]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/LoopAccessAnalysis.cpp
MFV r336952: 9192 explicitly pass good_writes to vdev_uberblock/label_sync
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / LoopAccessAnalysis.cpp
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AliasSetTracker.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstdlib>
66 #include <iterator>
67 #include <utility>
68 #include <vector>
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "loop-accesses"
73
74 static cl::opt<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden,
76                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77                     cl::location(VectorizerParams::VectorizationFactor));
78 unsigned VectorizerParams::VectorizationFactor;
79
80 static cl::opt<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                         cl::desc("Sets the vectorization interleave count. "
83                                  "Zero is autoselect."),
84                         cl::location(
85                             VectorizerParams::VectorizationInterleave));
86 unsigned VectorizerParams::VectorizationInterleave;
87
88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89     "runtime-memory-check-threshold", cl::Hidden,
90     cl::desc("When performing memory disambiguation checks at runtime do not "
91              "generate more than this number of comparisons (default = 8)."),
92     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94
95 /// \brief The maximum iterations used to merge memory checks
96 static cl::opt<unsigned> MemoryCheckMergeThreshold(
97     "memory-check-merge-threshold", cl::Hidden,
98     cl::desc("Maximum number of comparisons done when trying to merge "
99              "runtime memory checks. (default = 100)"),
100     cl::init(100));
101
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105 /// \brief We collect dependences up to this threshold.
106 static cl::opt<unsigned>
107     MaxDependences("max-dependences", cl::Hidden,
108                    cl::desc("Maximum number of dependences collected by "
109                             "loop-access analysis (default = 100)"),
110                    cl::init(100));
111
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 ///   for (i = 0; i < N; ++i)
115 ///     A[i * Stride1] += B[i * Stride2] ...
116 ///
117 /// Will be roughly translated to
118 ///    if (Stride1 == 1 && Stride2 == 1) {
119 ///      for (i = 0; i < N; i+=4)
120 ///       A[i:i+3] += ...
121 ///    } else
122 ///      ...
123 static cl::opt<bool> EnableMemAccessVersioning(
124     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125     cl::desc("Enable symbolic stride memory access versioning"));
126
127 /// \brief Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt<bool> EnableForwardingConflictDetection(
130     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131     cl::desc("Enable conflict detection in loop-access analysis"),
132     cl::init(true));
133
134 bool VectorizerParams::isInterleaveForced() {
135   return ::VectorizationInterleave.getNumOccurrences() > 0;
136 }
137
138 Value *llvm::stripIntegerCast(Value *V) {
139   if (auto *CI = dyn_cast<CastInst>(V))
140     if (CI->getOperand(0)->getType()->isIntegerTy())
141       return CI->getOperand(0);
142   return V;
143 }
144
145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
146                                             const ValueToValueMap &PtrToStride,
147                                             Value *Ptr, Value *OrigPtr) {
148   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
149
150   // If there is an entry in the map return the SCEV of the pointer with the
151   // symbolic stride replaced by one.
152   ValueToValueMap::const_iterator SI =
153       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
154   if (SI != PtrToStride.end()) {
155     Value *StrideVal = SI->second;
156
157     // Strip casts.
158     StrideVal = stripIntegerCast(StrideVal);
159
160     ScalarEvolution *SE = PSE.getSE();
161     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162     const auto *CT =
163         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164
165     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
166     auto *Expr = PSE.getSCEV(Ptr);
167
168     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
169                  << "\n");
170     return Expr;
171   }
172
173   // Otherwise, just return the SCEV of the original pointer.
174   return OrigSCEV;
175 }
176
177 /// Calculate Start and End points of memory access.
178 /// Let's assume A is the first access and B is a memory access on N-th loop
179 /// iteration. Then B is calculated as:  
180 ///   B = A + Step*N . 
181 /// Step value may be positive or negative.
182 /// N is a calculated back-edge taken count:
183 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184 /// Start and End points are calculated in the following way:
185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186 /// where SizeOfElt is the size of single memory access in bytes.
187 ///
188 /// There is no conflict when the intervals are disjoint:
189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
191                                     unsigned DepSetId, unsigned ASId,
192                                     const ValueToValueMap &Strides,
193                                     PredicatedScalarEvolution &PSE) {
194   // Get the stride replaced scev.
195   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
196   ScalarEvolution *SE = PSE.getSE();
197
198   const SCEV *ScStart;
199   const SCEV *ScEnd;
200
201   if (SE->isLoopInvariant(Sc, Lp))
202     ScStart = ScEnd = Sc;
203   else {
204     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
205     assert(AR && "Invalid addrec expression");
206     const SCEV *Ex = PSE.getBackedgeTakenCount();
207
208     ScStart = AR->getStart();
209     ScEnd = AR->evaluateAtIteration(Ex, *SE);
210     const SCEV *Step = AR->getStepRecurrence(*SE);
211
212     // For expressions with negative step, the upper bound is ScStart and the
213     // lower bound is ScEnd.
214     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
215       if (CStep->getValue()->isNegative())
216         std::swap(ScStart, ScEnd);
217     } else {
218       // Fallback case: the step is not constant, but we can still
219       // get the upper and lower bounds of the interval by using min/max
220       // expressions.
221       ScStart = SE->getUMinExpr(ScStart, ScEnd);
222       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
223     }
224     // Add the size of the pointed element to ScEnd.
225     unsigned EltSize =
226       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
228     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
229   }
230
231   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
232 }
233
234 SmallVector<RuntimePointerChecking::PointerCheck, 4>
235 RuntimePointerChecking::generateChecks() const {
236   SmallVector<PointerCheck, 4> Checks;
237
238   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
239     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
240       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
241       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
242
243       if (needsChecking(CGI, CGJ))
244         Checks.push_back(std::make_pair(&CGI, &CGJ));
245     }
246   }
247   return Checks;
248 }
249
250 void RuntimePointerChecking::generateChecks(
251     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
252   assert(Checks.empty() && "Checks is not empty");
253   groupChecks(DepCands, UseDependencies);
254   Checks = generateChecks();
255 }
256
257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258                                            const CheckingPtrGroup &N) const {
259   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
260     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
261       if (needsChecking(M.Members[I], N.Members[J]))
262         return true;
263   return false;
264 }
265
266 /// Compare \p I and \p J and return the minimum.
267 /// Return nullptr in case we couldn't find an answer.
268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
269                                    ScalarEvolution *SE) {
270   const SCEV *Diff = SE->getMinusSCEV(J, I);
271   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
272
273   if (!C)
274     return nullptr;
275   if (C->getValue()->isNegative())
276     return J;
277   return I;
278 }
279
280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
281   const SCEV *Start = RtCheck.Pointers[Index].Start;
282   const SCEV *End = RtCheck.Pointers[Index].End;
283
284   // Compare the starts and ends with the known minimum and maximum
285   // of this set. We need to know how we compare against the min/max
286   // of the set in order to be able to emit memchecks.
287   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
288   if (!Min0)
289     return false;
290
291   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
292   if (!Min1)
293     return false;
294
295   // Update the low bound  expression if we've found a new min value.
296   if (Min0 == Start)
297     Low = Start;
298
299   // Update the high bound expression if we've found a new max value.
300   if (Min1 != End)
301     High = End;
302
303   Members.push_back(Index);
304   return true;
305 }
306
307 void RuntimePointerChecking::groupChecks(
308     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
309   // We build the groups from dependency candidates equivalence classes
310   // because:
311   //    - We know that pointers in the same equivalence class share
312   //      the same underlying object and therefore there is a chance
313   //      that we can compare pointers
314   //    - We wouldn't be able to merge two pointers for which we need
315   //      to emit a memcheck. The classes in DepCands are already
316   //      conveniently built such that no two pointers in the same
317   //      class need checking against each other.
318
319   // We use the following (greedy) algorithm to construct the groups
320   // For every pointer in the equivalence class:
321   //   For each existing group:
322   //   - if the difference between this pointer and the min/max bounds
323   //     of the group is a constant, then make the pointer part of the
324   //     group and update the min/max bounds of that group as required.
325
326   CheckingGroups.clear();
327
328   // If we need to check two pointers to the same underlying object
329   // with a non-constant difference, we shouldn't perform any pointer
330   // grouping with those pointers. This is because we can easily get
331   // into cases where the resulting check would return false, even when
332   // the accesses are safe.
333   //
334   // The following example shows this:
335   // for (i = 0; i < 1000; ++i)
336   //   a[5000 + i * m] = a[i] + a[i + 9000]
337   //
338   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339   // (0, 10000) which is always false. However, if m is 1, there is no
340   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341   // us to perform an accurate check in this case.
342   //
343   // The above case requires that we have an UnknownDependence between
344   // accesses to the same underlying object. This cannot happen unless
345   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
346   // is also false. In this case we will use the fallback path and create
347   // separate checking groups for all pointers.
348
349   // If we don't have the dependency partitions, construct a new
350   // checking pointer group for each pointer. This is also required
351   // for correctness, because in this case we can have checking between
352   // pointers to the same underlying object.
353   if (!UseDependencies) {
354     for (unsigned I = 0; I < Pointers.size(); ++I)
355       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
356     return;
357   }
358
359   unsigned TotalComparisons = 0;
360
361   DenseMap<Value *, unsigned> PositionMap;
362   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
363     PositionMap[Pointers[Index].PointerValue] = Index;
364
365   // We need to keep track of what pointers we've already seen so we
366   // don't process them twice.
367   SmallSet<unsigned, 2> Seen;
368
369   // Go through all equivalence classes, get the "pointer check groups"
370   // and add them to the overall solution. We use the order in which accesses
371   // appear in 'Pointers' to enforce determinism.
372   for (unsigned I = 0; I < Pointers.size(); ++I) {
373     // We've seen this pointer before, and therefore already processed
374     // its equivalence class.
375     if (Seen.count(I))
376       continue;
377
378     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
379                                            Pointers[I].IsWritePtr);
380
381     SmallVector<CheckingPtrGroup, 2> Groups;
382     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383
384     // Because DepCands is constructed by visiting accesses in the order in
385     // which they appear in alias sets (which is deterministic) and the
386     // iteration order within an equivalence class member is only dependent on
387     // the order in which unions and insertions are performed on the
388     // equivalence class, the iteration order is deterministic.
389     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
390          MI != ME; ++MI) {
391       unsigned Pointer = PositionMap[MI->getPointer()];
392       bool Merged = false;
393       // Mark this pointer as seen.
394       Seen.insert(Pointer);
395
396       // Go through all the existing sets and see if we can find one
397       // which can include this pointer.
398       for (CheckingPtrGroup &Group : Groups) {
399         // Don't perform more than a certain amount of comparisons.
400         // This should limit the cost of grouping the pointers to something
401         // reasonable.  If we do end up hitting this threshold, the algorithm
402         // will create separate groups for all remaining pointers.
403         if (TotalComparisons > MemoryCheckMergeThreshold)
404           break;
405
406         TotalComparisons++;
407
408         if (Group.addPointer(Pointer)) {
409           Merged = true;
410           break;
411         }
412       }
413
414       if (!Merged)
415         // We couldn't add this pointer to any existing set or the threshold
416         // for the number of comparisons has been reached. Create a new group
417         // to hold the current pointer.
418         Groups.push_back(CheckingPtrGroup(Pointer, *this));
419     }
420
421     // We've computed the grouped checks for this partition.
422     // Save the results and continue with the next one.
423     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
424   }
425 }
426
427 bool RuntimePointerChecking::arePointersInSamePartition(
428     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429     unsigned PtrIdx2) {
430   return (PtrToPartition[PtrIdx1] != -1 &&
431           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432 }
433
434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
435   const PointerInfo &PointerI = Pointers[I];
436   const PointerInfo &PointerJ = Pointers[J];
437
438   // No need to check if two readonly pointers intersect.
439   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
440     return false;
441
442   // Only need to check pointers between two different dependency sets.
443   if (PointerI.DependencySetId == PointerJ.DependencySetId)
444     return false;
445
446   // Only need to check pointers in the same alias set.
447   if (PointerI.AliasSetId != PointerJ.AliasSetId)
448     return false;
449
450   return true;
451 }
452
453 void RuntimePointerChecking::printChecks(
454     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
455     unsigned Depth) const {
456   unsigned N = 0;
457   for (const auto &Check : Checks) {
458     const auto &First = Check.first->Members, &Second = Check.second->Members;
459
460     OS.indent(Depth) << "Check " << N++ << ":\n";
461
462     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
463     for (unsigned K = 0; K < First.size(); ++K)
464       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
465
466     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
467     for (unsigned K = 0; K < Second.size(); ++K)
468       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
469   }
470 }
471
472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
473
474   OS.indent(Depth) << "Run-time memory checks:\n";
475   printChecks(OS, Checks, Depth);
476
477   OS.indent(Depth) << "Grouped accesses:\n";
478   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
479     const auto &CG = CheckingGroups[I];
480
481     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
482     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
483                          << ")\n";
484     for (unsigned J = 0; J < CG.Members.size(); ++J) {
485       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
486                            << "\n";
487     }
488   }
489 }
490
491 namespace {
492
493 /// \brief Analyses memory accesses in a loop.
494 ///
495 /// Checks whether run time pointer checks are needed and builds sets for data
496 /// dependence checking.
497 class AccessAnalysis {
498 public:
499   /// \brief Read or write access location.
500   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
501   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
502
503   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
504                  MemoryDepChecker::DepCandidates &DA,
505                  PredicatedScalarEvolution &PSE)
506       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
507         PSE(PSE) {}
508
509   /// \brief Register a load  and whether it is only read from.
510   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
511     Value *Ptr = const_cast<Value*>(Loc.Ptr);
512     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
513     Accesses.insert(MemAccessInfo(Ptr, false));
514     if (IsReadOnly)
515       ReadOnlyPtr.insert(Ptr);
516   }
517
518   /// \brief Register a store.
519   void addStore(MemoryLocation &Loc) {
520     Value *Ptr = const_cast<Value*>(Loc.Ptr);
521     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
522     Accesses.insert(MemAccessInfo(Ptr, true));
523   }
524
525   /// \brief Check if we can emit a run-time no-alias check for \p Access.
526   ///
527   /// Returns true if we can emit a run-time no alias check for \p Access.
528   /// If we can check this access, this also adds it to a dependence set and
529   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530   /// we will attempt to use additional run-time checks in order to get
531   /// the bounds of the pointer.
532   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
533                             MemAccessInfo Access,
534                             const ValueToValueMap &Strides,
535                             DenseMap<Value *, unsigned> &DepSetId,
536                             Loop *TheLoop, unsigned &RunningDepId,
537                             unsigned ASId, bool ShouldCheckStride,
538                             bool Assume);
539
540   /// \brief Check whether we can check the pointers at runtime for
541   /// non-intersection.
542   ///
543   /// Returns true if we need no check or if we do and we can generate them
544   /// (i.e. the pointers have computable bounds).
545   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
546                        Loop *TheLoop, const ValueToValueMap &Strides,
547                        bool ShouldCheckWrap = false);
548
549   /// \brief Goes over all memory accesses, checks whether a RT check is needed
550   /// and builds sets of dependent accesses.
551   void buildDependenceSets() {
552     processMemAccesses();
553   }
554
555   /// \brief Initial processing of memory accesses determined that we need to
556   /// perform dependency checking.
557   ///
558   /// Note that this can later be cleared if we retry memcheck analysis without
559   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
560   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
561
562   /// We decided that no dependence analysis would be used.  Reset the state.
563   void resetDepChecks(MemoryDepChecker &DepChecker) {
564     CheckDeps.clear();
565     DepChecker.clearDependences();
566   }
567
568   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
569
570 private:
571   typedef SetVector<MemAccessInfo> PtrAccessSet;
572
573   /// \brief Go over all memory access and check whether runtime pointer checks
574   /// are needed and build sets of dependency check candidates.
575   void processMemAccesses();
576
577   /// Set of all accesses.
578   PtrAccessSet Accesses;
579
580   const DataLayout &DL;
581
582   /// List of accesses that need a further dependence check.
583   MemAccessInfoList CheckDeps;
584
585   /// Set of pointers that are read only.
586   SmallPtrSet<Value*, 16> ReadOnlyPtr;
587
588   /// An alias set tracker to partition the access set by underlying object and
589   //intrinsic property (such as TBAA metadata).
590   AliasSetTracker AST;
591
592   LoopInfo *LI;
593
594   /// Sets of potentially dependent accesses - members of one set share an
595   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
596   /// dependence check.
597   MemoryDepChecker::DepCandidates &DepCands;
598
599   /// \brief Initial processing of memory accesses determined that we may need
600   /// to add memchecks.  Perform the analysis to determine the necessary checks.
601   ///
602   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
603   /// memcheck analysis without dependency checking
604   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
605   /// while this remains set if we have potentially dependent accesses.
606   bool IsRTCheckAnalysisNeeded;
607
608   /// The SCEV predicate containing all the SCEV-related assumptions.
609   PredicatedScalarEvolution &PSE;
610 };
611
612 } // end anonymous namespace
613
614 /// \brief Check whether a pointer can participate in a runtime bounds check.
615 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
616 /// by adding run-time checks (overflow checks) if necessary.
617 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
618                                 const ValueToValueMap &Strides, Value *Ptr,
619                                 Loop *L, bool Assume) {
620   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
621
622   // The bounds for loop-invariant pointer is trivial.
623   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
624     return true;
625
626   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
627
628   if (!AR && Assume)
629     AR = PSE.getAsAddRec(Ptr);
630
631   if (!AR)
632     return false;
633
634   return AR->isAffine();
635 }
636
637 /// \brief Check whether a pointer address cannot wrap.
638 static bool isNoWrap(PredicatedScalarEvolution &PSE,
639                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
640   const SCEV *PtrScev = PSE.getSCEV(Ptr);
641   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
642     return true;
643
644   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
645   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
646     return true;
647
648   return false;
649 }
650
651 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
652                                           MemAccessInfo Access,
653                                           const ValueToValueMap &StridesMap,
654                                           DenseMap<Value *, unsigned> &DepSetId,
655                                           Loop *TheLoop, unsigned &RunningDepId,
656                                           unsigned ASId, bool ShouldCheckWrap,
657                                           bool Assume) {
658   Value *Ptr = Access.getPointer();
659
660   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
661     return false;
662
663   // When we run after a failing dependency check we have to make sure
664   // we don't have wrapping pointers.
665   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
666     auto *Expr = PSE.getSCEV(Ptr);
667     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
668       return false;
669     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
670   }
671
672   // The id of the dependence set.
673   unsigned DepId;
674
675   if (isDependencyCheckNeeded()) {
676     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
677     unsigned &LeaderId = DepSetId[Leader];
678     if (!LeaderId)
679       LeaderId = RunningDepId++;
680     DepId = LeaderId;
681   } else
682     // Each access has its own dependence set.
683     DepId = RunningDepId++;
684
685   bool IsWrite = Access.getInt();
686   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
687   DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
688
689   return true;
690  }
691
692 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
693                                      ScalarEvolution *SE, Loop *TheLoop,
694                                      const ValueToValueMap &StridesMap,
695                                      bool ShouldCheckWrap) {
696   // Find pointers with computable bounds. We are going to use this information
697   // to place a runtime bound check.
698   bool CanDoRT = true;
699
700   bool NeedRTCheck = false;
701   if (!IsRTCheckAnalysisNeeded) return true;
702
703   bool IsDepCheckNeeded = isDependencyCheckNeeded();
704
705   // We assign a consecutive id to access from different alias sets.
706   // Accesses between different groups doesn't need to be checked.
707   unsigned ASId = 1;
708   for (auto &AS : AST) {
709     int NumReadPtrChecks = 0;
710     int NumWritePtrChecks = 0;
711     bool CanDoAliasSetRT = true;
712
713     // We assign consecutive id to access from different dependence sets.
714     // Accesses within the same set don't need a runtime check.
715     unsigned RunningDepId = 1;
716     DenseMap<Value *, unsigned> DepSetId;
717
718     SmallVector<MemAccessInfo, 4> Retries;
719
720     for (auto A : AS) {
721       Value *Ptr = A.getValue();
722       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
723       MemAccessInfo Access(Ptr, IsWrite);
724
725       if (IsWrite)
726         ++NumWritePtrChecks;
727       else
728         ++NumReadPtrChecks;
729
730       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
731                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
732         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
733         Retries.push_back(Access);
734         CanDoAliasSetRT = false;
735       }
736     }
737
738     // If we have at least two writes or one write and a read then we need to
739     // check them.  But there is no need to checks if there is only one
740     // dependence set for this alias set.
741     //
742     // Note that this function computes CanDoRT and NeedRTCheck independently.
743     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
744     // for which we couldn't find the bounds but we don't actually need to emit
745     // any checks so it does not matter.
746     bool NeedsAliasSetRTCheck = false;
747     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
748       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
749                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
750
751     // We need to perform run-time alias checks, but some pointers had bounds
752     // that couldn't be checked.
753     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
754       // Reset the CanDoSetRt flag and retry all accesses that have failed.
755       // We know that we need these checks, so we can now be more aggressive
756       // and add further checks if required (overflow checks).
757       CanDoAliasSetRT = true;
758       for (auto Access : Retries)
759         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
760                                   TheLoop, RunningDepId, ASId,
761                                   ShouldCheckWrap, /*Assume=*/true)) {
762           CanDoAliasSetRT = false;
763           break;
764         }
765     }
766
767     CanDoRT &= CanDoAliasSetRT;
768     NeedRTCheck |= NeedsAliasSetRTCheck;
769     ++ASId;
770   }
771
772   // If the pointers that we would use for the bounds comparison have different
773   // address spaces, assume the values aren't directly comparable, so we can't
774   // use them for the runtime check. We also have to assume they could
775   // overlap. In the future there should be metadata for whether address spaces
776   // are disjoint.
777   unsigned NumPointers = RtCheck.Pointers.size();
778   for (unsigned i = 0; i < NumPointers; ++i) {
779     for (unsigned j = i + 1; j < NumPointers; ++j) {
780       // Only need to check pointers between two different dependency sets.
781       if (RtCheck.Pointers[i].DependencySetId ==
782           RtCheck.Pointers[j].DependencySetId)
783        continue;
784       // Only need to check pointers in the same alias set.
785       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
786         continue;
787
788       Value *PtrI = RtCheck.Pointers[i].PointerValue;
789       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
790
791       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
792       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
793       if (ASi != ASj) {
794         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
795                        " different address spaces\n");
796         return false;
797       }
798     }
799   }
800
801   if (NeedRTCheck && CanDoRT)
802     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
803
804   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
805                << " pointer comparisons.\n");
806
807   RtCheck.Need = NeedRTCheck;
808
809   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
810   if (!CanDoRTIfNeeded)
811     RtCheck.reset();
812   return CanDoRTIfNeeded;
813 }
814
815 void AccessAnalysis::processMemAccesses() {
816   // We process the set twice: first we process read-write pointers, last we
817   // process read-only pointers. This allows us to skip dependence tests for
818   // read-only pointers.
819
820   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
821   DEBUG(dbgs() << "  AST: "; AST.dump());
822   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
823   DEBUG({
824     for (auto A : Accesses)
825       dbgs() << "\t" << *A.getPointer() << " (" <<
826                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
827                                          "read-only" : "read")) << ")\n";
828   });
829
830   // The AliasSetTracker has nicely partitioned our pointers by metadata
831   // compatibility and potential for underlying-object overlap. As a result, we
832   // only need to check for potential pointer dependencies within each alias
833   // set.
834   for (auto &AS : AST) {
835     // Note that both the alias-set tracker and the alias sets themselves used
836     // linked lists internally and so the iteration order here is deterministic
837     // (matching the original instruction order within each set).
838
839     bool SetHasWrite = false;
840
841     // Map of pointers to last access encountered.
842     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
843     UnderlyingObjToAccessMap ObjToLastAccess;
844
845     // Set of access to check after all writes have been processed.
846     PtrAccessSet DeferredAccesses;
847
848     // Iterate over each alias set twice, once to process read/write pointers,
849     // and then to process read-only pointers.
850     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
851       bool UseDeferred = SetIteration > 0;
852       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
853
854       for (auto AV : AS) {
855         Value *Ptr = AV.getValue();
856
857         // For a single memory access in AliasSetTracker, Accesses may contain
858         // both read and write, and they both need to be handled for CheckDeps.
859         for (auto AC : S) {
860           if (AC.getPointer() != Ptr)
861             continue;
862
863           bool IsWrite = AC.getInt();
864
865           // If we're using the deferred access set, then it contains only
866           // reads.
867           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
868           if (UseDeferred && !IsReadOnlyPtr)
869             continue;
870           // Otherwise, the pointer must be in the PtrAccessSet, either as a
871           // read or a write.
872           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
873                   S.count(MemAccessInfo(Ptr, false))) &&
874                  "Alias-set pointer not in the access set?");
875
876           MemAccessInfo Access(Ptr, IsWrite);
877           DepCands.insert(Access);
878
879           // Memorize read-only pointers for later processing and skip them in
880           // the first round (they need to be checked after we have seen all
881           // write pointers). Note: we also mark pointer that are not
882           // consecutive as "read-only" pointers (so that we check
883           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
884           if (!UseDeferred && IsReadOnlyPtr) {
885             DeferredAccesses.insert(Access);
886             continue;
887           }
888
889           // If this is a write - check other reads and writes for conflicts. If
890           // this is a read only check other writes for conflicts (but only if
891           // there is no other write to the ptr - this is an optimization to
892           // catch "a[i] = a[i] + " without having to do a dependence check).
893           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
894             CheckDeps.push_back(Access);
895             IsRTCheckAnalysisNeeded = true;
896           }
897
898           if (IsWrite)
899             SetHasWrite = true;
900
901           // Create sets of pointers connected by a shared alias set and
902           // underlying object.
903           typedef SmallVector<Value *, 16> ValueVector;
904           ValueVector TempObjects;
905
906           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
907           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
908           for (Value *UnderlyingObj : TempObjects) {
909             // nullptr never alias, don't join sets for pointer that have "null"
910             // in their UnderlyingObjects list.
911             if (isa<ConstantPointerNull>(UnderlyingObj))
912               continue;
913
914             UnderlyingObjToAccessMap::iterator Prev =
915                 ObjToLastAccess.find(UnderlyingObj);
916             if (Prev != ObjToLastAccess.end())
917               DepCands.unionSets(Access, Prev->second);
918
919             ObjToLastAccess[UnderlyingObj] = Access;
920             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
921           }
922         }
923       }
924     }
925   }
926 }
927
928 static bool isInBoundsGep(Value *Ptr) {
929   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
930     return GEP->isInBounds();
931   return false;
932 }
933
934 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
935 /// i.e. monotonically increasing/decreasing.
936 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
937                            PredicatedScalarEvolution &PSE, const Loop *L) {
938   // FIXME: This should probably only return true for NUW.
939   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
940     return true;
941
942   // Scalar evolution does not propagate the non-wrapping flags to values that
943   // are derived from a non-wrapping induction variable because non-wrapping
944   // could be flow-sensitive.
945   //
946   // Look through the potentially overflowing instruction to try to prove
947   // non-wrapping for the *specific* value of Ptr.
948
949   // The arithmetic implied by an inbounds GEP can't overflow.
950   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
951   if (!GEP || !GEP->isInBounds())
952     return false;
953
954   // Make sure there is only one non-const index and analyze that.
955   Value *NonConstIndex = nullptr;
956   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
957     if (!isa<ConstantInt>(Index)) {
958       if (NonConstIndex)
959         return false;
960       NonConstIndex = Index;
961     }
962   if (!NonConstIndex)
963     // The recurrence is on the pointer, ignore for now.
964     return false;
965
966   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
967   // AddRec using a NSW operation.
968   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
969     if (OBO->hasNoSignedWrap() &&
970         // Assume constant for other the operand so that the AddRec can be
971         // easily found.
972         isa<ConstantInt>(OBO->getOperand(1))) {
973       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
974
975       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
976         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
977     }
978
979   return false;
980 }
981
982 /// \brief Check whether the access through \p Ptr has a constant stride.
983 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
984                            const Loop *Lp, const ValueToValueMap &StridesMap,
985                            bool Assume, bool ShouldCheckWrap) {
986   Type *Ty = Ptr->getType();
987   assert(Ty->isPointerTy() && "Unexpected non-ptr");
988
989   // Make sure that the pointer does not point to aggregate types.
990   auto *PtrTy = cast<PointerType>(Ty);
991   if (PtrTy->getElementType()->isAggregateType()) {
992     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
993                  << "\n");
994     return 0;
995   }
996
997   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
998
999   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1000   if (Assume && !AR)
1001     AR = PSE.getAsAddRec(Ptr);
1002
1003   if (!AR) {
1004     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1005                  << " SCEV: " << *PtrScev << "\n");
1006     return 0;
1007   }
1008
1009   // The accesss function must stride over the innermost loop.
1010   if (Lp != AR->getLoop()) {
1011     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
1012           *Ptr << " SCEV: " << *AR << "\n");
1013     return 0;
1014   }
1015
1016   // The address calculation must not wrap. Otherwise, a dependence could be
1017   // inverted.
1018   // An inbounds getelementptr that is a AddRec with a unit stride
1019   // cannot wrap per definition. The unit stride requirement is checked later.
1020   // An getelementptr without an inbounds attribute and unit stride would have
1021   // to access the pointer value "0" which is undefined behavior in address
1022   // space 0, therefore we can also vectorize this case.
1023   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1024   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1025     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1026     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1027   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
1028   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
1029     if (Assume) {
1030       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1031       IsNoWrapAddRec = true;
1032       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1033                    << "LAA:   Pointer: " << *Ptr << "\n"
1034                    << "LAA:   SCEV: " << *AR << "\n"
1035                    << "LAA:   Added an overflow assumption\n");
1036     } else {
1037       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1038                    << *Ptr << " SCEV: " << *AR << "\n");
1039       return 0;
1040     }
1041   }
1042
1043   // Check the step is constant.
1044   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1045
1046   // Calculate the pointer stride and check if it is constant.
1047   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1048   if (!C) {
1049     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
1050           " SCEV: " << *AR << "\n");
1051     return 0;
1052   }
1053
1054   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1055   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1056   const APInt &APStepVal = C->getAPInt();
1057
1058   // Huge step value - give up.
1059   if (APStepVal.getBitWidth() > 64)
1060     return 0;
1061
1062   int64_t StepVal = APStepVal.getSExtValue();
1063
1064   // Strided access.
1065   int64_t Stride = StepVal / Size;
1066   int64_t Rem = StepVal % Size;
1067   if (Rem)
1068     return 0;
1069
1070   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1071   // know we can't "wrap around the address space". In case of address space
1072   // zero we know that this won't happen without triggering undefined behavior.
1073   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
1074       Stride != 1 && Stride != -1) {
1075     if (Assume) {
1076       // We can avoid this case by adding a run-time check.
1077       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1078                    << "inbouds or in address space 0 may wrap:\n"
1079                    << "LAA:   Pointer: " << *Ptr << "\n"
1080                    << "LAA:   SCEV: " << *AR << "\n"
1081                    << "LAA:   Added an overflow assumption\n");
1082       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1083     } else
1084       return 0;
1085   }
1086
1087   return Stride;
1088 }
1089
1090 /// Take the pointer operand from the Load/Store instruction.
1091 /// Returns NULL if this is not a valid Load/Store instruction.
1092 static Value *getPointerOperand(Value *I) {
1093   if (auto *LI = dyn_cast<LoadInst>(I))
1094     return LI->getPointerOperand();
1095   if (auto *SI = dyn_cast<StoreInst>(I))
1096     return SI->getPointerOperand();
1097   return nullptr;
1098 }
1099
1100 /// Take the address space operand from the Load/Store instruction.
1101 /// Returns -1 if this is not a valid Load/Store instruction.
1102 static unsigned getAddressSpaceOperand(Value *I) {
1103   if (LoadInst *L = dyn_cast<LoadInst>(I))
1104     return L->getPointerAddressSpace();
1105   if (StoreInst *S = dyn_cast<StoreInst>(I))
1106     return S->getPointerAddressSpace();
1107   return -1;
1108 }
1109
1110 /// Returns true if the memory operations \p A and \p B are consecutive.
1111 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1112                                ScalarEvolution &SE, bool CheckType) {
1113   Value *PtrA = getPointerOperand(A);
1114   Value *PtrB = getPointerOperand(B);
1115   unsigned ASA = getAddressSpaceOperand(A);
1116   unsigned ASB = getAddressSpaceOperand(B);
1117
1118   // Check that the address spaces match and that the pointers are valid.
1119   if (!PtrA || !PtrB || (ASA != ASB))
1120     return false;
1121
1122   // Make sure that A and B are different pointers.
1123   if (PtrA == PtrB)
1124     return false;
1125
1126   // Make sure that A and B have the same type if required.
1127   if (CheckType && PtrA->getType() != PtrB->getType())
1128     return false;
1129
1130   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1131   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1132   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1133
1134   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1135   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1136   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1137
1138   //  OffsetDelta = OffsetB - OffsetA;
1139   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1140   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1141   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1142   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1143   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1144   // Check if they are based on the same pointer. That makes the offsets
1145   // sufficient.
1146   if (PtrA == PtrB)
1147     return OffsetDelta == Size;
1148
1149   // Compute the necessary base pointer delta to have the necessary final delta
1150   // equal to the size.
1151   // BaseDelta = Size - OffsetDelta;
1152   const SCEV *SizeSCEV = SE.getConstant(Size);
1153   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1154
1155   // Otherwise compute the distance with SCEV between the base pointers.
1156   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1157   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1158   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1159   return X == PtrSCEVB;
1160 }
1161
1162 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1163   switch (Type) {
1164   case NoDep:
1165   case Forward:
1166   case BackwardVectorizable:
1167     return true;
1168
1169   case Unknown:
1170   case ForwardButPreventsForwarding:
1171   case Backward:
1172   case BackwardVectorizableButPreventsForwarding:
1173     return false;
1174   }
1175   llvm_unreachable("unexpected DepType!");
1176 }
1177
1178 bool MemoryDepChecker::Dependence::isBackward() const {
1179   switch (Type) {
1180   case NoDep:
1181   case Forward:
1182   case ForwardButPreventsForwarding:
1183   case Unknown:
1184     return false;
1185
1186   case BackwardVectorizable:
1187   case Backward:
1188   case BackwardVectorizableButPreventsForwarding:
1189     return true;
1190   }
1191   llvm_unreachable("unexpected DepType!");
1192 }
1193
1194 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1195   return isBackward() || Type == Unknown;
1196 }
1197
1198 bool MemoryDepChecker::Dependence::isForward() const {
1199   switch (Type) {
1200   case Forward:
1201   case ForwardButPreventsForwarding:
1202     return true;
1203
1204   case NoDep:
1205   case Unknown:
1206   case BackwardVectorizable:
1207   case Backward:
1208   case BackwardVectorizableButPreventsForwarding:
1209     return false;
1210   }
1211   llvm_unreachable("unexpected DepType!");
1212 }
1213
1214 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1215                                                     uint64_t TypeByteSize) {
1216   // If loads occur at a distance that is not a multiple of a feasible vector
1217   // factor store-load forwarding does not take place.
1218   // Positive dependences might cause troubles because vectorizing them might
1219   // prevent store-load forwarding making vectorized code run a lot slower.
1220   //   a[i] = a[i-3] ^ a[i-8];
1221   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1222   //   hence on your typical architecture store-load forwarding does not take
1223   //   place. Vectorizing in such cases does not make sense.
1224   // Store-load forwarding distance.
1225
1226   // After this many iterations store-to-load forwarding conflicts should not
1227   // cause any slowdowns.
1228   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1229   // Maximum vector factor.
1230   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1231       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1232
1233   // Compute the smallest VF at which the store and load would be misaligned.
1234   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1235        VF *= 2) {
1236     // If the number of vector iteration between the store and the load are
1237     // small we could incur conflicts.
1238     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1239       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1240       break;
1241     }
1242   }
1243
1244   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1245     DEBUG(dbgs() << "LAA: Distance " << Distance
1246                  << " that could cause a store-load forwarding conflict\n");
1247     return true;
1248   }
1249
1250   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1251       MaxVFWithoutSLForwardIssues !=
1252           VectorizerParams::MaxVectorWidth * TypeByteSize)
1253     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1254   return false;
1255 }
1256
1257 /// Given a non-constant (unknown) dependence-distance \p Dist between two 
1258 /// memory accesses, that have the same stride whose absolute value is given
1259 /// in \p Stride, and that have the same type size \p TypeByteSize,
1260 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1261 /// possible to prove statically that the dependence distance is larger
1262 /// than the range that the accesses will travel through the execution of
1263 /// the loop. If so, return true; false otherwise. This is useful for
1264 /// example in loops such as the following (PR31098):
1265 ///     for (i = 0; i < D; ++i) {
1266 ///                = out[i];
1267 ///       out[i+D] =
1268 ///     }
1269 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1270                                      const SCEV &BackedgeTakenCount,
1271                                      const SCEV &Dist, uint64_t Stride,
1272                                      uint64_t TypeByteSize) {
1273
1274   // If we can prove that
1275   //      (**) |Dist| > BackedgeTakenCount * Step
1276   // where Step is the absolute stride of the memory accesses in bytes, 
1277   // then there is no dependence.
1278   //
1279   // Ratioanle: 
1280   // We basically want to check if the absolute distance (|Dist/Step|) 
1281   // is >= the loop iteration count (or > BackedgeTakenCount). 
1282   // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 
1283   // Section 4.2.1); Note, that for vectorization it is sufficient to prove 
1284   // that the dependence distance is >= VF; This is checked elsewhere.
1285   // But in some cases we can prune unknown dependence distances early, and 
1286   // even before selecting the VF, and without a runtime test, by comparing 
1287   // the distance against the loop iteration count. Since the vectorized code 
1288   // will be executed only if LoopCount >= VF, proving distance >= LoopCount 
1289   // also guarantees that distance >= VF.
1290   //
1291   const uint64_t ByteStride = Stride * TypeByteSize;
1292   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1293   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1294
1295   const SCEV *CastedDist = &Dist;
1296   const SCEV *CastedProduct = Product;
1297   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1298   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1299
1300   // The dependence distance can be positive/negative, so we sign extend Dist; 
1301   // The multiplication of the absolute stride in bytes and the 
1302   // backdgeTakenCount is non-negative, so we zero extend Product.
1303   if (DistTypeSize > ProductTypeSize)
1304     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1305   else
1306     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1307
1308   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1309   // (If so, then we have proven (**) because |Dist| >= Dist)
1310   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1311   if (SE.isKnownPositive(Minus))
1312     return true;
1313
1314   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1315   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1316   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1317   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1318   if (SE.isKnownPositive(Minus))
1319     return true;
1320
1321   return false;
1322 }
1323
1324 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1325 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1326 /// bytes.
1327 ///
1328 /// \returns true if they are independent.
1329 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1330                                           uint64_t TypeByteSize) {
1331   assert(Stride > 1 && "The stride must be greater than 1");
1332   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1333   assert(Distance > 0 && "The distance must be non-zero");
1334
1335   // Skip if the distance is not multiple of type byte size.
1336   if (Distance % TypeByteSize)
1337     return false;
1338
1339   uint64_t ScaledDist = Distance / TypeByteSize;
1340
1341   // No dependence if the scaled distance is not multiple of the stride.
1342   // E.g.
1343   //      for (i = 0; i < 1024 ; i += 4)
1344   //        A[i+2] = A[i] + 1;
1345   //
1346   // Two accesses in memory (scaled distance is 2, stride is 4):
1347   //     | A[0] |      |      |      | A[4] |      |      |      |
1348   //     |      |      | A[2] |      |      |      | A[6] |      |
1349   //
1350   // E.g.
1351   //      for (i = 0; i < 1024 ; i += 3)
1352   //        A[i+4] = A[i] + 1;
1353   //
1354   // Two accesses in memory (scaled distance is 4, stride is 3):
1355   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1356   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1357   return ScaledDist % Stride;
1358 }
1359
1360 MemoryDepChecker::Dependence::DepType
1361 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1362                               const MemAccessInfo &B, unsigned BIdx,
1363                               const ValueToValueMap &Strides) {
1364   assert (AIdx < BIdx && "Must pass arguments in program order");
1365
1366   Value *APtr = A.getPointer();
1367   Value *BPtr = B.getPointer();
1368   bool AIsWrite = A.getInt();
1369   bool BIsWrite = B.getInt();
1370
1371   // Two reads are independent.
1372   if (!AIsWrite && !BIsWrite)
1373     return Dependence::NoDep;
1374
1375   // We cannot check pointers in different address spaces.
1376   if (APtr->getType()->getPointerAddressSpace() !=
1377       BPtr->getType()->getPointerAddressSpace())
1378     return Dependence::Unknown;
1379
1380   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1381   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1382
1383   const SCEV *Src = PSE.getSCEV(APtr);
1384   const SCEV *Sink = PSE.getSCEV(BPtr);
1385
1386   // If the induction step is negative we have to invert source and sink of the
1387   // dependence.
1388   if (StrideAPtr < 0) {
1389     std::swap(APtr, BPtr);
1390     std::swap(Src, Sink);
1391     std::swap(AIsWrite, BIsWrite);
1392     std::swap(AIdx, BIdx);
1393     std::swap(StrideAPtr, StrideBPtr);
1394   }
1395
1396   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1397
1398   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1399                << "(Induction step: " << StrideAPtr << ")\n");
1400   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1401                << *InstMap[BIdx] << ": " << *Dist << "\n");
1402
1403   // Need accesses with constant stride. We don't want to vectorize
1404   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1405   // the address space.
1406   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1407     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1408     return Dependence::Unknown;
1409   }
1410
1411   Type *ATy = APtr->getType()->getPointerElementType();
1412   Type *BTy = BPtr->getType()->getPointerElementType();
1413   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1414   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1415   uint64_t Stride = std::abs(StrideAPtr);
1416   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1417   if (!C) {
1418     if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1419         isSafeDependenceDistance(DL, *(PSE.getSE()),
1420                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1421                                  TypeByteSize))
1422       return Dependence::NoDep;
1423
1424     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1425     ShouldRetryWithRuntimeCheck = true;
1426     return Dependence::Unknown;
1427   }
1428
1429   const APInt &Val = C->getAPInt();
1430   int64_t Distance = Val.getSExtValue();
1431
1432   // Attempt to prove strided accesses independent.
1433   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1434       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1435     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1436     return Dependence::NoDep;
1437   }
1438
1439   // Negative distances are not plausible dependencies.
1440   if (Val.isNegative()) {
1441     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1442     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1443         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1444          ATy != BTy)) {
1445       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1446       return Dependence::ForwardButPreventsForwarding;
1447     }
1448
1449     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1450     return Dependence::Forward;
1451   }
1452
1453   // Write to the same location with the same size.
1454   // Could be improved to assert type sizes are the same (i32 == float, etc).
1455   if (Val == 0) {
1456     if (ATy == BTy)
1457       return Dependence::Forward;
1458     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1459     return Dependence::Unknown;
1460   }
1461
1462   assert(Val.isStrictlyPositive() && "Expect a positive value");
1463
1464   if (ATy != BTy) {
1465     DEBUG(dbgs() <<
1466           "LAA: ReadWrite-Write positive dependency with different types\n");
1467     return Dependence::Unknown;
1468   }
1469
1470   // Bail out early if passed-in parameters make vectorization not feasible.
1471   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1472                            VectorizerParams::VectorizationFactor : 1);
1473   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1474                            VectorizerParams::VectorizationInterleave : 1);
1475   // The minimum number of iterations for a vectorized/unrolled version.
1476   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1477
1478   // It's not vectorizable if the distance is smaller than the minimum distance
1479   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1480   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1481   // TypeByteSize (No need to plus the last gap distance).
1482   //
1483   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1484   //      foo(int *A) {
1485   //        int *B = (int *)((char *)A + 14);
1486   //        for (i = 0 ; i < 1024 ; i += 2)
1487   //          B[i] = A[i] + 1;
1488   //      }
1489   //
1490   // Two accesses in memory (stride is 2):
1491   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1492   //                              | B[0] |      | B[2] |      | B[4] |
1493   //
1494   // Distance needs for vectorizing iterations except the last iteration:
1495   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1496   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1497   //
1498   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1499   // 12, which is less than distance.
1500   //
1501   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1502   // the minimum distance needed is 28, which is greater than distance. It is
1503   // not safe to do vectorization.
1504   uint64_t MinDistanceNeeded =
1505       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1506   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1507     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1508                  << '\n');
1509     return Dependence::Backward;
1510   }
1511
1512   // Unsafe if the minimum distance needed is greater than max safe distance.
1513   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1514     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1515                  << MinDistanceNeeded << " size in bytes");
1516     return Dependence::Backward;
1517   }
1518
1519   // Positive distance bigger than max vectorization factor.
1520   // FIXME: Should use max factor instead of max distance in bytes, which could
1521   // not handle different types.
1522   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1523   //      void foo (int *A, char *B) {
1524   //        for (unsigned i = 0; i < 1024; i++) {
1525   //          A[i+2] = A[i] + 1;
1526   //          B[i+2] = B[i] + 1;
1527   //        }
1528   //      }
1529   //
1530   // This case is currently unsafe according to the max safe distance. If we
1531   // analyze the two accesses on array B, the max safe dependence distance
1532   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1533   // is 8, which is less than 2 and forbidden vectorization, But actually
1534   // both A and B could be vectorized by 2 iterations.
1535   MaxSafeDepDistBytes =
1536       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1537
1538   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1539   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1540       couldPreventStoreLoadForward(Distance, TypeByteSize))
1541     return Dependence::BackwardVectorizableButPreventsForwarding;
1542
1543   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1544   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1545                << " with max VF = " << MaxVF << '\n');
1546   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1547   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
1548   return Dependence::BackwardVectorizable;
1549 }
1550
1551 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1552                                    MemAccessInfoList &CheckDeps,
1553                                    const ValueToValueMap &Strides) {
1554
1555   MaxSafeDepDistBytes = -1;
1556   SmallPtrSet<MemAccessInfo, 8> Visited;
1557   for (MemAccessInfo CurAccess : CheckDeps) {
1558     if (Visited.count(CurAccess))
1559       continue;
1560
1561     // Get the relevant memory access set.
1562     EquivalenceClasses<MemAccessInfo>::iterator I =
1563       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1564
1565     // Check accesses within this set.
1566     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1567         AccessSets.member_begin(I);
1568     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1569         AccessSets.member_end();
1570
1571     // Check every access pair.
1572     while (AI != AE) {
1573       Visited.insert(*AI);
1574       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1575       while (OI != AE) {
1576         // Check every accessing instruction pair in program order.
1577         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1578              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1579           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1580                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1581             auto A = std::make_pair(&*AI, *I1);
1582             auto B = std::make_pair(&*OI, *I2);
1583
1584             assert(*I1 != *I2);
1585             if (*I1 > *I2)
1586               std::swap(A, B);
1587
1588             Dependence::DepType Type =
1589                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1590             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1591
1592             // Gather dependences unless we accumulated MaxDependences
1593             // dependences.  In that case return as soon as we find the first
1594             // unsafe dependence.  This puts a limit on this quadratic
1595             // algorithm.
1596             if (RecordDependences) {
1597               if (Type != Dependence::NoDep)
1598                 Dependences.push_back(Dependence(A.second, B.second, Type));
1599
1600               if (Dependences.size() >= MaxDependences) {
1601                 RecordDependences = false;
1602                 Dependences.clear();
1603                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1604               }
1605             }
1606             if (!RecordDependences && !SafeForVectorization)
1607               return false;
1608           }
1609         ++OI;
1610       }
1611       AI++;
1612     }
1613   }
1614
1615   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1616   return SafeForVectorization;
1617 }
1618
1619 SmallVector<Instruction *, 4>
1620 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1621   MemAccessInfo Access(Ptr, isWrite);
1622   auto &IndexVector = Accesses.find(Access)->second;
1623
1624   SmallVector<Instruction *, 4> Insts;
1625   transform(IndexVector,
1626                  std::back_inserter(Insts),
1627                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1628   return Insts;
1629 }
1630
1631 const char *MemoryDepChecker::Dependence::DepName[] = {
1632     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1633     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1634
1635 void MemoryDepChecker::Dependence::print(
1636     raw_ostream &OS, unsigned Depth,
1637     const SmallVectorImpl<Instruction *> &Instrs) const {
1638   OS.indent(Depth) << DepName[Type] << ":\n";
1639   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1640   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1641 }
1642
1643 bool LoopAccessInfo::canAnalyzeLoop() {
1644   // We need to have a loop header.
1645   DEBUG(dbgs() << "LAA: Found a loop in "
1646                << TheLoop->getHeader()->getParent()->getName() << ": "
1647                << TheLoop->getHeader()->getName() << '\n');
1648
1649   // We can only analyze innermost loops.
1650   if (!TheLoop->empty()) {
1651     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1652     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1653     return false;
1654   }
1655
1656   // We must have a single backedge.
1657   if (TheLoop->getNumBackEdges() != 1) {
1658     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1659     recordAnalysis("CFGNotUnderstood")
1660         << "loop control flow is not understood by analyzer";
1661     return false;
1662   }
1663
1664   // We must have a single exiting block.
1665   if (!TheLoop->getExitingBlock()) {
1666     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1667     recordAnalysis("CFGNotUnderstood")
1668         << "loop control flow is not understood by analyzer";
1669     return false;
1670   }
1671
1672   // We only handle bottom-tested loops, i.e. loop in which the condition is
1673   // checked at the end of each iteration. With that we can assume that all
1674   // instructions in the loop are executed the same number of times.
1675   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1676     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1677     recordAnalysis("CFGNotUnderstood")
1678         << "loop control flow is not understood by analyzer";
1679     return false;
1680   }
1681
1682   // ScalarEvolution needs to be able to find the exit count.
1683   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1684   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1685     recordAnalysis("CantComputeNumberOfIterations")
1686         << "could not determine number of loop iterations";
1687     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1688     return false;
1689   }
1690
1691   return true;
1692 }
1693
1694 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1695                                  const TargetLibraryInfo *TLI,
1696                                  DominatorTree *DT) {
1697   typedef SmallPtrSet<Value*, 16> ValueSet;
1698
1699   // Holds the Load and Store instructions.
1700   SmallVector<LoadInst *, 16> Loads;
1701   SmallVector<StoreInst *, 16> Stores;
1702
1703   // Holds all the different accesses in the loop.
1704   unsigned NumReads = 0;
1705   unsigned NumReadWrites = 0;
1706
1707   PtrRtChecking->Pointers.clear();
1708   PtrRtChecking->Need = false;
1709
1710   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1711
1712   // For each block.
1713   for (BasicBlock *BB : TheLoop->blocks()) {
1714     // Scan the BB and collect legal loads and stores.
1715     for (Instruction &I : *BB) {
1716       // If this is a load, save it. If this instruction can read from memory
1717       // but is not a load, then we quit. Notice that we don't handle function
1718       // calls that read or write.
1719       if (I.mayReadFromMemory()) {
1720         // Many math library functions read the rounding mode. We will only
1721         // vectorize a loop if it contains known function calls that don't set
1722         // the flag. Therefore, it is safe to ignore this read from memory.
1723         auto *Call = dyn_cast<CallInst>(&I);
1724         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1725           continue;
1726
1727         // If the function has an explicit vectorized counterpart, we can safely
1728         // assume that it can be vectorized.
1729         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1730             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1731           continue;
1732
1733         auto *Ld = dyn_cast<LoadInst>(&I);
1734         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1735           recordAnalysis("NonSimpleLoad", Ld)
1736               << "read with atomic ordering or volatile read";
1737           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1738           CanVecMem = false;
1739           return;
1740         }
1741         NumLoads++;
1742         Loads.push_back(Ld);
1743         DepChecker->addAccess(Ld);
1744         if (EnableMemAccessVersioning)
1745           collectStridedAccess(Ld);
1746         continue;
1747       }
1748
1749       // Save 'store' instructions. Abort if other instructions write to memory.
1750       if (I.mayWriteToMemory()) {
1751         auto *St = dyn_cast<StoreInst>(&I);
1752         if (!St) {
1753           recordAnalysis("CantVectorizeInstruction", St)
1754               << "instruction cannot be vectorized";
1755           CanVecMem = false;
1756           return;
1757         }
1758         if (!St->isSimple() && !IsAnnotatedParallel) {
1759           recordAnalysis("NonSimpleStore", St)
1760               << "write with atomic ordering or volatile write";
1761           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1762           CanVecMem = false;
1763           return;
1764         }
1765         NumStores++;
1766         Stores.push_back(St);
1767         DepChecker->addAccess(St);
1768         if (EnableMemAccessVersioning)
1769           collectStridedAccess(St);
1770       }
1771     } // Next instr.
1772   } // Next block.
1773
1774   // Now we have two lists that hold the loads and the stores.
1775   // Next, we find the pointers that they use.
1776
1777   // Check if we see any stores. If there are no stores, then we don't
1778   // care if the pointers are *restrict*.
1779   if (!Stores.size()) {
1780     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1781     CanVecMem = true;
1782     return;
1783   }
1784
1785   MemoryDepChecker::DepCandidates DependentAccesses;
1786   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1787                           AA, LI, DependentAccesses, *PSE);
1788
1789   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1790   // multiple times on the same object. If the ptr is accessed twice, once
1791   // for read and once for write, it will only appear once (on the write
1792   // list). This is okay, since we are going to check for conflicts between
1793   // writes and between reads and writes, but not between reads and reads.
1794   ValueSet Seen;
1795
1796   for (StoreInst *ST : Stores) {
1797     Value *Ptr = ST->getPointerOperand();
1798     // Check for store to loop invariant address.
1799     StoreToLoopInvariantAddress |= isUniform(Ptr);
1800     // If we did *not* see this pointer before, insert it to  the read-write
1801     // list. At this phase it is only a 'write' list.
1802     if (Seen.insert(Ptr).second) {
1803       ++NumReadWrites;
1804
1805       MemoryLocation Loc = MemoryLocation::get(ST);
1806       // The TBAA metadata could have a control dependency on the predication
1807       // condition, so we cannot rely on it when determining whether or not we
1808       // need runtime pointer checks.
1809       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1810         Loc.AATags.TBAA = nullptr;
1811
1812       Accesses.addStore(Loc);
1813     }
1814   }
1815
1816   if (IsAnnotatedParallel) {
1817     DEBUG(dbgs()
1818           << "LAA: A loop annotated parallel, ignore memory dependency "
1819           << "checks.\n");
1820     CanVecMem = true;
1821     return;
1822   }
1823
1824   for (LoadInst *LD : Loads) {
1825     Value *Ptr = LD->getPointerOperand();
1826     // If we did *not* see this pointer before, insert it to the
1827     // read list. If we *did* see it before, then it is already in
1828     // the read-write list. This allows us to vectorize expressions
1829     // such as A[i] += x;  Because the address of A[i] is a read-write
1830     // pointer. This only works if the index of A[i] is consecutive.
1831     // If the address of i is unknown (for example A[B[i]]) then we may
1832     // read a few words, modify, and write a few words, and some of the
1833     // words may be written to the same address.
1834     bool IsReadOnlyPtr = false;
1835     if (Seen.insert(Ptr).second ||
1836         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1837       ++NumReads;
1838       IsReadOnlyPtr = true;
1839     }
1840
1841     MemoryLocation Loc = MemoryLocation::get(LD);
1842     // The TBAA metadata could have a control dependency on the predication
1843     // condition, so we cannot rely on it when determining whether or not we
1844     // need runtime pointer checks.
1845     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1846       Loc.AATags.TBAA = nullptr;
1847
1848     Accesses.addLoad(Loc, IsReadOnlyPtr);
1849   }
1850
1851   // If we write (or read-write) to a single destination and there are no
1852   // other reads in this loop then is it safe to vectorize.
1853   if (NumReadWrites == 1 && NumReads == 0) {
1854     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1855     CanVecMem = true;
1856     return;
1857   }
1858
1859   // Build dependence sets and check whether we need a runtime pointer bounds
1860   // check.
1861   Accesses.buildDependenceSets();
1862
1863   // Find pointers with computable bounds. We are going to use this information
1864   // to place a runtime bound check.
1865   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1866                                                   TheLoop, SymbolicStrides);
1867   if (!CanDoRTIfNeeded) {
1868     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1869     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1870                  << "the array bounds.\n");
1871     CanVecMem = false;
1872     return;
1873   }
1874
1875   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1876
1877   CanVecMem = true;
1878   if (Accesses.isDependencyCheckNeeded()) {
1879     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1880     CanVecMem = DepChecker->areDepsSafe(
1881         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1882     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
1883
1884     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1885       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1886
1887       // Clear the dependency checks. We assume they are not needed.
1888       Accesses.resetDepChecks(*DepChecker);
1889
1890       PtrRtChecking->reset();
1891       PtrRtChecking->Need = true;
1892
1893       auto *SE = PSE->getSE();
1894       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1895                                                  SymbolicStrides, true);
1896
1897       // Check that we found the bounds for the pointer.
1898       if (!CanDoRTIfNeeded) {
1899         recordAnalysis("CantCheckMemDepsAtRunTime")
1900             << "cannot check memory dependencies at runtime";
1901         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1902         CanVecMem = false;
1903         return;
1904       }
1905
1906       CanVecMem = true;
1907     }
1908   }
1909
1910   if (CanVecMem)
1911     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1912                  << (PtrRtChecking->Need ? "" : " don't")
1913                  << " need runtime memory checks.\n");
1914   else {
1915     recordAnalysis("UnsafeMemDep")
1916         << "unsafe dependent memory operations in loop. Use "
1917            "#pragma loop distribute(enable) to allow loop distribution "
1918            "to attempt to isolate the offending operations into a separate "
1919            "loop";
1920     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1921   }
1922 }
1923
1924 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1925                                            DominatorTree *DT)  {
1926   assert(TheLoop->contains(BB) && "Unknown block used");
1927
1928   // Blocks that do not dominate the latch need predication.
1929   BasicBlock* Latch = TheLoop->getLoopLatch();
1930   return !DT->dominates(BB, Latch);
1931 }
1932
1933 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1934                                                            Instruction *I) {
1935   assert(!Report && "Multiple reports generated");
1936
1937   Value *CodeRegion = TheLoop->getHeader();
1938   DebugLoc DL = TheLoop->getStartLoc();
1939
1940   if (I) {
1941     CodeRegion = I->getParent();
1942     // If there is no debug location attached to the instruction, revert back to
1943     // using the loop's.
1944     if (I->getDebugLoc())
1945       DL = I->getDebugLoc();
1946   }
1947
1948   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1949                                                    CodeRegion);
1950   return *Report;
1951 }
1952
1953 bool LoopAccessInfo::isUniform(Value *V) const {
1954   auto *SE = PSE->getSE();
1955   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1956   // never considered uniform.
1957   // TODO: Is this really what we want? Even without FP SCEV, we may want some
1958   // trivially loop-invariant FP values to be considered uniform.
1959   if (!SE->isSCEVable(V->getType()))
1960     return false;
1961   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1962 }
1963
1964 // FIXME: this function is currently a duplicate of the one in
1965 // LoopVectorize.cpp.
1966 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1967                                  Instruction *Loc) {
1968   if (FirstInst)
1969     return FirstInst;
1970   if (Instruction *I = dyn_cast<Instruction>(V))
1971     return I->getParent() == Loc->getParent() ? I : nullptr;
1972   return nullptr;
1973 }
1974
1975 namespace {
1976
1977 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1978 /// need to use value-handles because SCEV expansion can invalidate previously
1979 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1980 /// a previous one.
1981 struct PointerBounds {
1982   TrackingVH<Value> Start;
1983   TrackingVH<Value> End;
1984 };
1985
1986 } // end anonymous namespace
1987
1988 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1989 /// in \p TheLoop.  \return the values for the bounds.
1990 static PointerBounds
1991 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1992              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1993              const RuntimePointerChecking &PtrRtChecking) {
1994   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1995   const SCEV *Sc = SE->getSCEV(Ptr);
1996
1997   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1998   LLVMContext &Ctx = Loc->getContext();
1999
2000   // Use this type for pointer arithmetic.
2001   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2002
2003   if (SE->isLoopInvariant(Sc, TheLoop)) {
2004     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
2005                  << "\n");
2006     // Ptr could be in the loop body. If so, expand a new one at the correct
2007     // location.
2008     Instruction *Inst = dyn_cast<Instruction>(Ptr);
2009     Value *NewPtr = (Inst && TheLoop->contains(Inst))
2010                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2011                         : Ptr;
2012     // We must return a half-open range, which means incrementing Sc.
2013     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2014     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2015     return {NewPtr, NewPtrPlusOne};
2016   } else {
2017     Value *Start = nullptr, *End = nullptr;
2018     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2019     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2020     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2021     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
2022     return {Start, End};
2023   }
2024 }
2025
2026 /// \brief Turns a collection of checks into a collection of expanded upper and
2027 /// lower bounds for both pointers in the check.
2028 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2029     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2030     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2031     const RuntimePointerChecking &PtrRtChecking) {
2032   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2033
2034   // Here we're relying on the SCEV Expander's cache to only emit code for the
2035   // same bounds once.
2036   transform(
2037       PointerChecks, std::back_inserter(ChecksWithBounds),
2038       [&](const RuntimePointerChecking::PointerCheck &Check) {
2039         PointerBounds
2040           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2041           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2042         return std::make_pair(First, Second);
2043       });
2044
2045   return ChecksWithBounds;
2046 }
2047
2048 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
2049     Instruction *Loc,
2050     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2051     const {
2052   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2053   auto *SE = PSE->getSE();
2054   SCEVExpander Exp(*SE, DL, "induction");
2055   auto ExpandedChecks =
2056       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
2057
2058   LLVMContext &Ctx = Loc->getContext();
2059   Instruction *FirstInst = nullptr;
2060   IRBuilder<> ChkBuilder(Loc);
2061   // Our instructions might fold to a constant.
2062   Value *MemoryRuntimeCheck = nullptr;
2063
2064   for (const auto &Check : ExpandedChecks) {
2065     const PointerBounds &A = Check.first, &B = Check.second;
2066     // Check if two pointers (A and B) conflict where conflict is computed as:
2067     // start(A) <= end(B) && start(B) <= end(A)
2068     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2069     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
2070
2071     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2072            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2073            "Trying to bounds check pointers with different address spaces");
2074
2075     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2076     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2077
2078     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2079     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2080     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
2081     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
2082
2083     // [A|B].Start points to the first accessed byte under base [A|B].
2084     // [A|B].End points to the last accessed byte, plus one.
2085     // There is no conflict when the intervals are disjoint:
2086     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2087     //
2088     // bound0 = (B.Start < A.End)
2089     // bound1 = (A.Start < B.End)
2090     //  IsConflict = bound0 & bound1
2091     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
2092     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2093     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
2094     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2095     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2096     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2097     if (MemoryRuntimeCheck) {
2098       IsConflict =
2099           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2100       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2101     }
2102     MemoryRuntimeCheck = IsConflict;
2103   }
2104
2105   if (!MemoryRuntimeCheck)
2106     return std::make_pair(nullptr, nullptr);
2107
2108   // We have to do this trickery because the IRBuilder might fold the check to a
2109   // constant expression in which case there is no Instruction anchored in a
2110   // the block.
2111   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2112                                                  ConstantInt::getTrue(Ctx));
2113   ChkBuilder.Insert(Check, "memcheck.conflict");
2114   FirstInst = getFirstInst(FirstInst, Check, Loc);
2115   return std::make_pair(FirstInst, Check);
2116 }
2117
2118 std::pair<Instruction *, Instruction *>
2119 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2120   if (!PtrRtChecking->Need)
2121     return std::make_pair(nullptr, nullptr);
2122
2123   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2124 }
2125
2126 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2127   Value *Ptr = nullptr;
2128   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2129     Ptr = LI->getPointerOperand();
2130   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2131     Ptr = SI->getPointerOperand();
2132   else
2133     return;
2134
2135   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2136   if (!Stride)
2137     return;
2138
2139   DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2140                   "versioning:");
2141   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2142
2143   // Avoid adding the "Stride == 1" predicate when we know that 
2144   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2145   // or zero iteration loop, as Trip-Count <= Stride == 1.
2146   // 
2147   // TODO: We are currently not making a very informed decision on when it is
2148   // beneficial to apply stride versioning. It might make more sense that the
2149   // users of this analysis (such as the vectorizer) will trigger it, based on 
2150   // their specific cost considerations; For example, in cases where stride 
2151   // versioning does  not help resolving memory accesses/dependences, the
2152   // vectorizer should evaluate the cost of the runtime test, and the benefit 
2153   // of various possible stride specializations, considering the alternatives 
2154   // of using gather/scatters (if available). 
2155   
2156   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2157   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();  
2158
2159   // Match the types so we can compare the stride and the BETakenCount.
2160   // The Stride can be positive/negative, so we sign extend Stride; 
2161   // The backdgeTakenCount is non-negative, so we zero extend BETakenCount.
2162   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2163   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2164   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2165   const SCEV *CastedStride = StrideExpr;
2166   const SCEV *CastedBECount = BETakenCount;
2167   ScalarEvolution *SE = PSE->getSE();
2168   if (BETypeSize >= StrideTypeSize)
2169     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2170   else
2171     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2172   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2173   // Since TripCount == BackEdgeTakenCount + 1, checking:
2174   // "Stride >= TripCount" is equivalent to checking: 
2175   // Stride - BETakenCount > 0
2176   if (SE->isKnownPositive(StrideMinusBETaken)) {
2177     DEBUG(dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2178                     "Stride==1 predicate will imply that the loop executes "
2179                     "at most once.\n");
2180     return;
2181   }  
2182   DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2183
2184   SymbolicStrides[Ptr] = Stride;
2185   StrideSet.insert(Stride);
2186 }
2187
2188 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2189                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2190                                DominatorTree *DT, LoopInfo *LI)
2191     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2192       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
2193       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2194       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2195       StoreToLoopInvariantAddress(false) {
2196   if (canAnalyzeLoop())
2197     analyzeLoop(AA, LI, TLI, DT);
2198 }
2199
2200 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2201   if (CanVecMem) {
2202     OS.indent(Depth) << "Memory dependences are safe";
2203     if (MaxSafeDepDistBytes != -1ULL)
2204       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2205          << " bytes";
2206     if (PtrRtChecking->Need)
2207       OS << " with run-time checks";
2208     OS << "\n";
2209   }
2210
2211   if (Report)
2212     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2213
2214   if (auto *Dependences = DepChecker->getDependences()) {
2215     OS.indent(Depth) << "Dependences:\n";
2216     for (auto &Dep : *Dependences) {
2217       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2218       OS << "\n";
2219     }
2220   } else
2221     OS.indent(Depth) << "Too many dependences, not recorded\n";
2222
2223   // List the pair of accesses need run-time checks to prove independence.
2224   PtrRtChecking->print(OS, Depth);
2225   OS << "\n";
2226
2227   OS.indent(Depth) << "Store to invariant address was "
2228                    << (StoreToLoopInvariantAddress ? "" : "not ")
2229                    << "found in loop.\n";
2230
2231   OS.indent(Depth) << "SCEV assumptions:\n";
2232   PSE->getUnionPredicate().print(OS, Depth);
2233
2234   OS << "\n";
2235
2236   OS.indent(Depth) << "Expressions re-written:\n";
2237   PSE->print(OS, Depth);
2238 }
2239
2240 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2241   auto &LAI = LoopAccessInfoMap[L];
2242
2243   if (!LAI)
2244     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2245
2246   return *LAI.get();
2247 }
2248
2249 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2250   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2251
2252   for (Loop *TopLevelLoop : *LI)
2253     for (Loop *L : depth_first(TopLevelLoop)) {
2254       OS.indent(2) << L->getHeader()->getName() << ":\n";
2255       auto &LAI = LAA.getInfo(L);
2256       LAI.print(OS, 4);
2257     }
2258 }
2259
2260 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2261   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2262   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2263   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2264   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2265   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2266   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2267
2268   return false;
2269 }
2270
2271 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2272     AU.addRequired<ScalarEvolutionWrapperPass>();
2273     AU.addRequired<AAResultsWrapperPass>();
2274     AU.addRequired<DominatorTreeWrapperPass>();
2275     AU.addRequired<LoopInfoWrapperPass>();
2276
2277     AU.setPreservesAll();
2278 }
2279
2280 char LoopAccessLegacyAnalysis::ID = 0;
2281 static const char laa_name[] = "Loop Access Analysis";
2282 #define LAA_NAME "loop-accesses"
2283
2284 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2285 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2286 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2287 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2288 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2289 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2290
2291 AnalysisKey LoopAccessAnalysis::Key;
2292
2293 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2294                                        LoopStandardAnalysisResults &AR) {
2295   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2296 }
2297
2298 namespace llvm {
2299
2300   Pass *createLAAPass() {
2301     return new LoopAccessLegacyAnalysis();
2302   }
2303
2304 } // end namespace llvm