]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / LoopAccessAnalysis.cpp
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <cstdlib>
65 #include <iterator>
66 #include <utility>
67 #include <vector>
68
69 using namespace llvm;
70
71 #define DEBUG_TYPE "loop-accesses"
72
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132
133 bool VectorizerParams::isInterleaveForced() {
134   return ::VectorizationInterleave.getNumOccurrences() > 0;
135 }
136
137 Value *llvm::stripIntegerCast(Value *V) {
138   if (auto *CI = dyn_cast<CastInst>(V))
139     if (CI->getOperand(0)->getType()->isIntegerTy())
140       return CI->getOperand(0);
141   return V;
142 }
143
144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
145                                             const ValueToValueMap &PtrToStride,
146                                             Value *Ptr, Value *OrigPtr) {
147   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
148
149   // If there is an entry in the map return the SCEV of the pointer with the
150   // symbolic stride replaced by one.
151   ValueToValueMap::const_iterator SI =
152       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
153   if (SI != PtrToStride.end()) {
154     Value *StrideVal = SI->second;
155
156     // Strip casts.
157     StrideVal = stripIntegerCast(StrideVal);
158
159     ScalarEvolution *SE = PSE.getSE();
160     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
161     const auto *CT =
162         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
163
164     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
165     auto *Expr = PSE.getSCEV(Ptr);
166
167     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
168                       << " by: " << *Expr << "\n");
169     return Expr;
170   }
171
172   // Otherwise, just return the SCEV of the original pointer.
173   return OrigSCEV;
174 }
175
176 /// Calculate Start and End points of memory access.
177 /// Let's assume A is the first access and B is a memory access on N-th loop
178 /// iteration. Then B is calculated as:
179 ///   B = A + Step*N .
180 /// Step value may be positive or negative.
181 /// N is a calculated back-edge taken count:
182 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
183 /// Start and End points are calculated in the following way:
184 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
185 /// where SizeOfElt is the size of single memory access in bytes.
186 ///
187 /// There is no conflict when the intervals are disjoint:
188 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
189 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
190                                     unsigned DepSetId, unsigned ASId,
191                                     const ValueToValueMap &Strides,
192                                     PredicatedScalarEvolution &PSE) {
193   // Get the stride replaced scev.
194   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
195   ScalarEvolution *SE = PSE.getSE();
196
197   const SCEV *ScStart;
198   const SCEV *ScEnd;
199
200   if (SE->isLoopInvariant(Sc, Lp))
201     ScStart = ScEnd = Sc;
202   else {
203     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
204     assert(AR && "Invalid addrec expression");
205     const SCEV *Ex = PSE.getBackedgeTakenCount();
206
207     ScStart = AR->getStart();
208     ScEnd = AR->evaluateAtIteration(Ex, *SE);
209     const SCEV *Step = AR->getStepRecurrence(*SE);
210
211     // For expressions with negative step, the upper bound is ScStart and the
212     // lower bound is ScEnd.
213     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
214       if (CStep->getValue()->isNegative())
215         std::swap(ScStart, ScEnd);
216     } else {
217       // Fallback case: the step is not constant, but we can still
218       // get the upper and lower bounds of the interval by using min/max
219       // expressions.
220       ScStart = SE->getUMinExpr(ScStart, ScEnd);
221       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
222     }
223     // Add the size of the pointed element to ScEnd.
224     unsigned EltSize =
225       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
226     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
227     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
228   }
229
230   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
231 }
232
233 SmallVector<RuntimePointerChecking::PointerCheck, 4>
234 RuntimePointerChecking::generateChecks() const {
235   SmallVector<PointerCheck, 4> Checks;
236
237   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
238     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
239       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
240       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
241
242       if (needsChecking(CGI, CGJ))
243         Checks.push_back(std::make_pair(&CGI, &CGJ));
244     }
245   }
246   return Checks;
247 }
248
249 void RuntimePointerChecking::generateChecks(
250     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
251   assert(Checks.empty() && "Checks is not empty");
252   groupChecks(DepCands, UseDependencies);
253   Checks = generateChecks();
254 }
255
256 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
257                                            const CheckingPtrGroup &N) const {
258   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
259     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
260       if (needsChecking(M.Members[I], N.Members[J]))
261         return true;
262   return false;
263 }
264
265 /// Compare \p I and \p J and return the minimum.
266 /// Return nullptr in case we couldn't find an answer.
267 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
268                                    ScalarEvolution *SE) {
269   const SCEV *Diff = SE->getMinusSCEV(J, I);
270   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
271
272   if (!C)
273     return nullptr;
274   if (C->getValue()->isNegative())
275     return J;
276   return I;
277 }
278
279 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
280   const SCEV *Start = RtCheck.Pointers[Index].Start;
281   const SCEV *End = RtCheck.Pointers[Index].End;
282
283   // Compare the starts and ends with the known minimum and maximum
284   // of this set. We need to know how we compare against the min/max
285   // of the set in order to be able to emit memchecks.
286   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
287   if (!Min0)
288     return false;
289
290   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
291   if (!Min1)
292     return false;
293
294   // Update the low bound  expression if we've found a new min value.
295   if (Min0 == Start)
296     Low = Start;
297
298   // Update the high bound expression if we've found a new max value.
299   if (Min1 != End)
300     High = End;
301
302   Members.push_back(Index);
303   return true;
304 }
305
306 void RuntimePointerChecking::groupChecks(
307     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
308   // We build the groups from dependency candidates equivalence classes
309   // because:
310   //    - We know that pointers in the same equivalence class share
311   //      the same underlying object and therefore there is a chance
312   //      that we can compare pointers
313   //    - We wouldn't be able to merge two pointers for which we need
314   //      to emit a memcheck. The classes in DepCands are already
315   //      conveniently built such that no two pointers in the same
316   //      class need checking against each other.
317
318   // We use the following (greedy) algorithm to construct the groups
319   // For every pointer in the equivalence class:
320   //   For each existing group:
321   //   - if the difference between this pointer and the min/max bounds
322   //     of the group is a constant, then make the pointer part of the
323   //     group and update the min/max bounds of that group as required.
324
325   CheckingGroups.clear();
326
327   // If we need to check two pointers to the same underlying object
328   // with a non-constant difference, we shouldn't perform any pointer
329   // grouping with those pointers. This is because we can easily get
330   // into cases where the resulting check would return false, even when
331   // the accesses are safe.
332   //
333   // The following example shows this:
334   // for (i = 0; i < 1000; ++i)
335   //   a[5000 + i * m] = a[i] + a[i + 9000]
336   //
337   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
338   // (0, 10000) which is always false. However, if m is 1, there is no
339   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
340   // us to perform an accurate check in this case.
341   //
342   // The above case requires that we have an UnknownDependence between
343   // accesses to the same underlying object. This cannot happen unless
344   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
345   // is also false. In this case we will use the fallback path and create
346   // separate checking groups for all pointers.
347
348   // If we don't have the dependency partitions, construct a new
349   // checking pointer group for each pointer. This is also required
350   // for correctness, because in this case we can have checking between
351   // pointers to the same underlying object.
352   if (!UseDependencies) {
353     for (unsigned I = 0; I < Pointers.size(); ++I)
354       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
355     return;
356   }
357
358   unsigned TotalComparisons = 0;
359
360   DenseMap<Value *, unsigned> PositionMap;
361   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
362     PositionMap[Pointers[Index].PointerValue] = Index;
363
364   // We need to keep track of what pointers we've already seen so we
365   // don't process them twice.
366   SmallSet<unsigned, 2> Seen;
367
368   // Go through all equivalence classes, get the "pointer check groups"
369   // and add them to the overall solution. We use the order in which accesses
370   // appear in 'Pointers' to enforce determinism.
371   for (unsigned I = 0; I < Pointers.size(); ++I) {
372     // We've seen this pointer before, and therefore already processed
373     // its equivalence class.
374     if (Seen.count(I))
375       continue;
376
377     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
378                                            Pointers[I].IsWritePtr);
379
380     SmallVector<CheckingPtrGroup, 2> Groups;
381     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
382
383     // Because DepCands is constructed by visiting accesses in the order in
384     // which they appear in alias sets (which is deterministic) and the
385     // iteration order within an equivalence class member is only dependent on
386     // the order in which unions and insertions are performed on the
387     // equivalence class, the iteration order is deterministic.
388     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
389          MI != ME; ++MI) {
390       unsigned Pointer = PositionMap[MI->getPointer()];
391       bool Merged = false;
392       // Mark this pointer as seen.
393       Seen.insert(Pointer);
394
395       // Go through all the existing sets and see if we can find one
396       // which can include this pointer.
397       for (CheckingPtrGroup &Group : Groups) {
398         // Don't perform more than a certain amount of comparisons.
399         // This should limit the cost of grouping the pointers to something
400         // reasonable.  If we do end up hitting this threshold, the algorithm
401         // will create separate groups for all remaining pointers.
402         if (TotalComparisons > MemoryCheckMergeThreshold)
403           break;
404
405         TotalComparisons++;
406
407         if (Group.addPointer(Pointer)) {
408           Merged = true;
409           break;
410         }
411       }
412
413       if (!Merged)
414         // We couldn't add this pointer to any existing set or the threshold
415         // for the number of comparisons has been reached. Create a new group
416         // to hold the current pointer.
417         Groups.push_back(CheckingPtrGroup(Pointer, *this));
418     }
419
420     // We've computed the grouped checks for this partition.
421     // Save the results and continue with the next one.
422     llvm::copy(Groups, std::back_inserter(CheckingGroups));
423   }
424 }
425
426 bool RuntimePointerChecking::arePointersInSamePartition(
427     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
428     unsigned PtrIdx2) {
429   return (PtrToPartition[PtrIdx1] != -1 &&
430           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
431 }
432
433 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
434   const PointerInfo &PointerI = Pointers[I];
435   const PointerInfo &PointerJ = Pointers[J];
436
437   // No need to check if two readonly pointers intersect.
438   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
439     return false;
440
441   // Only need to check pointers between two different dependency sets.
442   if (PointerI.DependencySetId == PointerJ.DependencySetId)
443     return false;
444
445   // Only need to check pointers in the same alias set.
446   if (PointerI.AliasSetId != PointerJ.AliasSetId)
447     return false;
448
449   return true;
450 }
451
452 void RuntimePointerChecking::printChecks(
453     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
454     unsigned Depth) const {
455   unsigned N = 0;
456   for (const auto &Check : Checks) {
457     const auto &First = Check.first->Members, &Second = Check.second->Members;
458
459     OS.indent(Depth) << "Check " << N++ << ":\n";
460
461     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
462     for (unsigned K = 0; K < First.size(); ++K)
463       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
464
465     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
466     for (unsigned K = 0; K < Second.size(); ++K)
467       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
468   }
469 }
470
471 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
472
473   OS.indent(Depth) << "Run-time memory checks:\n";
474   printChecks(OS, Checks, Depth);
475
476   OS.indent(Depth) << "Grouped accesses:\n";
477   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
478     const auto &CG = CheckingGroups[I];
479
480     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
481     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
482                          << ")\n";
483     for (unsigned J = 0; J < CG.Members.size(); ++J) {
484       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
485                            << "\n";
486     }
487   }
488 }
489
490 namespace {
491
492 /// Analyses memory accesses in a loop.
493 ///
494 /// Checks whether run time pointer checks are needed and builds sets for data
495 /// dependence checking.
496 class AccessAnalysis {
497 public:
498   /// Read or write access location.
499   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
500   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
501
502   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
503                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
504                  PredicatedScalarEvolution &PSE)
505       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
506         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
507
508   /// Register a load  and whether it is only read from.
509   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
510     Value *Ptr = const_cast<Value*>(Loc.Ptr);
511     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
512     Accesses.insert(MemAccessInfo(Ptr, false));
513     if (IsReadOnly)
514       ReadOnlyPtr.insert(Ptr);
515   }
516
517   /// Register a store.
518   void addStore(MemoryLocation &Loc) {
519     Value *Ptr = const_cast<Value*>(Loc.Ptr);
520     AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
521     Accesses.insert(MemAccessInfo(Ptr, true));
522   }
523
524   /// Check if we can emit a run-time no-alias check for \p Access.
525   ///
526   /// Returns true if we can emit a run-time no alias check for \p Access.
527   /// If we can check this access, this also adds it to a dependence set and
528   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
529   /// we will attempt to use additional run-time checks in order to get
530   /// the bounds of the pointer.
531   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
532                             MemAccessInfo Access,
533                             const ValueToValueMap &Strides,
534                             DenseMap<Value *, unsigned> &DepSetId,
535                             Loop *TheLoop, unsigned &RunningDepId,
536                             unsigned ASId, bool ShouldCheckStride,
537                             bool Assume);
538
539   /// Check whether we can check the pointers at runtime for
540   /// non-intersection.
541   ///
542   /// Returns true if we need no check or if we do and we can generate them
543   /// (i.e. the pointers have computable bounds).
544   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
545                        Loop *TheLoop, const ValueToValueMap &Strides,
546                        bool ShouldCheckWrap = false);
547
548   /// Goes over all memory accesses, checks whether a RT check is needed
549   /// and builds sets of dependent accesses.
550   void buildDependenceSets() {
551     processMemAccesses();
552   }
553
554   /// Initial processing of memory accesses determined that we need to
555   /// perform dependency checking.
556   ///
557   /// Note that this can later be cleared if we retry memcheck analysis without
558   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
559   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
560
561   /// We decided that no dependence analysis would be used.  Reset the state.
562   void resetDepChecks(MemoryDepChecker &DepChecker) {
563     CheckDeps.clear();
564     DepChecker.clearDependences();
565   }
566
567   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
568
569 private:
570   typedef SetVector<MemAccessInfo> PtrAccessSet;
571
572   /// Go over all memory access and check whether runtime pointer checks
573   /// are needed and build sets of dependency check candidates.
574   void processMemAccesses();
575
576   /// Set of all accesses.
577   PtrAccessSet Accesses;
578
579   const DataLayout &DL;
580
581   /// The loop being checked.
582   const Loop *TheLoop;
583
584   /// List of accesses that need a further dependence check.
585   MemAccessInfoList CheckDeps;
586
587   /// Set of pointers that are read only.
588   SmallPtrSet<Value*, 16> ReadOnlyPtr;
589
590   /// An alias set tracker to partition the access set by underlying object and
591   //intrinsic property (such as TBAA metadata).
592   AliasSetTracker AST;
593
594   LoopInfo *LI;
595
596   /// Sets of potentially dependent accesses - members of one set share an
597   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
598   /// dependence check.
599   MemoryDepChecker::DepCandidates &DepCands;
600
601   /// Initial processing of memory accesses determined that we may need
602   /// to add memchecks.  Perform the analysis to determine the necessary checks.
603   ///
604   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
605   /// memcheck analysis without dependency checking
606   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
607   /// cleared while this remains set if we have potentially dependent accesses.
608   bool IsRTCheckAnalysisNeeded;
609
610   /// The SCEV predicate containing all the SCEV-related assumptions.
611   PredicatedScalarEvolution &PSE;
612 };
613
614 } // end anonymous namespace
615
616 /// Check whether a pointer can participate in a runtime bounds check.
617 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
618 /// by adding run-time checks (overflow checks) if necessary.
619 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
620                                 const ValueToValueMap &Strides, Value *Ptr,
621                                 Loop *L, bool Assume) {
622   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
623
624   // The bounds for loop-invariant pointer is trivial.
625   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
626     return true;
627
628   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
629
630   if (!AR && Assume)
631     AR = PSE.getAsAddRec(Ptr);
632
633   if (!AR)
634     return false;
635
636   return AR->isAffine();
637 }
638
639 /// Check whether a pointer address cannot wrap.
640 static bool isNoWrap(PredicatedScalarEvolution &PSE,
641                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
642   const SCEV *PtrScev = PSE.getSCEV(Ptr);
643   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
644     return true;
645
646   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
647   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
648     return true;
649
650   return false;
651 }
652
653 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
654                                           MemAccessInfo Access,
655                                           const ValueToValueMap &StridesMap,
656                                           DenseMap<Value *, unsigned> &DepSetId,
657                                           Loop *TheLoop, unsigned &RunningDepId,
658                                           unsigned ASId, bool ShouldCheckWrap,
659                                           bool Assume) {
660   Value *Ptr = Access.getPointer();
661
662   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
663     return false;
664
665   // When we run after a failing dependency check we have to make sure
666   // we don't have wrapping pointers.
667   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
668     auto *Expr = PSE.getSCEV(Ptr);
669     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
670       return false;
671     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
672   }
673
674   // The id of the dependence set.
675   unsigned DepId;
676
677   if (isDependencyCheckNeeded()) {
678     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
679     unsigned &LeaderId = DepSetId[Leader];
680     if (!LeaderId)
681       LeaderId = RunningDepId++;
682     DepId = LeaderId;
683   } else
684     // Each access has its own dependence set.
685     DepId = RunningDepId++;
686
687   bool IsWrite = Access.getInt();
688   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
689   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
690
691   return true;
692  }
693
694 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
695                                      ScalarEvolution *SE, Loop *TheLoop,
696                                      const ValueToValueMap &StridesMap,
697                                      bool ShouldCheckWrap) {
698   // Find pointers with computable bounds. We are going to use this information
699   // to place a runtime bound check.
700   bool CanDoRT = true;
701
702   bool NeedRTCheck = false;
703   if (!IsRTCheckAnalysisNeeded) return true;
704
705   bool IsDepCheckNeeded = isDependencyCheckNeeded();
706
707   // We assign a consecutive id to access from different alias sets.
708   // Accesses between different groups doesn't need to be checked.
709   unsigned ASId = 1;
710   for (auto &AS : AST) {
711     int NumReadPtrChecks = 0;
712     int NumWritePtrChecks = 0;
713     bool CanDoAliasSetRT = true;
714
715     // We assign consecutive id to access from different dependence sets.
716     // Accesses within the same set don't need a runtime check.
717     unsigned RunningDepId = 1;
718     DenseMap<Value *, unsigned> DepSetId;
719
720     SmallVector<MemAccessInfo, 4> Retries;
721
722     for (auto A : AS) {
723       Value *Ptr = A.getValue();
724       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
725       MemAccessInfo Access(Ptr, IsWrite);
726
727       if (IsWrite)
728         ++NumWritePtrChecks;
729       else
730         ++NumReadPtrChecks;
731
732       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
733                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
734         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
735         Retries.push_back(Access);
736         CanDoAliasSetRT = false;
737       }
738     }
739
740     // If we have at least two writes or one write and a read then we need to
741     // check them.  But there is no need to checks if there is only one
742     // dependence set for this alias set.
743     //
744     // Note that this function computes CanDoRT and NeedRTCheck independently.
745     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
746     // for which we couldn't find the bounds but we don't actually need to emit
747     // any checks so it does not matter.
748     bool NeedsAliasSetRTCheck = false;
749     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
750       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
751                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
752
753     // We need to perform run-time alias checks, but some pointers had bounds
754     // that couldn't be checked.
755     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
756       // Reset the CanDoSetRt flag and retry all accesses that have failed.
757       // We know that we need these checks, so we can now be more aggressive
758       // and add further checks if required (overflow checks).
759       CanDoAliasSetRT = true;
760       for (auto Access : Retries)
761         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
762                                   TheLoop, RunningDepId, ASId,
763                                   ShouldCheckWrap, /*Assume=*/true)) {
764           CanDoAliasSetRT = false;
765           break;
766         }
767     }
768
769     CanDoRT &= CanDoAliasSetRT;
770     NeedRTCheck |= NeedsAliasSetRTCheck;
771     ++ASId;
772   }
773
774   // If the pointers that we would use for the bounds comparison have different
775   // address spaces, assume the values aren't directly comparable, so we can't
776   // use them for the runtime check. We also have to assume they could
777   // overlap. In the future there should be metadata for whether address spaces
778   // are disjoint.
779   unsigned NumPointers = RtCheck.Pointers.size();
780   for (unsigned i = 0; i < NumPointers; ++i) {
781     for (unsigned j = i + 1; j < NumPointers; ++j) {
782       // Only need to check pointers between two different dependency sets.
783       if (RtCheck.Pointers[i].DependencySetId ==
784           RtCheck.Pointers[j].DependencySetId)
785        continue;
786       // Only need to check pointers in the same alias set.
787       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
788         continue;
789
790       Value *PtrI = RtCheck.Pointers[i].PointerValue;
791       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
792
793       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
794       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
795       if (ASi != ASj) {
796         LLVM_DEBUG(
797             dbgs() << "LAA: Runtime check would require comparison between"
798                       " different address spaces\n");
799         return false;
800       }
801     }
802   }
803
804   if (NeedRTCheck && CanDoRT)
805     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
806
807   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
808                     << " pointer comparisons.\n");
809
810   RtCheck.Need = NeedRTCheck;
811
812   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
813   if (!CanDoRTIfNeeded)
814     RtCheck.reset();
815   return CanDoRTIfNeeded;
816 }
817
818 void AccessAnalysis::processMemAccesses() {
819   // We process the set twice: first we process read-write pointers, last we
820   // process read-only pointers. This allows us to skip dependence tests for
821   // read-only pointers.
822
823   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
824   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
825   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
826   LLVM_DEBUG({
827     for (auto A : Accesses)
828       dbgs() << "\t" << *A.getPointer() << " (" <<
829                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
830                                          "read-only" : "read")) << ")\n";
831   });
832
833   // The AliasSetTracker has nicely partitioned our pointers by metadata
834   // compatibility and potential for underlying-object overlap. As a result, we
835   // only need to check for potential pointer dependencies within each alias
836   // set.
837   for (auto &AS : AST) {
838     // Note that both the alias-set tracker and the alias sets themselves used
839     // linked lists internally and so the iteration order here is deterministic
840     // (matching the original instruction order within each set).
841
842     bool SetHasWrite = false;
843
844     // Map of pointers to last access encountered.
845     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
846     UnderlyingObjToAccessMap ObjToLastAccess;
847
848     // Set of access to check after all writes have been processed.
849     PtrAccessSet DeferredAccesses;
850
851     // Iterate over each alias set twice, once to process read/write pointers,
852     // and then to process read-only pointers.
853     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
854       bool UseDeferred = SetIteration > 0;
855       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
856
857       for (auto AV : AS) {
858         Value *Ptr = AV.getValue();
859
860         // For a single memory access in AliasSetTracker, Accesses may contain
861         // both read and write, and they both need to be handled for CheckDeps.
862         for (auto AC : S) {
863           if (AC.getPointer() != Ptr)
864             continue;
865
866           bool IsWrite = AC.getInt();
867
868           // If we're using the deferred access set, then it contains only
869           // reads.
870           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
871           if (UseDeferred && !IsReadOnlyPtr)
872             continue;
873           // Otherwise, the pointer must be in the PtrAccessSet, either as a
874           // read or a write.
875           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
876                   S.count(MemAccessInfo(Ptr, false))) &&
877                  "Alias-set pointer not in the access set?");
878
879           MemAccessInfo Access(Ptr, IsWrite);
880           DepCands.insert(Access);
881
882           // Memorize read-only pointers for later processing and skip them in
883           // the first round (they need to be checked after we have seen all
884           // write pointers). Note: we also mark pointer that are not
885           // consecutive as "read-only" pointers (so that we check
886           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
887           if (!UseDeferred && IsReadOnlyPtr) {
888             DeferredAccesses.insert(Access);
889             continue;
890           }
891
892           // If this is a write - check other reads and writes for conflicts. If
893           // this is a read only check other writes for conflicts (but only if
894           // there is no other write to the ptr - this is an optimization to
895           // catch "a[i] = a[i] + " without having to do a dependence check).
896           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
897             CheckDeps.push_back(Access);
898             IsRTCheckAnalysisNeeded = true;
899           }
900
901           if (IsWrite)
902             SetHasWrite = true;
903
904           // Create sets of pointers connected by a shared alias set and
905           // underlying object.
906           typedef SmallVector<const Value *, 16> ValueVector;
907           ValueVector TempObjects;
908
909           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
910           LLVM_DEBUG(dbgs()
911                      << "Underlying objects for pointer " << *Ptr << "\n");
912           for (const Value *UnderlyingObj : TempObjects) {
913             // nullptr never alias, don't join sets for pointer that have "null"
914             // in their UnderlyingObjects list.
915             if (isa<ConstantPointerNull>(UnderlyingObj) &&
916                 !NullPointerIsDefined(
917                     TheLoop->getHeader()->getParent(),
918                     UnderlyingObj->getType()->getPointerAddressSpace()))
919               continue;
920
921             UnderlyingObjToAccessMap::iterator Prev =
922                 ObjToLastAccess.find(UnderlyingObj);
923             if (Prev != ObjToLastAccess.end())
924               DepCands.unionSets(Access, Prev->second);
925
926             ObjToLastAccess[UnderlyingObj] = Access;
927             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
928           }
929         }
930       }
931     }
932   }
933 }
934
935 static bool isInBoundsGep(Value *Ptr) {
936   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
937     return GEP->isInBounds();
938   return false;
939 }
940
941 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
942 /// i.e. monotonically increasing/decreasing.
943 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
944                            PredicatedScalarEvolution &PSE, const Loop *L) {
945   // FIXME: This should probably only return true for NUW.
946   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
947     return true;
948
949   // Scalar evolution does not propagate the non-wrapping flags to values that
950   // are derived from a non-wrapping induction variable because non-wrapping
951   // could be flow-sensitive.
952   //
953   // Look through the potentially overflowing instruction to try to prove
954   // non-wrapping for the *specific* value of Ptr.
955
956   // The arithmetic implied by an inbounds GEP can't overflow.
957   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
958   if (!GEP || !GEP->isInBounds())
959     return false;
960
961   // Make sure there is only one non-const index and analyze that.
962   Value *NonConstIndex = nullptr;
963   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
964     if (!isa<ConstantInt>(Index)) {
965       if (NonConstIndex)
966         return false;
967       NonConstIndex = Index;
968     }
969   if (!NonConstIndex)
970     // The recurrence is on the pointer, ignore for now.
971     return false;
972
973   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
974   // AddRec using a NSW operation.
975   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
976     if (OBO->hasNoSignedWrap() &&
977         // Assume constant for other the operand so that the AddRec can be
978         // easily found.
979         isa<ConstantInt>(OBO->getOperand(1))) {
980       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
981
982       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
983         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
984     }
985
986   return false;
987 }
988
989 /// Check whether the access through \p Ptr has a constant stride.
990 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
991                            const Loop *Lp, const ValueToValueMap &StridesMap,
992                            bool Assume, bool ShouldCheckWrap) {
993   Type *Ty = Ptr->getType();
994   assert(Ty->isPointerTy() && "Unexpected non-ptr");
995
996   // Make sure that the pointer does not point to aggregate types.
997   auto *PtrTy = cast<PointerType>(Ty);
998   if (PtrTy->getElementType()->isAggregateType()) {
999     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1000                       << *Ptr << "\n");
1001     return 0;
1002   }
1003
1004   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1005
1006   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1007   if (Assume && !AR)
1008     AR = PSE.getAsAddRec(Ptr);
1009
1010   if (!AR) {
1011     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1012                       << " SCEV: " << *PtrScev << "\n");
1013     return 0;
1014   }
1015
1016   // The access function must stride over the innermost loop.
1017   if (Lp != AR->getLoop()) {
1018     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1019                       << *Ptr << " SCEV: " << *AR << "\n");
1020     return 0;
1021   }
1022
1023   // The address calculation must not wrap. Otherwise, a dependence could be
1024   // inverted.
1025   // An inbounds getelementptr that is a AddRec with a unit stride
1026   // cannot wrap per definition. The unit stride requirement is checked later.
1027   // An getelementptr without an inbounds attribute and unit stride would have
1028   // to access the pointer value "0" which is undefined behavior in address
1029   // space 0, therefore we can also vectorize this case.
1030   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1031   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1032     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1033     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1034   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1035       NullPointerIsDefined(Lp->getHeader()->getParent(),
1036                            PtrTy->getAddressSpace())) {
1037     if (Assume) {
1038       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1039       IsNoWrapAddRec = true;
1040       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1041                         << "LAA:   Pointer: " << *Ptr << "\n"
1042                         << "LAA:   SCEV: " << *AR << "\n"
1043                         << "LAA:   Added an overflow assumption\n");
1044     } else {
1045       LLVM_DEBUG(
1046           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1047                  << *Ptr << " SCEV: " << *AR << "\n");
1048       return 0;
1049     }
1050   }
1051
1052   // Check the step is constant.
1053   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1054
1055   // Calculate the pointer stride and check if it is constant.
1056   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1057   if (!C) {
1058     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1059                       << " SCEV: " << *AR << "\n");
1060     return 0;
1061   }
1062
1063   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1064   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1065   const APInt &APStepVal = C->getAPInt();
1066
1067   // Huge step value - give up.
1068   if (APStepVal.getBitWidth() > 64)
1069     return 0;
1070
1071   int64_t StepVal = APStepVal.getSExtValue();
1072
1073   // Strided access.
1074   int64_t Stride = StepVal / Size;
1075   int64_t Rem = StepVal % Size;
1076   if (Rem)
1077     return 0;
1078
1079   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1080   // know we can't "wrap around the address space". In case of address space
1081   // zero we know that this won't happen without triggering undefined behavior.
1082   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1083       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1084                                               PtrTy->getAddressSpace()))) {
1085     if (Assume) {
1086       // We can avoid this case by adding a run-time check.
1087       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1088                         << "inbounds or in address space 0 may wrap:\n"
1089                         << "LAA:   Pointer: " << *Ptr << "\n"
1090                         << "LAA:   SCEV: " << *AR << "\n"
1091                         << "LAA:   Added an overflow assumption\n");
1092       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1093     } else
1094       return 0;
1095   }
1096
1097   return Stride;
1098 }
1099
1100 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1101                            ScalarEvolution &SE,
1102                            SmallVectorImpl<unsigned> &SortedIndices) {
1103   assert(llvm::all_of(
1104              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1105          "Expected list of pointer operands.");
1106   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1107   OffValPairs.reserve(VL.size());
1108
1109   // Walk over the pointers, and map each of them to an offset relative to
1110   // first pointer in the array.
1111   Value *Ptr0 = VL[0];
1112   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1113   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1114
1115   llvm::SmallSet<int64_t, 4> Offsets;
1116   for (auto *Ptr : VL) {
1117     // TODO: Outline this code as a special, more time consuming, version of
1118     // computeConstantDifference() function.
1119     if (Ptr->getType()->getPointerAddressSpace() !=
1120         Ptr0->getType()->getPointerAddressSpace())
1121       return false;
1122     // If a pointer refers to a different underlying object, bail - the
1123     // pointers are by definition incomparable.
1124     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1125     if (CurrObj != Obj0)
1126       return false;
1127
1128     const SCEV *Scev = SE.getSCEV(Ptr);
1129     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1130     // The pointers may not have a constant offset from each other, or SCEV
1131     // may just not be smart enough to figure out they do. Regardless,
1132     // there's nothing we can do.
1133     if (!Diff)
1134       return false;
1135
1136     // Check if the pointer with the same offset is found.
1137     int64_t Offset = Diff->getAPInt().getSExtValue();
1138     if (!Offsets.insert(Offset).second)
1139       return false;
1140     OffValPairs.emplace_back(Offset, Ptr);
1141   }
1142   SortedIndices.clear();
1143   SortedIndices.resize(VL.size());
1144   std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1145
1146   // Sort the memory accesses and keep the order of their uses in UseOrder.
1147   llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1148     return OffValPairs[Left].first < OffValPairs[Right].first;
1149   });
1150
1151   // Check if the order is consecutive already.
1152   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1153         return I == SortedIndices[I];
1154       }))
1155     SortedIndices.clear();
1156
1157   return true;
1158 }
1159
1160 /// Take the address space operand from the Load/Store instruction.
1161 /// Returns -1 if this is not a valid Load/Store instruction.
1162 static unsigned getAddressSpaceOperand(Value *I) {
1163   if (LoadInst *L = dyn_cast<LoadInst>(I))
1164     return L->getPointerAddressSpace();
1165   if (StoreInst *S = dyn_cast<StoreInst>(I))
1166     return S->getPointerAddressSpace();
1167   return -1;
1168 }
1169
1170 /// Returns true if the memory operations \p A and \p B are consecutive.
1171 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1172                                ScalarEvolution &SE, bool CheckType) {
1173   Value *PtrA = getLoadStorePointerOperand(A);
1174   Value *PtrB = getLoadStorePointerOperand(B);
1175   unsigned ASA = getAddressSpaceOperand(A);
1176   unsigned ASB = getAddressSpaceOperand(B);
1177
1178   // Check that the address spaces match and that the pointers are valid.
1179   if (!PtrA || !PtrB || (ASA != ASB))
1180     return false;
1181
1182   // Make sure that A and B are different pointers.
1183   if (PtrA == PtrB)
1184     return false;
1185
1186   // Make sure that A and B have the same type if required.
1187   if (CheckType && PtrA->getType() != PtrB->getType())
1188     return false;
1189
1190   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1191   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1192   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1193
1194   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1195   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1196   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1197
1198   //  OffsetDelta = OffsetB - OffsetA;
1199   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1200   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1201   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1202   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1203   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1204   // Check if they are based on the same pointer. That makes the offsets
1205   // sufficient.
1206   if (PtrA == PtrB)
1207     return OffsetDelta == Size;
1208
1209   // Compute the necessary base pointer delta to have the necessary final delta
1210   // equal to the size.
1211   // BaseDelta = Size - OffsetDelta;
1212   const SCEV *SizeSCEV = SE.getConstant(Size);
1213   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1214
1215   // Otherwise compute the distance with SCEV between the base pointers.
1216   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1217   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1218   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1219   return X == PtrSCEVB;
1220 }
1221
1222 MemoryDepChecker::VectorizationSafetyStatus
1223 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1224   switch (Type) {
1225   case NoDep:
1226   case Forward:
1227   case BackwardVectorizable:
1228     return VectorizationSafetyStatus::Safe;
1229
1230   case Unknown:
1231     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1232   case ForwardButPreventsForwarding:
1233   case Backward:
1234   case BackwardVectorizableButPreventsForwarding:
1235     return VectorizationSafetyStatus::Unsafe;
1236   }
1237   llvm_unreachable("unexpected DepType!");
1238 }
1239
1240 bool MemoryDepChecker::Dependence::isBackward() const {
1241   switch (Type) {
1242   case NoDep:
1243   case Forward:
1244   case ForwardButPreventsForwarding:
1245   case Unknown:
1246     return false;
1247
1248   case BackwardVectorizable:
1249   case Backward:
1250   case BackwardVectorizableButPreventsForwarding:
1251     return true;
1252   }
1253   llvm_unreachable("unexpected DepType!");
1254 }
1255
1256 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1257   return isBackward() || Type == Unknown;
1258 }
1259
1260 bool MemoryDepChecker::Dependence::isForward() const {
1261   switch (Type) {
1262   case Forward:
1263   case ForwardButPreventsForwarding:
1264     return true;
1265
1266   case NoDep:
1267   case Unknown:
1268   case BackwardVectorizable:
1269   case Backward:
1270   case BackwardVectorizableButPreventsForwarding:
1271     return false;
1272   }
1273   llvm_unreachable("unexpected DepType!");
1274 }
1275
1276 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1277                                                     uint64_t TypeByteSize) {
1278   // If loads occur at a distance that is not a multiple of a feasible vector
1279   // factor store-load forwarding does not take place.
1280   // Positive dependences might cause troubles because vectorizing them might
1281   // prevent store-load forwarding making vectorized code run a lot slower.
1282   //   a[i] = a[i-3] ^ a[i-8];
1283   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1284   //   hence on your typical architecture store-load forwarding does not take
1285   //   place. Vectorizing in such cases does not make sense.
1286   // Store-load forwarding distance.
1287
1288   // After this many iterations store-to-load forwarding conflicts should not
1289   // cause any slowdowns.
1290   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1291   // Maximum vector factor.
1292   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1293       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1294
1295   // Compute the smallest VF at which the store and load would be misaligned.
1296   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1297        VF *= 2) {
1298     // If the number of vector iteration between the store and the load are
1299     // small we could incur conflicts.
1300     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1301       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1302       break;
1303     }
1304   }
1305
1306   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1307     LLVM_DEBUG(
1308         dbgs() << "LAA: Distance " << Distance
1309                << " that could cause a store-load forwarding conflict\n");
1310     return true;
1311   }
1312
1313   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1314       MaxVFWithoutSLForwardIssues !=
1315           VectorizerParams::MaxVectorWidth * TypeByteSize)
1316     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1317   return false;
1318 }
1319
1320 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1321   if (Status < S)
1322     Status = S;
1323 }
1324
1325 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1326 /// memory accesses, that have the same stride whose absolute value is given
1327 /// in \p Stride, and that have the same type size \p TypeByteSize,
1328 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1329 /// possible to prove statically that the dependence distance is larger
1330 /// than the range that the accesses will travel through the execution of
1331 /// the loop. If so, return true; false otherwise. This is useful for
1332 /// example in loops such as the following (PR31098):
1333 ///     for (i = 0; i < D; ++i) {
1334 ///                = out[i];
1335 ///       out[i+D] =
1336 ///     }
1337 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1338                                      const SCEV &BackedgeTakenCount,
1339                                      const SCEV &Dist, uint64_t Stride,
1340                                      uint64_t TypeByteSize) {
1341
1342   // If we can prove that
1343   //      (**) |Dist| > BackedgeTakenCount * Step
1344   // where Step is the absolute stride of the memory accesses in bytes,
1345   // then there is no dependence.
1346   //
1347   // Rationale:
1348   // We basically want to check if the absolute distance (|Dist/Step|)
1349   // is >= the loop iteration count (or > BackedgeTakenCount).
1350   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1351   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1352   // that the dependence distance is >= VF; This is checked elsewhere.
1353   // But in some cases we can prune unknown dependence distances early, and
1354   // even before selecting the VF, and without a runtime test, by comparing
1355   // the distance against the loop iteration count. Since the vectorized code
1356   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1357   // also guarantees that distance >= VF.
1358   //
1359   const uint64_t ByteStride = Stride * TypeByteSize;
1360   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1361   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1362
1363   const SCEV *CastedDist = &Dist;
1364   const SCEV *CastedProduct = Product;
1365   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1366   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1367
1368   // The dependence distance can be positive/negative, so we sign extend Dist;
1369   // The multiplication of the absolute stride in bytes and the
1370   // backedgeTakenCount is non-negative, so we zero extend Product.
1371   if (DistTypeSize > ProductTypeSize)
1372     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1373   else
1374     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1375
1376   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1377   // (If so, then we have proven (**) because |Dist| >= Dist)
1378   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1379   if (SE.isKnownPositive(Minus))
1380     return true;
1381
1382   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1383   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1384   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1385   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1386   if (SE.isKnownPositive(Minus))
1387     return true;
1388
1389   return false;
1390 }
1391
1392 /// Check the dependence for two accesses with the same stride \p Stride.
1393 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1394 /// bytes.
1395 ///
1396 /// \returns true if they are independent.
1397 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1398                                           uint64_t TypeByteSize) {
1399   assert(Stride > 1 && "The stride must be greater than 1");
1400   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1401   assert(Distance > 0 && "The distance must be non-zero");
1402
1403   // Skip if the distance is not multiple of type byte size.
1404   if (Distance % TypeByteSize)
1405     return false;
1406
1407   uint64_t ScaledDist = Distance / TypeByteSize;
1408
1409   // No dependence if the scaled distance is not multiple of the stride.
1410   // E.g.
1411   //      for (i = 0; i < 1024 ; i += 4)
1412   //        A[i+2] = A[i] + 1;
1413   //
1414   // Two accesses in memory (scaled distance is 2, stride is 4):
1415   //     | A[0] |      |      |      | A[4] |      |      |      |
1416   //     |      |      | A[2] |      |      |      | A[6] |      |
1417   //
1418   // E.g.
1419   //      for (i = 0; i < 1024 ; i += 3)
1420   //        A[i+4] = A[i] + 1;
1421   //
1422   // Two accesses in memory (scaled distance is 4, stride is 3):
1423   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1424   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1425   return ScaledDist % Stride;
1426 }
1427
1428 MemoryDepChecker::Dependence::DepType
1429 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1430                               const MemAccessInfo &B, unsigned BIdx,
1431                               const ValueToValueMap &Strides) {
1432   assert (AIdx < BIdx && "Must pass arguments in program order");
1433
1434   Value *APtr = A.getPointer();
1435   Value *BPtr = B.getPointer();
1436   bool AIsWrite = A.getInt();
1437   bool BIsWrite = B.getInt();
1438
1439   // Two reads are independent.
1440   if (!AIsWrite && !BIsWrite)
1441     return Dependence::NoDep;
1442
1443   // We cannot check pointers in different address spaces.
1444   if (APtr->getType()->getPointerAddressSpace() !=
1445       BPtr->getType()->getPointerAddressSpace())
1446     return Dependence::Unknown;
1447
1448   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1449   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1450
1451   const SCEV *Src = PSE.getSCEV(APtr);
1452   const SCEV *Sink = PSE.getSCEV(BPtr);
1453
1454   // If the induction step is negative we have to invert source and sink of the
1455   // dependence.
1456   if (StrideAPtr < 0) {
1457     std::swap(APtr, BPtr);
1458     std::swap(Src, Sink);
1459     std::swap(AIsWrite, BIsWrite);
1460     std::swap(AIdx, BIdx);
1461     std::swap(StrideAPtr, StrideBPtr);
1462   }
1463
1464   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1465
1466   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1467                     << "(Induction step: " << StrideAPtr << ")\n");
1468   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1469                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1470
1471   // Need accesses with constant stride. We don't want to vectorize
1472   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1473   // the address space.
1474   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1475     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1476     return Dependence::Unknown;
1477   }
1478
1479   Type *ATy = APtr->getType()->getPointerElementType();
1480   Type *BTy = BPtr->getType()->getPointerElementType();
1481   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1482   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1483   uint64_t Stride = std::abs(StrideAPtr);
1484   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1485   if (!C) {
1486     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1487         isSafeDependenceDistance(DL, *(PSE.getSE()),
1488                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1489                                  TypeByteSize))
1490       return Dependence::NoDep;
1491
1492     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1493     FoundNonConstantDistanceDependence = true;
1494     return Dependence::Unknown;
1495   }
1496
1497   const APInt &Val = C->getAPInt();
1498   int64_t Distance = Val.getSExtValue();
1499
1500   // Attempt to prove strided accesses independent.
1501   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1502       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1503     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1504     return Dependence::NoDep;
1505   }
1506
1507   // Negative distances are not plausible dependencies.
1508   if (Val.isNegative()) {
1509     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1510     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1511         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1512          ATy != BTy)) {
1513       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1514       return Dependence::ForwardButPreventsForwarding;
1515     }
1516
1517     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1518     return Dependence::Forward;
1519   }
1520
1521   // Write to the same location with the same size.
1522   // Could be improved to assert type sizes are the same (i32 == float, etc).
1523   if (Val == 0) {
1524     if (ATy == BTy)
1525       return Dependence::Forward;
1526     LLVM_DEBUG(
1527         dbgs() << "LAA: Zero dependence difference but different types\n");
1528     return Dependence::Unknown;
1529   }
1530
1531   assert(Val.isStrictlyPositive() && "Expect a positive value");
1532
1533   if (ATy != BTy) {
1534     LLVM_DEBUG(
1535         dbgs()
1536         << "LAA: ReadWrite-Write positive dependency with different types\n");
1537     return Dependence::Unknown;
1538   }
1539
1540   // Bail out early if passed-in parameters make vectorization not feasible.
1541   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1542                            VectorizerParams::VectorizationFactor : 1);
1543   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1544                            VectorizerParams::VectorizationInterleave : 1);
1545   // The minimum number of iterations for a vectorized/unrolled version.
1546   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1547
1548   // It's not vectorizable if the distance is smaller than the minimum distance
1549   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1550   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1551   // TypeByteSize (No need to plus the last gap distance).
1552   //
1553   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1554   //      foo(int *A) {
1555   //        int *B = (int *)((char *)A + 14);
1556   //        for (i = 0 ; i < 1024 ; i += 2)
1557   //          B[i] = A[i] + 1;
1558   //      }
1559   //
1560   // Two accesses in memory (stride is 2):
1561   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1562   //                              | B[0] |      | B[2] |      | B[4] |
1563   //
1564   // Distance needs for vectorizing iterations except the last iteration:
1565   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1566   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1567   //
1568   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1569   // 12, which is less than distance.
1570   //
1571   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1572   // the minimum distance needed is 28, which is greater than distance. It is
1573   // not safe to do vectorization.
1574   uint64_t MinDistanceNeeded =
1575       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1576   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1577     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1578                       << Distance << '\n');
1579     return Dependence::Backward;
1580   }
1581
1582   // Unsafe if the minimum distance needed is greater than max safe distance.
1583   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1584     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1585                       << MinDistanceNeeded << " size in bytes");
1586     return Dependence::Backward;
1587   }
1588
1589   // Positive distance bigger than max vectorization factor.
1590   // FIXME: Should use max factor instead of max distance in bytes, which could
1591   // not handle different types.
1592   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1593   //      void foo (int *A, char *B) {
1594   //        for (unsigned i = 0; i < 1024; i++) {
1595   //          A[i+2] = A[i] + 1;
1596   //          B[i+2] = B[i] + 1;
1597   //        }
1598   //      }
1599   //
1600   // This case is currently unsafe according to the max safe distance. If we
1601   // analyze the two accesses on array B, the max safe dependence distance
1602   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1603   // is 8, which is less than 2 and forbidden vectorization, But actually
1604   // both A and B could be vectorized by 2 iterations.
1605   MaxSafeDepDistBytes =
1606       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1607
1608   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1609   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1610       couldPreventStoreLoadForward(Distance, TypeByteSize))
1611     return Dependence::BackwardVectorizableButPreventsForwarding;
1612
1613   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1614   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1615                     << " with max VF = " << MaxVF << '\n');
1616   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1617   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
1618   return Dependence::BackwardVectorizable;
1619 }
1620
1621 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1622                                    MemAccessInfoList &CheckDeps,
1623                                    const ValueToValueMap &Strides) {
1624
1625   MaxSafeDepDistBytes = -1;
1626   SmallPtrSet<MemAccessInfo, 8> Visited;
1627   for (MemAccessInfo CurAccess : CheckDeps) {
1628     if (Visited.count(CurAccess))
1629       continue;
1630
1631     // Get the relevant memory access set.
1632     EquivalenceClasses<MemAccessInfo>::iterator I =
1633       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1634
1635     // Check accesses within this set.
1636     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1637         AccessSets.member_begin(I);
1638     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1639         AccessSets.member_end();
1640
1641     // Check every access pair.
1642     while (AI != AE) {
1643       Visited.insert(*AI);
1644       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1645       while (OI != AE) {
1646         // Check every accessing instruction pair in program order.
1647         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1648              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1649           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1650                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1651             auto A = std::make_pair(&*AI, *I1);
1652             auto B = std::make_pair(&*OI, *I2);
1653
1654             assert(*I1 != *I2);
1655             if (*I1 > *I2)
1656               std::swap(A, B);
1657
1658             Dependence::DepType Type =
1659                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1660             mergeInStatus(Dependence::isSafeForVectorization(Type));
1661
1662             // Gather dependences unless we accumulated MaxDependences
1663             // dependences.  In that case return as soon as we find the first
1664             // unsafe dependence.  This puts a limit on this quadratic
1665             // algorithm.
1666             if (RecordDependences) {
1667               if (Type != Dependence::NoDep)
1668                 Dependences.push_back(Dependence(A.second, B.second, Type));
1669
1670               if (Dependences.size() >= MaxDependences) {
1671                 RecordDependences = false;
1672                 Dependences.clear();
1673                 LLVM_DEBUG(dbgs()
1674                            << "Too many dependences, stopped recording\n");
1675               }
1676             }
1677             if (!RecordDependences && !isSafeForVectorization())
1678               return false;
1679           }
1680         ++OI;
1681       }
1682       AI++;
1683     }
1684   }
1685
1686   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1687   return isSafeForVectorization();
1688 }
1689
1690 SmallVector<Instruction *, 4>
1691 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1692   MemAccessInfo Access(Ptr, isWrite);
1693   auto &IndexVector = Accesses.find(Access)->second;
1694
1695   SmallVector<Instruction *, 4> Insts;
1696   transform(IndexVector,
1697                  std::back_inserter(Insts),
1698                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1699   return Insts;
1700 }
1701
1702 const char *MemoryDepChecker::Dependence::DepName[] = {
1703     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1704     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1705
1706 void MemoryDepChecker::Dependence::print(
1707     raw_ostream &OS, unsigned Depth,
1708     const SmallVectorImpl<Instruction *> &Instrs) const {
1709   OS.indent(Depth) << DepName[Type] << ":\n";
1710   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1711   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1712 }
1713
1714 bool LoopAccessInfo::canAnalyzeLoop() {
1715   // We need to have a loop header.
1716   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1717                     << TheLoop->getHeader()->getParent()->getName() << ": "
1718                     << TheLoop->getHeader()->getName() << '\n');
1719
1720   // We can only analyze innermost loops.
1721   if (!TheLoop->empty()) {
1722     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1723     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1724     return false;
1725   }
1726
1727   // We must have a single backedge.
1728   if (TheLoop->getNumBackEdges() != 1) {
1729     LLVM_DEBUG(
1730         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1731     recordAnalysis("CFGNotUnderstood")
1732         << "loop control flow is not understood by analyzer";
1733     return false;
1734   }
1735
1736   // We must have a single exiting block.
1737   if (!TheLoop->getExitingBlock()) {
1738     LLVM_DEBUG(
1739         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1740     recordAnalysis("CFGNotUnderstood")
1741         << "loop control flow is not understood by analyzer";
1742     return false;
1743   }
1744
1745   // We only handle bottom-tested loops, i.e. loop in which the condition is
1746   // checked at the end of each iteration. With that we can assume that all
1747   // instructions in the loop are executed the same number of times.
1748   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1749     LLVM_DEBUG(
1750         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1751     recordAnalysis("CFGNotUnderstood")
1752         << "loop control flow is not understood by analyzer";
1753     return false;
1754   }
1755
1756   // ScalarEvolution needs to be able to find the exit count.
1757   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1758   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1759     recordAnalysis("CantComputeNumberOfIterations")
1760         << "could not determine number of loop iterations";
1761     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1762     return false;
1763   }
1764
1765   return true;
1766 }
1767
1768 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1769                                  const TargetLibraryInfo *TLI,
1770                                  DominatorTree *DT) {
1771   typedef SmallPtrSet<Value*, 16> ValueSet;
1772
1773   // Holds the Load and Store instructions.
1774   SmallVector<LoadInst *, 16> Loads;
1775   SmallVector<StoreInst *, 16> Stores;
1776
1777   // Holds all the different accesses in the loop.
1778   unsigned NumReads = 0;
1779   unsigned NumReadWrites = 0;
1780
1781   bool HasComplexMemInst = false;
1782
1783   // A runtime check is only legal to insert if there are no convergent calls.
1784   HasConvergentOp = false;
1785
1786   PtrRtChecking->Pointers.clear();
1787   PtrRtChecking->Need = false;
1788
1789   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1790
1791   // For each block.
1792   for (BasicBlock *BB : TheLoop->blocks()) {
1793     // Scan the BB and collect legal loads and stores. Also detect any
1794     // convergent instructions.
1795     for (Instruction &I : *BB) {
1796       if (auto *Call = dyn_cast<CallBase>(&I)) {
1797         if (Call->isConvergent())
1798           HasConvergentOp = true;
1799       }
1800
1801       // With both a non-vectorizable memory instruction and a convergent
1802       // operation, found in this loop, no reason to continue the search.
1803       if (HasComplexMemInst && HasConvergentOp) {
1804         CanVecMem = false;
1805         return;
1806       }
1807
1808       // Avoid hitting recordAnalysis multiple times.
1809       if (HasComplexMemInst)
1810         continue;
1811
1812       // If this is a load, save it. If this instruction can read from memory
1813       // but is not a load, then we quit. Notice that we don't handle function
1814       // calls that read or write.
1815       if (I.mayReadFromMemory()) {
1816         // Many math library functions read the rounding mode. We will only
1817         // vectorize a loop if it contains known function calls that don't set
1818         // the flag. Therefore, it is safe to ignore this read from memory.
1819         auto *Call = dyn_cast<CallInst>(&I);
1820         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1821           continue;
1822
1823         // If the function has an explicit vectorized counterpart, we can safely
1824         // assume that it can be vectorized.
1825         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1826             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1827           continue;
1828
1829         auto *Ld = dyn_cast<LoadInst>(&I);
1830         if (!Ld) {
1831           recordAnalysis("CantVectorizeInstruction", Ld)
1832             << "instruction cannot be vectorized";
1833           HasComplexMemInst = true;
1834           continue;
1835         }
1836         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1837           recordAnalysis("NonSimpleLoad", Ld)
1838               << "read with atomic ordering or volatile read";
1839           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1840           HasComplexMemInst = true;
1841           continue;
1842         }
1843         NumLoads++;
1844         Loads.push_back(Ld);
1845         DepChecker->addAccess(Ld);
1846         if (EnableMemAccessVersioning)
1847           collectStridedAccess(Ld);
1848         continue;
1849       }
1850
1851       // Save 'store' instructions. Abort if other instructions write to memory.
1852       if (I.mayWriteToMemory()) {
1853         auto *St = dyn_cast<StoreInst>(&I);
1854         if (!St) {
1855           recordAnalysis("CantVectorizeInstruction", St)
1856               << "instruction cannot be vectorized";
1857           HasComplexMemInst = true;
1858           continue;
1859         }
1860         if (!St->isSimple() && !IsAnnotatedParallel) {
1861           recordAnalysis("NonSimpleStore", St)
1862               << "write with atomic ordering or volatile write";
1863           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1864           HasComplexMemInst = true;
1865           continue;
1866         }
1867         NumStores++;
1868         Stores.push_back(St);
1869         DepChecker->addAccess(St);
1870         if (EnableMemAccessVersioning)
1871           collectStridedAccess(St);
1872       }
1873     } // Next instr.
1874   } // Next block.
1875
1876   if (HasComplexMemInst) {
1877     CanVecMem = false;
1878     return;
1879   }
1880
1881   // Now we have two lists that hold the loads and the stores.
1882   // Next, we find the pointers that they use.
1883
1884   // Check if we see any stores. If there are no stores, then we don't
1885   // care if the pointers are *restrict*.
1886   if (!Stores.size()) {
1887     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1888     CanVecMem = true;
1889     return;
1890   }
1891
1892   MemoryDepChecker::DepCandidates DependentAccesses;
1893   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1894                           TheLoop, AA, LI, DependentAccesses, *PSE);
1895
1896   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1897   // multiple times on the same object. If the ptr is accessed twice, once
1898   // for read and once for write, it will only appear once (on the write
1899   // list). This is okay, since we are going to check for conflicts between
1900   // writes and between reads and writes, but not between reads and reads.
1901   ValueSet Seen;
1902
1903   // Record uniform store addresses to identify if we have multiple stores
1904   // to the same address.
1905   ValueSet UniformStores;
1906
1907   for (StoreInst *ST : Stores) {
1908     Value *Ptr = ST->getPointerOperand();
1909
1910     if (isUniform(Ptr))
1911       HasDependenceInvolvingLoopInvariantAddress |=
1912           !UniformStores.insert(Ptr).second;
1913
1914     // If we did *not* see this pointer before, insert it to  the read-write
1915     // list. At this phase it is only a 'write' list.
1916     if (Seen.insert(Ptr).second) {
1917       ++NumReadWrites;
1918
1919       MemoryLocation Loc = MemoryLocation::get(ST);
1920       // The TBAA metadata could have a control dependency on the predication
1921       // condition, so we cannot rely on it when determining whether or not we
1922       // need runtime pointer checks.
1923       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1924         Loc.AATags.TBAA = nullptr;
1925
1926       Accesses.addStore(Loc);
1927     }
1928   }
1929
1930   if (IsAnnotatedParallel) {
1931     LLVM_DEBUG(
1932         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1933                << "checks.\n");
1934     CanVecMem = true;
1935     return;
1936   }
1937
1938   for (LoadInst *LD : Loads) {
1939     Value *Ptr = LD->getPointerOperand();
1940     // If we did *not* see this pointer before, insert it to the
1941     // read list. If we *did* see it before, then it is already in
1942     // the read-write list. This allows us to vectorize expressions
1943     // such as A[i] += x;  Because the address of A[i] is a read-write
1944     // pointer. This only works if the index of A[i] is consecutive.
1945     // If the address of i is unknown (for example A[B[i]]) then we may
1946     // read a few words, modify, and write a few words, and some of the
1947     // words may be written to the same address.
1948     bool IsReadOnlyPtr = false;
1949     if (Seen.insert(Ptr).second ||
1950         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1951       ++NumReads;
1952       IsReadOnlyPtr = true;
1953     }
1954
1955     // See if there is an unsafe dependency between a load to a uniform address and
1956     // store to the same uniform address.
1957     if (UniformStores.count(Ptr)) {
1958       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1959                            "load and uniform store to the same address!\n");
1960       HasDependenceInvolvingLoopInvariantAddress = true;
1961     }
1962
1963     MemoryLocation Loc = MemoryLocation::get(LD);
1964     // The TBAA metadata could have a control dependency on the predication
1965     // condition, so we cannot rely on it when determining whether or not we
1966     // need runtime pointer checks.
1967     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1968       Loc.AATags.TBAA = nullptr;
1969
1970     Accesses.addLoad(Loc, IsReadOnlyPtr);
1971   }
1972
1973   // If we write (or read-write) to a single destination and there are no
1974   // other reads in this loop then is it safe to vectorize.
1975   if (NumReadWrites == 1 && NumReads == 0) {
1976     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1977     CanVecMem = true;
1978     return;
1979   }
1980
1981   // Build dependence sets and check whether we need a runtime pointer bounds
1982   // check.
1983   Accesses.buildDependenceSets();
1984
1985   // Find pointers with computable bounds. We are going to use this information
1986   // to place a runtime bound check.
1987   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1988                                                   TheLoop, SymbolicStrides);
1989   if (!CanDoRTIfNeeded) {
1990     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1991     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1992                       << "the array bounds.\n");
1993     CanVecMem = false;
1994     return;
1995   }
1996
1997   LLVM_DEBUG(
1998     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
1999
2000   CanVecMem = true;
2001   if (Accesses.isDependencyCheckNeeded()) {
2002     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2003     CanVecMem = DepChecker->areDepsSafe(
2004         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2005     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2006
2007     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2008       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2009
2010       // Clear the dependency checks. We assume they are not needed.
2011       Accesses.resetDepChecks(*DepChecker);
2012
2013       PtrRtChecking->reset();
2014       PtrRtChecking->Need = true;
2015
2016       auto *SE = PSE->getSE();
2017       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2018                                                  SymbolicStrides, true);
2019
2020       // Check that we found the bounds for the pointer.
2021       if (!CanDoRTIfNeeded) {
2022         recordAnalysis("CantCheckMemDepsAtRunTime")
2023             << "cannot check memory dependencies at runtime";
2024         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2025         CanVecMem = false;
2026         return;
2027       }
2028
2029       CanVecMem = true;
2030     }
2031   }
2032
2033   if (HasConvergentOp) {
2034     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2035       << "cannot add control dependency to convergent operation";
2036     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2037                          "would be needed with a convergent operation\n");
2038     CanVecMem = false;
2039     return;
2040   }
2041
2042   if (CanVecMem)
2043     LLVM_DEBUG(
2044         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2045                << (PtrRtChecking->Need ? "" : " don't")
2046                << " need runtime memory checks.\n");
2047   else {
2048     recordAnalysis("UnsafeMemDep")
2049         << "unsafe dependent memory operations in loop. Use "
2050            "#pragma loop distribute(enable) to allow loop distribution "
2051            "to attempt to isolate the offending operations into a separate "
2052            "loop";
2053     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2054   }
2055 }
2056
2057 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2058                                            DominatorTree *DT)  {
2059   assert(TheLoop->contains(BB) && "Unknown block used");
2060
2061   // Blocks that do not dominate the latch need predication.
2062   BasicBlock* Latch = TheLoop->getLoopLatch();
2063   return !DT->dominates(BB, Latch);
2064 }
2065
2066 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2067                                                            Instruction *I) {
2068   assert(!Report && "Multiple reports generated");
2069
2070   Value *CodeRegion = TheLoop->getHeader();
2071   DebugLoc DL = TheLoop->getStartLoc();
2072
2073   if (I) {
2074     CodeRegion = I->getParent();
2075     // If there is no debug location attached to the instruction, revert back to
2076     // using the loop's.
2077     if (I->getDebugLoc())
2078       DL = I->getDebugLoc();
2079   }
2080
2081   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2082                                                    CodeRegion);
2083   return *Report;
2084 }
2085
2086 bool LoopAccessInfo::isUniform(Value *V) const {
2087   auto *SE = PSE->getSE();
2088   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2089   // never considered uniform.
2090   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2091   // trivially loop-invariant FP values to be considered uniform.
2092   if (!SE->isSCEVable(V->getType()))
2093     return false;
2094   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2095 }
2096
2097 // FIXME: this function is currently a duplicate of the one in
2098 // LoopVectorize.cpp.
2099 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2100                                  Instruction *Loc) {
2101   if (FirstInst)
2102     return FirstInst;
2103   if (Instruction *I = dyn_cast<Instruction>(V))
2104     return I->getParent() == Loc->getParent() ? I : nullptr;
2105   return nullptr;
2106 }
2107
2108 namespace {
2109
2110 /// IR Values for the lower and upper bounds of a pointer evolution.  We
2111 /// need to use value-handles because SCEV expansion can invalidate previously
2112 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
2113 /// a previous one.
2114 struct PointerBounds {
2115   TrackingVH<Value> Start;
2116   TrackingVH<Value> End;
2117 };
2118
2119 } // end anonymous namespace
2120
2121 /// Expand code for the lower and upper bound of the pointer group \p CG
2122 /// in \p TheLoop.  \return the values for the bounds.
2123 static PointerBounds
2124 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
2125              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
2126              const RuntimePointerChecking &PtrRtChecking) {
2127   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
2128   const SCEV *Sc = SE->getSCEV(Ptr);
2129
2130   unsigned AS = Ptr->getType()->getPointerAddressSpace();
2131   LLVMContext &Ctx = Loc->getContext();
2132
2133   // Use this type for pointer arithmetic.
2134   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2135
2136   if (SE->isLoopInvariant(Sc, TheLoop)) {
2137     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2138                       << *Ptr << "\n");
2139     // Ptr could be in the loop body. If so, expand a new one at the correct
2140     // location.
2141     Instruction *Inst = dyn_cast<Instruction>(Ptr);
2142     Value *NewPtr = (Inst && TheLoop->contains(Inst))
2143                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2144                         : Ptr;
2145     // We must return a half-open range, which means incrementing Sc.
2146     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2147     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2148     return {NewPtr, NewPtrPlusOne};
2149   } else {
2150     Value *Start = nullptr, *End = nullptr;
2151     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2152     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2153     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2154     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2155                       << "\n");
2156     return {Start, End};
2157   }
2158 }
2159
2160 /// Turns a collection of checks into a collection of expanded upper and
2161 /// lower bounds for both pointers in the check.
2162 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2163     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2164     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2165     const RuntimePointerChecking &PtrRtChecking) {
2166   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2167
2168   // Here we're relying on the SCEV Expander's cache to only emit code for the
2169   // same bounds once.
2170   transform(
2171       PointerChecks, std::back_inserter(ChecksWithBounds),
2172       [&](const RuntimePointerChecking::PointerCheck &Check) {
2173         PointerBounds
2174           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2175           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2176         return std::make_pair(First, Second);
2177       });
2178
2179   return ChecksWithBounds;
2180 }
2181
2182 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
2183     Instruction *Loc,
2184     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2185     const {
2186   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2187   auto *SE = PSE->getSE();
2188   SCEVExpander Exp(*SE, DL, "induction");
2189   auto ExpandedChecks =
2190       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
2191
2192   LLVMContext &Ctx = Loc->getContext();
2193   Instruction *FirstInst = nullptr;
2194   IRBuilder<> ChkBuilder(Loc);
2195   // Our instructions might fold to a constant.
2196   Value *MemoryRuntimeCheck = nullptr;
2197
2198   for (const auto &Check : ExpandedChecks) {
2199     const PointerBounds &A = Check.first, &B = Check.second;
2200     // Check if two pointers (A and B) conflict where conflict is computed as:
2201     // start(A) <= end(B) && start(B) <= end(A)
2202     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2203     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
2204
2205     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2206            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2207            "Trying to bounds check pointers with different address spaces");
2208
2209     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2210     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2211
2212     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2213     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2214     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
2215     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
2216
2217     // [A|B].Start points to the first accessed byte under base [A|B].
2218     // [A|B].End points to the last accessed byte, plus one.
2219     // There is no conflict when the intervals are disjoint:
2220     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2221     //
2222     // bound0 = (B.Start < A.End)
2223     // bound1 = (A.Start < B.End)
2224     //  IsConflict = bound0 & bound1
2225     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
2226     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2227     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
2228     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2229     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2230     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2231     if (MemoryRuntimeCheck) {
2232       IsConflict =
2233           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2234       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2235     }
2236     MemoryRuntimeCheck = IsConflict;
2237   }
2238
2239   if (!MemoryRuntimeCheck)
2240     return std::make_pair(nullptr, nullptr);
2241
2242   // We have to do this trickery because the IRBuilder might fold the check to a
2243   // constant expression in which case there is no Instruction anchored in a
2244   // the block.
2245   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2246                                                  ConstantInt::getTrue(Ctx));
2247   ChkBuilder.Insert(Check, "memcheck.conflict");
2248   FirstInst = getFirstInst(FirstInst, Check, Loc);
2249   return std::make_pair(FirstInst, Check);
2250 }
2251
2252 std::pair<Instruction *, Instruction *>
2253 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2254   if (!PtrRtChecking->Need)
2255     return std::make_pair(nullptr, nullptr);
2256
2257   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2258 }
2259
2260 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2261   Value *Ptr = nullptr;
2262   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2263     Ptr = LI->getPointerOperand();
2264   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2265     Ptr = SI->getPointerOperand();
2266   else
2267     return;
2268
2269   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2270   if (!Stride)
2271     return;
2272
2273   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2274                        "versioning:");
2275   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2276
2277   // Avoid adding the "Stride == 1" predicate when we know that
2278   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2279   // or zero iteration loop, as Trip-Count <= Stride == 1.
2280   //
2281   // TODO: We are currently not making a very informed decision on when it is
2282   // beneficial to apply stride versioning. It might make more sense that the
2283   // users of this analysis (such as the vectorizer) will trigger it, based on
2284   // their specific cost considerations; For example, in cases where stride
2285   // versioning does  not help resolving memory accesses/dependences, the
2286   // vectorizer should evaluate the cost of the runtime test, and the benefit
2287   // of various possible stride specializations, considering the alternatives
2288   // of using gather/scatters (if available).
2289
2290   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2291   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2292
2293   // Match the types so we can compare the stride and the BETakenCount.
2294   // The Stride can be positive/negative, so we sign extend Stride;
2295   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2296   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2297   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2298   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2299   const SCEV *CastedStride = StrideExpr;
2300   const SCEV *CastedBECount = BETakenCount;
2301   ScalarEvolution *SE = PSE->getSE();
2302   if (BETypeSize >= StrideTypeSize)
2303     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2304   else
2305     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2306   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2307   // Since TripCount == BackEdgeTakenCount + 1, checking:
2308   // "Stride >= TripCount" is equivalent to checking:
2309   // Stride - BETakenCount > 0
2310   if (SE->isKnownPositive(StrideMinusBETaken)) {
2311     LLVM_DEBUG(
2312         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2313                   "Stride==1 predicate will imply that the loop executes "
2314                   "at most once.\n");
2315     return;
2316   }
2317   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2318
2319   SymbolicStrides[Ptr] = Stride;
2320   StrideSet.insert(Stride);
2321 }
2322
2323 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2324                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2325                                DominatorTree *DT, LoopInfo *LI)
2326     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2327       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
2328       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2329       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2330       HasConvergentOp(false),
2331       HasDependenceInvolvingLoopInvariantAddress(false) {
2332   if (canAnalyzeLoop())
2333     analyzeLoop(AA, LI, TLI, DT);
2334 }
2335
2336 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2337   if (CanVecMem) {
2338     OS.indent(Depth) << "Memory dependences are safe";
2339     if (MaxSafeDepDistBytes != -1ULL)
2340       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2341          << " bytes";
2342     if (PtrRtChecking->Need)
2343       OS << " with run-time checks";
2344     OS << "\n";
2345   }
2346
2347   if (HasConvergentOp)
2348     OS.indent(Depth) << "Has convergent operation in loop\n";
2349
2350   if (Report)
2351     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2352
2353   if (auto *Dependences = DepChecker->getDependences()) {
2354     OS.indent(Depth) << "Dependences:\n";
2355     for (auto &Dep : *Dependences) {
2356       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2357       OS << "\n";
2358     }
2359   } else
2360     OS.indent(Depth) << "Too many dependences, not recorded\n";
2361
2362   // List the pair of accesses need run-time checks to prove independence.
2363   PtrRtChecking->print(OS, Depth);
2364   OS << "\n";
2365
2366   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2367                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2368                    << "found in loop.\n";
2369
2370   OS.indent(Depth) << "SCEV assumptions:\n";
2371   PSE->getUnionPredicate().print(OS, Depth);
2372
2373   OS << "\n";
2374
2375   OS.indent(Depth) << "Expressions re-written:\n";
2376   PSE->print(OS, Depth);
2377 }
2378
2379 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2380   auto &LAI = LoopAccessInfoMap[L];
2381
2382   if (!LAI)
2383     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2384
2385   return *LAI.get();
2386 }
2387
2388 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2389   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2390
2391   for (Loop *TopLevelLoop : *LI)
2392     for (Loop *L : depth_first(TopLevelLoop)) {
2393       OS.indent(2) << L->getHeader()->getName() << ":\n";
2394       auto &LAI = LAA.getInfo(L);
2395       LAI.print(OS, 4);
2396     }
2397 }
2398
2399 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2400   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2401   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2402   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2403   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2404   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2405   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2406
2407   return false;
2408 }
2409
2410 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2411     AU.addRequired<ScalarEvolutionWrapperPass>();
2412     AU.addRequired<AAResultsWrapperPass>();
2413     AU.addRequired<DominatorTreeWrapperPass>();
2414     AU.addRequired<LoopInfoWrapperPass>();
2415
2416     AU.setPreservesAll();
2417 }
2418
2419 char LoopAccessLegacyAnalysis::ID = 0;
2420 static const char laa_name[] = "Loop Access Analysis";
2421 #define LAA_NAME "loop-accesses"
2422
2423 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2424 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2425 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2426 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2427 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2428 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2429
2430 AnalysisKey LoopAccessAnalysis::Key;
2431
2432 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2433                                        LoopStandardAnalysisResults &AR) {
2434   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2435 }
2436
2437 namespace llvm {
2438
2439   Pass *createLAAPass() {
2440     return new LoopAccessLegacyAnalysis();
2441   }
2442
2443 } // end namespace llvm