]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / MemorySSAUpdater.cpp
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSAUpdater class.
11 //
12 //===----------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSAUpdater.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/MemorySSA.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/FormattedStream.h"
26 #include <algorithm>
27
28 #define DEBUG_TYPE "memoryssa"
29 using namespace llvm;
30
31 // This is the marker algorithm from "Simple and Efficient Construction of
32 // Static Single Assignment Form"
33 // The simple, non-marker algorithm places phi nodes at any join
34 // Here, we place markers, and only place phi nodes if they end up necessary.
35 // They are only necessary if they break a cycle (IE we recursively visit
36 // ourselves again), or we discover, while getting the value of the operands,
37 // that there are two or more definitions needing to be merged.
38 // This still will leave non-minimal form in the case of irreducible control
39 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
40 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
41     BasicBlock *BB,
42     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
43   // First, do a cache lookup. Without this cache, certain CFG structures
44   // (like a series of if statements) take exponential time to visit.
45   auto Cached = CachedPreviousDef.find(BB);
46   if (Cached != CachedPreviousDef.end()) {
47     return Cached->second;
48   }
49
50   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
51     // Single predecessor case, just recurse, we can only have one definition.
52     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
53     CachedPreviousDef.insert({BB, Result});
54     return Result;
55   }
56
57   if (VisitedBlocks.count(BB)) {
58     // We hit our node again, meaning we had a cycle, we must insert a phi
59     // node to break it so we have an operand. The only case this will
60     // insert useless phis is if we have irreducible control flow.
61     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
62     CachedPreviousDef.insert({BB, Result});
63     return Result;
64   }
65
66   if (VisitedBlocks.insert(BB).second) {
67     // Mark us visited so we can detect a cycle
68     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
69
70     // Recurse to get the values in our predecessors for placement of a
71     // potential phi node. This will insert phi nodes if we cycle in order to
72     // break the cycle and have an operand.
73     for (auto *Pred : predecessors(BB))
74       PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
75
76     // Now try to simplify the ops to avoid placing a phi.
77     // This may return null if we never created a phi yet, that's okay
78     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
79
80     // See if we can avoid the phi by simplifying it.
81     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
82     // If we couldn't simplify, we may have to create a phi
83     if (Result == Phi) {
84       if (!Phi)
85         Phi = MSSA->createMemoryPhi(BB);
86
87       // See if the existing phi operands match what we need.
88       // Unlike normal SSA, we only allow one phi node per block, so we can't just
89       // create a new one.
90       if (Phi->getNumOperands() != 0) {
91         // FIXME: Figure out whether this is dead code and if so remove it.
92         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
93           // These will have been filled in by the recursive read we did above.
94           std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
95           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
96         }
97       } else {
98         unsigned i = 0;
99         for (auto *Pred : predecessors(BB))
100           Phi->addIncoming(&*PhiOps[i++], Pred);
101         InsertedPHIs.push_back(Phi);
102       }
103       Result = Phi;
104     }
105
106     // Set ourselves up for the next variable by resetting visited state.
107     VisitedBlocks.erase(BB);
108     CachedPreviousDef.insert({BB, Result});
109     return Result;
110   }
111   llvm_unreachable("Should have hit one of the three cases above");
112 }
113
114 // This starts at the memory access, and goes backwards in the block to find the
115 // previous definition. If a definition is not found the block of the access,
116 // it continues globally, creating phi nodes to ensure we have a single
117 // definition.
118 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
119   if (auto *LocalResult = getPreviousDefInBlock(MA))
120     return LocalResult;
121   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
122   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
123 }
124
125 // This starts at the memory access, and goes backwards in the block to the find
126 // the previous definition. If the definition is not found in the block of the
127 // access, it returns nullptr.
128 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
129   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
130
131   // It's possible there are no defs, or we got handed the first def to start.
132   if (Defs) {
133     // If this is a def, we can just use the def iterators.
134     if (!isa<MemoryUse>(MA)) {
135       auto Iter = MA->getReverseDefsIterator();
136       ++Iter;
137       if (Iter != Defs->rend())
138         return &*Iter;
139     } else {
140       // Otherwise, have to walk the all access iterator.
141       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
142       for (auto &U : make_range(++MA->getReverseIterator(), End))
143         if (!isa<MemoryUse>(U))
144           return cast<MemoryAccess>(&U);
145       // Note that if MA comes before Defs->begin(), we won't hit a def.
146       return nullptr;
147     }
148   }
149   return nullptr;
150 }
151
152 // This starts at the end of block
153 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
154     BasicBlock *BB,
155     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
156   auto *Defs = MSSA->getWritableBlockDefs(BB);
157
158   if (Defs)
159     return &*Defs->rbegin();
160
161   return getPreviousDefRecursive(BB, CachedPreviousDef);
162 }
163 // Recurse over a set of phi uses to eliminate the trivial ones
164 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
165   if (!Phi)
166     return nullptr;
167   TrackingVH<MemoryAccess> Res(Phi);
168   SmallVector<TrackingVH<Value>, 8> Uses;
169   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
170   for (auto &U : Uses) {
171     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
172       auto OperRange = UsePhi->operands();
173       tryRemoveTrivialPhi(UsePhi, OperRange);
174     }
175   }
176   return Res;
177 }
178
179 // Eliminate trivial phis
180 // Phis are trivial if they are defined either by themselves, or all the same
181 // argument.
182 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
183 // We recursively try to remove them.
184 template <class RangeType>
185 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
186                                                     RangeType &Operands) {
187   // Bail out on non-opt Phis.
188   if (NonOptPhis.count(Phi))
189     return Phi;
190
191   // Detect equal or self arguments
192   MemoryAccess *Same = nullptr;
193   for (auto &Op : Operands) {
194     // If the same or self, good so far
195     if (Op == Phi || Op == Same)
196       continue;
197     // not the same, return the phi since it's not eliminatable by us
198     if (Same)
199       return Phi;
200     Same = cast<MemoryAccess>(&*Op);
201   }
202   // Never found a non-self reference, the phi is undef
203   if (Same == nullptr)
204     return MSSA->getLiveOnEntryDef();
205   if (Phi) {
206     Phi->replaceAllUsesWith(Same);
207     removeMemoryAccess(Phi);
208   }
209
210   // We should only end up recursing in case we replaced something, in which
211   // case, we may have made other Phis trivial.
212   return recursePhi(Same);
213 }
214
215 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
216   InsertedPHIs.clear();
217   MU->setDefiningAccess(getPreviousDef(MU));
218   // Unlike for defs, there is no extra work to do.  Because uses do not create
219   // new may-defs, there are only two cases:
220   //
221   // 1. There was a def already below us, and therefore, we should not have
222   // created a phi node because it was already needed for the def.
223   //
224   // 2. There is no def below us, and therefore, there is no extra renaming work
225   // to do.
226 }
227
228 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
229 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
230                                       MemoryAccess *NewDef) {
231   // Replace any operand with us an incoming block with the new defining
232   // access.
233   int i = MP->getBasicBlockIndex(BB);
234   assert(i != -1 && "Should have found the basic block in the phi");
235   // We can't just compare i against getNumOperands since one is signed and the
236   // other not. So use it to index into the block iterator.
237   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
238        ++BBIter) {
239     if (*BBIter != BB)
240       break;
241     MP->setIncomingValue(i, NewDef);
242     ++i;
243   }
244 }
245
246 // A brief description of the algorithm:
247 // First, we compute what should define the new def, using the SSA
248 // construction algorithm.
249 // Then, we update the defs below us (and any new phi nodes) in the graph to
250 // point to the correct new defs, to ensure we only have one variable, and no
251 // disconnected stores.
252 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
253   InsertedPHIs.clear();
254
255   // See if we had a local def, and if not, go hunting.
256   MemoryAccess *DefBefore = getPreviousDef(MD);
257   bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
258
259   // There is a def before us, which means we can replace any store/phi uses
260   // of that thing with us, since we are in the way of whatever was there
261   // before.
262   // We now define that def's memorydefs and memoryphis
263   if (DefBeforeSameBlock) {
264     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
265          UI != UE;) {
266       Use &U = *UI++;
267       // Leave the uses alone
268       if (isa<MemoryUse>(U.getUser()))
269         continue;
270       U.set(MD);
271     }
272   }
273
274   // and that def is now our defining access.
275   // We change them in this order otherwise we will appear in the use list
276   // above and reset ourselves.
277   MD->setDefiningAccess(DefBefore);
278
279   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
280   if (!DefBeforeSameBlock) {
281     // If there was a local def before us, we must have the same effect it
282     // did. Because every may-def is the same, any phis/etc we would create, it
283     // would also have created.  If there was no local def before us, we
284     // performed a global update, and have to search all successors and make
285     // sure we update the first def in each of them (following all paths until
286     // we hit the first def along each path). This may also insert phi nodes.
287     // TODO: There are other cases we can skip this work, such as when we have a
288     // single successor, and only used a straight line of single pred blocks
289     // backwards to find the def.  To make that work, we'd have to track whether
290     // getDefRecursive only ever used the single predecessor case.  These types
291     // of paths also only exist in between CFG simplifications.
292     FixupList.push_back(MD);
293   }
294
295   while (!FixupList.empty()) {
296     unsigned StartingPHISize = InsertedPHIs.size();
297     fixupDefs(FixupList);
298     FixupList.clear();
299     // Put any new phis on the fixup list, and process them
300     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
301   }
302   // Now that all fixups are done, rename all uses if we are asked.
303   if (RenameUses) {
304     SmallPtrSet<BasicBlock *, 16> Visited;
305     BasicBlock *StartBlock = MD->getBlock();
306     // We are guaranteed there is a def in the block, because we just got it
307     // handed to us in this function.
308     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
309     // Convert to incoming value if it's a memorydef. A phi *is* already an
310     // incoming value.
311     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
312       FirstDef = MD->getDefiningAccess();
313
314     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
315     // We just inserted a phi into this block, so the incoming value will become
316     // the phi anyway, so it does not matter what we pass.
317     for (auto &MP : InsertedPHIs) {
318       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
319       if (Phi)
320         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
321     }
322   }
323 }
324
325 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
326   SmallPtrSet<const BasicBlock *, 8> Seen;
327   SmallVector<const BasicBlock *, 16> Worklist;
328   for (auto &Var : Vars) {
329     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
330     if (!NewDef)
331       continue;
332     // First, see if there is a local def after the operand.
333     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
334     auto DefIter = NewDef->getDefsIterator();
335
336     // The temporary Phi is being fixed, unmark it for not to optimize.
337     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
338       NonOptPhis.erase(Phi);
339
340     // If there is a local def after us, we only have to rename that.
341     if (++DefIter != Defs->end()) {
342       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
343       continue;
344     }
345
346     // Otherwise, we need to search down through the CFG.
347     // For each of our successors, handle it directly if their is a phi, or
348     // place on the fixup worklist.
349     for (const auto *S : successors(NewDef->getBlock())) {
350       if (auto *MP = MSSA->getMemoryAccess(S))
351         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
352       else
353         Worklist.push_back(S);
354     }
355
356     while (!Worklist.empty()) {
357       const BasicBlock *FixupBlock = Worklist.back();
358       Worklist.pop_back();
359
360       // Get the first def in the block that isn't a phi node.
361       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
362         auto *FirstDef = &*Defs->begin();
363         // The loop above and below should have taken care of phi nodes
364         assert(!isa<MemoryPhi>(FirstDef) &&
365                "Should have already handled phi nodes!");
366         // We are now this def's defining access, make sure we actually dominate
367         // it
368         assert(MSSA->dominates(NewDef, FirstDef) &&
369                "Should have dominated the new access");
370
371         // This may insert new phi nodes, because we are not guaranteed the
372         // block we are processing has a single pred, and depending where the
373         // store was inserted, it may require phi nodes below it.
374         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
375         return;
376       }
377       // We didn't find a def, so we must continue.
378       for (const auto *S : successors(FixupBlock)) {
379         // If there is a phi node, handle it.
380         // Otherwise, put the block on the worklist
381         if (auto *MP = MSSA->getMemoryAccess(S))
382           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
383         else {
384           // If we cycle, we should have ended up at a phi node that we already
385           // processed.  FIXME: Double check this
386           if (!Seen.insert(S).second)
387             continue;
388           Worklist.push_back(S);
389         }
390       }
391     }
392   }
393 }
394
395 // Move What before Where in the MemorySSA IR.
396 template <class WhereType>
397 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
398                               WhereType Where) {
399   // Mark MemoryPhi users of What not to be optimized.
400   for (auto *U : What->users())
401     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
402       NonOptPhis.insert(PhiUser);
403
404   // Replace all our users with our defining access.
405   What->replaceAllUsesWith(What->getDefiningAccess());
406
407   // Let MemorySSA take care of moving it around in the lists.
408   MSSA->moveTo(What, BB, Where);
409
410   // Now reinsert it into the IR and do whatever fixups needed.
411   if (auto *MD = dyn_cast<MemoryDef>(What))
412     insertDef(MD);
413   else
414     insertUse(cast<MemoryUse>(What));
415
416   // Clear dangling pointers. We added all MemoryPhi users, but not all
417   // of them are removed by fixupDefs().
418   NonOptPhis.clear();
419 }
420
421 // Move What before Where in the MemorySSA IR.
422 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
423   moveTo(What, Where->getBlock(), Where->getIterator());
424 }
425
426 // Move What after Where in the MemorySSA IR.
427 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
428   moveTo(What, Where->getBlock(), ++Where->getIterator());
429 }
430
431 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
432                                    MemorySSA::InsertionPlace Where) {
433   return moveTo(What, BB, Where);
434 }
435
436 // All accesses in To used to be in From. Move to end and update access lists.
437 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
438                                        Instruction *Start) {
439
440   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
441   if (!Accs)
442     return;
443
444   MemoryAccess *FirstInNew = nullptr;
445   for (Instruction &I : make_range(Start->getIterator(), To->end()))
446     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
447       break;
448   if (!FirstInNew)
449     return;
450
451   auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
452   do {
453     auto NextIt = ++MUD->getIterator();
454     MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
455                                   ? nullptr
456                                   : cast<MemoryUseOrDef>(&*NextIt);
457     MSSA->moveTo(MUD, To, MemorySSA::End);
458     // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
459     // retrieve it again.
460     Accs = MSSA->getWritableBlockAccesses(From);
461     MUD = NextMUD;
462   } while (MUD);
463 }
464
465 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
466                                                 BasicBlock *To,
467                                                 Instruction *Start) {
468   assert(MSSA->getBlockAccesses(To) == nullptr &&
469          "To block is expected to be free of MemoryAccesses.");
470   moveAllAccesses(From, To, Start);
471   for (BasicBlock *Succ : successors(To))
472     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
473       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
474 }
475
476 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
477                                                Instruction *Start) {
478   assert(From->getSinglePredecessor() == To &&
479          "From block is expected to have a single predecessor (To).");
480   moveAllAccesses(From, To, Start);
481   for (BasicBlock *Succ : successors(From))
482     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
483       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
484 }
485
486 /// If all arguments of a MemoryPHI are defined by the same incoming
487 /// argument, return that argument.
488 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
489   MemoryAccess *MA = nullptr;
490
491   for (auto &Arg : MP->operands()) {
492     if (!MA)
493       MA = cast<MemoryAccess>(Arg);
494     else if (MA != Arg)
495       return nullptr;
496   }
497   return MA;
498 }
499
500 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
501     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds) {
502   assert(!MSSA->getWritableBlockAccesses(New) &&
503          "Access list should be null for a new block.");
504   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
505   if (!Phi)
506     return;
507   if (pred_size(Old) == 1) {
508     assert(pred_size(New) == Preds.size() &&
509            "Should have moved all predecessors.");
510     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
511   } else {
512     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
513                              "new immediate predecessor.");
514     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
515     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
516     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
517       if (PredsSet.count(B)) {
518         NewPhi->addIncoming(MA, B);
519         return true;
520       }
521       return false;
522     });
523     Phi->addIncoming(NewPhi, New);
524     if (onlySingleValue(NewPhi))
525       removeMemoryAccess(NewPhi);
526   }
527 }
528
529 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
530   assert(!MSSA->isLiveOnEntryDef(MA) &&
531          "Trying to remove the live on entry def");
532   // We can only delete phi nodes if they have no uses, or we can replace all
533   // uses with a single definition.
534   MemoryAccess *NewDefTarget = nullptr;
535   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
536     // Note that it is sufficient to know that all edges of the phi node have
537     // the same argument.  If they do, by the definition of dominance frontiers
538     // (which we used to place this phi), that argument must dominate this phi,
539     // and thus, must dominate the phi's uses, and so we will not hit the assert
540     // below.
541     NewDefTarget = onlySingleValue(MP);
542     assert((NewDefTarget || MP->use_empty()) &&
543            "We can't delete this memory phi");
544   } else {
545     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
546   }
547
548   // Re-point the uses at our defining access
549   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
550     // Reset optimized on users of this store, and reset the uses.
551     // A few notes:
552     // 1. This is a slightly modified version of RAUW to avoid walking the
553     // uses twice here.
554     // 2. If we wanted to be complete, we would have to reset the optimized
555     // flags on users of phi nodes if doing the below makes a phi node have all
556     // the same arguments. Instead, we prefer users to removeMemoryAccess those
557     // phi nodes, because doing it here would be N^3.
558     if (MA->hasValueHandle())
559       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
560     // Note: We assume MemorySSA is not used in metadata since it's not really
561     // part of the IR.
562
563     while (!MA->use_empty()) {
564       Use &U = *MA->use_begin();
565       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
566         MUD->resetOptimized();
567       U.set(NewDefTarget);
568     }
569   }
570
571   // The call below to erase will destroy MA, so we can't change the order we
572   // are doing things here
573   MSSA->removeFromLookups(MA);
574   MSSA->removeFromLists(MA);
575 }
576
577 void MemorySSAUpdater::removeBlocks(
578     const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
579   // First delete all uses of BB in MemoryPhis.
580   for (BasicBlock *BB : DeadBlocks) {
581     TerminatorInst *TI = BB->getTerminator();
582     assert(TI && "Basic block expected to have a terminator instruction");
583     for (BasicBlock *Succ : TI->successors())
584       if (!DeadBlocks.count(Succ))
585         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
586           MP->unorderedDeleteIncomingBlock(BB);
587           if (MP->getNumIncomingValues() == 1)
588             removeMemoryAccess(MP);
589         }
590     // Drop all references of all accesses in BB
591     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
592       for (MemoryAccess &MA : *Acc)
593         MA.dropAllReferences();
594   }
595
596   // Next, delete all memory accesses in each block
597   for (BasicBlock *BB : DeadBlocks) {
598     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
599     if (!Acc)
600       continue;
601     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
602       MemoryAccess *MA = &*AB;
603       ++AB;
604       MSSA->removeFromLookups(MA);
605       MSSA->removeFromLists(MA);
606     }
607   }
608 }
609
610 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
611     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
612     MemorySSA::InsertionPlace Point) {
613   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
614   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
615   return NewAccess;
616 }
617
618 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
619     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
620   assert(I->getParent() == InsertPt->getBlock() &&
621          "New and old access must be in the same block");
622   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
623   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
624                               InsertPt->getIterator());
625   return NewAccess;
626 }
627
628 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
629     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
630   assert(I->getParent() == InsertPt->getBlock() &&
631          "New and old access must be in the same block");
632   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
633   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
634                               ++InsertPt->getIterator());
635   return NewAccess;
636 }