Can't have a null SCC!");
301     C->verify();
302     assert(&C->getOuterRefSCC() == this &&
303            "SCC doesn't think it is inside this RefSCC!");
304     bool Inserted = SCCSet.insert(C).second;
305     assert(Inserted && "Found a duplicate SCC!");
306     auto IndexIt = SCCIndices.find(C);
307     assert(IndexIt != SCCIndices.end() &&
308            "Found an SCC that doesn't have an index!");
309   }
310
311   // Check that our indices map correctly.
312   for (auto &SCCIndexPair : SCCIndices) {
313     SCC *C = SCCIndexPair.first;
314     int i = SCCIndexPair.second;
315     assert(C && "Can't have a null SCC in the indices!");
316     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
317     assert(SCCs[i] == C && "Index doesn't point to SCC!");
318   }
319
320   // Check that the SCCs are in fact in post-order.
321   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
322     SCC &SourceSCC = *SCCs[i];
323     for (Node &N : SourceSCC)
324       for (Edge &E : *N) {
325         if (!E.isCall())
326           continue;
327         SCC &TargetSCC = *G->lookupSCC(E.getNode());
328         if (&TargetSCC.getOuterRefSCC() == this) {
329           assert(SCCIndices.find(&TargetSCC)->second <= i &&
330                  "Edge between SCCs violates post-order relationship.");
331           continue;
332         }
333       }
334   }
335 }
336 #endif
337
338 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
339   if (&RC == this)
340     return false;
341
342   // Search all edges to see if this is a parent.
343   for (SCC &C : *this)
344     for (Node &N : C)
345       for (Edge &E : *N)
346         if (G->lookupRefSCC(E.getNode()) == &RC)
347           return true;
348
349   return false;
350 }
351
352 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
353   if (&RC == this)
354     return false;
355
356   // For each descendant of this RefSCC, see if one of its children is the
357   // argument. If not, add that descendant to the worklist and continue
358   // searching.
359   SmallVector<const RefSCC *, 4> Worklist;
360   SmallPtrSet<const RefSCC *, 4> Visited;
361   Worklist.push_back(this);
362   Visited.insert(this);
363   do {
364     const RefSCC &DescendantRC = *Worklist.pop_back_val();
365     for (SCC &C : DescendantRC)
366       for (Node &N : C)
367         for (Edge &E : *N) {
368           auto *ChildRC = G->lookupRefSCC(E.getNode());
369           if (ChildRC == &RC)
370             return true;
371           if (!ChildRC || !Visited.insert(ChildRC).second)
372             continue;
373           Worklist.push_back(ChildRC);
374         }
375   } while (!Worklist.empty());
376
377   return false;
378 }
379
380 /// Generic helper that updates a postorder sequence of SCCs for a potentially
381 /// cycle-introducing edge insertion.
382 ///
383 /// A postorder sequence of SCCs of a directed graph has one fundamental
384 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
385 /// all edges in the SCC DAG point to prior SCCs in the sequence.
386 ///
387 /// This routine both updates a postorder sequence and uses that sequence to
388 /// compute the set of SCCs connected into a cycle. It should only be called to
389 /// insert a "downward" edge which will require changing the sequence to
390 /// restore it to a postorder.
391 ///
392 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
393 /// sequence, all of the SCCs which may be impacted are in the closed range of
394 /// those two within the postorder sequence. The algorithm used here to restore
395 /// the state is as follows:
396 ///
397 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
398 ///    source SCC consisting of just the source SCC. Then scan toward the
399 ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
400 ///    in the set, add it to the set. Otherwise, the source SCC is not
401 ///    a successor, move it in the postorder sequence to immediately before
402 ///    the source SCC, shifting the source SCC and all SCCs in the set one
403 ///    position toward the target SCC. Stop scanning after processing the
404 ///    target SCC.
405 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
406 ///    and thus the new edge will flow toward the start, we are done.
407 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
408 ///    SCC between the source and the target, and add them to the set of
409 ///    connected SCCs, then recurse through them. Once a complete set of the
410 ///    SCCs the target connects to is known, hoist the remaining SCCs between
411 ///    the source and the target to be above the target. Note that there is no
412 ///    need to process the source SCC, it is already known to connect.
413 /// 4) At this point, all of the SCCs in the closed range between the source
414 ///    SCC and the target SCC in the postorder sequence are connected,
415 ///    including the target SCC and the source SCC. Inserting the edge from
416 ///    the source SCC to the target SCC will form a cycle out of precisely
417 ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
418 ///    a single SCC.
419 ///
420 /// This process has various important properties:
421 /// - Only mutates the SCCs when adding the edge actually changes the SCC
422 ///   structure.
423 /// - Never mutates SCCs which are unaffected by the change.
424 /// - Updates the postorder sequence to correctly satisfy the postorder
425 ///   constraint after the edge is inserted.
426 /// - Only reorders SCCs in the closed postorder sequence from the source to
427 ///   the target, so easy to bound how much has changed even in the ordering.
428 /// - Big-O is the number of edges in the closed postorder range of SCCs from
429 ///   source to target.
430 ///
431 /// This helper routine, in addition to updating the postorder sequence itself
432 /// will also update a map from SCCs to indices within that sequence.
433 ///
434 /// The sequence and the map must operate on pointers to the SCC type.
435 ///
436 /// Two callbacks must be provided. The first computes the subset of SCCs in
437 /// the postorder closed range from the source to the target which connect to
438 /// the source SCC via some (transitive) set of edges. The second computes the
439 /// subset of the same range which the target SCC connects to via some
440 /// (transitive) set of edges. Both callbacks should populate the set argument
441 /// provided.
442 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
443           typename ComputeSourceConnectedSetCallableT,
444           typename ComputeTargetConnectedSetCallableT>
445 static iterator_range<typename PostorderSequenceT::iterator>
446 updatePostorderSequenceForEdgeInsertion(
447     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
448     SCCIndexMapT &SCCIndices,
449     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
450     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
451   int SourceIdx = SCCIndices[&SourceSCC];
452   int TargetIdx = SCCIndices[&TargetSCC];
453   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
454
455   SmallPtrSet<SCCT *, 4> ConnectedSet;
456
457   // Compute the SCCs which (transitively) reach the source.
458   ComputeSourceConnectedSet(ConnectedSet);
459
460   // Partition the SCCs in this part of the port-order sequence so only SCCs
461   // connecting to the source remain between it and the target. This is
462   // a benign partition as it preserves postorder.
463   auto SourceI = std::stable_partition(
464       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
465       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
466   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
467     SCCIndices.find(SCCs[i])->second = i;
468
469   // If the target doesn't connect to the source, then we've corrected the
470   // post-order and there are no cycles formed.
471   if (!ConnectedSet.count(&TargetSCC)) {
472     assert(SourceI > (SCCs.begin() + SourceIdx) &&
473            "Must have moved the source to fix the post-order.");
474     assert(*std::prev(SourceI) == &TargetSCC &&
475            "Last SCC to move should have bene the target.");
476
477     // Return an empty range at the target SCC indicating there is nothing to
478     // merge.
479     return make_range(std::prev(SourceI), std::prev(SourceI));
480   }
481
482   assert(SCCs[TargetIdx] == &TargetSCC &&
483          "Should not have moved target if connected!");
484   SourceIdx = SourceI - SCCs.begin();
485   assert(SCCs[SourceIdx] == &SourceSCC &&
486          "Bad updated index computation for the source SCC!");
487
488
489   // See whether there are any remaining intervening SCCs between the source
490   // and target. If so we need to make sure they all are reachable form the
491   // target.
492   if (SourceIdx + 1 < TargetIdx) {
493     ConnectedSet.clear();
494     ComputeTargetConnectedSet(ConnectedSet);
495
496     // Partition SCCs so that only SCCs reached from the target remain between
497     // the source and the target. This preserves postorder.
498     auto TargetI = std::stable_partition(
499         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
500         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
501     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
502       SCCIndices.find(SCCs[i])->second = i;
503     TargetIdx = std::prev(TargetI) - SCCs.begin();
504     assert(SCCs[TargetIdx] == &TargetSCC &&
505            "Should always end with the target!");
506   }
507
508   // At this point, we know that connecting source to target forms a cycle
509   // because target connects back to source, and we know that all of the SCCs
510   // between the source and target in the postorder sequence participate in that
511   // cycle.
512   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
513 }
514
515 bool
516 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
517     Node &SourceN, Node &TargetN,
518     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
519   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
520   SmallVector<SCC *, 1> DeletedSCCs;
521
522 #ifndef NDEBUG
523   // In a debug build, verify the RefSCC is valid to start with and when this
524   // routine finishes.
525   verify();
526   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
527 #endif
528
529   SCC &SourceSCC = *G->lookupSCC(SourceN);
530   SCC &TargetSCC = *G->lookupSCC(TargetN);
531
532   // If the two nodes are already part of the same SCC, we're also done as
533   // we've just added more connectivity.
534   if (&SourceSCC == &TargetSCC) {
535     SourceN->setEdgeKind(TargetN, Edge::Call);
536     return false; // No new cycle.
537   }
538
539   // At this point we leverage the postorder list of SCCs to detect when the
540   // insertion of an edge changes the SCC structure in any way.
541   //
542   // First and foremost, we can eliminate the need for any changes when the
543   // edge is toward the beginning of the postorder sequence because all edges
544   // flow in that direction already. Thus adding a new one cannot form a cycle.
545   int SourceIdx = SCCIndices[&SourceSCC];
546   int TargetIdx = SCCIndices[&TargetSCC];
547   if (TargetIdx < SourceIdx) {
548     SourceN->setEdgeKind(TargetN, Edge::Call);
549     return false; // No new cycle.
550   }
551
552   // Compute the SCCs which (transitively) reach the source.
553   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
554 #ifndef NDEBUG
555     // Check that the RefSCC is still valid before computing this as the
556     // results will be nonsensical of we've broken its invariants.
557     verify();
558 #endif
559     ConnectedSet.insert(&SourceSCC);
560     auto IsConnected = [&](SCC &C) {
561       for (Node &N : C)
562         for (Edge &E : N->calls())
563           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
564             return true;
565
566       return false;
567     };
568
569     for (SCC *C :
570          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
571       if (IsConnected(*C))
572         ConnectedSet.insert(C);
573   };
574
575   // Use a normal worklist to find which SCCs the target connects to. We still
576   // bound the search based on the range in the postorder list we care about,
577   // but because this is forward connectivity we just "recurse" through the
578   // edges.
579   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
580 #ifndef NDEBUG
581     // Check that the RefSCC is still valid before computing this as the
582     // results will be nonsensical of we've broken its invariants.
583     verify();
584 #endif
585     ConnectedSet.insert(&TargetSCC);
586     SmallVector<SCC *, 4> Worklist;
587     Worklist.push_back(&TargetSCC);
588     do {
589       SCC &C = *Worklist.pop_back_val();
590       for (Node &N : C)
591         for (Edge &E : *N) {
592           if (!E.isCall())
593             continue;
594           SCC &EdgeC = *G->lookupSCC(E.getNode());
595           if (&EdgeC.getOuterRefSCC() != this)
596             // Not in this RefSCC...
597             continue;
598           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
599             // Not in the postorder sequence between source and target.
600             continue;
601
602           if (ConnectedSet.insert(&EdgeC).second)
603             Worklist.push_back(&EdgeC);
604         }
605     } while (!Worklist.empty());
606   };
607
608   // Use a generic helper to update the postorder sequence of SCCs and return
609   // a range of any SCCs connected into a cycle by inserting this edge. This
610   // routine will also take care of updating the indices into the postorder
611   // sequence.
612   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
613       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
614       ComputeTargetConnectedSet);
615
616   // Run the user's callback on the merged SCCs before we actually merge them.
617   if (MergeCB)
618     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
619
620   // If the merge range is empty, then adding the edge didn't actually form any
621   // new cycles. We're done.
622   if (MergeRange.begin() == MergeRange.end()) {
623     // Now that the SCC structure is finalized, flip the kind to call.
624     SourceN->setEdgeKind(TargetN, Edge::Call);
625     return false; // No new cycle.
626   }
627
628 #ifndef NDEBUG
629   // Before merging, check that the RefSCC remains valid after all the
630   // postorder updates.
631   verify();
632 #endif
633
634   // Otherwise we need to merge all of the SCCs in the cycle into a single
635   // result SCC.
636   //
637   // NB: We merge into the target because all of these functions were already
638   // reachable from the target, meaning any SCC-wide properties deduced about it
639   // other than the set of functions within it will not have changed.
640   for (SCC *C : MergeRange) {
641     assert(C != &TargetSCC &&
642            "We merge *into* the target and shouldn't process it here!");
643     SCCIndices.erase(C);
644     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
645     for (Node *N : C->Nodes)
646       G->SCCMap[N] = &TargetSCC;
647     C->clear();
648     DeletedSCCs.push_back(C);
649   }
650
651   // Erase the merged SCCs from the list and update the indices of the
652   // remaining SCCs.
653   int IndexOffset = MergeRange.end() - MergeRange.begin();
654   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
655   for (SCC *C : make_range(EraseEnd, SCCs.end()))
656     SCCIndices[C] -= IndexOffset;
657
658   // Now that the SCC structure is finalized, flip the kind to call.
659   SourceN->setEdgeKind(TargetN, Edge::Call);
660
661   // And we're done, but we did form a new cycle.
662   return true;
663 }
664
665 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
666                                                            Node &TargetN) {
667   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
668
669 #ifndef NDEBUG
670   // In a debug build, verify the RefSCC is valid to start with and when this
671   // routine finishes.
672   verify();
673   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
674 #endif
675
676   assert(G->lookupRefSCC(SourceN) == this &&
677          "Source must be in this RefSCC.");
678   assert(G->lookupRefSCC(TargetN) == this &&
679          "Target must be in this RefSCC.");
680   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
681          "Source and Target must be in separate SCCs for this to be trivial!");
682
683   // Set the edge kind.
684   SourceN->setEdgeKind(TargetN, Edge::Ref);
685 }
686
687 iterator_range<LazyCallGraph::RefSCC::iterator>
688 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
689   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
690
691 #ifndef NDEBUG
692   // In a debug build, verify the RefSCC is valid to start with and when this
693   // routine finishes.
694   verify();
695   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
696 #endif
697
698   assert(G->lookupRefSCC(SourceN) == this &&
699          "Source must be in this RefSCC.");
700   assert(G->lookupRefSCC(TargetN) == this &&
701          "Target must be in this RefSCC.");
702
703   SCC &TargetSCC = *G->lookupSCC(TargetN);
704   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
705                                                 "the same SCC to require the "
706                                                 "full CG update.");
707
708   // Set the edge kind.
709   SourceN->setEdgeKind(TargetN, Edge::Ref);
710
711   // Otherwise we are removing a call edge from a single SCC. This may break
712   // the cycle. In order to compute the new set of SCCs, we need to do a small
713   // DFS over the nodes within the SCC to form any sub-cycles that remain as
714   // distinct SCCs and compute a postorder over the resulting SCCs.
715   //
716   // However, we specially handle the target node. The target node is known to
717   // reach all other nodes in the original SCC by definition. This means that
718   // we want the old SCC to be replaced with an SCC containing that node as it
719   // will be the root of whatever SCC DAG results from the DFS. Assumptions
720   // about an SCC such as the set of functions called will continue to hold,
721   // etc.
722
723   SCC &OldSCC = TargetSCC;
724   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
725   SmallVector<Node *, 16> PendingSCCStack;
726   SmallVector<SCC *, 4> NewSCCs;
727
728   // Prepare the nodes for a fresh DFS.
729   SmallVector<Node *, 16> Worklist;
730   Worklist.swap(OldSCC.Nodes);
731   for (Node *N : Worklist) {
732     N->DFSNumber = N->LowLink = 0;
733     G->SCCMap.erase(N);
734   }
735
736   // Force the target node to be in the old SCC. This also enables us to take
737   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
738   // below: whenever we build an edge that reaches the target node, we know
739   // that the target node eventually connects back to all other nodes in our
740   // walk. As a consequence, we can detect and handle participants in that
741   // cycle without walking all the edges that form this connection, and instead
742   // by relying on the fundamental guarantee coming into this operation (all
743   // nodes are reachable from the target due to previously forming an SCC).
744   TargetN.DFSNumber = TargetN.LowLink = -1;
745   OldSCC.Nodes.push_back(&TargetN);
746   G->SCCMap[&TargetN] = &OldSCC;
747
748   // Scan down the stack and DFS across the call edges.
749   for (Node *RootN : Worklist) {
750     assert(DFSStack.empty() &&
751            "Cannot begin a new root with a non-empty DFS stack!");
752     assert(PendingSCCStack.empty() &&
753            "Cannot begin a new root with pending nodes for an SCC!");
754
755     // Skip any nodes we've already reached in the DFS.
756     if (RootN->DFSNumber != 0) {
757       assert(RootN->DFSNumber == -1 &&
758              "Shouldn't have any mid-DFS root nodes!");
759       continue;
760     }
761
762     RootN->DFSNumber = RootN->LowLink = 1;
763     int NextDFSNumber = 2;
764
765     DFSStack.push_back({RootN, (*RootN)->call_begin()});
766     do {
767       Node *N;
768       EdgeSequence::call_iterator I;
769       std::tie(N, I) = DFSStack.pop_back_val();
770       auto E = (*N)->call_end();
771       while (I != E) {
772         Node &ChildN = I->getNode();
773         if (ChildN.DFSNumber == 0) {
774           // We haven't yet visited this child, so descend, pushing the current
775           // node onto the stack.
776           DFSStack.push_back({N, I});
777
778           assert(!G->SCCMap.count(&ChildN) &&
779                  "Found a node with 0 DFS number but already in an SCC!");
780           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
781           N = &ChildN;
782           I = (*N)->call_begin();
783           E = (*N)->call_end();
784           continue;
785         }
786
787         // Check for the child already being part of some component.
788         if (ChildN.DFSNumber == -1) {
789           if (G->lookupSCC(ChildN) == &OldSCC) {
790             // If the child is part of the old SCC, we know that it can reach
791             // every other node, so we have formed a cycle. Pull the entire DFS
792             // and pending stacks into it. See the comment above about setting
793             // up the old SCC for why we do this.
794             int OldSize = OldSCC.size();
795             OldSCC.Nodes.push_back(N);
796             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
797             PendingSCCStack.clear();
798             while (!DFSStack.empty())
799               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
800             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
801               N.DFSNumber = N.LowLink = -1;
802               G->SCCMap[&N] = &OldSCC;
803             }
804             N = nullptr;
805             break;
806           }
807
808           // If the child has already been added to some child component, it
809           // couldn't impact the low-link of this parent because it isn't
810           // connected, and thus its low-link isn't relevant so skip it.
811           ++I;
812           continue;
813         }
814
815         // Track the lowest linked child as the lowest link for this node.
816         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
817         if (ChildN.LowLink < N->LowLink)
818           N->LowLink = ChildN.LowLink;
819
820         // Move to the next edge.
821         ++I;
822       }
823       if (!N)
824         // Cleared the DFS early, start another round.
825         break;
826
827       // We've finished processing N and its descendants, put it on our pending
828       // SCC stack to eventually get merged into an SCC of nodes.
829       PendingSCCStack.push_back(N);
830
831       // If this node is linked to some lower entry, continue walking up the
832       // stack.
833       if (N->LowLink != N->DFSNumber)
834         continue;
835
836       // Otherwise, we've completed an SCC. Append it to our post order list of
837       // SCCs.
838       int RootDFSNumber = N->DFSNumber;
839       // Find the range of the node stack by walking down until we pass the
840       // root DFS number.
841       auto SCCNodes = make_range(
842           PendingSCCStack.rbegin(),
843           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
844             return N->DFSNumber < RootDFSNumber;
845           }));
846
847       // Form a new SCC out of these nodes and then clear them off our pending
848       // stack.
849       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
850       for (Node &N : *NewSCCs.back()) {
851         N.DFSNumber = N.LowLink = -1;
852         G->SCCMap[&N] = NewSCCs.back();
853       }
854       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
855     } while (!DFSStack.empty());
856   }
857
858   // Insert the remaining SCCs before the old one. The old SCC can reach all
859   // other SCCs we form because it contains the target node of the removed edge
860   // of the old SCC. This means that we will have edges into all of the new
861   // SCCs, which means the old one must come last for postorder.
862   int OldIdx = SCCIndices[&OldSCC];
863   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
864
865   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
866   // old SCC from the mapping.
867   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
868     SCCIndices[SCCs[Idx]] = Idx;
869
870   return make_range(SCCs.begin() + OldIdx,
871                     SCCs.begin() + OldIdx + NewSCCs.size());
872 }
873
874 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
875                                                      Node &TargetN) {
876   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
877
878   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
879   assert(G->lookupRefSCC(TargetN) != this &&
880          "Target must not be in this RefSCC.");
881 #ifdef EXPENSIVE_CHECKS
882   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
883          "Target must be a descendant of the Source.");
884 #endif
885
886   // Edges between RefSCCs are the same regardless of call or ref, so we can
887   // just flip the edge here.
888   SourceN->setEdgeKind(TargetN, Edge::Call);
889
890 #ifndef NDEBUG
891   // Check that the RefSCC is still valid.
892   verify();
893 #endif
894 }
895
896 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
897                                                     Node &TargetN) {
898   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
899
900   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
901   assert(G->lookupRefSCC(TargetN) != this &&
902          "Target must not be in this RefSCC.");
903 #ifdef EXPENSIVE_CHECKS
904   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
905          "Target must be a descendant of the Source.");
906 #endif
907
908   // Edges between RefSCCs are the same regardless of call or ref, so we can
909   // just flip the edge here.
910   SourceN->setEdgeKind(TargetN, Edge::Ref);
911
912 #ifndef NDEBUG
913   // Check that the RefSCC is still valid.
914   verify();
915 #endif
916 }
917
918 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
919                                                   Node &TargetN) {
920   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
921   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
922
923   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
924
925 #ifndef NDEBUG
926   // Check that the RefSCC is still valid.
927   verify();
928 #endif
929 }
930
931 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
932                                                Edge::Kind EK) {
933   // First insert it into the caller.
934   SourceN->insertEdgeInternal(TargetN, EK);
935
936   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
937
938   assert(G->lookupRefSCC(TargetN) != this &&
939          "Target must not be in this RefSCC.");
940 #ifdef EXPENSIVE_CHECKS
941   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
942          "Target must be a descendant of the Source.");
943 #endif
944
945 #ifndef NDEBUG
946   // Check that the RefSCC is still valid.
947   verify();
948 #endif
949 }
950
951 SmallVector<LazyCallGraph::RefSCC *, 1>
952 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
953   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
954   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
955   assert(&SourceC != this && "Source must not be in this RefSCC.");
956 #ifdef EXPENSIVE_CHECKS
957   assert(SourceC.isDescendantOf(*this) &&
958          "Source must be a descendant of the Target.");
959 #endif
960
961   SmallVector<RefSCC *, 1> DeletedRefSCCs;
962
963 #ifndef NDEBUG
964   // In a debug build, verify the RefSCC is valid to start with and when this
965   // routine finishes.
966   verify();
967   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
968 #endif
969
970   int SourceIdx = G->RefSCCIndices[&SourceC];
971   int TargetIdx = G->RefSCCIndices[this];
972   assert(SourceIdx < TargetIdx &&
973          "Postorder list doesn't see edge as incoming!");
974
975   // Compute the RefSCCs which (transitively) reach the source. We do this by
976   // working backwards from the source using the parent set in each RefSCC,
977   // skipping any RefSCCs that don't fall in the postorder range. This has the
978   // advantage of walking the sparser parent edge (in high fan-out graphs) but
979   // more importantly this removes examining all forward edges in all RefSCCs
980   // within the postorder range which aren't in fact connected. Only connected
981   // RefSCCs (and their edges) are visited here.
982   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
983     Set.insert(&SourceC);
984     auto IsConnected = [&](RefSCC &RC) {
985       for (SCC &C : RC)
986         for (Node &N : C)
987           for (Edge &E : *N)
988             if (Set.count(G->lookupRefSCC(E.getNode())))
989               return true;
990
991       return false;
992     };
993
994     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
995                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
996       if (IsConnected(*C))
997         Set.insert(C);
998   };
999
1000   // Use a normal worklist to find which SCCs the target connects to. We still
1001   // bound the search based on the range in the postorder list we care about,
1002   // but because this is forward connectivity we just "recurse" through the
1003   // edges.
1004   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1005     Set.insert(this);
1006     SmallVector<RefSCC *, 4> Worklist;
1007     Worklist.push_back(this);
1008     do {
1009       RefSCC &RC = *Worklist.pop_back_val();
1010       for (SCC &C : RC)
1011         for (Node &N : C)
1012           for (Edge &E : *N) {
1013             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1014             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1015               // Not in the postorder sequence between source and target.
1016               continue;
1017
1018             if (Set.insert(&EdgeRC).second)
1019               Worklist.push_back(&EdgeRC);
1020           }
1021     } while (!Worklist.empty());
1022   };
1023
1024   // Use a generic helper to update the postorder sequence of RefSCCs and return
1025   // a range of any RefSCCs connected into a cycle by inserting this edge. This
1026   // routine will also take care of updating the indices into the postorder
1027   // sequence.
1028   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1029       updatePostorderSequenceForEdgeInsertion(
1030           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1031           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1032
1033   // Build a set so we can do fast tests for whether a RefSCC will end up as
1034   // part of the merged RefSCC.
1035   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1036
1037   // This RefSCC will always be part of that set, so just insert it here.
1038   MergeSet.insert(this);
1039
1040   // Now that we have identified all of the SCCs which need to be merged into
1041   // a connected set with the inserted edge, merge all of them into this SCC.
1042   SmallVector<SCC *, 16> MergedSCCs;
1043   int SCCIndex = 0;
1044   for (RefSCC *RC : MergeRange) {
1045     assert(RC != this && "We're merging into the target RefSCC, so it "
1046                          "shouldn't be in the range.");
1047
1048     // Walk the inner SCCs to update their up-pointer and walk all the edges to
1049     // update any parent sets.
1050     // FIXME: We should try to find a way to avoid this (rather expensive) edge
1051     // walk by updating the parent sets in some other manner.
1052     for (SCC &InnerC : *RC) {
1053       InnerC.OuterRefSCC = this;
1054       SCCIndices[&InnerC] = SCCIndex++;
1055       for (Node &N : InnerC)
1056         G->SCCMap[&N] = &InnerC;
1057     }
1058
1059     // Now merge in the SCCs. We can actually move here so try to reuse storage
1060     // the first time through.
1061     if (MergedSCCs.empty())
1062       MergedSCCs = std::move(RC->SCCs);
1063     else
1064       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1065     RC->SCCs.clear();
1066     DeletedRefSCCs.push_back(RC);
1067   }
1068
1069   // Append our original SCCs to the merged list and move it into place.
1070   for (SCC &InnerC : *this)
1071     SCCIndices[&InnerC] = SCCIndex++;
1072   MergedSCCs.append(SCCs.begin(), SCCs.end());
1073   SCCs = std::move(MergedSCCs);
1074
1075   // Remove the merged away RefSCCs from the post order sequence.
1076   for (RefSCC *RC : MergeRange)
1077     G->RefSCCIndices.erase(RC);
1078   int IndexOffset = MergeRange.end() - MergeRange.begin();
1079   auto EraseEnd =
1080       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1081   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1082     G->RefSCCIndices[RC] -= IndexOffset;
1083
1084   // At this point we have a merged RefSCC with a post-order SCCs list, just
1085   // connect the nodes to form the new edge.
1086   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1087
1088   // We return the list of SCCs which were merged so that callers can
1089   // invalidate any data they have associated with those SCCs. Note that these
1090   // SCCs are no longer in an interesting state (they are totally empty) but
1091   // the pointers will remain stable for the life of the graph itself.
1092   return DeletedRefSCCs;
1093 }
1094
1095 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1096   assert(G->lookupRefSCC(SourceN) == this &&
1097          "The source must be a member of this RefSCC.");
1098   assert(G->lookupRefSCC(TargetN) != this &&
1099          "The target must not be a member of this RefSCC");
1100
1101 #ifndef NDEBUG
1102   // In a debug build, verify the RefSCC is valid to start with and when this
1103   // routine finishes.
1104   verify();
1105   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1106 #endif
1107
1108   // First remove it from the node.
1109   bool Removed = SourceN->removeEdgeInternal(TargetN);
1110   (void)Removed;
1111   assert(Removed && "Target not in the edge set for this caller?");
1112 }
1113
1114 SmallVector<LazyCallGraph::RefSCC *, 1>
1115 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1116                                              ArrayRef<Node *> TargetNs) {
1117   // We return a list of the resulting *new* RefSCCs in post-order.
1118   SmallVector<RefSCC *, 1> Result;
1119
1120 #ifndef NDEBUG
1121   // In a debug build, verify the RefSCC is valid to start with and that either
1122   // we return an empty list of result RefSCCs and this RefSCC remains valid,
1123   // or we return new RefSCCs and this RefSCC is dead.
1124   verify();
1125   auto VerifyOnExit = make_scope_exit([&]() {
1126     // If we didn't replace our RefSCC with new ones, check that this one
1127     // remains valid.
1128     if (G)
1129       verify();
1130   });
1131 #endif
1132
1133   // First remove the actual edges.
1134   for (Node *TargetN : TargetNs) {
1135     assert(!(*SourceN)[*TargetN].isCall() &&
1136            "Cannot remove a call edge, it must first be made a ref edge");
1137
1138     bool Removed = SourceN->removeEdgeInternal(*TargetN);
1139     (void)Removed;
1140     assert(Removed && "Target not in the edge set for this caller?");
1141   }
1142
1143   // Direct self references don't impact the ref graph at all.
1144   if (llvm::all_of(TargetNs,
1145                    [&](Node *TargetN) { return &SourceN == TargetN; }))
1146     return Result;
1147
1148   // If all targets are in the same SCC as the source, because no call edges
1149   // were removed there is no RefSCC structure change.
1150   SCC &SourceC = *G->lookupSCC(SourceN);
1151   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1152         return G->lookupSCC(*TargetN) == &SourceC;
1153       }))
1154     return Result;
1155
1156   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1157   // for each inner SCC. We store these inside the low-link field of the nodes
1158   // rather than associated with SCCs because this saves a round-trip through
1159   // the node->SCC map and in the common case, SCCs are small. We will verify
1160   // that we always give the same number to every node in the SCC such that
1161   // these are equivalent.
1162   int PostOrderNumber = 0;
1163
1164   // Reset all the other nodes to prepare for a DFS over them, and add them to
1165   // our worklist.
1166   SmallVector<Node *, 8> Worklist;
1167   for (SCC *C : SCCs) {
1168     for (Node &N : *C)
1169       N.DFSNumber = N.LowLink = 0;
1170
1171     Worklist.append(C->Nodes.begin(), C->Nodes.end());
1172   }
1173
1174   // Track the number of nodes in this RefSCC so that we can quickly recognize
1175   // an important special case of the edge removal not breaking the cycle of
1176   // this RefSCC.
1177   const int NumRefSCCNodes = Worklist.size();
1178
1179   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1180   SmallVector<Node *, 4> PendingRefSCCStack;
1181   do {
1182     assert(DFSStack.empty() &&
1183            "Cannot begin a new root with a non-empty DFS stack!");
1184     assert(PendingRefSCCStack.empty() &&
1185            "Cannot begin a new root with pending nodes for an SCC!");
1186
1187     Node *RootN = Worklist.pop_back_val();
1188     // Skip any nodes we've already reached in the DFS.
1189     if (RootN->DFSNumber != 0) {
1190       assert(RootN->DFSNumber == -1 &&
1191              "Shouldn't have any mid-DFS root nodes!");
1192       continue;
1193     }
1194
1195     RootN->DFSNumber = RootN->LowLink = 1;
1196     int NextDFSNumber = 2;
1197
1198     DFSStack.push_back({RootN, (*RootN)->begin()});
1199     do {
1200       Node *N;
1201       EdgeSequence::iterator I;
1202       std::tie(N, I) = DFSStack.pop_back_val();
1203       auto E = (*N)->end();
1204
1205       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1206                                   "before processing a node.");
1207
1208       while (I != E) {
1209         Node &ChildN = I->getNode();
1210         if (ChildN.DFSNumber == 0) {
1211           // Mark that we should start at this child when next this node is the
1212           // top of the stack. We don't start at the next child to ensure this
1213           // child's lowlink is reflected.
1214           DFSStack.push_back({N, I});
1215
1216           // Continue, resetting to the child node.
1217           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1218           N = &ChildN;
1219           I = ChildN->begin();
1220           E = ChildN->end();
1221           continue;
1222         }
1223         if (ChildN.DFSNumber == -1) {
1224           // If this child isn't currently in this RefSCC, no need to process
1225           // it.
1226           ++I;
1227           continue;
1228         }
1229
1230         // Track the lowest link of the children, if any are still in the stack.
1231         // Any child not on the stack will have a LowLink of -1.
1232         assert(ChildN.LowLink != 0 &&
1233                "Low-link must not be zero with a non-zero DFS number.");
1234         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1235           N->LowLink = ChildN.LowLink;
1236         ++I;
1237       }
1238
1239       // We've finished processing N and its descendants, put it on our pending
1240       // stack to eventually get merged into a RefSCC.
1241       PendingRefSCCStack.push_back(N);
1242
1243       // If this node is linked to some lower entry, continue walking up the
1244       // stack.
1245       if (N->LowLink != N->DFSNumber) {
1246         assert(!DFSStack.empty() &&
1247                "We never found a viable root for a RefSCC to pop off!");
1248         continue;
1249       }
1250
1251       // Otherwise, form a new RefSCC from the top of the pending node stack.
1252       int RefSCCNumber = PostOrderNumber++;
1253       int RootDFSNumber = N->DFSNumber;
1254
1255       // Find the range of the node stack by walking down until we pass the
1256       // root DFS number. Update the DFS numbers and low link numbers in the
1257       // process to avoid re-walking this list where possible.
1258       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1259         if (N->DFSNumber < RootDFSNumber)
1260           // We've found the bottom.
1261           return true;
1262
1263         // Update this node and keep scanning.
1264         N->DFSNumber = -1;
1265         // Save the post-order number in the lowlink field so that we can use
1266         // it to map SCCs into new RefSCCs after we finish the DFS.
1267         N->LowLink = RefSCCNumber;
1268         return false;
1269       });
1270       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1271
1272       // If we find a cycle containing all nodes originally in this RefSCC then
1273       // the removal hasn't changed the structure at all. This is an important
1274       // special case and we can directly exit the entire routine more
1275       // efficiently as soon as we discover it.
1276       if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1277         // Clear out the low link field as we won't need it.
1278         for (Node *N : RefSCCNodes)
1279           N->LowLink = -1;
1280         // Return the empty result immediately.
1281         return Result;
1282       }
1283
1284       // We've already marked the nodes internally with the RefSCC number so
1285       // just clear them off the stack and continue.
1286       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1287     } while (!DFSStack.empty());
1288
1289     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1290     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1291   } while (!Worklist.empty());
1292
1293   assert(PostOrderNumber > 1 &&
1294          "Should never finish the DFS when the existing RefSCC remains valid!");
1295
1296   // Otherwise we create a collection of new RefSCC nodes and build
1297   // a radix-sort style map from postorder number to these new RefSCCs. We then
1298   // append SCCs to each of these RefSCCs in the order they occurred in the
1299   // original SCCs container.
1300   for (int i = 0; i < PostOrderNumber; ++i)
1301     Result.push_back(G->createRefSCC(*G));
1302
1303   // Insert the resulting postorder sequence into the global graph postorder
1304   // sequence before the current RefSCC in that sequence, and then remove the
1305   // current one.
1306   //
1307   // FIXME: It'd be nice to change the APIs so that we returned an iterator
1308   // range over the global postorder sequence and generally use that sequence
1309   // rather than building a separate result vector here.
1310   int Idx = G->getRefSCCIndex(*this);
1311   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1312   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1313                              Result.end());
1314   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1315     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1316
1317   for (SCC *C : SCCs) {
1318     // We store the SCC number in the node's low-link field above.
1319     int SCCNumber = C->begin()->LowLink;
1320     // Clear out all of the SCC's node's low-link fields now that we're done
1321     // using them as side-storage.
1322     for (Node &N : *C) {
1323       assert(N.LowLink == SCCNumber &&
1324              "Cannot have different numbers for nodes in the same SCC!");
1325       N.LowLink = -1;
1326     }
1327
1328     RefSCC &RC = *Result[SCCNumber];
1329     int SCCIndex = RC.SCCs.size();
1330     RC.SCCs.push_back(C);
1331     RC.SCCIndices[C] = SCCIndex;
1332     C->OuterRefSCC = &RC;
1333   }
1334
1335   // Now that we've moved things into the new RefSCCs, clear out our current
1336   // one.
1337   G = nullptr;
1338   SCCs.clear();
1339   SCCIndices.clear();
1340
1341 #ifndef NDEBUG
1342   // Verify the new RefSCCs we've built.
1343   for (RefSCC *RC : Result)
1344     RC->verify();
1345 #endif
1346
1347   // Return the new list of SCCs.
1348   return Result;
1349 }
1350
1351 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1352                                                        Node &TargetN) {
1353   // The only trivial case that requires any graph updates is when we add new
1354   // ref edge and may connect different RefSCCs along that path. This is only
1355   // because of the parents set. Every other part of the graph remains constant
1356   // after this edge insertion.
1357   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1358   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1359   if (&TargetRC == this)
1360     return;
1361
1362 #ifdef EXPENSIVE_CHECKS
1363   assert(TargetRC.isDescendantOf(*this) &&
1364          "Target must be a descendant of the Source.");
1365 #endif
1366 }
1367
1368 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1369                                                   Node &TargetN) {
1370 #ifndef NDEBUG
1371   // Check that the RefSCC is still valid when we finish.
1372   auto ExitVerifier = make_scope_exit([this] { verify(); });
1373
1374 #ifdef EXPENSIVE_CHECKS
1375   // Check that we aren't breaking some invariants of the SCC graph. Note that
1376   // this is quadratic in the number of edges in the call graph!
1377   SCC &SourceC = *G->lookupSCC(SourceN);
1378   SCC &TargetC = *G->lookupSCC(TargetN);
1379   if (&SourceC != &TargetC)
1380     assert(SourceC.isAncestorOf(TargetC) &&
1381            "Call edge is not trivial in the SCC graph!");
1382 #endif // EXPENSIVE_CHECKS
1383 #endif // NDEBUG
1384
1385   // First insert it into the source or find the existing edge.
1386   auto InsertResult =
1387       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1388   if (!InsertResult.second) {
1389     // Already an edge, just update it.
1390     Edge &E = SourceN->Edges[InsertResult.first->second];
1391     if (E.isCall())
1392       return; // Nothing to do!
1393     E.setKind(Edge::Call);
1394   } else {
1395     // Create the new edge.
1396     SourceN->Edges.emplace_back(TargetN, Edge::Call);
1397   }
1398
1399   // Now that we have the edge, handle the graph fallout.
1400   handleTrivialEdgeInsertion(SourceN, TargetN);
1401 }
1402
1403 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1404 #ifndef NDEBUG
1405   // Check that the RefSCC is still valid when we finish.
1406   auto ExitVerifier = make_scope_exit([this] { verify(); });
1407
1408 #ifdef EXPENSIVE_CHECKS
1409   // Check that we aren't breaking some invariants of the RefSCC graph.
1410   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1411   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1412   if (&SourceRC != &TargetRC)
1413     assert(SourceRC.isAncestorOf(TargetRC) &&
1414            "Ref edge is not trivial in the RefSCC graph!");
1415 #endif // EXPENSIVE_CHECKS
1416 #endif // NDEBUG
1417
1418   // First insert it into the source or find the existing edge.
1419   auto InsertResult =
1420       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1421   if (!InsertResult.second)
1422     // Already an edge, we're done.
1423     return;
1424
1425   // Create the new edge.
1426   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1427
1428   // Now that we have the edge, handle the graph fallout.
1429   handleTrivialEdgeInsertion(SourceN, TargetN);
1430 }
1431
1432 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1433   Function &OldF = N.getFunction();
1434
1435 #ifndef NDEBUG
1436   // Check that the RefSCC is still valid when we finish.
1437   auto ExitVerifier = make_scope_exit([this] { verify(); });
1438
1439   assert(G->lookupRefSCC(N) == this &&
1440          "Cannot replace the function of a node outside this RefSCC.");
1441
1442   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1443          "Must not have already walked the new function!'");
1444
1445   // It is important that this replacement not introduce graph changes so we
1446   // insist that the caller has already removed every use of the original
1447   // function and that all uses of the new function correspond to existing
1448   // edges in the graph. The common and expected way to use this is when
1449   // replacing the function itself in the IR without changing the call graph
1450   // shape and just updating the analysis based on that.
1451   assert(&OldF != &NewF && "Cannot replace a function with itself!");
1452   assert(OldF.use_empty() &&
1453          "Must have moved all uses from the old function to the new!");
1454 #endif
1455
1456   N.replaceFunction(NewF);
1457
1458   // Update various call graph maps.
1459   G->NodeMap.erase(&OldF);
1460   G->NodeMap[&NewF] = &N;
1461 }
1462
1463 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1464   assert(SCCMap.empty() &&
1465          "This method cannot be called after SCCs have been formed!");
1466
1467   return SourceN->insertEdgeInternal(TargetN, EK);
1468 }
1469
1470 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1471   assert(SCCMap.empty() &&
1472          "This method cannot be called after SCCs have been formed!");
1473
1474   bool Removed = SourceN->removeEdgeInternal(TargetN);
1475   (void)Removed;
1476   assert(Removed && "Target not in the edge set for this caller?");
1477 }
1478
1479 void LazyCallGraph::removeDeadFunction(Function &F) {
1480   // FIXME: This is unnecessarily restrictive. We should be able to remove
1481   // functions which recursively call themselves.
1482   assert(F.use_empty() &&
1483          "This routine should only be called on trivially dead functions!");
1484
1485   // We shouldn't remove library functions as they are never really dead while
1486   // the call graph is in use -- every function definition refers to them.
1487   assert(!isLibFunction(F) &&
1488          "Must not remove lib functions from the call graph!");
1489
1490   auto NI = NodeMap.find(&F);
1491   if (NI == NodeMap.end())
1492     // Not in the graph at all!
1493     return;
1494
1495   Node &N = *NI->second;
1496   NodeMap.erase(NI);
1497
1498   // Remove this from the entry edges if present.
1499   EntryEdges.removeEdgeInternal(N);
1500
1501   if (SCCMap.empty()) {
1502     // No SCCs have been formed, so removing this is fine and there is nothing
1503     // else necessary at this point but clearing out the node.
1504     N.clear();
1505     return;
1506   }
1507
1508   // Cannot remove a function which has yet to be visited in the DFS walk, so
1509   // if we have a node at all then we must have an SCC and RefSCC.
1510   auto CI = SCCMap.find(&N);
1511   assert(CI != SCCMap.end() &&
1512          "Tried to remove a node without an SCC after DFS walk started!");
1513   SCC &C = *CI->second;
1514   SCCMap.erase(CI);
1515   RefSCC &RC = C.getOuterRefSCC();
1516
1517   // This node must be the only member of its SCC as it has no callers, and
1518   // that SCC must be the only member of a RefSCC as it has no references.
1519   // Validate these properties first.
1520   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1521   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1522
1523   auto RCIndexI = RefSCCIndices.find(&RC);
1524   int RCIndex = RCIndexI->second;
1525   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1526   RefSCCIndices.erase(RCIndexI);
1527   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1528     RefSCCIndices[PostOrderRefSCCs[i]] = i;
1529
1530   // Finally clear out all the data structures from the node down through the
1531   // components.
1532   N.clear();
1533   N.G = nullptr;
1534   N.F = nullptr;
1535   C.clear();
1536   RC.clear();
1537   RC.G = nullptr;
1538
1539   // Nothing to delete as all the objects are allocated in stable bump pointer
1540   // allocators.
1541 }
1542
1543 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1544   return *new (MappedN = BPA.Allocate()) Node(*this, F);
1545 }
1546
1547 void LazyCallGraph::updateGraphPtrs() {
1548   // Walk the node map to update their graph pointers. While this iterates in
1549   // an unstable order, the order has no effect so it remains correct.
1550   for (auto &FunctionNodePair : NodeMap)
1551     FunctionNodePair.second->G = this;
1552
1553   for (auto *RC : PostOrderRefSCCs)
1554     RC->G = this;
1555 }
1556
1557 template <typename RootsT, typename GetBeginT, typename GetEndT,
1558           typename GetNodeT, typename FormSCCCallbackT>
1559 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1560                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
1561                                      FormSCCCallbackT &&FormSCC) {
1562   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1563
1564   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1565   SmallVector<Node *, 16> PendingSCCStack;
1566
1567   // Scan down the stack and DFS across the call edges.
1568   for (Node *RootN : Roots) {
1569     assert(DFSStack.empty() &&
1570            "Cannot begin a new root with a non-empty DFS stack!");
1571     assert(PendingSCCStack.empty() &&
1572            "Cannot begin a new root with pending nodes for an SCC!");
1573
1574     // Skip any nodes we've already reached in the DFS.
1575     if (RootN->DFSNumber != 0) {
1576       assert(RootN->DFSNumber == -1 &&
1577              "Shouldn't have any mid-DFS root nodes!");
1578       continue;
1579     }
1580
1581     RootN->DFSNumber = RootN->LowLink = 1;
1582     int NextDFSNumber = 2;
1583
1584     DFSStack.push_back({RootN, GetBegin(*RootN)});
1585     do {
1586       Node *N;
1587       EdgeItT I;
1588       std::tie(N, I) = DFSStack.pop_back_val();
1589       auto E = GetEnd(*N);
1590       while (I != E) {
1591         Node &ChildN = GetNode(I);
1592         if (ChildN.DFSNumber == 0) {
1593           // We haven't yet visited this child, so descend, pushing the current
1594           // node onto the stack.
1595           DFSStack.push_back({N, I});
1596
1597           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1598           N = &ChildN;
1599           I = GetBegin(*N);
1600           E = GetEnd(*N);
1601           continue;
1602         }
1603
1604         // If the child has already been added to some child component, it
1605         // couldn't impact the low-link of this parent because it isn't
1606         // connected, and thus its low-link isn't relevant so skip it.
1607         if (ChildN.DFSNumber == -1) {
1608           ++I;
1609           continue;
1610         }
1611
1612         // Track the lowest linked child as the lowest link for this node.
1613         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1614         if (ChildN.LowLink < N->LowLink)
1615           N->LowLink = ChildN.LowLink;
1616
1617         // Move to the next edge.
1618         ++I;
1619       }
1620
1621       // We've finished processing N and its descendants, put it on our pending
1622       // SCC stack to eventually get merged into an SCC of nodes.
1623       PendingSCCStack.push_back(N);
1624
1625       // If this node is linked to some lower entry, continue walking up the
1626       // stack.
1627       if (N->LowLink != N->DFSNumber)
1628         continue;
1629
1630       // Otherwise, we've completed an SCC. Append it to our post order list of
1631       // SCCs.
1632       int RootDFSNumber = N->DFSNumber;
1633       // Find the range of the node stack by walking down until we pass the
1634       // root DFS number.
1635       auto SCCNodes = make_range(
1636           PendingSCCStack.rbegin(),
1637           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1638             return N->DFSNumber < RootDFSNumber;
1639           }));
1640       // Form a new SCC out of these nodes and then clear them off our pending
1641       // stack.
1642       FormSCC(SCCNodes);
1643       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1644     } while (!DFSStack.empty());
1645   }
1646 }
1647
1648 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1649 ///
1650 /// Appends the SCCs to the provided vector and updates the map with their
1651 /// indices. Both the vector and map must be empty when passed into this
1652 /// routine.
1653 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1654   assert(RC.SCCs.empty() && "Already built SCCs!");
1655   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1656
1657   for (Node *N : Nodes) {
1658     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1659            "We cannot have a low link in an SCC lower than its root on the "
1660            "stack!");
1661
1662     // This node will go into the next RefSCC, clear out its DFS and low link
1663     // as we scan.
1664     N->DFSNumber = N->LowLink = 0;
1665   }
1666
1667   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1668   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1669   // internal storage as we won't need it for the outer graph's DFS any longer.
1670   buildGenericSCCs(
1671       Nodes, [](Node &N) { return N->call_begin(); },
1672       [](Node &N) { return N->call_end(); },
1673       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1674       [this, &RC](node_stack_range Nodes) {
1675         RC.SCCs.push_back(createSCC(RC, Nodes));
1676         for (Node &N : *RC.SCCs.back()) {
1677           N.DFSNumber = N.LowLink = -1;
1678           SCCMap[&N] = RC.SCCs.back();
1679         }
1680       });
1681
1682   // Wire up the SCC indices.
1683   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1684     RC.SCCIndices[RC.SCCs[i]] = i;
1685 }
1686
1687 void LazyCallGraph::buildRefSCCs() {
1688   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1689     // RefSCCs are either non-existent or already built!
1690     return;
1691
1692   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1693
1694   SmallVector<Node *, 16> Roots;
1695   for (Edge &E : *this)
1696     Roots.push_back(&E.getNode());
1697
1698   // The roots will be popped of a stack, so use reverse to get a less
1699   // surprising order. This doesn't change any of the semantics anywhere.
1700   std::reverse(Roots.begin(), Roots.end());
1701
1702   buildGenericSCCs(
1703       Roots,
1704       [](Node &N) {
1705         // We need to populate each node as we begin to walk its edges.
1706         N.populate();
1707         return N->begin();
1708       },
1709       [](Node &N) { return N->end(); },
1710       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1711       [this](node_stack_range Nodes) {
1712         RefSCC *NewRC = createRefSCC(*this);
1713         buildSCCs(*NewRC, Nodes);
1714
1715         // Push the new node into the postorder list and remember its position
1716         // in the index map.
1717         bool Inserted =
1718             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1719         (void)Inserted;
1720         assert(Inserted && "Cannot already have this RefSCC in the index map!");
1721         PostOrderRefSCCs.push_back(NewRC);
1722 #ifndef NDEBUG
1723         NewRC->verify();
1724 #endif
1725       });
1726 }
1727
1728 AnalysisKey LazyCallGraphAnalysis::Key;
1729
1730 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1731
1732 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1733   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
1734   for (LazyCallGraph::Edge &E : N.populate())
1735     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
1736        << E.getFunction().getName() << "\n";
1737
1738   OS << "\n";
1739 }
1740
1741 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1742   ptrdiff_t Size = size(C);
1743   OS << "    SCC with " << Size << " functions:\n";
1744
1745   for (LazyCallGraph::Node &N : C)
1746     OS << "      " << N.getFunction().getName() << "\n";
1747 }
1748
1749 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1750   ptrdiff_t Size = size(C);
1751   OS << "  RefSCC with " << Size << " call SCCs:\n";
1752
1753   for (LazyCallGraph::SCC &InnerC : C)
1754     printSCC(OS, InnerC);
1755
1756   OS << "\n";
1757 }
1758
1759 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1760                                                 ModuleAnalysisManager &AM) {
1761   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1762
1763   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1764      << "\n\n";
1765
1766   for (Function &F : M)
1767     printNode(OS, G.get(F));
1768
1769   G.buildRefSCCs();
1770   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1771     printRefSCC(OS, C);
1772
1773   return PreservedAnalyses::all();
1774 }
1775
1776 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1777     : OS(OS) {}
1778
1779 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1780   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1781
1782   for (LazyCallGraph::Edge &E : N.populate()) {
1783     OS << "  " << Name << " -> \""
1784        << DOT::EscapeString(E.getFunction().getName()) << "\"";
1785     if (!E.isCall()) // It is a ref edge.
1786       OS << " [style=dashed,label=\"ref\"]";
1787     OS << ";\n";
1788   }
1789
1790   OS << "\n";
1791 }
1792
1793 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1794                                                    ModuleAnalysisManager &AM) {
1795   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1796
1797   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1798
1799   for (Function &F : M)
1800     printNodeDOT(OS, G.get(F));
1801
1802   OS << "}\n";
1803
1804   return PreservedAnalyses::all();
1805 }