]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/Lint.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / Lint.cpp
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/Passes.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CallSite.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LegacyPassManager.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <cassert>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80
81 using namespace llvm;
82
83 namespace {
84   namespace MemRef {
85     static const unsigned Read     = 1;
86     static const unsigned Write    = 2;
87     static const unsigned Callee   = 4;
88     static const unsigned Branchee = 8;
89   } // end namespace MemRef
90
91   class Lint : public FunctionPass, public InstVisitor<Lint> {
92     friend class InstVisitor<Lint>;
93
94     void visitFunction(Function &F);
95
96     void visitCallSite(CallSite CS);
97     void visitMemoryReference(Instruction &I, Value *Ptr,
98                               uint64_t Size, unsigned Align,
99                               Type *Ty, unsigned Flags);
100     void visitEHBeginCatch(IntrinsicInst *II);
101     void visitEHEndCatch(IntrinsicInst *II);
102
103     void visitCallInst(CallInst &I);
104     void visitInvokeInst(InvokeInst &I);
105     void visitReturnInst(ReturnInst &I);
106     void visitLoadInst(LoadInst &I);
107     void visitStoreInst(StoreInst &I);
108     void visitXor(BinaryOperator &I);
109     void visitSub(BinaryOperator &I);
110     void visitLShr(BinaryOperator &I);
111     void visitAShr(BinaryOperator &I);
112     void visitShl(BinaryOperator &I);
113     void visitSDiv(BinaryOperator &I);
114     void visitUDiv(BinaryOperator &I);
115     void visitSRem(BinaryOperator &I);
116     void visitURem(BinaryOperator &I);
117     void visitAllocaInst(AllocaInst &I);
118     void visitVAArgInst(VAArgInst &I);
119     void visitIndirectBrInst(IndirectBrInst &I);
120     void visitExtractElementInst(ExtractElementInst &I);
121     void visitInsertElementInst(InsertElementInst &I);
122     void visitUnreachableInst(UnreachableInst &I);
123
124     Value *findValue(Value *V, bool OffsetOk) const;
125     Value *findValueImpl(Value *V, bool OffsetOk,
126                          SmallPtrSetImpl<Value *> &Visited) const;
127
128   public:
129     Module *Mod;
130     const DataLayout *DL;
131     AliasAnalysis *AA;
132     AssumptionCache *AC;
133     DominatorTree *DT;
134     TargetLibraryInfo *TLI;
135
136     std::string Messages;
137     raw_string_ostream MessagesStr;
138
139     static char ID; // Pass identification, replacement for typeid
140     Lint() : FunctionPass(ID), MessagesStr(Messages) {
141       initializeLintPass(*PassRegistry::getPassRegistry());
142     }
143
144     bool runOnFunction(Function &F) override;
145
146     void getAnalysisUsage(AnalysisUsage &AU) const override {
147       AU.setPreservesAll();
148       AU.addRequired<AAResultsWrapperPass>();
149       AU.addRequired<AssumptionCacheTracker>();
150       AU.addRequired<TargetLibraryInfoWrapperPass>();
151       AU.addRequired<DominatorTreeWrapperPass>();
152     }
153     void print(raw_ostream &O, const Module *M) const override {}
154
155     void WriteValues(ArrayRef<const Value *> Vs) {
156       for (const Value *V : Vs) {
157         if (!V)
158           continue;
159         if (isa<Instruction>(V)) {
160           MessagesStr << *V << '\n';
161         } else {
162           V->printAsOperand(MessagesStr, true, Mod);
163           MessagesStr << '\n';
164         }
165       }
166     }
167
168     /// A check failed, so printout out the condition and the message.
169     ///
170     /// This provides a nice place to put a breakpoint if you want to see why
171     /// something is not correct.
172     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
173
174     /// A check failed (with values to print).
175     ///
176     /// This calls the Message-only version so that the above is easier to set
177     /// a breakpoint on.
178     template <typename T1, typename... Ts>
179     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
180       CheckFailed(Message);
181       WriteValues({V1, Vs...});
182     }
183   };
184 } // end anonymous namespace
185
186 char Lint::ID = 0;
187 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
188                       false, true)
189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
193 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
194                     false, true)
195
196 // Assert - We know that cond should be true, if not print an error message.
197 #define Assert(C, ...) \
198     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
199
200 // Lint::run - This is the main Analysis entry point for a
201 // function.
202 //
203 bool Lint::runOnFunction(Function &F) {
204   Mod = F.getParent();
205   DL = &F.getParent()->getDataLayout();
206   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
207   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
208   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
209   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
210   visit(F);
211   dbgs() << MessagesStr.str();
212   Messages.clear();
213   return false;
214 }
215
216 void Lint::visitFunction(Function &F) {
217   // This isn't undefined behavior, it's just a little unusual, and it's a
218   // fairly common mistake to neglect to name a function.
219   Assert(F.hasName() || F.hasLocalLinkage(),
220          "Unusual: Unnamed function with non-local linkage", &F);
221
222   // TODO: Check for irreducible control flow.
223 }
224
225 void Lint::visitCallSite(CallSite CS) {
226   Instruction &I = *CS.getInstruction();
227   Value *Callee = CS.getCalledValue();
228
229   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
230                        MemRef::Callee);
231
232   if (Function *F = dyn_cast<Function>(findValue(Callee,
233                                                  /*OffsetOk=*/false))) {
234     Assert(CS.getCallingConv() == F->getCallingConv(),
235            "Undefined behavior: Caller and callee calling convention differ",
236            &I);
237
238     FunctionType *FT = F->getFunctionType();
239     unsigned NumActualArgs = CS.arg_size();
240
241     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
242                           : FT->getNumParams() == NumActualArgs,
243            "Undefined behavior: Call argument count mismatches callee "
244            "argument count",
245            &I);
246
247     Assert(FT->getReturnType() == I.getType(),
248            "Undefined behavior: Call return type mismatches "
249            "callee return type",
250            &I);
251
252     // Check argument types (in case the callee was casted) and attributes.
253     // TODO: Verify that caller and callee attributes are compatible.
254     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
255     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
256     for (; AI != AE; ++AI) {
257       Value *Actual = *AI;
258       if (PI != PE) {
259         Argument *Formal = &*PI++;
260         Assert(Formal->getType() == Actual->getType(),
261                "Undefined behavior: Call argument type mismatches "
262                "callee parameter type",
263                &I);
264
265         // Check that noalias arguments don't alias other arguments. This is
266         // not fully precise because we don't know the sizes of the dereferenced
267         // memory regions.
268         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
269           AttributeList PAL = CS.getAttributes();
270           unsigned ArgNo = 0;
271           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) {
272             // Skip ByVal arguments since they will be memcpy'd to the callee's
273             // stack so we're not really passing the pointer anyway.
274             if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
275               continue;
276             if (AI != BI && (*BI)->getType()->isPointerTy()) {
277               AliasResult Result = AA->alias(*AI, *BI);
278               Assert(Result != MustAlias && Result != PartialAlias,
279                      "Unusual: noalias argument aliases another argument", &I);
280             }
281           }
282         }
283
284         // Check that an sret argument points to valid memory.
285         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
286           Type *Ty =
287             cast<PointerType>(Formal->getType())->getElementType();
288           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
289                                DL->getABITypeAlignment(Ty), Ty,
290                                MemRef::Read | MemRef::Write);
291         }
292       }
293     }
294   }
295
296   if (CS.isCall()) {
297     const CallInst *CI = cast<CallInst>(CS.getInstruction());
298     if (CI->isTailCall()) {
299       const AttributeList &PAL = CI->getAttributes();
300       unsigned ArgNo = 0;
301       for (Value *Arg : CS.args()) {
302         // Skip ByVal arguments since they will be memcpy'd to the callee's
303         // stack anyway.
304         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
305           continue;
306         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
307         Assert(!isa<AllocaInst>(Obj),
308                "Undefined behavior: Call with \"tail\" keyword references "
309                "alloca",
310                &I);
311       }
312     }
313   }
314
315
316   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
317     switch (II->getIntrinsicID()) {
318     default: break;
319
320     // TODO: Check more intrinsics
321
322     case Intrinsic::memcpy: {
323       MemCpyInst *MCI = cast<MemCpyInst>(&I);
324       // TODO: If the size is known, use it.
325       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
326                            MCI->getDestAlignment(), nullptr, MemRef::Write);
327       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
328                            MCI->getSourceAlignment(), nullptr, MemRef::Read);
329
330       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
331       // isn't expressive enough for what we really want to do. Known partial
332       // overlap is not distinguished from the case where nothing is known.
333       auto Size = LocationSize::unknown();
334       if (const ConstantInt *Len =
335               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
336                                               /*OffsetOk=*/false)))
337         if (Len->getValue().isIntN(32))
338           Size = LocationSize::precise(Len->getValue().getZExtValue());
339       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
340                  MustAlias,
341              "Undefined behavior: memcpy source and destination overlap", &I);
342       break;
343     }
344     case Intrinsic::memmove: {
345       MemMoveInst *MMI = cast<MemMoveInst>(&I);
346       // TODO: If the size is known, use it.
347       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
348                            MMI->getDestAlignment(), nullptr, MemRef::Write);
349       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
350                            MMI->getSourceAlignment(), nullptr, MemRef::Read);
351       break;
352     }
353     case Intrinsic::memset: {
354       MemSetInst *MSI = cast<MemSetInst>(&I);
355       // TODO: If the size is known, use it.
356       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
357                            MSI->getDestAlignment(), nullptr, MemRef::Write);
358       break;
359     }
360
361     case Intrinsic::vastart:
362       Assert(I.getParent()->getParent()->isVarArg(),
363              "Undefined behavior: va_start called in a non-varargs function",
364              &I);
365
366       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
367                            nullptr, MemRef::Read | MemRef::Write);
368       break;
369     case Intrinsic::vacopy:
370       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
371                            nullptr, MemRef::Write);
372       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
373                            nullptr, MemRef::Read);
374       break;
375     case Intrinsic::vaend:
376       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
377                            nullptr, MemRef::Read | MemRef::Write);
378       break;
379
380     case Intrinsic::stackrestore:
381       // Stackrestore doesn't read or write memory, but it sets the
382       // stack pointer, which the compiler may read from or write to
383       // at any time, so check it for both readability and writeability.
384       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
385                            nullptr, MemRef::Read | MemRef::Write);
386       break;
387     }
388 }
389
390 void Lint::visitCallInst(CallInst &I) {
391   return visitCallSite(&I);
392 }
393
394 void Lint::visitInvokeInst(InvokeInst &I) {
395   return visitCallSite(&I);
396 }
397
398 void Lint::visitReturnInst(ReturnInst &I) {
399   Function *F = I.getParent()->getParent();
400   Assert(!F->doesNotReturn(),
401          "Unusual: Return statement in function with noreturn attribute", &I);
402
403   if (Value *V = I.getReturnValue()) {
404     Value *Obj = findValue(V, /*OffsetOk=*/true);
405     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
406   }
407 }
408
409 // TODO: Check that the reference is in bounds.
410 // TODO: Check readnone/readonly function attributes.
411 void Lint::visitMemoryReference(Instruction &I,
412                                 Value *Ptr, uint64_t Size, unsigned Align,
413                                 Type *Ty, unsigned Flags) {
414   // If no memory is being referenced, it doesn't matter if the pointer
415   // is valid.
416   if (Size == 0)
417     return;
418
419   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
420   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
421          "Undefined behavior: Null pointer dereference", &I);
422   Assert(!isa<UndefValue>(UnderlyingObject),
423          "Undefined behavior: Undef pointer dereference", &I);
424   Assert(!isa<ConstantInt>(UnderlyingObject) ||
425              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
426          "Unusual: All-ones pointer dereference", &I);
427   Assert(!isa<ConstantInt>(UnderlyingObject) ||
428              !cast<ConstantInt>(UnderlyingObject)->isOne(),
429          "Unusual: Address one pointer dereference", &I);
430
431   if (Flags & MemRef::Write) {
432     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
433       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
434              &I);
435     Assert(!isa<Function>(UnderlyingObject) &&
436                !isa<BlockAddress>(UnderlyingObject),
437            "Undefined behavior: Write to text section", &I);
438   }
439   if (Flags & MemRef::Read) {
440     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
441            &I);
442     Assert(!isa<BlockAddress>(UnderlyingObject),
443            "Undefined behavior: Load from block address", &I);
444   }
445   if (Flags & MemRef::Callee) {
446     Assert(!isa<BlockAddress>(UnderlyingObject),
447            "Undefined behavior: Call to block address", &I);
448   }
449   if (Flags & MemRef::Branchee) {
450     Assert(!isa<Constant>(UnderlyingObject) ||
451                isa<BlockAddress>(UnderlyingObject),
452            "Undefined behavior: Branch to non-blockaddress", &I);
453   }
454
455   // Check for buffer overflows and misalignment.
456   // Only handles memory references that read/write something simple like an
457   // alloca instruction or a global variable.
458   int64_t Offset = 0;
459   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
460     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
461     // something we can handle and if so extract the size of this base object
462     // along with its alignment.
463     uint64_t BaseSize = MemoryLocation::UnknownSize;
464     unsigned BaseAlign = 0;
465
466     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
467       Type *ATy = AI->getAllocatedType();
468       if (!AI->isArrayAllocation() && ATy->isSized())
469         BaseSize = DL->getTypeAllocSize(ATy);
470       BaseAlign = AI->getAlignment();
471       if (BaseAlign == 0 && ATy->isSized())
472         BaseAlign = DL->getABITypeAlignment(ATy);
473     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
474       // If the global may be defined differently in another compilation unit
475       // then don't warn about funky memory accesses.
476       if (GV->hasDefinitiveInitializer()) {
477         Type *GTy = GV->getValueType();
478         if (GTy->isSized())
479           BaseSize = DL->getTypeAllocSize(GTy);
480         BaseAlign = GV->getAlignment();
481         if (BaseAlign == 0 && GTy->isSized())
482           BaseAlign = DL->getABITypeAlignment(GTy);
483       }
484     }
485
486     // Accesses from before the start or after the end of the object are not
487     // defined.
488     Assert(Size == MemoryLocation::UnknownSize ||
489                BaseSize == MemoryLocation::UnknownSize ||
490                (Offset >= 0 && Offset + Size <= BaseSize),
491            "Undefined behavior: Buffer overflow", &I);
492
493     // Accesses that say that the memory is more aligned than it is are not
494     // defined.
495     if (Align == 0 && Ty && Ty->isSized())
496       Align = DL->getABITypeAlignment(Ty);
497     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
498            "Undefined behavior: Memory reference address is misaligned", &I);
499   }
500 }
501
502 void Lint::visitLoadInst(LoadInst &I) {
503   visitMemoryReference(I, I.getPointerOperand(),
504                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
505                        I.getType(), MemRef::Read);
506 }
507
508 void Lint::visitStoreInst(StoreInst &I) {
509   visitMemoryReference(I, I.getPointerOperand(),
510                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
511                        I.getAlignment(),
512                        I.getOperand(0)->getType(), MemRef::Write);
513 }
514
515 void Lint::visitXor(BinaryOperator &I) {
516   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
517          "Undefined result: xor(undef, undef)", &I);
518 }
519
520 void Lint::visitSub(BinaryOperator &I) {
521   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
522          "Undefined result: sub(undef, undef)", &I);
523 }
524
525 void Lint::visitLShr(BinaryOperator &I) {
526   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
527                                                         /*OffsetOk=*/false)))
528     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
529            "Undefined result: Shift count out of range", &I);
530 }
531
532 void Lint::visitAShr(BinaryOperator &I) {
533   if (ConstantInt *CI =
534           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
535     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
536            "Undefined result: Shift count out of range", &I);
537 }
538
539 void Lint::visitShl(BinaryOperator &I) {
540   if (ConstantInt *CI =
541           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
542     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
543            "Undefined result: Shift count out of range", &I);
544 }
545
546 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
547                    AssumptionCache *AC) {
548   // Assume undef could be zero.
549   if (isa<UndefValue>(V))
550     return true;
551
552   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
553   if (!VecTy) {
554     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
555     return Known.isZero();
556   }
557
558   // Per-component check doesn't work with zeroinitializer
559   Constant *C = dyn_cast<Constant>(V);
560   if (!C)
561     return false;
562
563   if (C->isZeroValue())
564     return true;
565
566   // For a vector, KnownZero will only be true if all values are zero, so check
567   // this per component
568   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
569     Constant *Elem = C->getAggregateElement(I);
570     if (isa<UndefValue>(Elem))
571       return true;
572
573     KnownBits Known = computeKnownBits(Elem, DL);
574     if (Known.isZero())
575       return true;
576   }
577
578   return false;
579 }
580
581 void Lint::visitSDiv(BinaryOperator &I) {
582   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
583          "Undefined behavior: Division by zero", &I);
584 }
585
586 void Lint::visitUDiv(BinaryOperator &I) {
587   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
588          "Undefined behavior: Division by zero", &I);
589 }
590
591 void Lint::visitSRem(BinaryOperator &I) {
592   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
593          "Undefined behavior: Division by zero", &I);
594 }
595
596 void Lint::visitURem(BinaryOperator &I) {
597   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
598          "Undefined behavior: Division by zero", &I);
599 }
600
601 void Lint::visitAllocaInst(AllocaInst &I) {
602   if (isa<ConstantInt>(I.getArraySize()))
603     // This isn't undefined behavior, it's just an obvious pessimization.
604     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
605            "Pessimization: Static alloca outside of entry block", &I);
606
607   // TODO: Check for an unusual size (MSB set?)
608 }
609
610 void Lint::visitVAArgInst(VAArgInst &I) {
611   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
612                        nullptr, MemRef::Read | MemRef::Write);
613 }
614
615 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
616   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
617                        nullptr, MemRef::Branchee);
618
619   Assert(I.getNumDestinations() != 0,
620          "Undefined behavior: indirectbr with no destinations", &I);
621 }
622
623 void Lint::visitExtractElementInst(ExtractElementInst &I) {
624   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
625                                                         /*OffsetOk=*/false)))
626     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
627            "Undefined result: extractelement index out of range", &I);
628 }
629
630 void Lint::visitInsertElementInst(InsertElementInst &I) {
631   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
632                                                         /*OffsetOk=*/false)))
633     Assert(CI->getValue().ult(I.getType()->getNumElements()),
634            "Undefined result: insertelement index out of range", &I);
635 }
636
637 void Lint::visitUnreachableInst(UnreachableInst &I) {
638   // This isn't undefined behavior, it's merely suspicious.
639   Assert(&I == &I.getParent()->front() ||
640              std::prev(I.getIterator())->mayHaveSideEffects(),
641          "Unusual: unreachable immediately preceded by instruction without "
642          "side effects",
643          &I);
644 }
645
646 /// findValue - Look through bitcasts and simple memory reference patterns
647 /// to identify an equivalent, but more informative, value.  If OffsetOk
648 /// is true, look through getelementptrs with non-zero offsets too.
649 ///
650 /// Most analysis passes don't require this logic, because instcombine
651 /// will simplify most of these kinds of things away. But it's a goal of
652 /// this Lint pass to be useful even on non-optimized IR.
653 Value *Lint::findValue(Value *V, bool OffsetOk) const {
654   SmallPtrSet<Value *, 4> Visited;
655   return findValueImpl(V, OffsetOk, Visited);
656 }
657
658 /// findValueImpl - Implementation helper for findValue.
659 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
660                            SmallPtrSetImpl<Value *> &Visited) const {
661   // Detect self-referential values.
662   if (!Visited.insert(V).second)
663     return UndefValue::get(V->getType());
664
665   // TODO: Look through sext or zext cast, when the result is known to
666   // be interpreted as signed or unsigned, respectively.
667   // TODO: Look through eliminable cast pairs.
668   // TODO: Look through calls with unique return values.
669   // TODO: Look through vector insert/extract/shuffle.
670   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
671   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
672     BasicBlock::iterator BBI = L->getIterator();
673     BasicBlock *BB = L->getParent();
674     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
675     for (;;) {
676       if (!VisitedBlocks.insert(BB).second)
677         break;
678       if (Value *U =
679           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
680         return findValueImpl(U, OffsetOk, Visited);
681       if (BBI != BB->begin()) break;
682       BB = BB->getUniquePredecessor();
683       if (!BB) break;
684       BBI = BB->end();
685     }
686   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
687     if (Value *W = PN->hasConstantValue())
688       if (W != V)
689         return findValueImpl(W, OffsetOk, Visited);
690   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
691     if (CI->isNoopCast(*DL))
692       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
693   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
694     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
695                                      Ex->getIndices()))
696       if (W != V)
697         return findValueImpl(W, OffsetOk, Visited);
698   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
699     // Same as above, but for ConstantExpr instead of Instruction.
700     if (Instruction::isCast(CE->getOpcode())) {
701       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
702                                CE->getOperand(0)->getType(), CE->getType(),
703                                *DL))
704         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
705     } else if (CE->getOpcode() == Instruction::ExtractValue) {
706       ArrayRef<unsigned> Indices = CE->getIndices();
707       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
708         if (W != V)
709           return findValueImpl(W, OffsetOk, Visited);
710     }
711   }
712
713   // As a last resort, try SimplifyInstruction or constant folding.
714   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
715     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
716       return findValueImpl(W, OffsetOk, Visited);
717   } else if (auto *C = dyn_cast<Constant>(V)) {
718     if (Value *W = ConstantFoldConstant(C, *DL, TLI))
719       if (W && W != V)
720         return findValueImpl(W, OffsetOk, Visited);
721   }
722
723   return V;
724 }
725
726 //===----------------------------------------------------------------------===//
727 //  Implement the public interfaces to this file...
728 //===----------------------------------------------------------------------===//
729
730 FunctionPass *llvm::createLintPass() {
731   return new Lint();
732 }
733
734 /// lintFunction - Check a function for errors, printing messages on stderr.
735 ///
736 void llvm::lintFunction(const Function &f) {
737   Function &F = const_cast<Function&>(f);
738   assert(!F.isDeclaration() && "Cannot lint external functions");
739
740   legacy::FunctionPassManager FPM(F.getParent());
741   Lint *V = new Lint();
742   FPM.add(V);
743   FPM.run(F);
744 }
745
746 /// lintModule - Check a module for errors, printing messages on stderr.
747 ///
748 void llvm::lintModule(const Module &M) {
749   legacy::PassManager PM;
750   Lint *V = new Lint();
751   PM.add(V);
752   PM.run(const_cast<Module&>(M));
753 }