]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/MemoryBuiltins.cpp
Pull in r360968 from upstream llvm trunk (by Philip Reames):
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / MemoryBuiltins.cpp
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "memory-builtins"
52
53 enum AllocType : uint8_t {
54   OpNewLike          = 1<<0, // allocates; never returns null
55   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
56   CallocLike         = 1<<2, // allocates + bzero
57   ReallocLike        = 1<<3, // reallocates
58   StrDupLike         = 1<<4,
59   MallocOrCallocLike = MallocLike | CallocLike,
60   AllocLike          = MallocLike | CallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
76   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
77   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
78   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
79   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
80                                 {MallocLike,  3, 0,  -1}},
81   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
82   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
83   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
84   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
85                                 {MallocLike,  3, 0,  -1}},
86   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
87   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
88   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
89   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
90                                 {MallocLike,  3, 0,  -1}},
91   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
92   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
93   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
94   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
95                                  {MallocLike,  3, 0,  -1}},
96   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
97   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
98   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
99   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
100   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
101   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
102   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
103   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
104   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
105   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
106   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
107   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
108   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
109   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
110 };
111
112 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
113                                          bool &IsNoBuiltin) {
114   // Don't care about intrinsics in this case.
115   if (isa<IntrinsicInst>(V))
116     return nullptr;
117
118   if (LookThroughBitCast)
119     V = V->stripPointerCasts();
120
121   ImmutableCallSite CS(V);
122   if (!CS.getInstruction())
123     return nullptr;
124
125   IsNoBuiltin = CS.isNoBuiltin();
126
127   if (const Function *Callee = CS.getCalledFunction())
128     return Callee;
129   return nullptr;
130 }
131
132 /// Returns the allocation data for the given value if it's either a call to a
133 /// known allocation function, or a call to a function with the allocsize
134 /// attribute.
135 static Optional<AllocFnsTy>
136 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
137                              const TargetLibraryInfo *TLI) {
138   // Make sure that the function is available.
139   StringRef FnName = Callee->getName();
140   LibFunc TLIFn;
141   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
142     return None;
143
144   const auto *Iter = find_if(
145       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
146         return P.first == TLIFn;
147       });
148
149   if (Iter == std::end(AllocationFnData))
150     return None;
151
152   const AllocFnsTy *FnData = &Iter->second;
153   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
154     return None;
155
156   // Check function prototype.
157   int FstParam = FnData->FstParam;
158   int SndParam = FnData->SndParam;
159   FunctionType *FTy = Callee->getFunctionType();
160
161   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
162       FTy->getNumParams() == FnData->NumParams &&
163       (FstParam < 0 ||
164        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
165         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
166       (SndParam < 0 ||
167        FTy->getParamType(SndParam)->isIntegerTy(32) ||
168        FTy->getParamType(SndParam)->isIntegerTy(64)))
169     return *FnData;
170   return None;
171 }
172
173 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
174                                               const TargetLibraryInfo *TLI,
175                                               bool LookThroughBitCast = false) {
176   bool IsNoBuiltinCall;
177   if (const Function *Callee =
178           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
179     if (!IsNoBuiltinCall)
180       return getAllocationDataForFunction(Callee, AllocTy, TLI);
181   return None;
182 }
183
184 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
185                                               const TargetLibraryInfo *TLI) {
186   bool IsNoBuiltinCall;
187   const Function *Callee =
188       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
189   if (!Callee)
190     return None;
191
192   // Prefer to use existing information over allocsize. This will give us an
193   // accurate AllocTy.
194   if (!IsNoBuiltinCall)
195     if (Optional<AllocFnsTy> Data =
196             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
197       return Data;
198
199   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
200   if (Attr == Attribute())
201     return None;
202
203   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
204
205   AllocFnsTy Result;
206   // Because allocsize only tells us how many bytes are allocated, we're not
207   // really allowed to assume anything, so we use MallocLike.
208   Result.AllocTy = MallocLike;
209   Result.NumParams = Callee->getNumOperands();
210   Result.FstParam = Args.first;
211   Result.SndParam = Args.second.getValueOr(-1);
212   return Result;
213 }
214
215 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
216   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
217   return CS && CS.hasRetAttr(Attribute::NoAlias);
218 }
219
220 /// Tests if a value is a call or invoke to a library function that
221 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
222 /// like).
223 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
224                           bool LookThroughBitCast) {
225   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
226 }
227
228 /// Tests if a value is a call or invoke to a function that returns a
229 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
230 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
231                        bool LookThroughBitCast) {
232   // it's safe to consider realloc as noalias since accessing the original
233   // pointer is undefined behavior
234   return isAllocationFn(V, TLI, LookThroughBitCast) ||
235          hasNoAliasAttr(V, LookThroughBitCast);
236 }
237
238 /// Tests if a value is a call or invoke to a library function that
239 /// allocates uninitialized memory (such as malloc).
240 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
241                           bool LookThroughBitCast) {
242   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
243 }
244
245 /// Tests if a value is a call or invoke to a library function that
246 /// allocates zero-filled memory (such as calloc).
247 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
248                           bool LookThroughBitCast) {
249   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
250 }
251
252 /// Tests if a value is a call or invoke to a library function that
253 /// allocates memory similar to malloc or calloc.
254 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
255                                   bool LookThroughBitCast) {
256   return getAllocationData(V, MallocOrCallocLike, TLI,
257                            LookThroughBitCast).hasValue();
258 }
259
260 /// Tests if a value is a call or invoke to a library function that
261 /// allocates memory (either malloc, calloc, or strdup like).
262 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
263                          bool LookThroughBitCast) {
264   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
265 }
266
267 /// extractMallocCall - Returns the corresponding CallInst if the instruction
268 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
269 /// ignore InvokeInst here.
270 const CallInst *llvm::extractMallocCall(const Value *I,
271                                         const TargetLibraryInfo *TLI) {
272   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
273 }
274
275 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
276                                const TargetLibraryInfo *TLI,
277                                bool LookThroughSExt = false) {
278   if (!CI)
279     return nullptr;
280
281   // The size of the malloc's result type must be known to determine array size.
282   Type *T = getMallocAllocatedType(CI, TLI);
283   if (!T || !T->isSized())
284     return nullptr;
285
286   unsigned ElementSize = DL.getTypeAllocSize(T);
287   if (StructType *ST = dyn_cast<StructType>(T))
288     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
289
290   // If malloc call's arg can be determined to be a multiple of ElementSize,
291   // return the multiple.  Otherwise, return NULL.
292   Value *MallocArg = CI->getArgOperand(0);
293   Value *Multiple = nullptr;
294   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
295     return Multiple;
296
297   return nullptr;
298 }
299
300 /// getMallocType - Returns the PointerType resulting from the malloc call.
301 /// The PointerType depends on the number of bitcast uses of the malloc call:
302 ///   0: PointerType is the calls' return type.
303 ///   1: PointerType is the bitcast's result type.
304 ///  >1: Unique PointerType cannot be determined, return NULL.
305 PointerType *llvm::getMallocType(const CallInst *CI,
306                                  const TargetLibraryInfo *TLI) {
307   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
308
309   PointerType *MallocType = nullptr;
310   unsigned NumOfBitCastUses = 0;
311
312   // Determine if CallInst has a bitcast use.
313   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
314        UI != E;)
315     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
316       MallocType = cast<PointerType>(BCI->getDestTy());
317       NumOfBitCastUses++;
318     }
319
320   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
321   if (NumOfBitCastUses == 1)
322     return MallocType;
323
324   // Malloc call was not bitcast, so type is the malloc function's return type.
325   if (NumOfBitCastUses == 0)
326     return cast<PointerType>(CI->getType());
327
328   // Type could not be determined.
329   return nullptr;
330 }
331
332 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
333 /// The Type depends on the number of bitcast uses of the malloc call:
334 ///   0: PointerType is the malloc calls' return type.
335 ///   1: PointerType is the bitcast's result type.
336 ///  >1: Unique PointerType cannot be determined, return NULL.
337 Type *llvm::getMallocAllocatedType(const CallInst *CI,
338                                    const TargetLibraryInfo *TLI) {
339   PointerType *PT = getMallocType(CI, TLI);
340   return PT ? PT->getElementType() : nullptr;
341 }
342
343 /// getMallocArraySize - Returns the array size of a malloc call.  If the
344 /// argument passed to malloc is a multiple of the size of the malloced type,
345 /// then return that multiple.  For non-array mallocs, the multiple is
346 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
347 /// determined.
348 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
349                                 const TargetLibraryInfo *TLI,
350                                 bool LookThroughSExt) {
351   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
352   return computeArraySize(CI, DL, TLI, LookThroughSExt);
353 }
354
355 /// extractCallocCall - Returns the corresponding CallInst if the instruction
356 /// is a calloc call.
357 const CallInst *llvm::extractCallocCall(const Value *I,
358                                         const TargetLibraryInfo *TLI) {
359   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
360 }
361
362 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
363 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
364   bool IsNoBuiltinCall;
365   const Function *Callee =
366       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
367   if (Callee == nullptr || IsNoBuiltinCall)
368     return nullptr;
369
370   StringRef FnName = Callee->getName();
371   LibFunc TLIFn;
372   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
373     return nullptr;
374
375   unsigned ExpectedNumParams;
376   if (TLIFn == LibFunc_free ||
377       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
378       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
379       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
380       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
381       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
382       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
383     ExpectedNumParams = 1;
384   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
385            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
386            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
387            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
388            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
389            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
390            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
391            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
392            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
393            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
394            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
395            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
396            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
397            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
398            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
399            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
400     ExpectedNumParams = 2;
401   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
402            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
403     ExpectedNumParams = 3;
404   else
405     return nullptr;
406
407   // Check free prototype.
408   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
409   // attribute will exist.
410   FunctionType *FTy = Callee->getFunctionType();
411   if (!FTy->getReturnType()->isVoidTy())
412     return nullptr;
413   if (FTy->getNumParams() != ExpectedNumParams)
414     return nullptr;
415   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
416     return nullptr;
417
418   return dyn_cast<CallInst>(I);
419 }
420
421 //===----------------------------------------------------------------------===//
422 //  Utility functions to compute size of objects.
423 //
424 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
425   if (Data.second.isNegative() || Data.first.ult(Data.second))
426     return APInt(Data.first.getBitWidth(), 0);
427   return Data.first - Data.second;
428 }
429
430 /// Compute the size of the object pointed by Ptr. Returns true and the
431 /// object size in Size if successful, and false otherwise.
432 /// If RoundToAlign is true, then Size is rounded up to the alignment of
433 /// allocas, byval arguments, and global variables.
434 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
435                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
436   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
437   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
438   if (!Visitor.bothKnown(Data))
439     return false;
440
441   Size = getSizeWithOverflow(Data).getZExtValue();
442   return true;
443 }
444
445 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
446                                        const DataLayout &DL,
447                                        const TargetLibraryInfo *TLI,
448                                        bool MustSucceed) {
449   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
450          "ObjectSize must be a call to llvm.objectsize!");
451
452   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
453   ObjectSizeOpts EvalOptions;
454   // Unless we have to fold this to something, try to be as accurate as
455   // possible.
456   if (MustSucceed)
457     EvalOptions.EvalMode =
458         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
459   else
460     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
461
462   EvalOptions.NullIsUnknownSize =
463       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
464
465   // FIXME: Does it make sense to just return a failure value if the size won't
466   // fit in the output and `!MustSucceed`?
467   uint64_t Size;
468   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
469   if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
470       isUIntN(ResultType->getBitWidth(), Size))
471     return ConstantInt::get(ResultType, Size);
472
473   if (!MustSucceed)
474     return nullptr;
475
476   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
477 }
478
479 STATISTIC(ObjectVisitorArgument,
480           "Number of arguments with unsolved size and offset");
481 STATISTIC(ObjectVisitorLoad,
482           "Number of load instructions with unsolved size and offset");
483
484 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
485   if (Options.RoundToAlign && Align)
486     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
487   return Size;
488 }
489
490 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
491                                                  const TargetLibraryInfo *TLI,
492                                                  LLVMContext &Context,
493                                                  ObjectSizeOpts Options)
494     : DL(DL), TLI(TLI), Options(Options) {
495   // Pointer size must be rechecked for each object visited since it could have
496   // a different address space.
497 }
498
499 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
500   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
501   Zero = APInt::getNullValue(IntTyBits);
502
503   V = V->stripPointerCasts();
504   if (Instruction *I = dyn_cast<Instruction>(V)) {
505     // If we have already seen this instruction, bail out. Cycles can happen in
506     // unreachable code after constant propagation.
507     if (!SeenInsts.insert(I).second)
508       return unknown();
509
510     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
511       return visitGEPOperator(*GEP);
512     return visit(*I);
513   }
514   if (Argument *A = dyn_cast<Argument>(V))
515     return visitArgument(*A);
516   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
517     return visitConstantPointerNull(*P);
518   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
519     return visitGlobalAlias(*GA);
520   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
521     return visitGlobalVariable(*GV);
522   if (UndefValue *UV = dyn_cast<UndefValue>(V))
523     return visitUndefValue(*UV);
524   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
525     if (CE->getOpcode() == Instruction::IntToPtr)
526       return unknown(); // clueless
527     if (CE->getOpcode() == Instruction::GetElementPtr)
528       return visitGEPOperator(cast<GEPOperator>(*CE));
529   }
530
531   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
532                     << *V << '\n');
533   return unknown();
534 }
535
536 /// When we're compiling N-bit code, and the user uses parameters that are
537 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
538 /// trouble with APInt size issues. This function handles resizing + overflow
539 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
540 /// I's value.
541 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
542   // More bits than we can handle. Checking the bit width isn't necessary, but
543   // it's faster than checking active bits, and should give `false` in the
544   // vast majority of cases.
545   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
546     return false;
547   if (I.getBitWidth() != IntTyBits)
548     I = I.zextOrTrunc(IntTyBits);
549   return true;
550 }
551
552 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
553   if (!I.getAllocatedType()->isSized())
554     return unknown();
555
556   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
557   if (!I.isArrayAllocation())
558     return std::make_pair(align(Size, I.getAlignment()), Zero);
559
560   Value *ArraySize = I.getArraySize();
561   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
562     APInt NumElems = C->getValue();
563     if (!CheckedZextOrTrunc(NumElems))
564       return unknown();
565
566     bool Overflow;
567     Size = Size.umul_ov(NumElems, Overflow);
568     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
569                                                  Zero);
570   }
571   return unknown();
572 }
573
574 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
575   // No interprocedural analysis is done at the moment.
576   if (!A.hasByValOrInAllocaAttr()) {
577     ++ObjectVisitorArgument;
578     return unknown();
579   }
580   PointerType *PT = cast<PointerType>(A.getType());
581   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
582   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
583 }
584
585 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
586   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
587   if (!FnData)
588     return unknown();
589
590   // Handle strdup-like functions separately.
591   if (FnData->AllocTy == StrDupLike) {
592     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
593     if (!Size)
594       return unknown();
595
596     // Strndup limits strlen.
597     if (FnData->FstParam > 0) {
598       ConstantInt *Arg =
599           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
600       if (!Arg)
601         return unknown();
602
603       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
604       if (Size.ugt(MaxSize))
605         Size = MaxSize + 1;
606     }
607     return std::make_pair(Size, Zero);
608   }
609
610   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
611   if (!Arg)
612     return unknown();
613
614   APInt Size = Arg->getValue();
615   if (!CheckedZextOrTrunc(Size))
616     return unknown();
617
618   // Size is determined by just 1 parameter.
619   if (FnData->SndParam < 0)
620     return std::make_pair(Size, Zero);
621
622   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
623   if (!Arg)
624     return unknown();
625
626   APInt NumElems = Arg->getValue();
627   if (!CheckedZextOrTrunc(NumElems))
628     return unknown();
629
630   bool Overflow;
631   Size = Size.umul_ov(NumElems, Overflow);
632   return Overflow ? unknown() : std::make_pair(Size, Zero);
633
634   // TODO: handle more standard functions (+ wchar cousins):
635   // - strdup / strndup
636   // - strcpy / strncpy
637   // - strcat / strncat
638   // - memcpy / memmove
639   // - strcat / strncat
640   // - memset
641 }
642
643 SizeOffsetType
644 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
645   // If null is unknown, there's nothing we can do. Additionally, non-zero
646   // address spaces can make use of null, so we don't presume to know anything
647   // about that.
648   //
649   // TODO: How should this work with address space casts? We currently just drop
650   // them on the floor, but it's unclear what we should do when a NULL from
651   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
652   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
653     return unknown();
654   return std::make_pair(Zero, Zero);
655 }
656
657 SizeOffsetType
658 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
659   return unknown();
660 }
661
662 SizeOffsetType
663 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
664   // Easy cases were already folded by previous passes.
665   return unknown();
666 }
667
668 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
669   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
670   APInt Offset(IntTyBits, 0);
671   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
672     return unknown();
673
674   return std::make_pair(PtrData.first, PtrData.second + Offset);
675 }
676
677 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
678   if (GA.isInterposable())
679     return unknown();
680   return compute(GA.getAliasee());
681 }
682
683 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
684   if (!GV.hasDefinitiveInitializer())
685     return unknown();
686
687   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
688   return std::make_pair(align(Size, GV.getAlignment()), Zero);
689 }
690
691 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
692   // clueless
693   return unknown();
694 }
695
696 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
697   ++ObjectVisitorLoad;
698   return unknown();
699 }
700
701 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
702   // too complex to analyze statically.
703   return unknown();
704 }
705
706 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
707   SizeOffsetType TrueSide  = compute(I.getTrueValue());
708   SizeOffsetType FalseSide = compute(I.getFalseValue());
709   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
710     if (TrueSide == FalseSide) {
711         return TrueSide;
712     }
713
714     APInt TrueResult = getSizeWithOverflow(TrueSide);
715     APInt FalseResult = getSizeWithOverflow(FalseSide);
716
717     if (TrueResult == FalseResult) {
718       return TrueSide;
719     }
720     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
721       if (TrueResult.slt(FalseResult))
722         return TrueSide;
723       return FalseSide;
724     }
725     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
726       if (TrueResult.sgt(FalseResult))
727         return TrueSide;
728       return FalseSide;
729     }
730   }
731   return unknown();
732 }
733
734 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
735   return std::make_pair(Zero, Zero);
736 }
737
738 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
739   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
740                     << '\n');
741   return unknown();
742 }
743
744 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
745     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
746     bool RoundToAlign)
747     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
748       RoundToAlign(RoundToAlign) {
749   // IntTy and Zero must be set for each compute() since the address space may
750   // be different for later objects.
751 }
752
753 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
754   // XXX - Are vectors of pointers possible here?
755   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
756   Zero = ConstantInt::get(IntTy, 0);
757
758   SizeOffsetEvalType Result = compute_(V);
759
760   if (!bothKnown(Result)) {
761     // Erase everything that was computed in this iteration from the cache, so
762     // that no dangling references are left behind. We could be a bit smarter if
763     // we kept a dependency graph. It's probably not worth the complexity.
764     for (const Value *SeenVal : SeenVals) {
765       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
766       // non-computable results can be safely cached
767       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
768         CacheMap.erase(CacheIt);
769     }
770   }
771
772   SeenVals.clear();
773   return Result;
774 }
775
776 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
777   ObjectSizeOpts ObjSizeOptions;
778   ObjSizeOptions.RoundToAlign = RoundToAlign;
779
780   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions);
781   SizeOffsetType Const = Visitor.compute(V);
782   if (Visitor.bothKnown(Const))
783     return std::make_pair(ConstantInt::get(Context, Const.first),
784                           ConstantInt::get(Context, Const.second));
785
786   V = V->stripPointerCasts();
787
788   // Check cache.
789   CacheMapTy::iterator CacheIt = CacheMap.find(V);
790   if (CacheIt != CacheMap.end())
791     return CacheIt->second;
792
793   // Always generate code immediately before the instruction being
794   // processed, so that the generated code dominates the same BBs.
795   BuilderTy::InsertPointGuard Guard(Builder);
796   if (Instruction *I = dyn_cast<Instruction>(V))
797     Builder.SetInsertPoint(I);
798
799   // Now compute the size and offset.
800   SizeOffsetEvalType Result;
801
802   // Record the pointers that were handled in this run, so that they can be
803   // cleaned later if something fails. We also use this set to break cycles that
804   // can occur in dead code.
805   if (!SeenVals.insert(V).second) {
806     Result = unknown();
807   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
808     Result = visitGEPOperator(*GEP);
809   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
810     Result = visit(*I);
811   } else if (isa<Argument>(V) ||
812              (isa<ConstantExpr>(V) &&
813               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
814              isa<GlobalAlias>(V) ||
815              isa<GlobalVariable>(V)) {
816     // Ignore values where we cannot do more than ObjectSizeVisitor.
817     Result = unknown();
818   } else {
819     LLVM_DEBUG(
820         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
821                << '\n');
822     Result = unknown();
823   }
824
825   // Don't reuse CacheIt since it may be invalid at this point.
826   CacheMap[V] = Result;
827   return Result;
828 }
829
830 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
831   if (!I.getAllocatedType()->isSized())
832     return unknown();
833
834   // must be a VLA
835   assert(I.isArrayAllocation());
836   Value *ArraySize = I.getArraySize();
837   Value *Size = ConstantInt::get(ArraySize->getType(),
838                                  DL.getTypeAllocSize(I.getAllocatedType()));
839   Size = Builder.CreateMul(Size, ArraySize);
840   return std::make_pair(Size, Zero);
841 }
842
843 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
844   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
845   if (!FnData)
846     return unknown();
847
848   // Handle strdup-like functions separately.
849   if (FnData->AllocTy == StrDupLike) {
850     // TODO
851     return unknown();
852   }
853
854   Value *FirstArg = CS.getArgument(FnData->FstParam);
855   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
856   if (FnData->SndParam < 0)
857     return std::make_pair(FirstArg, Zero);
858
859   Value *SecondArg = CS.getArgument(FnData->SndParam);
860   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
861   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
862   return std::make_pair(Size, Zero);
863
864   // TODO: handle more standard functions (+ wchar cousins):
865   // - strdup / strndup
866   // - strcpy / strncpy
867   // - strcat / strncat
868   // - memcpy / memmove
869   // - strcat / strncat
870   // - memset
871 }
872
873 SizeOffsetEvalType
874 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
875   return unknown();
876 }
877
878 SizeOffsetEvalType
879 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
880   return unknown();
881 }
882
883 SizeOffsetEvalType
884 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
885   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
886   if (!bothKnown(PtrData))
887     return unknown();
888
889   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
890   Offset = Builder.CreateAdd(PtrData.second, Offset);
891   return std::make_pair(PtrData.first, Offset);
892 }
893
894 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
895   // clueless
896   return unknown();
897 }
898
899 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
900   return unknown();
901 }
902
903 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
904   // Create 2 PHIs: one for size and another for offset.
905   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
906   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
907
908   // Insert right away in the cache to handle recursive PHIs.
909   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
910
911   // Compute offset/size for each PHI incoming pointer.
912   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
913     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
914     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
915
916     if (!bothKnown(EdgeData)) {
917       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
918       OffsetPHI->eraseFromParent();
919       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
920       SizePHI->eraseFromParent();
921       return unknown();
922     }
923     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
924     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
925   }
926
927   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
928   if ((Tmp = SizePHI->hasConstantValue())) {
929     Size = Tmp;
930     SizePHI->replaceAllUsesWith(Size);
931     SizePHI->eraseFromParent();
932   }
933   if ((Tmp = OffsetPHI->hasConstantValue())) {
934     Offset = Tmp;
935     OffsetPHI->replaceAllUsesWith(Offset);
936     OffsetPHI->eraseFromParent();
937   }
938   return std::make_pair(Size, Offset);
939 }
940
941 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
942   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
943   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
944
945   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
946     return unknown();
947   if (TrueSide == FalseSide)
948     return TrueSide;
949
950   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
951                                      FalseSide.first);
952   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
953                                        FalseSide.second);
954   return std::make_pair(Size, Offset);
955 }
956
957 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
958   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
959                     << '\n');
960   return unknown();
961 }