]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/PHITransAddr.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / PHITransAddr.cpp
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/PHITransAddr.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
25
26 static bool CanPHITrans(Instruction *Inst) {
27   if (isa<PHINode>(Inst) ||
28       isa<GetElementPtrInst>(Inst))
29     return true;
30
31   if (isa<CastInst>(Inst) &&
32       isSafeToSpeculativelyExecute(Inst))
33     return true;
34
35   if (Inst->getOpcode() == Instruction::Add &&
36       isa<ConstantInt>(Inst->getOperand(1)))
37     return true;
38
39   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
40   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
41   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
42   return false;
43 }
44
45 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
46 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
47   if (!Addr) {
48     dbgs() << "PHITransAddr: null\n";
49     return;
50   }
51   dbgs() << "PHITransAddr: " << *Addr << "\n";
52   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
53     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
54 }
55 #endif
56
57
58 static bool VerifySubExpr(Value *Expr,
59                           SmallVectorImpl<Instruction*> &InstInputs) {
60   // If this is a non-instruction value, there is nothing to do.
61   Instruction *I = dyn_cast<Instruction>(Expr);
62   if (!I) return true;
63
64   // If it's an instruction, it is either in Tmp or its operands recursively
65   // are.
66   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
67   if (Entry != InstInputs.end()) {
68     InstInputs.erase(Entry);
69     return true;
70   }
71
72   // If it isn't in the InstInputs list it is a subexpr incorporated into the
73   // address.  Sanity check that it is phi translatable.
74   if (!CanPHITrans(I)) {
75     errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
76     errs() << *I << '\n';
77     llvm_unreachable("Either something is missing from InstInputs or "
78                      "CanPHITrans is wrong.");
79   }
80
81   // Validate the operands of the instruction.
82   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
83     if (!VerifySubExpr(I->getOperand(i), InstInputs))
84       return false;
85
86   return true;
87 }
88
89 /// Verify - Check internal consistency of this data structure.  If the
90 /// structure is valid, it returns true.  If invalid, it prints errors and
91 /// returns false.
92 bool PHITransAddr::Verify() const {
93   if (!Addr) return true;
94
95   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
96
97   if (!VerifySubExpr(Addr, Tmp))
98     return false;
99
100   if (!Tmp.empty()) {
101     errs() << "PHITransAddr contains extra instructions:\n";
102     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
103       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
104     llvm_unreachable("This is unexpected.");
105   }
106
107   // a-ok.
108   return true;
109 }
110
111
112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
113 /// if we have some hope of doing it.  This should be used as a filter to
114 /// avoid calling PHITranslateValue in hopeless situations.
115 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
116   // If the input value is not an instruction, or if it is not defined in CurBB,
117   // then we don't need to phi translate it.
118   Instruction *Inst = dyn_cast<Instruction>(Addr);
119   return !Inst || CanPHITrans(Inst);
120 }
121
122
123 static void RemoveInstInputs(Value *V,
124                              SmallVectorImpl<Instruction*> &InstInputs) {
125   Instruction *I = dyn_cast<Instruction>(V);
126   if (!I) return;
127
128   // If the instruction is in the InstInputs list, remove it.
129   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
130   if (Entry != InstInputs.end()) {
131     InstInputs.erase(Entry);
132     return;
133   }
134
135   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
136
137   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
138   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
139     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
140       RemoveInstInputs(Op, InstInputs);
141   }
142 }
143
144 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
145                                          BasicBlock *PredBB,
146                                          const DominatorTree *DT) {
147   // If this is a non-instruction value, it can't require PHI translation.
148   Instruction *Inst = dyn_cast<Instruction>(V);
149   if (!Inst) return V;
150
151   // Determine whether 'Inst' is an input to our PHI translatable expression.
152   bool isInput = is_contained(InstInputs, Inst);
153
154   // Handle inputs instructions if needed.
155   if (isInput) {
156     if (Inst->getParent() != CurBB) {
157       // If it is an input defined in a different block, then it remains an
158       // input.
159       return Inst;
160     }
161
162     // If 'Inst' is defined in this block and is an input that needs to be phi
163     // translated, we need to incorporate the value into the expression or fail.
164
165     // In either case, the instruction itself isn't an input any longer.
166     InstInputs.erase(find(InstInputs, Inst));
167
168     // If this is a PHI, go ahead and translate it.
169     if (PHINode *PN = dyn_cast<PHINode>(Inst))
170       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
171
172     // If this is a non-phi value, and it is analyzable, we can incorporate it
173     // into the expression by making all instruction operands be inputs.
174     if (!CanPHITrans(Inst))
175       return nullptr;
176
177     // All instruction operands are now inputs (and of course, they may also be
178     // defined in this block, so they may need to be phi translated themselves.
179     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
180       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
181         InstInputs.push_back(Op);
182   }
183
184   // Ok, it must be an intermediate result (either because it started that way
185   // or because we just incorporated it into the expression).  See if its
186   // operands need to be phi translated, and if so, reconstruct it.
187
188   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
189     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
190     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
191     if (!PHIIn) return nullptr;
192     if (PHIIn == Cast->getOperand(0))
193       return Cast;
194
195     // Find an available version of this cast.
196
197     // Constants are trivial to find.
198     if (Constant *C = dyn_cast<Constant>(PHIIn))
199       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
200                                               C, Cast->getType()));
201
202     // Otherwise we have to see if a casted version of the incoming pointer
203     // is available.  If so, we can use it, otherwise we have to fail.
204     for (User *U : PHIIn->users()) {
205       if (CastInst *CastI = dyn_cast<CastInst>(U))
206         if (CastI->getOpcode() == Cast->getOpcode() &&
207             CastI->getType() == Cast->getType() &&
208             (!DT || DT->dominates(CastI->getParent(), PredBB)))
209           return CastI;
210     }
211     return nullptr;
212   }
213
214   // Handle getelementptr with at least one PHI translatable operand.
215   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
216     SmallVector<Value*, 8> GEPOps;
217     bool AnyChanged = false;
218     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
219       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
220       if (!GEPOp) return nullptr;
221
222       AnyChanged |= GEPOp != GEP->getOperand(i);
223       GEPOps.push_back(GEPOp);
224     }
225
226     if (!AnyChanged)
227       return GEP;
228
229     // Simplify the GEP to handle 'gep x, 0' -> x etc.
230     if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
231                                    GEPOps, {DL, TLI, DT, AC})) {
232       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
233         RemoveInstInputs(GEPOps[i], InstInputs);
234
235       return AddAsInput(V);
236     }
237
238     // Scan to see if we have this GEP available.
239     Value *APHIOp = GEPOps[0];
240     for (User *U : APHIOp->users()) {
241       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
242         if (GEPI->getType() == GEP->getType() &&
243             GEPI->getNumOperands() == GEPOps.size() &&
244             GEPI->getParent()->getParent() == CurBB->getParent() &&
245             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
246           if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
247             return GEPI;
248         }
249     }
250     return nullptr;
251   }
252
253   // Handle add with a constant RHS.
254   if (Inst->getOpcode() == Instruction::Add &&
255       isa<ConstantInt>(Inst->getOperand(1))) {
256     // PHI translate the LHS.
257     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
258     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
259     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
260
261     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
262     if (!LHS) return nullptr;
263
264     // If the PHI translated LHS is an add of a constant, fold the immediates.
265     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
266       if (BOp->getOpcode() == Instruction::Add)
267         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
268           LHS = BOp->getOperand(0);
269           RHS = ConstantExpr::getAdd(RHS, CI);
270           isNSW = isNUW = false;
271
272           // If the old 'LHS' was an input, add the new 'LHS' as an input.
273           if (is_contained(InstInputs, BOp)) {
274             RemoveInstInputs(BOp, InstInputs);
275             AddAsInput(LHS);
276           }
277         }
278
279     // See if the add simplifies away.
280     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
281       // If we simplified the operands, the LHS is no longer an input, but Res
282       // is.
283       RemoveInstInputs(LHS, InstInputs);
284       return AddAsInput(Res);
285     }
286
287     // If we didn't modify the add, just return it.
288     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
289       return Inst;
290
291     // Otherwise, see if we have this add available somewhere.
292     for (User *U : LHS->users()) {
293       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
294         if (BO->getOpcode() == Instruction::Add &&
295             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
296             BO->getParent()->getParent() == CurBB->getParent() &&
297             (!DT || DT->dominates(BO->getParent(), PredBB)))
298           return BO;
299     }
300
301     return nullptr;
302   }
303
304   // Otherwise, we failed.
305   return nullptr;
306 }
307
308
309 /// PHITranslateValue - PHI translate the current address up the CFG from
310 /// CurBB to Pred, updating our state to reflect any needed changes.  If
311 /// 'MustDominate' is true, the translated value must dominate
312 /// PredBB.  This returns true on failure and sets Addr to null.
313 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
314                                      const DominatorTree *DT,
315                                      bool MustDominate) {
316   assert(DT || !MustDominate);
317   assert(Verify() && "Invalid PHITransAddr!");
318   if (DT && DT->isReachableFromEntry(PredBB))
319     Addr =
320         PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
321   else
322     Addr = nullptr;
323   assert(Verify() && "Invalid PHITransAddr!");
324
325   if (MustDominate)
326     // Make sure the value is live in the predecessor.
327     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
328       if (!DT->dominates(Inst->getParent(), PredBB))
329         Addr = nullptr;
330
331   return Addr == nullptr;
332 }
333
334 /// PHITranslateWithInsertion - PHI translate this value into the specified
335 /// predecessor block, inserting a computation of the value if it is
336 /// unavailable.
337 ///
338 /// All newly created instructions are added to the NewInsts list.  This
339 /// returns null on failure.
340 ///
341 Value *PHITransAddr::
342 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
343                           const DominatorTree &DT,
344                           SmallVectorImpl<Instruction*> &NewInsts) {
345   unsigned NISize = NewInsts.size();
346
347   // Attempt to PHI translate with insertion.
348   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
349
350   // If successful, return the new value.
351   if (Addr) return Addr;
352
353   // If not, destroy any intermediate instructions inserted.
354   while (NewInsts.size() != NISize)
355     NewInsts.pop_back_val()->eraseFromParent();
356   return nullptr;
357 }
358
359
360 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
361 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
362 /// block.  All newly created instructions are added to the NewInsts list.
363 /// This returns null on failure.
364 ///
365 Value *PHITransAddr::
366 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
367                            BasicBlock *PredBB, const DominatorTree &DT,
368                            SmallVectorImpl<Instruction*> &NewInsts) {
369   // See if we have a version of this value already available and dominating
370   // PredBB.  If so, there is no need to insert a new instance of it.
371   PHITransAddr Tmp(InVal, DL, AC);
372   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
373     return Tmp.getAddr();
374
375   // We don't need to PHI translate values which aren't instructions.
376   auto *Inst = dyn_cast<Instruction>(InVal);
377   if (!Inst)
378     return nullptr;
379
380   // Handle cast of PHI translatable value.
381   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
382     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
383     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
384                                               CurBB, PredBB, DT, NewInsts);
385     if (!OpVal) return nullptr;
386
387     // Otherwise insert a cast at the end of PredBB.
388     CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
389                                      InVal->getName() + ".phi.trans.insert",
390                                      PredBB->getTerminator());
391     New->setDebugLoc(Inst->getDebugLoc());
392     NewInsts.push_back(New);
393     return New;
394   }
395
396   // Handle getelementptr with at least one PHI operand.
397   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
398     SmallVector<Value*, 8> GEPOps;
399     BasicBlock *CurBB = GEP->getParent();
400     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
401       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
402                                                 CurBB, PredBB, DT, NewInsts);
403       if (!OpVal) return nullptr;
404       GEPOps.push_back(OpVal);
405     }
406
407     GetElementPtrInst *Result = GetElementPtrInst::Create(
408         GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
409         InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
410     Result->setDebugLoc(Inst->getDebugLoc());
411     Result->setIsInBounds(GEP->isInBounds());
412     NewInsts.push_back(Result);
413     return Result;
414   }
415
416 #if 0
417   // FIXME: This code works, but it is unclear that we actually want to insert
418   // a big chain of computation in order to make a value available in a block.
419   // This needs to be evaluated carefully to consider its cost trade offs.
420
421   // Handle add with a constant RHS.
422   if (Inst->getOpcode() == Instruction::Add &&
423       isa<ConstantInt>(Inst->getOperand(1))) {
424     // PHI translate the LHS.
425     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
426                                               CurBB, PredBB, DT, NewInsts);
427     if (OpVal == 0) return 0;
428
429     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
430                                            InVal->getName()+".phi.trans.insert",
431                                                     PredBB->getTerminator());
432     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
433     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
434     NewInsts.push_back(Res);
435     return Res;
436   }
437 #endif
438
439   return nullptr;
440 }