]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/ScalarEvolution.cpp
Merge ^/head r318658 through r318963.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / ScalarEvolution.cpp
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/ScopeExit.h"
65 #include "llvm/ADT/Sequence.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/ConstantFolding.h"
70 #include "llvm/Analysis/InstructionSimplify.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/InstIterator.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/LLVMContext.h"
86 #include "llvm/IR/Metadata.h"
87 #include "llvm/IR/Operator.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/KnownBits.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Support/SaveAndRestore.h"
96 #include <algorithm>
97 using namespace llvm;
98
99 #define DEBUG_TYPE "scalar-evolution"
100
101 STATISTIC(NumArrayLenItCounts,
102           "Number of trip counts computed with array length");
103 STATISTIC(NumTripCountsComputed,
104           "Number of loops with predictable loop counts");
105 STATISTIC(NumTripCountsNotComputed,
106           "Number of loops without predictable loop counts");
107 STATISTIC(NumBruteForceTripCountsComputed,
108           "Number of loops with trip counts computed by force");
109
110 static cl::opt<unsigned>
111 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
112                         cl::desc("Maximum number of iterations SCEV will "
113                                  "symbolically execute a constant "
114                                  "derived loop"),
115                         cl::init(100));
116
117 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
118 static cl::opt<bool>
119 VerifySCEV("verify-scev",
120            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
121 static cl::opt<bool>
122     VerifySCEVMap("verify-scev-maps",
123                   cl::desc("Verify no dangling value in ScalarEvolution's "
124                            "ExprValueMap (slow)"));
125
126 static cl::opt<unsigned> MulOpsInlineThreshold(
127     "scev-mulops-inline-threshold", cl::Hidden,
128     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
129     cl::init(1000));
130
131 static cl::opt<unsigned> AddOpsInlineThreshold(
132     "scev-addops-inline-threshold", cl::Hidden,
133     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
134     cl::init(500));
135
136 static cl::opt<unsigned> MaxSCEVCompareDepth(
137     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
138     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
139     cl::init(32));
140
141 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
142     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
143     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
144     cl::init(2));
145
146 static cl::opt<unsigned> MaxValueCompareDepth(
147     "scalar-evolution-max-value-compare-depth", cl::Hidden,
148     cl::desc("Maximum depth of recursive value complexity comparisons"),
149     cl::init(2));
150
151 static cl::opt<unsigned>
152     MaxAddExprDepth("scalar-evolution-max-addexpr-depth", cl::Hidden,
153                     cl::desc("Maximum depth of recursive AddExpr"),
154                     cl::init(32));
155
156 static cl::opt<unsigned> MaxConstantEvolvingDepth(
157     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
158     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
159
160 //===----------------------------------------------------------------------===//
161 //                           SCEV class definitions
162 //===----------------------------------------------------------------------===//
163
164 //===----------------------------------------------------------------------===//
165 // Implementation of the SCEV class.
166 //
167
168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
169 LLVM_DUMP_METHOD void SCEV::dump() const {
170   print(dbgs());
171   dbgs() << '\n';
172 }
173 #endif
174
175 void SCEV::print(raw_ostream &OS) const {
176   switch (static_cast<SCEVTypes>(getSCEVType())) {
177   case scConstant:
178     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
179     return;
180   case scTruncate: {
181     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
182     const SCEV *Op = Trunc->getOperand();
183     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
184        << *Trunc->getType() << ")";
185     return;
186   }
187   case scZeroExtend: {
188     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
189     const SCEV *Op = ZExt->getOperand();
190     OS << "(zext " << *Op->getType() << " " << *Op << " to "
191        << *ZExt->getType() << ")";
192     return;
193   }
194   case scSignExtend: {
195     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
196     const SCEV *Op = SExt->getOperand();
197     OS << "(sext " << *Op->getType() << " " << *Op << " to "
198        << *SExt->getType() << ")";
199     return;
200   }
201   case scAddRecExpr: {
202     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
203     OS << "{" << *AR->getOperand(0);
204     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
205       OS << ",+," << *AR->getOperand(i);
206     OS << "}<";
207     if (AR->hasNoUnsignedWrap())
208       OS << "nuw><";
209     if (AR->hasNoSignedWrap())
210       OS << "nsw><";
211     if (AR->hasNoSelfWrap() &&
212         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
213       OS << "nw><";
214     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
215     OS << ">";
216     return;
217   }
218   case scAddExpr:
219   case scMulExpr:
220   case scUMaxExpr:
221   case scSMaxExpr: {
222     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
223     const char *OpStr = nullptr;
224     switch (NAry->getSCEVType()) {
225     case scAddExpr: OpStr = " + "; break;
226     case scMulExpr: OpStr = " * "; break;
227     case scUMaxExpr: OpStr = " umax "; break;
228     case scSMaxExpr: OpStr = " smax "; break;
229     }
230     OS << "(";
231     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
232          I != E; ++I) {
233       OS << **I;
234       if (std::next(I) != E)
235         OS << OpStr;
236     }
237     OS << ")";
238     switch (NAry->getSCEVType()) {
239     case scAddExpr:
240     case scMulExpr:
241       if (NAry->hasNoUnsignedWrap())
242         OS << "<nuw>";
243       if (NAry->hasNoSignedWrap())
244         OS << "<nsw>";
245     }
246     return;
247   }
248   case scUDivExpr: {
249     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
250     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
251     return;
252   }
253   case scUnknown: {
254     const SCEVUnknown *U = cast<SCEVUnknown>(this);
255     Type *AllocTy;
256     if (U->isSizeOf(AllocTy)) {
257       OS << "sizeof(" << *AllocTy << ")";
258       return;
259     }
260     if (U->isAlignOf(AllocTy)) {
261       OS << "alignof(" << *AllocTy << ")";
262       return;
263     }
264
265     Type *CTy;
266     Constant *FieldNo;
267     if (U->isOffsetOf(CTy, FieldNo)) {
268       OS << "offsetof(" << *CTy << ", ";
269       FieldNo->printAsOperand(OS, false);
270       OS << ")";
271       return;
272     }
273
274     // Otherwise just print it normally.
275     U->getValue()->printAsOperand(OS, false);
276     return;
277   }
278   case scCouldNotCompute:
279     OS << "***COULDNOTCOMPUTE***";
280     return;
281   }
282   llvm_unreachable("Unknown SCEV kind!");
283 }
284
285 Type *SCEV::getType() const {
286   switch (static_cast<SCEVTypes>(getSCEVType())) {
287   case scConstant:
288     return cast<SCEVConstant>(this)->getType();
289   case scTruncate:
290   case scZeroExtend:
291   case scSignExtend:
292     return cast<SCEVCastExpr>(this)->getType();
293   case scAddRecExpr:
294   case scMulExpr:
295   case scUMaxExpr:
296   case scSMaxExpr:
297     return cast<SCEVNAryExpr>(this)->getType();
298   case scAddExpr:
299     return cast<SCEVAddExpr>(this)->getType();
300   case scUDivExpr:
301     return cast<SCEVUDivExpr>(this)->getType();
302   case scUnknown:
303     return cast<SCEVUnknown>(this)->getType();
304   case scCouldNotCompute:
305     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
306   }
307   llvm_unreachable("Unknown SCEV kind!");
308 }
309
310 bool SCEV::isZero() const {
311   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
312     return SC->getValue()->isZero();
313   return false;
314 }
315
316 bool SCEV::isOne() const {
317   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
318     return SC->getValue()->isOne();
319   return false;
320 }
321
322 bool SCEV::isAllOnesValue() const {
323   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
324     return SC->getValue()->isAllOnesValue();
325   return false;
326 }
327
328 bool SCEV::isNonConstantNegative() const {
329   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
330   if (!Mul) return false;
331
332   // If there is a constant factor, it will be first.
333   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
334   if (!SC) return false;
335
336   // Return true if the value is negative, this matches things like (-42 * V).
337   return SC->getAPInt().isNegative();
338 }
339
340 SCEVCouldNotCompute::SCEVCouldNotCompute() :
341   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
342
343 bool SCEVCouldNotCompute::classof(const SCEV *S) {
344   return S->getSCEVType() == scCouldNotCompute;
345 }
346
347 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
348   FoldingSetNodeID ID;
349   ID.AddInteger(scConstant);
350   ID.AddPointer(V);
351   void *IP = nullptr;
352   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
353   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
354   UniqueSCEVs.InsertNode(S, IP);
355   return S;
356 }
357
358 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
359   return getConstant(ConstantInt::get(getContext(), Val));
360 }
361
362 const SCEV *
363 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
364   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
365   return getConstant(ConstantInt::get(ITy, V, isSigned));
366 }
367
368 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
369                            unsigned SCEVTy, const SCEV *op, Type *ty)
370   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
371
372 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
373                                    const SCEV *op, Type *ty)
374   : SCEVCastExpr(ID, scTruncate, op, ty) {
375   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
376          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
377          "Cannot truncate non-integer value!");
378 }
379
380 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
381                                        const SCEV *op, Type *ty)
382   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
383   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
384          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
385          "Cannot zero extend non-integer value!");
386 }
387
388 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
389                                        const SCEV *op, Type *ty)
390   : SCEVCastExpr(ID, scSignExtend, op, ty) {
391   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
392          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
393          "Cannot sign extend non-integer value!");
394 }
395
396 void SCEVUnknown::deleted() {
397   // Clear this SCEVUnknown from various maps.
398   SE->forgetMemoizedResults(this);
399
400   // Remove this SCEVUnknown from the uniquing map.
401   SE->UniqueSCEVs.RemoveNode(this);
402
403   // Release the value.
404   setValPtr(nullptr);
405 }
406
407 void SCEVUnknown::allUsesReplacedWith(Value *New) {
408   // Clear this SCEVUnknown from various maps.
409   SE->forgetMemoizedResults(this);
410
411   // Remove this SCEVUnknown from the uniquing map.
412   SE->UniqueSCEVs.RemoveNode(this);
413
414   // Update this SCEVUnknown to point to the new value. This is needed
415   // because there may still be outstanding SCEVs which still point to
416   // this SCEVUnknown.
417   setValPtr(New);
418 }
419
420 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
421   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
422     if (VCE->getOpcode() == Instruction::PtrToInt)
423       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
424         if (CE->getOpcode() == Instruction::GetElementPtr &&
425             CE->getOperand(0)->isNullValue() &&
426             CE->getNumOperands() == 2)
427           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
428             if (CI->isOne()) {
429               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
430                                  ->getElementType();
431               return true;
432             }
433
434   return false;
435 }
436
437 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
438   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
439     if (VCE->getOpcode() == Instruction::PtrToInt)
440       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
441         if (CE->getOpcode() == Instruction::GetElementPtr &&
442             CE->getOperand(0)->isNullValue()) {
443           Type *Ty =
444             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
445           if (StructType *STy = dyn_cast<StructType>(Ty))
446             if (!STy->isPacked() &&
447                 CE->getNumOperands() == 3 &&
448                 CE->getOperand(1)->isNullValue()) {
449               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
450                 if (CI->isOne() &&
451                     STy->getNumElements() == 2 &&
452                     STy->getElementType(0)->isIntegerTy(1)) {
453                   AllocTy = STy->getElementType(1);
454                   return true;
455                 }
456             }
457         }
458
459   return false;
460 }
461
462 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
463   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
464     if (VCE->getOpcode() == Instruction::PtrToInt)
465       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
466         if (CE->getOpcode() == Instruction::GetElementPtr &&
467             CE->getNumOperands() == 3 &&
468             CE->getOperand(0)->isNullValue() &&
469             CE->getOperand(1)->isNullValue()) {
470           Type *Ty =
471             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
472           // Ignore vector types here so that ScalarEvolutionExpander doesn't
473           // emit getelementptrs that index into vectors.
474           if (Ty->isStructTy() || Ty->isArrayTy()) {
475             CTy = Ty;
476             FieldNo = CE->getOperand(2);
477             return true;
478           }
479         }
480
481   return false;
482 }
483
484 //===----------------------------------------------------------------------===//
485 //                               SCEV Utilities
486 //===----------------------------------------------------------------------===//
487
488 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
489 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
490 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
491 /// have been previously deemed to be "equally complex" by this routine.  It is
492 /// intended to avoid exponential time complexity in cases like:
493 ///
494 ///   %a = f(%x, %y)
495 ///   %b = f(%a, %a)
496 ///   %c = f(%b, %b)
497 ///
498 ///   %d = f(%x, %y)
499 ///   %e = f(%d, %d)
500 ///   %f = f(%e, %e)
501 ///
502 ///   CompareValueComplexity(%f, %c)
503 ///
504 /// Since we do not continue running this routine on expression trees once we
505 /// have seen unequal values, there is no need to track them in the cache.
506 static int
507 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
508                        const LoopInfo *const LI, Value *LV, Value *RV,
509                        unsigned Depth) {
510   if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV}))
511     return 0;
512
513   // Order pointer values after integer values. This helps SCEVExpander form
514   // GEPs.
515   bool LIsPointer = LV->getType()->isPointerTy(),
516        RIsPointer = RV->getType()->isPointerTy();
517   if (LIsPointer != RIsPointer)
518     return (int)LIsPointer - (int)RIsPointer;
519
520   // Compare getValueID values.
521   unsigned LID = LV->getValueID(), RID = RV->getValueID();
522   if (LID != RID)
523     return (int)LID - (int)RID;
524
525   // Sort arguments by their position.
526   if (const auto *LA = dyn_cast<Argument>(LV)) {
527     const auto *RA = cast<Argument>(RV);
528     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
529     return (int)LArgNo - (int)RArgNo;
530   }
531
532   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
533     const auto *RGV = cast<GlobalValue>(RV);
534
535     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
536       auto LT = GV->getLinkage();
537       return !(GlobalValue::isPrivateLinkage(LT) ||
538                GlobalValue::isInternalLinkage(LT));
539     };
540
541     // Use the names to distinguish the two values, but only if the
542     // names are semantically important.
543     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
544       return LGV->getName().compare(RGV->getName());
545   }
546
547   // For instructions, compare their loop depth, and their operand count.  This
548   // is pretty loose.
549   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
550     const auto *RInst = cast<Instruction>(RV);
551
552     // Compare loop depths.
553     const BasicBlock *LParent = LInst->getParent(),
554                      *RParent = RInst->getParent();
555     if (LParent != RParent) {
556       unsigned LDepth = LI->getLoopDepth(LParent),
557                RDepth = LI->getLoopDepth(RParent);
558       if (LDepth != RDepth)
559         return (int)LDepth - (int)RDepth;
560     }
561
562     // Compare the number of operands.
563     unsigned LNumOps = LInst->getNumOperands(),
564              RNumOps = RInst->getNumOperands();
565     if (LNumOps != RNumOps)
566       return (int)LNumOps - (int)RNumOps;
567
568     for (unsigned Idx : seq(0u, LNumOps)) {
569       int Result =
570           CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
571                                  RInst->getOperand(Idx), Depth + 1);
572       if (Result != 0)
573         return Result;
574     }
575   }
576
577   EqCache.insert({LV, RV});
578   return 0;
579 }
580
581 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
582 // than RHS, respectively. A three-way result allows recursive comparisons to be
583 // more efficient.
584 static int CompareSCEVComplexity(
585     SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
586     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
587     DominatorTree &DT, unsigned Depth = 0) {
588   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
589   if (LHS == RHS)
590     return 0;
591
592   // Primarily, sort the SCEVs by their getSCEVType().
593   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
594   if (LType != RType)
595     return (int)LType - (int)RType;
596
597   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS}))
598     return 0;
599   // Aside from the getSCEVType() ordering, the particular ordering
600   // isn't very important except that it's beneficial to be consistent,
601   // so that (a + b) and (b + a) don't end up as different expressions.
602   switch (static_cast<SCEVTypes>(LType)) {
603   case scUnknown: {
604     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
605     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
606
607     SmallSet<std::pair<Value *, Value *>, 8> EqCache;
608     int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(),
609                                    Depth + 1);
610     if (X == 0)
611       EqCacheSCEV.insert({LHS, RHS});
612     return X;
613   }
614
615   case scConstant: {
616     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
617     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
618
619     // Compare constant values.
620     const APInt &LA = LC->getAPInt();
621     const APInt &RA = RC->getAPInt();
622     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
623     if (LBitWidth != RBitWidth)
624       return (int)LBitWidth - (int)RBitWidth;
625     return LA.ult(RA) ? -1 : 1;
626   }
627
628   case scAddRecExpr: {
629     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
630     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
631
632     // There is always a dominance between two recs that are used by one SCEV,
633     // so we can safely sort recs by loop header dominance. We require such
634     // order in getAddExpr.
635     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
636     if (LLoop != RLoop) {
637       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
638       assert(LHead != RHead && "Two loops share the same header?");
639       if (DT.dominates(LHead, RHead))
640         return 1;
641       else
642         assert(DT.dominates(RHead, LHead) &&
643                "No dominance between recurrences used by one SCEV?");
644       return -1;
645     }
646
647     // Addrec complexity grows with operand count.
648     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
649     if (LNumOps != RNumOps)
650       return (int)LNumOps - (int)RNumOps;
651
652     // Lexicographically compare.
653     for (unsigned i = 0; i != LNumOps; ++i) {
654       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
655                                     RA->getOperand(i), DT,  Depth + 1);
656       if (X != 0)
657         return X;
658     }
659     EqCacheSCEV.insert({LHS, RHS});
660     return 0;
661   }
662
663   case scAddExpr:
664   case scMulExpr:
665   case scSMaxExpr:
666   case scUMaxExpr: {
667     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
668     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
669
670     // Lexicographically compare n-ary expressions.
671     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
672     if (LNumOps != RNumOps)
673       return (int)LNumOps - (int)RNumOps;
674
675     for (unsigned i = 0; i != LNumOps; ++i) {
676       if (i >= RNumOps)
677         return 1;
678       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
679                                     RC->getOperand(i), DT, Depth + 1);
680       if (X != 0)
681         return X;
682     }
683     EqCacheSCEV.insert({LHS, RHS});
684     return 0;
685   }
686
687   case scUDivExpr: {
688     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
689     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
690
691     // Lexicographically compare udiv expressions.
692     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
693                                   DT, Depth + 1);
694     if (X != 0)
695       return X;
696     X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT,
697                               Depth + 1);
698     if (X == 0)
699       EqCacheSCEV.insert({LHS, RHS});
700     return X;
701   }
702
703   case scTruncate:
704   case scZeroExtend:
705   case scSignExtend: {
706     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
707     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
708
709     // Compare cast expressions by operand.
710     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
711                                   RC->getOperand(), DT, Depth + 1);
712     if (X == 0)
713       EqCacheSCEV.insert({LHS, RHS});
714     return X;
715   }
716
717   case scCouldNotCompute:
718     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
719   }
720   llvm_unreachable("Unknown SCEV kind!");
721 }
722
723 /// Given a list of SCEV objects, order them by their complexity, and group
724 /// objects of the same complexity together by value.  When this routine is
725 /// finished, we know that any duplicates in the vector are consecutive and that
726 /// complexity is monotonically increasing.
727 ///
728 /// Note that we go take special precautions to ensure that we get deterministic
729 /// results from this routine.  In other words, we don't want the results of
730 /// this to depend on where the addresses of various SCEV objects happened to
731 /// land in memory.
732 ///
733 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
734                               LoopInfo *LI, DominatorTree &DT) {
735   if (Ops.size() < 2) return;  // Noop
736
737   SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
738   if (Ops.size() == 2) {
739     // This is the common case, which also happens to be trivially simple.
740     // Special case it.
741     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
742     if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0)
743       std::swap(LHS, RHS);
744     return;
745   }
746
747   // Do the rough sort by complexity.
748   std::stable_sort(Ops.begin(), Ops.end(),
749                    [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) {
750                      return
751                          CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0;
752                    });
753
754   // Now that we are sorted by complexity, group elements of the same
755   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
756   // be extremely short in practice.  Note that we take this approach because we
757   // do not want to depend on the addresses of the objects we are grouping.
758   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
759     const SCEV *S = Ops[i];
760     unsigned Complexity = S->getSCEVType();
761
762     // If there are any objects of the same complexity and same value as this
763     // one, group them.
764     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
765       if (Ops[j] == S) { // Found a duplicate.
766         // Move it to immediately after i'th element.
767         std::swap(Ops[i+1], Ops[j]);
768         ++i;   // no need to rescan it.
769         if (i == e-2) return;  // Done!
770       }
771     }
772   }
773 }
774
775 // Returns the size of the SCEV S.
776 static inline int sizeOfSCEV(const SCEV *S) {
777   struct FindSCEVSize {
778     int Size;
779     FindSCEVSize() : Size(0) {}
780
781     bool follow(const SCEV *S) {
782       ++Size;
783       // Keep looking at all operands of S.
784       return true;
785     }
786     bool isDone() const {
787       return false;
788     }
789   };
790
791   FindSCEVSize F;
792   SCEVTraversal<FindSCEVSize> ST(F);
793   ST.visitAll(S);
794   return F.Size;
795 }
796
797 namespace {
798
799 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
800 public:
801   // Computes the Quotient and Remainder of the division of Numerator by
802   // Denominator.
803   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
804                      const SCEV *Denominator, const SCEV **Quotient,
805                      const SCEV **Remainder) {
806     assert(Numerator && Denominator && "Uninitialized SCEV");
807
808     SCEVDivision D(SE, Numerator, Denominator);
809
810     // Check for the trivial case here to avoid having to check for it in the
811     // rest of the code.
812     if (Numerator == Denominator) {
813       *Quotient = D.One;
814       *Remainder = D.Zero;
815       return;
816     }
817
818     if (Numerator->isZero()) {
819       *Quotient = D.Zero;
820       *Remainder = D.Zero;
821       return;
822     }
823
824     // A simple case when N/1. The quotient is N.
825     if (Denominator->isOne()) {
826       *Quotient = Numerator;
827       *Remainder = D.Zero;
828       return;
829     }
830
831     // Split the Denominator when it is a product.
832     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
833       const SCEV *Q, *R;
834       *Quotient = Numerator;
835       for (const SCEV *Op : T->operands()) {
836         divide(SE, *Quotient, Op, &Q, &R);
837         *Quotient = Q;
838
839         // Bail out when the Numerator is not divisible by one of the terms of
840         // the Denominator.
841         if (!R->isZero()) {
842           *Quotient = D.Zero;
843           *Remainder = Numerator;
844           return;
845         }
846       }
847       *Remainder = D.Zero;
848       return;
849     }
850
851     D.visit(Numerator);
852     *Quotient = D.Quotient;
853     *Remainder = D.Remainder;
854   }
855
856   // Except in the trivial case described above, we do not know how to divide
857   // Expr by Denominator for the following functions with empty implementation.
858   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
859   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
860   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
861   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
862   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
863   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
864   void visitUnknown(const SCEVUnknown *Numerator) {}
865   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
866
867   void visitConstant(const SCEVConstant *Numerator) {
868     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
869       APInt NumeratorVal = Numerator->getAPInt();
870       APInt DenominatorVal = D->getAPInt();
871       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
872       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
873
874       if (NumeratorBW > DenominatorBW)
875         DenominatorVal = DenominatorVal.sext(NumeratorBW);
876       else if (NumeratorBW < DenominatorBW)
877         NumeratorVal = NumeratorVal.sext(DenominatorBW);
878
879       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
880       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
881       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
882       Quotient = SE.getConstant(QuotientVal);
883       Remainder = SE.getConstant(RemainderVal);
884       return;
885     }
886   }
887
888   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
889     const SCEV *StartQ, *StartR, *StepQ, *StepR;
890     if (!Numerator->isAffine())
891       return cannotDivide(Numerator);
892     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
893     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
894     // Bail out if the types do not match.
895     Type *Ty = Denominator->getType();
896     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
897         Ty != StepQ->getType() || Ty != StepR->getType())
898       return cannotDivide(Numerator);
899     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
900                                 Numerator->getNoWrapFlags());
901     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
902                                  Numerator->getNoWrapFlags());
903   }
904
905   void visitAddExpr(const SCEVAddExpr *Numerator) {
906     SmallVector<const SCEV *, 2> Qs, Rs;
907     Type *Ty = Denominator->getType();
908
909     for (const SCEV *Op : Numerator->operands()) {
910       const SCEV *Q, *R;
911       divide(SE, Op, Denominator, &Q, &R);
912
913       // Bail out if types do not match.
914       if (Ty != Q->getType() || Ty != R->getType())
915         return cannotDivide(Numerator);
916
917       Qs.push_back(Q);
918       Rs.push_back(R);
919     }
920
921     if (Qs.size() == 1) {
922       Quotient = Qs[0];
923       Remainder = Rs[0];
924       return;
925     }
926
927     Quotient = SE.getAddExpr(Qs);
928     Remainder = SE.getAddExpr(Rs);
929   }
930
931   void visitMulExpr(const SCEVMulExpr *Numerator) {
932     SmallVector<const SCEV *, 2> Qs;
933     Type *Ty = Denominator->getType();
934
935     bool FoundDenominatorTerm = false;
936     for (const SCEV *Op : Numerator->operands()) {
937       // Bail out if types do not match.
938       if (Ty != Op->getType())
939         return cannotDivide(Numerator);
940
941       if (FoundDenominatorTerm) {
942         Qs.push_back(Op);
943         continue;
944       }
945
946       // Check whether Denominator divides one of the product operands.
947       const SCEV *Q, *R;
948       divide(SE, Op, Denominator, &Q, &R);
949       if (!R->isZero()) {
950         Qs.push_back(Op);
951         continue;
952       }
953
954       // Bail out if types do not match.
955       if (Ty != Q->getType())
956         return cannotDivide(Numerator);
957
958       FoundDenominatorTerm = true;
959       Qs.push_back(Q);
960     }
961
962     if (FoundDenominatorTerm) {
963       Remainder = Zero;
964       if (Qs.size() == 1)
965         Quotient = Qs[0];
966       else
967         Quotient = SE.getMulExpr(Qs);
968       return;
969     }
970
971     if (!isa<SCEVUnknown>(Denominator))
972       return cannotDivide(Numerator);
973
974     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
975     ValueToValueMap RewriteMap;
976     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
977         cast<SCEVConstant>(Zero)->getValue();
978     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
979
980     if (Remainder->isZero()) {
981       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
982       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
983           cast<SCEVConstant>(One)->getValue();
984       Quotient =
985           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
986       return;
987     }
988
989     // Quotient is (Numerator - Remainder) divided by Denominator.
990     const SCEV *Q, *R;
991     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
992     // This SCEV does not seem to simplify: fail the division here.
993     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
994       return cannotDivide(Numerator);
995     divide(SE, Diff, Denominator, &Q, &R);
996     if (R != Zero)
997       return cannotDivide(Numerator);
998     Quotient = Q;
999   }
1000
1001 private:
1002   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1003                const SCEV *Denominator)
1004       : SE(S), Denominator(Denominator) {
1005     Zero = SE.getZero(Denominator->getType());
1006     One = SE.getOne(Denominator->getType());
1007
1008     // We generally do not know how to divide Expr by Denominator. We
1009     // initialize the division to a "cannot divide" state to simplify the rest
1010     // of the code.
1011     cannotDivide(Numerator);
1012   }
1013
1014   // Convenience function for giving up on the division. We set the quotient to
1015   // be equal to zero and the remainder to be equal to the numerator.
1016   void cannotDivide(const SCEV *Numerator) {
1017     Quotient = Zero;
1018     Remainder = Numerator;
1019   }
1020
1021   ScalarEvolution &SE;
1022   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1023 };
1024
1025 }
1026
1027 //===----------------------------------------------------------------------===//
1028 //                      Simple SCEV method implementations
1029 //===----------------------------------------------------------------------===//
1030
1031 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1032 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1033                                        ScalarEvolution &SE,
1034                                        Type *ResultTy) {
1035   // Handle the simplest case efficiently.
1036   if (K == 1)
1037     return SE.getTruncateOrZeroExtend(It, ResultTy);
1038
1039   // We are using the following formula for BC(It, K):
1040   //
1041   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1042   //
1043   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1044   // overflow.  Hence, we must assure that the result of our computation is
1045   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1046   // safe in modular arithmetic.
1047   //
1048   // However, this code doesn't use exactly that formula; the formula it uses
1049   // is something like the following, where T is the number of factors of 2 in
1050   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1051   // exponentiation:
1052   //
1053   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1054   //
1055   // This formula is trivially equivalent to the previous formula.  However,
1056   // this formula can be implemented much more efficiently.  The trick is that
1057   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1058   // arithmetic.  To do exact division in modular arithmetic, all we have
1059   // to do is multiply by the inverse.  Therefore, this step can be done at
1060   // width W.
1061   //
1062   // The next issue is how to safely do the division by 2^T.  The way this
1063   // is done is by doing the multiplication step at a width of at least W + T
1064   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1065   // when we perform the division by 2^T (which is equivalent to a right shift
1066   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1067   // truncated out after the division by 2^T.
1068   //
1069   // In comparison to just directly using the first formula, this technique
1070   // is much more efficient; using the first formula requires W * K bits,
1071   // but this formula less than W + K bits. Also, the first formula requires
1072   // a division step, whereas this formula only requires multiplies and shifts.
1073   //
1074   // It doesn't matter whether the subtraction step is done in the calculation
1075   // width or the input iteration count's width; if the subtraction overflows,
1076   // the result must be zero anyway.  We prefer here to do it in the width of
1077   // the induction variable because it helps a lot for certain cases; CodeGen
1078   // isn't smart enough to ignore the overflow, which leads to much less
1079   // efficient code if the width of the subtraction is wider than the native
1080   // register width.
1081   //
1082   // (It's possible to not widen at all by pulling out factors of 2 before
1083   // the multiplication; for example, K=2 can be calculated as
1084   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1085   // extra arithmetic, so it's not an obvious win, and it gets
1086   // much more complicated for K > 3.)
1087
1088   // Protection from insane SCEVs; this bound is conservative,
1089   // but it probably doesn't matter.
1090   if (K > 1000)
1091     return SE.getCouldNotCompute();
1092
1093   unsigned W = SE.getTypeSizeInBits(ResultTy);
1094
1095   // Calculate K! / 2^T and T; we divide out the factors of two before
1096   // multiplying for calculating K! / 2^T to avoid overflow.
1097   // Other overflow doesn't matter because we only care about the bottom
1098   // W bits of the result.
1099   APInt OddFactorial(W, 1);
1100   unsigned T = 1;
1101   for (unsigned i = 3; i <= K; ++i) {
1102     APInt Mult(W, i);
1103     unsigned TwoFactors = Mult.countTrailingZeros();
1104     T += TwoFactors;
1105     Mult.lshrInPlace(TwoFactors);
1106     OddFactorial *= Mult;
1107   }
1108
1109   // We need at least W + T bits for the multiplication step
1110   unsigned CalculationBits = W + T;
1111
1112   // Calculate 2^T, at width T+W.
1113   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1114
1115   // Calculate the multiplicative inverse of K! / 2^T;
1116   // this multiplication factor will perform the exact division by
1117   // K! / 2^T.
1118   APInt Mod = APInt::getSignedMinValue(W+1);
1119   APInt MultiplyFactor = OddFactorial.zext(W+1);
1120   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1121   MultiplyFactor = MultiplyFactor.trunc(W);
1122
1123   // Calculate the product, at width T+W
1124   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1125                                                       CalculationBits);
1126   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1127   for (unsigned i = 1; i != K; ++i) {
1128     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1129     Dividend = SE.getMulExpr(Dividend,
1130                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1131   }
1132
1133   // Divide by 2^T
1134   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1135
1136   // Truncate the result, and divide by K! / 2^T.
1137
1138   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1139                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1140 }
1141
1142 /// Return the value of this chain of recurrences at the specified iteration
1143 /// number.  We can evaluate this recurrence by multiplying each element in the
1144 /// chain by the binomial coefficient corresponding to it.  In other words, we
1145 /// can evaluate {A,+,B,+,C,+,D} as:
1146 ///
1147 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1148 ///
1149 /// where BC(It, k) stands for binomial coefficient.
1150 ///
1151 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1152                                                 ScalarEvolution &SE) const {
1153   const SCEV *Result = getStart();
1154   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1155     // The computation is correct in the face of overflow provided that the
1156     // multiplication is performed _after_ the evaluation of the binomial
1157     // coefficient.
1158     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1159     if (isa<SCEVCouldNotCompute>(Coeff))
1160       return Coeff;
1161
1162     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1163   }
1164   return Result;
1165 }
1166
1167 //===----------------------------------------------------------------------===//
1168 //                    SCEV Expression folder implementations
1169 //===----------------------------------------------------------------------===//
1170
1171 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1172                                              Type *Ty) {
1173   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1174          "This is not a truncating conversion!");
1175   assert(isSCEVable(Ty) &&
1176          "This is not a conversion to a SCEVable type!");
1177   Ty = getEffectiveSCEVType(Ty);
1178
1179   FoldingSetNodeID ID;
1180   ID.AddInteger(scTruncate);
1181   ID.AddPointer(Op);
1182   ID.AddPointer(Ty);
1183   void *IP = nullptr;
1184   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1185
1186   // Fold if the operand is constant.
1187   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1188     return getConstant(
1189       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1190
1191   // trunc(trunc(x)) --> trunc(x)
1192   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1193     return getTruncateExpr(ST->getOperand(), Ty);
1194
1195   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1196   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1197     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1198
1199   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1200   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1201     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1202
1203   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1204   // eliminate all the truncates, or we replace other casts with truncates.
1205   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1206     SmallVector<const SCEV *, 4> Operands;
1207     bool hasTrunc = false;
1208     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1209       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1210       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1211         hasTrunc = isa<SCEVTruncateExpr>(S);
1212       Operands.push_back(S);
1213     }
1214     if (!hasTrunc)
1215       return getAddExpr(Operands);
1216     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1217   }
1218
1219   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1220   // eliminate all the truncates, or we replace other casts with truncates.
1221   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1222     SmallVector<const SCEV *, 4> Operands;
1223     bool hasTrunc = false;
1224     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1225       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1226       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1227         hasTrunc = isa<SCEVTruncateExpr>(S);
1228       Operands.push_back(S);
1229     }
1230     if (!hasTrunc)
1231       return getMulExpr(Operands);
1232     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1233   }
1234
1235   // If the input value is a chrec scev, truncate the chrec's operands.
1236   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1237     SmallVector<const SCEV *, 4> Operands;
1238     for (const SCEV *Op : AddRec->operands())
1239       Operands.push_back(getTruncateExpr(Op, Ty));
1240     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1241   }
1242
1243   // The cast wasn't folded; create an explicit cast node. We can reuse
1244   // the existing insert position since if we get here, we won't have
1245   // made any changes which would invalidate it.
1246   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1247                                                  Op, Ty);
1248   UniqueSCEVs.InsertNode(S, IP);
1249   return S;
1250 }
1251
1252 // Get the limit of a recurrence such that incrementing by Step cannot cause
1253 // signed overflow as long as the value of the recurrence within the
1254 // loop does not exceed this limit before incrementing.
1255 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1256                                                  ICmpInst::Predicate *Pred,
1257                                                  ScalarEvolution *SE) {
1258   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1259   if (SE->isKnownPositive(Step)) {
1260     *Pred = ICmpInst::ICMP_SLT;
1261     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1262                            SE->getSignedRange(Step).getSignedMax());
1263   }
1264   if (SE->isKnownNegative(Step)) {
1265     *Pred = ICmpInst::ICMP_SGT;
1266     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1267                            SE->getSignedRange(Step).getSignedMin());
1268   }
1269   return nullptr;
1270 }
1271
1272 // Get the limit of a recurrence such that incrementing by Step cannot cause
1273 // unsigned overflow as long as the value of the recurrence within the loop does
1274 // not exceed this limit before incrementing.
1275 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1276                                                    ICmpInst::Predicate *Pred,
1277                                                    ScalarEvolution *SE) {
1278   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1279   *Pred = ICmpInst::ICMP_ULT;
1280
1281   return SE->getConstant(APInt::getMinValue(BitWidth) -
1282                          SE->getUnsignedRange(Step).getUnsignedMax());
1283 }
1284
1285 namespace {
1286
1287 struct ExtendOpTraitsBase {
1288   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(
1289       const SCEV *, Type *, ScalarEvolution::ExtendCacheTy &Cache);
1290 };
1291
1292 // Used to make code generic over signed and unsigned overflow.
1293 template <typename ExtendOp> struct ExtendOpTraits {
1294   // Members present:
1295   //
1296   // static const SCEV::NoWrapFlags WrapType;
1297   //
1298   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1299   //
1300   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1301   //                                           ICmpInst::Predicate *Pred,
1302   //                                           ScalarEvolution *SE);
1303 };
1304
1305 template <>
1306 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1307   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1308
1309   static const GetExtendExprTy GetExtendExpr;
1310
1311   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1312                                              ICmpInst::Predicate *Pred,
1313                                              ScalarEvolution *SE) {
1314     return getSignedOverflowLimitForStep(Step, Pred, SE);
1315   }
1316 };
1317
1318 const ExtendOpTraitsBase::GetExtendExprTy
1319     ExtendOpTraits<SCEVSignExtendExpr>::GetExtendExpr =
1320         &ScalarEvolution::getSignExtendExprCached;
1321
1322 template <>
1323 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1324   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1325
1326   static const GetExtendExprTy GetExtendExpr;
1327
1328   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1329                                              ICmpInst::Predicate *Pred,
1330                                              ScalarEvolution *SE) {
1331     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1332   }
1333 };
1334
1335 const ExtendOpTraitsBase::GetExtendExprTy
1336     ExtendOpTraits<SCEVZeroExtendExpr>::GetExtendExpr =
1337         &ScalarEvolution::getZeroExtendExprCached;
1338 }
1339
1340 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1341 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1342 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1343 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1344 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1345 // expression "Step + sext/zext(PreIncAR)" is congruent with
1346 // "sext/zext(PostIncAR)"
1347 template <typename ExtendOpTy>
1348 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1349                                         ScalarEvolution *SE,
1350                                         ScalarEvolution::ExtendCacheTy &Cache) {
1351   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1352   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1353
1354   const Loop *L = AR->getLoop();
1355   const SCEV *Start = AR->getStart();
1356   const SCEV *Step = AR->getStepRecurrence(*SE);
1357
1358   // Check for a simple looking step prior to loop entry.
1359   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1360   if (!SA)
1361     return nullptr;
1362
1363   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1364   // subtraction is expensive. For this purpose, perform a quick and dirty
1365   // difference, by checking for Step in the operand list.
1366   SmallVector<const SCEV *, 4> DiffOps;
1367   for (const SCEV *Op : SA->operands())
1368     if (Op != Step)
1369       DiffOps.push_back(Op);
1370
1371   if (DiffOps.size() == SA->getNumOperands())
1372     return nullptr;
1373
1374   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1375   // `Step`:
1376
1377   // 1. NSW/NUW flags on the step increment.
1378   auto PreStartFlags =
1379     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1380   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1381   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1382       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1383
1384   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1385   // "S+X does not sign/unsign-overflow".
1386   //
1387
1388   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1389   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1390       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1391     return PreStart;
1392
1393   // 2. Direct overflow check on the step operation's expression.
1394   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1395   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1396   const SCEV *OperandExtendedStart =
1397       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Cache),
1398                      (SE->*GetExtendExpr)(Step, WideTy, Cache));
1399   if ((SE->*GetExtendExpr)(Start, WideTy, Cache) == OperandExtendedStart) {
1400     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1401       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1402       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1403       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1404       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1405     }
1406     return PreStart;
1407   }
1408
1409   // 3. Loop precondition.
1410   ICmpInst::Predicate Pred;
1411   const SCEV *OverflowLimit =
1412       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1413
1414   if (OverflowLimit &&
1415       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1416     return PreStart;
1417
1418   return nullptr;
1419 }
1420
1421 // Get the normalized zero or sign extended expression for this AddRec's Start.
1422 template <typename ExtendOpTy>
1423 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1424                                         ScalarEvolution *SE,
1425                                         ScalarEvolution::ExtendCacheTy &Cache) {
1426   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1427
1428   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Cache);
1429   if (!PreStart)
1430     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Cache);
1431
1432   return SE->getAddExpr(
1433       (SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, Cache),
1434       (SE->*GetExtendExpr)(PreStart, Ty, Cache));
1435 }
1436
1437 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1438 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1439 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1440 //
1441 // Formally:
1442 //
1443 //     {S,+,X} == {S-T,+,X} + T
1444 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1445 //
1446 // If ({S-T,+,X} + T) does not overflow  ... (1)
1447 //
1448 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1449 //
1450 // If {S-T,+,X} does not overflow  ... (2)
1451 //
1452 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1453 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1454 //
1455 // If (S-T)+T does not overflow  ... (3)
1456 //
1457 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1458 //      == {Ext(S),+,Ext(X)} == LHS
1459 //
1460 // Thus, if (1), (2) and (3) are true for some T, then
1461 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1462 //
1463 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1464 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1465 // to check for (1) and (2).
1466 //
1467 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1468 // is `Delta` (defined below).
1469 //
1470 template <typename ExtendOpTy>
1471 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1472                                                 const SCEV *Step,
1473                                                 const Loop *L) {
1474   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1475
1476   // We restrict `Start` to a constant to prevent SCEV from spending too much
1477   // time here.  It is correct (but more expensive) to continue with a
1478   // non-constant `Start` and do a general SCEV subtraction to compute
1479   // `PreStart` below.
1480   //
1481   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1482   if (!StartC)
1483     return false;
1484
1485   APInt StartAI = StartC->getAPInt();
1486
1487   for (unsigned Delta : {-2, -1, 1, 2}) {
1488     const SCEV *PreStart = getConstant(StartAI - Delta);
1489
1490     FoldingSetNodeID ID;
1491     ID.AddInteger(scAddRecExpr);
1492     ID.AddPointer(PreStart);
1493     ID.AddPointer(Step);
1494     ID.AddPointer(L);
1495     void *IP = nullptr;
1496     const auto *PreAR =
1497       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1498
1499     // Give up if we don't already have the add recurrence we need because
1500     // actually constructing an add recurrence is relatively expensive.
1501     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1502       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1503       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1504       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1505           DeltaS, &Pred, this);
1506       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1507         return true;
1508     }
1509   }
1510
1511   return false;
1512 }
1513
1514 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty) {
1515   // Use the local cache to prevent exponential behavior of
1516   // getZeroExtendExprImpl.
1517   ExtendCacheTy Cache;
1518   return getZeroExtendExprCached(Op, Ty, Cache);
1519 }
1520
1521 /// Query \p Cache before calling getZeroExtendExprImpl. If there is no
1522 /// related entry in the \p Cache, call getZeroExtendExprImpl and save
1523 /// the result in the \p Cache.
1524 const SCEV *ScalarEvolution::getZeroExtendExprCached(const SCEV *Op, Type *Ty,
1525                                                      ExtendCacheTy &Cache) {
1526   auto It = Cache.find({Op, Ty});
1527   if (It != Cache.end())
1528     return It->second;
1529   const SCEV *ZExt = getZeroExtendExprImpl(Op, Ty, Cache);
1530   auto InsertResult = Cache.insert({{Op, Ty}, ZExt});
1531   assert(InsertResult.second && "Expect the key was not in the cache");
1532   (void)InsertResult;
1533   return ZExt;
1534 }
1535
1536 /// The real implementation of getZeroExtendExpr.
1537 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1538                                                    ExtendCacheTy &Cache) {
1539   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1540          "This is not an extending conversion!");
1541   assert(isSCEVable(Ty) &&
1542          "This is not a conversion to a SCEVable type!");
1543   Ty = getEffectiveSCEVType(Ty);
1544
1545   // Fold if the operand is constant.
1546   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1547     return getConstant(
1548         cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1549
1550   // zext(zext(x)) --> zext(x)
1551   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1552     return getZeroExtendExprCached(SZ->getOperand(), Ty, Cache);
1553
1554   // Before doing any expensive analysis, check to see if we've already
1555   // computed a SCEV for this Op and Ty.
1556   FoldingSetNodeID ID;
1557   ID.AddInteger(scZeroExtend);
1558   ID.AddPointer(Op);
1559   ID.AddPointer(Ty);
1560   void *IP = nullptr;
1561   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1562
1563   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1564   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1565     // It's possible the bits taken off by the truncate were all zero bits. If
1566     // so, we should be able to simplify this further.
1567     const SCEV *X = ST->getOperand();
1568     ConstantRange CR = getUnsignedRange(X);
1569     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1570     unsigned NewBits = getTypeSizeInBits(Ty);
1571     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1572             CR.zextOrTrunc(NewBits)))
1573       return getTruncateOrZeroExtend(X, Ty);
1574   }
1575
1576   // If the input value is a chrec scev, and we can prove that the value
1577   // did not overflow the old, smaller, value, we can zero extend all of the
1578   // operands (often constants).  This allows analysis of something like
1579   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1580   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1581     if (AR->isAffine()) {
1582       const SCEV *Start = AR->getStart();
1583       const SCEV *Step = AR->getStepRecurrence(*this);
1584       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1585       const Loop *L = AR->getLoop();
1586
1587       if (!AR->hasNoUnsignedWrap()) {
1588         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1589         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1590       }
1591
1592       // If we have special knowledge that this addrec won't overflow,
1593       // we don't need to do any further analysis.
1594       if (AR->hasNoUnsignedWrap())
1595         return getAddRecExpr(
1596             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1597             getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags());
1598
1599       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1600       // Note that this serves two purposes: It filters out loops that are
1601       // simply not analyzable, and it covers the case where this code is
1602       // being called from within backedge-taken count analysis, such that
1603       // attempting to ask for the backedge-taken count would likely result
1604       // in infinite recursion. In the later case, the analysis code will
1605       // cope with a conservative value, and it will take care to purge
1606       // that value once it has finished.
1607       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1608       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1609         // Manually compute the final value for AR, checking for
1610         // overflow.
1611
1612         // Check whether the backedge-taken count can be losslessly casted to
1613         // the addrec's type. The count is always unsigned.
1614         const SCEV *CastedMaxBECount =
1615           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1616         const SCEV *RecastedMaxBECount =
1617           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1618         if (MaxBECount == RecastedMaxBECount) {
1619           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1620           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1621           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1622           const SCEV *ZAdd =
1623               getZeroExtendExprCached(getAddExpr(Start, ZMul), WideTy, Cache);
1624           const SCEV *WideStart = getZeroExtendExprCached(Start, WideTy, Cache);
1625           const SCEV *WideMaxBECount =
1626               getZeroExtendExprCached(CastedMaxBECount, WideTy, Cache);
1627           const SCEV *OperandExtendedAdd = getAddExpr(
1628               WideStart, getMulExpr(WideMaxBECount, getZeroExtendExprCached(
1629                                                         Step, WideTy, Cache)));
1630           if (ZAdd == OperandExtendedAdd) {
1631             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1632             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1633             // Return the expression with the addrec on the outside.
1634             return getAddRecExpr(
1635                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1636                 getZeroExtendExprCached(Step, Ty, Cache), L,
1637                 AR->getNoWrapFlags());
1638           }
1639           // Similar to above, only this time treat the step value as signed.
1640           // This covers loops that count down.
1641           OperandExtendedAdd =
1642             getAddExpr(WideStart,
1643                        getMulExpr(WideMaxBECount,
1644                                   getSignExtendExpr(Step, WideTy)));
1645           if (ZAdd == OperandExtendedAdd) {
1646             // Cache knowledge of AR NW, which is propagated to this AddRec.
1647             // Negative step causes unsigned wrap, but it still can't self-wrap.
1648             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1649             // Return the expression with the addrec on the outside.
1650             return getAddRecExpr(
1651                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1652                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1653           }
1654         }
1655       }
1656
1657       // Normally, in the cases we can prove no-overflow via a
1658       // backedge guarding condition, we can also compute a backedge
1659       // taken count for the loop.  The exceptions are assumptions and
1660       // guards present in the loop -- SCEV is not great at exploiting
1661       // these to compute max backedge taken counts, but can still use
1662       // these to prove lack of overflow.  Use this fact to avoid
1663       // doing extra work that may not pay off.
1664       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1665           !AC.assumptions().empty()) {
1666         // If the backedge is guarded by a comparison with the pre-inc
1667         // value the addrec is safe. Also, if the entry is guarded by
1668         // a comparison with the start value and the backedge is
1669         // guarded by a comparison with the post-inc value, the addrec
1670         // is safe.
1671         if (isKnownPositive(Step)) {
1672           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1673                                       getUnsignedRange(Step).getUnsignedMax());
1674           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1675               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1676                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1677                                            AR->getPostIncExpr(*this), N))) {
1678             // Cache knowledge of AR NUW, which is propagated to this
1679             // AddRec.
1680             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1681             // Return the expression with the addrec on the outside.
1682             return getAddRecExpr(
1683                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1684                 getZeroExtendExprCached(Step, Ty, Cache), L,
1685                 AR->getNoWrapFlags());
1686           }
1687         } else if (isKnownNegative(Step)) {
1688           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1689                                       getSignedRange(Step).getSignedMin());
1690           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1691               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1692                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1693                                            AR->getPostIncExpr(*this), N))) {
1694             // Cache knowledge of AR NW, which is propagated to this
1695             // AddRec.  Negative step causes unsigned wrap, but it
1696             // still can't self-wrap.
1697             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1698             // Return the expression with the addrec on the outside.
1699             return getAddRecExpr(
1700                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1701                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1702           }
1703         }
1704       }
1705
1706       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1707         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1708         return getAddRecExpr(
1709             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache),
1710             getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags());
1711       }
1712     }
1713
1714   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1715     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1716     if (SA->hasNoUnsignedWrap()) {
1717       // If the addition does not unsign overflow then we can, by definition,
1718       // commute the zero extension with the addition operation.
1719       SmallVector<const SCEV *, 4> Ops;
1720       for (const auto *Op : SA->operands())
1721         Ops.push_back(getZeroExtendExprCached(Op, Ty, Cache));
1722       return getAddExpr(Ops, SCEV::FlagNUW);
1723     }
1724   }
1725
1726   // The cast wasn't folded; create an explicit cast node.
1727   // Recompute the insert position, as it may have been invalidated.
1728   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1729   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1730                                                    Op, Ty);
1731   UniqueSCEVs.InsertNode(S, IP);
1732   return S;
1733 }
1734
1735 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty) {
1736   // Use the local cache to prevent exponential behavior of
1737   // getSignExtendExprImpl.
1738   ExtendCacheTy Cache;
1739   return getSignExtendExprCached(Op, Ty, Cache);
1740 }
1741
1742 /// Query \p Cache before calling getSignExtendExprImpl. If there is no
1743 /// related entry in the \p Cache, call getSignExtendExprImpl and save
1744 /// the result in the \p Cache.
1745 const SCEV *ScalarEvolution::getSignExtendExprCached(const SCEV *Op, Type *Ty,
1746                                                      ExtendCacheTy &Cache) {
1747   auto It = Cache.find({Op, Ty});
1748   if (It != Cache.end())
1749     return It->second;
1750   const SCEV *SExt = getSignExtendExprImpl(Op, Ty, Cache);
1751   auto InsertResult = Cache.insert({{Op, Ty}, SExt});
1752   assert(InsertResult.second && "Expect the key was not in the cache");
1753   (void)InsertResult;
1754   return SExt;
1755 }
1756
1757 /// The real implementation of getSignExtendExpr.
1758 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1759                                                    ExtendCacheTy &Cache) {
1760   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1761          "This is not an extending conversion!");
1762   assert(isSCEVable(Ty) &&
1763          "This is not a conversion to a SCEVable type!");
1764   Ty = getEffectiveSCEVType(Ty);
1765
1766   // Fold if the operand is constant.
1767   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1768     return getConstant(
1769         cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1770
1771   // sext(sext(x)) --> sext(x)
1772   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1773     return getSignExtendExprCached(SS->getOperand(), Ty, Cache);
1774
1775   // sext(zext(x)) --> zext(x)
1776   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1777     return getZeroExtendExpr(SZ->getOperand(), Ty);
1778
1779   // Before doing any expensive analysis, check to see if we've already
1780   // computed a SCEV for this Op and Ty.
1781   FoldingSetNodeID ID;
1782   ID.AddInteger(scSignExtend);
1783   ID.AddPointer(Op);
1784   ID.AddPointer(Ty);
1785   void *IP = nullptr;
1786   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1787
1788   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1789   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1790     // It's possible the bits taken off by the truncate were all sign bits. If
1791     // so, we should be able to simplify this further.
1792     const SCEV *X = ST->getOperand();
1793     ConstantRange CR = getSignedRange(X);
1794     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1795     unsigned NewBits = getTypeSizeInBits(Ty);
1796     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1797             CR.sextOrTrunc(NewBits)))
1798       return getTruncateOrSignExtend(X, Ty);
1799   }
1800
1801   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1802   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1803     if (SA->getNumOperands() == 2) {
1804       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1805       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1806       if (SMul && SC1) {
1807         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1808           const APInt &C1 = SC1->getAPInt();
1809           const APInt &C2 = SC2->getAPInt();
1810           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1811               C2.ugt(C1) && C2.isPowerOf2())
1812             return getAddExpr(getSignExtendExprCached(SC1, Ty, Cache),
1813                               getSignExtendExprCached(SMul, Ty, Cache));
1814         }
1815       }
1816     }
1817
1818     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1819     if (SA->hasNoSignedWrap()) {
1820       // If the addition does not sign overflow then we can, by definition,
1821       // commute the sign extension with the addition operation.
1822       SmallVector<const SCEV *, 4> Ops;
1823       for (const auto *Op : SA->operands())
1824         Ops.push_back(getSignExtendExprCached(Op, Ty, Cache));
1825       return getAddExpr(Ops, SCEV::FlagNSW);
1826     }
1827   }
1828   // If the input value is a chrec scev, and we can prove that the value
1829   // did not overflow the old, smaller, value, we can sign extend all of the
1830   // operands (often constants).  This allows analysis of something like
1831   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1832   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1833     if (AR->isAffine()) {
1834       const SCEV *Start = AR->getStart();
1835       const SCEV *Step = AR->getStepRecurrence(*this);
1836       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1837       const Loop *L = AR->getLoop();
1838
1839       if (!AR->hasNoSignedWrap()) {
1840         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1841         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1842       }
1843
1844       // If we have special knowledge that this addrec won't overflow,
1845       // we don't need to do any further analysis.
1846       if (AR->hasNoSignedWrap())
1847         return getAddRecExpr(
1848             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache),
1849             getSignExtendExprCached(Step, Ty, Cache), L, SCEV::FlagNSW);
1850
1851       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1852       // Note that this serves two purposes: It filters out loops that are
1853       // simply not analyzable, and it covers the case where this code is
1854       // being called from within backedge-taken count analysis, such that
1855       // attempting to ask for the backedge-taken count would likely result
1856       // in infinite recursion. In the later case, the analysis code will
1857       // cope with a conservative value, and it will take care to purge
1858       // that value once it has finished.
1859       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1860       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1861         // Manually compute the final value for AR, checking for
1862         // overflow.
1863
1864         // Check whether the backedge-taken count can be losslessly casted to
1865         // the addrec's type. The count is always unsigned.
1866         const SCEV *CastedMaxBECount =
1867           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1868         const SCEV *RecastedMaxBECount =
1869           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1870         if (MaxBECount == RecastedMaxBECount) {
1871           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1872           // Check whether Start+Step*MaxBECount has no signed overflow.
1873           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1874           const SCEV *SAdd =
1875               getSignExtendExprCached(getAddExpr(Start, SMul), WideTy, Cache);
1876           const SCEV *WideStart = getSignExtendExprCached(Start, WideTy, Cache);
1877           const SCEV *WideMaxBECount =
1878               getZeroExtendExpr(CastedMaxBECount, WideTy);
1879           const SCEV *OperandExtendedAdd = getAddExpr(
1880               WideStart, getMulExpr(WideMaxBECount, getSignExtendExprCached(
1881                                                         Step, WideTy, Cache)));
1882           if (SAdd == OperandExtendedAdd) {
1883             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1884             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1885             // Return the expression with the addrec on the outside.
1886             return getAddRecExpr(
1887                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache),
1888                 getSignExtendExprCached(Step, Ty, Cache), L,
1889                 AR->getNoWrapFlags());
1890           }
1891           // Similar to above, only this time treat the step value as unsigned.
1892           // This covers loops that count up with an unsigned step.
1893           OperandExtendedAdd =
1894             getAddExpr(WideStart,
1895                        getMulExpr(WideMaxBECount,
1896                                   getZeroExtendExpr(Step, WideTy)));
1897           if (SAdd == OperandExtendedAdd) {
1898             // If AR wraps around then
1899             //
1900             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1901             // => SAdd != OperandExtendedAdd
1902             //
1903             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1904             // (SAdd == OperandExtendedAdd => AR is NW)
1905
1906             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1907
1908             // Return the expression with the addrec on the outside.
1909             return getAddRecExpr(
1910                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache),
1911                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1912           }
1913         }
1914       }
1915
1916       // Normally, in the cases we can prove no-overflow via a
1917       // backedge guarding condition, we can also compute a backedge
1918       // taken count for the loop.  The exceptions are assumptions and
1919       // guards present in the loop -- SCEV is not great at exploiting
1920       // these to compute max backedge taken counts, but can still use
1921       // these to prove lack of overflow.  Use this fact to avoid
1922       // doing extra work that may not pay off.
1923
1924       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1925           !AC.assumptions().empty()) {
1926         // If the backedge is guarded by a comparison with the pre-inc
1927         // value the addrec is safe. Also, if the entry is guarded by
1928         // a comparison with the start value and the backedge is
1929         // guarded by a comparison with the post-inc value, the addrec
1930         // is safe.
1931         ICmpInst::Predicate Pred;
1932         const SCEV *OverflowLimit =
1933             getSignedOverflowLimitForStep(Step, &Pred, this);
1934         if (OverflowLimit &&
1935             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1936              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1937               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1938                                           OverflowLimit)))) {
1939           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1940           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1941           return getAddRecExpr(
1942               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache),
1943               getSignExtendExprCached(Step, Ty, Cache), L,
1944               AR->getNoWrapFlags());
1945         }
1946       }
1947
1948       // If Start and Step are constants, check if we can apply this
1949       // transformation:
1950       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1951       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1952       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1953       if (SC1 && SC2) {
1954         const APInt &C1 = SC1->getAPInt();
1955         const APInt &C2 = SC2->getAPInt();
1956         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1957             C2.isPowerOf2()) {
1958           Start = getSignExtendExprCached(Start, Ty, Cache);
1959           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1960                                             AR->getNoWrapFlags());
1961           return getAddExpr(Start, getSignExtendExprCached(NewAR, Ty, Cache));
1962         }
1963       }
1964
1965       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1966         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1967         return getAddRecExpr(
1968             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache),
1969             getSignExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags());
1970       }
1971     }
1972
1973   // If the input value is provably positive and we could not simplify
1974   // away the sext build a zext instead.
1975   if (isKnownNonNegative(Op))
1976     return getZeroExtendExpr(Op, Ty);
1977
1978   // The cast wasn't folded; create an explicit cast node.
1979   // Recompute the insert position, as it may have been invalidated.
1980   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1981   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1982                                                    Op, Ty);
1983   UniqueSCEVs.InsertNode(S, IP);
1984   return S;
1985 }
1986
1987 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1988 /// unspecified bits out to the given type.
1989 ///
1990 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1991                                               Type *Ty) {
1992   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1993          "This is not an extending conversion!");
1994   assert(isSCEVable(Ty) &&
1995          "This is not a conversion to a SCEVable type!");
1996   Ty = getEffectiveSCEVType(Ty);
1997
1998   // Sign-extend negative constants.
1999   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2000     if (SC->getAPInt().isNegative())
2001       return getSignExtendExpr(Op, Ty);
2002
2003   // Peel off a truncate cast.
2004   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2005     const SCEV *NewOp = T->getOperand();
2006     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2007       return getAnyExtendExpr(NewOp, Ty);
2008     return getTruncateOrNoop(NewOp, Ty);
2009   }
2010
2011   // Next try a zext cast. If the cast is folded, use it.
2012   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2013   if (!isa<SCEVZeroExtendExpr>(ZExt))
2014     return ZExt;
2015
2016   // Next try a sext cast. If the cast is folded, use it.
2017   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2018   if (!isa<SCEVSignExtendExpr>(SExt))
2019     return SExt;
2020
2021   // Force the cast to be folded into the operands of an addrec.
2022   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2023     SmallVector<const SCEV *, 4> Ops;
2024     for (const SCEV *Op : AR->operands())
2025       Ops.push_back(getAnyExtendExpr(Op, Ty));
2026     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2027   }
2028
2029   // If the expression is obviously signed, use the sext cast value.
2030   if (isa<SCEVSMaxExpr>(Op))
2031     return SExt;
2032
2033   // Absent any other information, use the zext cast value.
2034   return ZExt;
2035 }
2036
2037 /// Process the given Ops list, which is a list of operands to be added under
2038 /// the given scale, update the given map. This is a helper function for
2039 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2040 /// that would form an add expression like this:
2041 ///
2042 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2043 ///
2044 /// where A and B are constants, update the map with these values:
2045 ///
2046 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2047 ///
2048 /// and add 13 + A*B*29 to AccumulatedConstant.
2049 /// This will allow getAddRecExpr to produce this:
2050 ///
2051 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2052 ///
2053 /// This form often exposes folding opportunities that are hidden in
2054 /// the original operand list.
2055 ///
2056 /// Return true iff it appears that any interesting folding opportunities
2057 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2058 /// the common case where no interesting opportunities are present, and
2059 /// is also used as a check to avoid infinite recursion.
2060 ///
2061 static bool
2062 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2063                              SmallVectorImpl<const SCEV *> &NewOps,
2064                              APInt &AccumulatedConstant,
2065                              const SCEV *const *Ops, size_t NumOperands,
2066                              const APInt &Scale,
2067                              ScalarEvolution &SE) {
2068   bool Interesting = false;
2069
2070   // Iterate over the add operands. They are sorted, with constants first.
2071   unsigned i = 0;
2072   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2073     ++i;
2074     // Pull a buried constant out to the outside.
2075     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2076       Interesting = true;
2077     AccumulatedConstant += Scale * C->getAPInt();
2078   }
2079
2080   // Next comes everything else. We're especially interested in multiplies
2081   // here, but they're in the middle, so just visit the rest with one loop.
2082   for (; i != NumOperands; ++i) {
2083     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2084     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2085       APInt NewScale =
2086           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2087       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2088         // A multiplication of a constant with another add; recurse.
2089         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2090         Interesting |=
2091           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2092                                        Add->op_begin(), Add->getNumOperands(),
2093                                        NewScale, SE);
2094       } else {
2095         // A multiplication of a constant with some other value. Update
2096         // the map.
2097         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2098         const SCEV *Key = SE.getMulExpr(MulOps);
2099         auto Pair = M.insert({Key, NewScale});
2100         if (Pair.second) {
2101           NewOps.push_back(Pair.first->first);
2102         } else {
2103           Pair.first->second += NewScale;
2104           // The map already had an entry for this value, which may indicate
2105           // a folding opportunity.
2106           Interesting = true;
2107         }
2108       }
2109     } else {
2110       // An ordinary operand. Update the map.
2111       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2112           M.insert({Ops[i], Scale});
2113       if (Pair.second) {
2114         NewOps.push_back(Pair.first->first);
2115       } else {
2116         Pair.first->second += Scale;
2117         // The map already had an entry for this value, which may indicate
2118         // a folding opportunity.
2119         Interesting = true;
2120       }
2121     }
2122   }
2123
2124   return Interesting;
2125 }
2126
2127 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2128 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2129 // can't-overflow flags for the operation if possible.
2130 static SCEV::NoWrapFlags
2131 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2132                       const SmallVectorImpl<const SCEV *> &Ops,
2133                       SCEV::NoWrapFlags Flags) {
2134   using namespace std::placeholders;
2135   typedef OverflowingBinaryOperator OBO;
2136
2137   bool CanAnalyze =
2138       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2139   (void)CanAnalyze;
2140   assert(CanAnalyze && "don't call from other places!");
2141
2142   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2143   SCEV::NoWrapFlags SignOrUnsignWrap =
2144       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2145
2146   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2147   auto IsKnownNonNegative = [&](const SCEV *S) {
2148     return SE->isKnownNonNegative(S);
2149   };
2150
2151   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2152     Flags =
2153         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2154
2155   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2156
2157   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2158       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2159
2160     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2161     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2162
2163     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2164     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2165       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2166           Instruction::Add, C, OBO::NoSignedWrap);
2167       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2168         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2169     }
2170     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2171       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2172           Instruction::Add, C, OBO::NoUnsignedWrap);
2173       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2174         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2175     }
2176   }
2177
2178   return Flags;
2179 }
2180
2181 /// Get a canonical add expression, or something simpler if possible.
2182 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2183                                         SCEV::NoWrapFlags Flags,
2184                                         unsigned Depth) {
2185   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2186          "only nuw or nsw allowed");
2187   assert(!Ops.empty() && "Cannot get empty add!");
2188   if (Ops.size() == 1) return Ops[0];
2189 #ifndef NDEBUG
2190   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2191   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2192     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2193            "SCEVAddExpr operand types don't match!");
2194 #endif
2195
2196   // Sort by complexity, this groups all similar expression types together.
2197   GroupByComplexity(Ops, &LI, DT);
2198
2199   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2200
2201   // If there are any constants, fold them together.
2202   unsigned Idx = 0;
2203   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2204     ++Idx;
2205     assert(Idx < Ops.size());
2206     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2207       // We found two constants, fold them together!
2208       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2209       if (Ops.size() == 2) return Ops[0];
2210       Ops.erase(Ops.begin()+1);  // Erase the folded element
2211       LHSC = cast<SCEVConstant>(Ops[0]);
2212     }
2213
2214     // If we are left with a constant zero being added, strip it off.
2215     if (LHSC->getValue()->isZero()) {
2216       Ops.erase(Ops.begin());
2217       --Idx;
2218     }
2219
2220     if (Ops.size() == 1) return Ops[0];
2221   }
2222
2223   // Limit recursion calls depth
2224   if (Depth > MaxAddExprDepth)
2225     return getOrCreateAddExpr(Ops, Flags);
2226
2227   // Okay, check to see if the same value occurs in the operand list more than
2228   // once.  If so, merge them together into an multiply expression.  Since we
2229   // sorted the list, these values are required to be adjacent.
2230   Type *Ty = Ops[0]->getType();
2231   bool FoundMatch = false;
2232   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2233     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2234       // Scan ahead to count how many equal operands there are.
2235       unsigned Count = 2;
2236       while (i+Count != e && Ops[i+Count] == Ops[i])
2237         ++Count;
2238       // Merge the values into a multiply.
2239       const SCEV *Scale = getConstant(Ty, Count);
2240       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2241       if (Ops.size() == Count)
2242         return Mul;
2243       Ops[i] = Mul;
2244       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2245       --i; e -= Count - 1;
2246       FoundMatch = true;
2247     }
2248   if (FoundMatch)
2249     return getAddExpr(Ops, Flags);
2250
2251   // Check for truncates. If all the operands are truncated from the same
2252   // type, see if factoring out the truncate would permit the result to be
2253   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2254   // if the contents of the resulting outer trunc fold to something simple.
2255   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2256     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2257     Type *DstType = Trunc->getType();
2258     Type *SrcType = Trunc->getOperand()->getType();
2259     SmallVector<const SCEV *, 8> LargeOps;
2260     bool Ok = true;
2261     // Check all the operands to see if they can be represented in the
2262     // source type of the truncate.
2263     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2264       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2265         if (T->getOperand()->getType() != SrcType) {
2266           Ok = false;
2267           break;
2268         }
2269         LargeOps.push_back(T->getOperand());
2270       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2271         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2272       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2273         SmallVector<const SCEV *, 8> LargeMulOps;
2274         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2275           if (const SCEVTruncateExpr *T =
2276                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2277             if (T->getOperand()->getType() != SrcType) {
2278               Ok = false;
2279               break;
2280             }
2281             LargeMulOps.push_back(T->getOperand());
2282           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2283             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2284           } else {
2285             Ok = false;
2286             break;
2287           }
2288         }
2289         if (Ok)
2290           LargeOps.push_back(getMulExpr(LargeMulOps));
2291       } else {
2292         Ok = false;
2293         break;
2294       }
2295     }
2296     if (Ok) {
2297       // Evaluate the expression in the larger type.
2298       const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1);
2299       // If it folds to something simple, use it. Otherwise, don't.
2300       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2301         return getTruncateExpr(Fold, DstType);
2302     }
2303   }
2304
2305   // Skip past any other cast SCEVs.
2306   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2307     ++Idx;
2308
2309   // If there are add operands they would be next.
2310   if (Idx < Ops.size()) {
2311     bool DeletedAdd = false;
2312     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2313       if (Ops.size() > AddOpsInlineThreshold ||
2314           Add->getNumOperands() > AddOpsInlineThreshold)
2315         break;
2316       // If we have an add, expand the add operands onto the end of the operands
2317       // list.
2318       Ops.erase(Ops.begin()+Idx);
2319       Ops.append(Add->op_begin(), Add->op_end());
2320       DeletedAdd = true;
2321     }
2322
2323     // If we deleted at least one add, we added operands to the end of the list,
2324     // and they are not necessarily sorted.  Recurse to resort and resimplify
2325     // any operands we just acquired.
2326     if (DeletedAdd)
2327       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2328   }
2329
2330   // Skip over the add expression until we get to a multiply.
2331   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2332     ++Idx;
2333
2334   // Check to see if there are any folding opportunities present with
2335   // operands multiplied by constant values.
2336   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2337     uint64_t BitWidth = getTypeSizeInBits(Ty);
2338     DenseMap<const SCEV *, APInt> M;
2339     SmallVector<const SCEV *, 8> NewOps;
2340     APInt AccumulatedConstant(BitWidth, 0);
2341     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2342                                      Ops.data(), Ops.size(),
2343                                      APInt(BitWidth, 1), *this)) {
2344       struct APIntCompare {
2345         bool operator()(const APInt &LHS, const APInt &RHS) const {
2346           return LHS.ult(RHS);
2347         }
2348       };
2349
2350       // Some interesting folding opportunity is present, so its worthwhile to
2351       // re-generate the operands list. Group the operands by constant scale,
2352       // to avoid multiplying by the same constant scale multiple times.
2353       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2354       for (const SCEV *NewOp : NewOps)
2355         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2356       // Re-generate the operands list.
2357       Ops.clear();
2358       if (AccumulatedConstant != 0)
2359         Ops.push_back(getConstant(AccumulatedConstant));
2360       for (auto &MulOp : MulOpLists)
2361         if (MulOp.first != 0)
2362           Ops.push_back(getMulExpr(
2363               getConstant(MulOp.first),
2364               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)));
2365       if (Ops.empty())
2366         return getZero(Ty);
2367       if (Ops.size() == 1)
2368         return Ops[0];
2369       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2370     }
2371   }
2372
2373   // If we are adding something to a multiply expression, make sure the
2374   // something is not already an operand of the multiply.  If so, merge it into
2375   // the multiply.
2376   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2377     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2378     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2379       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2380       if (isa<SCEVConstant>(MulOpSCEV))
2381         continue;
2382       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2383         if (MulOpSCEV == Ops[AddOp]) {
2384           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2385           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2386           if (Mul->getNumOperands() != 2) {
2387             // If the multiply has more than two operands, we must get the
2388             // Y*Z term.
2389             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2390                                                 Mul->op_begin()+MulOp);
2391             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2392             InnerMul = getMulExpr(MulOps);
2393           }
2394           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2395           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2396           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2397           if (Ops.size() == 2) return OuterMul;
2398           if (AddOp < Idx) {
2399             Ops.erase(Ops.begin()+AddOp);
2400             Ops.erase(Ops.begin()+Idx-1);
2401           } else {
2402             Ops.erase(Ops.begin()+Idx);
2403             Ops.erase(Ops.begin()+AddOp-1);
2404           }
2405           Ops.push_back(OuterMul);
2406           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2407         }
2408
2409       // Check this multiply against other multiplies being added together.
2410       for (unsigned OtherMulIdx = Idx+1;
2411            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2412            ++OtherMulIdx) {
2413         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2414         // If MulOp occurs in OtherMul, we can fold the two multiplies
2415         // together.
2416         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2417              OMulOp != e; ++OMulOp)
2418           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2419             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2420             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2421             if (Mul->getNumOperands() != 2) {
2422               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2423                                                   Mul->op_begin()+MulOp);
2424               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2425               InnerMul1 = getMulExpr(MulOps);
2426             }
2427             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2428             if (OtherMul->getNumOperands() != 2) {
2429               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2430                                                   OtherMul->op_begin()+OMulOp);
2431               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2432               InnerMul2 = getMulExpr(MulOps);
2433             }
2434             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2435             const SCEV *InnerMulSum =
2436                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2437             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2438             if (Ops.size() == 2) return OuterMul;
2439             Ops.erase(Ops.begin()+Idx);
2440             Ops.erase(Ops.begin()+OtherMulIdx-1);
2441             Ops.push_back(OuterMul);
2442             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2443           }
2444       }
2445     }
2446   }
2447
2448   // If there are any add recurrences in the operands list, see if any other
2449   // added values are loop invariant.  If so, we can fold them into the
2450   // recurrence.
2451   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2452     ++Idx;
2453
2454   // Scan over all recurrences, trying to fold loop invariants into them.
2455   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2456     // Scan all of the other operands to this add and add them to the vector if
2457     // they are loop invariant w.r.t. the recurrence.
2458     SmallVector<const SCEV *, 8> LIOps;
2459     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2460     const Loop *AddRecLoop = AddRec->getLoop();
2461     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2462       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2463         LIOps.push_back(Ops[i]);
2464         Ops.erase(Ops.begin()+i);
2465         --i; --e;
2466       }
2467
2468     // If we found some loop invariants, fold them into the recurrence.
2469     if (!LIOps.empty()) {
2470       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2471       LIOps.push_back(AddRec->getStart());
2472
2473       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2474                                              AddRec->op_end());
2475       // This follows from the fact that the no-wrap flags on the outer add
2476       // expression are applicable on the 0th iteration, when the add recurrence
2477       // will be equal to its start value.
2478       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2479
2480       // Build the new addrec. Propagate the NUW and NSW flags if both the
2481       // outer add and the inner addrec are guaranteed to have no overflow.
2482       // Always propagate NW.
2483       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2484       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2485
2486       // If all of the other operands were loop invariant, we are done.
2487       if (Ops.size() == 1) return NewRec;
2488
2489       // Otherwise, add the folded AddRec by the non-invariant parts.
2490       for (unsigned i = 0;; ++i)
2491         if (Ops[i] == AddRec) {
2492           Ops[i] = NewRec;
2493           break;
2494         }
2495       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2496     }
2497
2498     // Okay, if there weren't any loop invariants to be folded, check to see if
2499     // there are multiple AddRec's with the same loop induction variable being
2500     // added together.  If so, we can fold them.
2501     for (unsigned OtherIdx = Idx+1;
2502          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2503          ++OtherIdx) {
2504       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2505       // so that the 1st found AddRecExpr is dominated by all others.
2506       assert(DT.dominates(
2507            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2508            AddRec->getLoop()->getHeader()) &&
2509         "AddRecExprs are not sorted in reverse dominance order?");
2510       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2511         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2512         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2513                                                AddRec->op_end());
2514         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2515              ++OtherIdx) {
2516           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2517           if (OtherAddRec->getLoop() == AddRecLoop) {
2518             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2519                  i != e; ++i) {
2520               if (i >= AddRecOps.size()) {
2521                 AddRecOps.append(OtherAddRec->op_begin()+i,
2522                                  OtherAddRec->op_end());
2523                 break;
2524               }
2525               SmallVector<const SCEV *, 2> TwoOps = {
2526                   AddRecOps[i], OtherAddRec->getOperand(i)};
2527               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2528             }
2529             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2530           }
2531         }
2532         // Step size has changed, so we cannot guarantee no self-wraparound.
2533         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2534         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2535       }
2536     }
2537
2538     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2539     // next one.
2540   }
2541
2542   // Okay, it looks like we really DO need an add expr.  Check to see if we
2543   // already have one, otherwise create a new one.
2544   return getOrCreateAddExpr(Ops, Flags);
2545 }
2546
2547 const SCEV *
2548 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2549                                     SCEV::NoWrapFlags Flags) {
2550   FoldingSetNodeID ID;
2551   ID.AddInteger(scAddExpr);
2552   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2553     ID.AddPointer(Ops[i]);
2554   void *IP = nullptr;
2555   SCEVAddExpr *S =
2556       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2557   if (!S) {
2558     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2559     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2560     S = new (SCEVAllocator)
2561         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2562     UniqueSCEVs.InsertNode(S, IP);
2563   }
2564   S->setNoWrapFlags(Flags);
2565   return S;
2566 }
2567
2568 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2569   uint64_t k = i*j;
2570   if (j > 1 && k / j != i) Overflow = true;
2571   return k;
2572 }
2573
2574 /// Compute the result of "n choose k", the binomial coefficient.  If an
2575 /// intermediate computation overflows, Overflow will be set and the return will
2576 /// be garbage. Overflow is not cleared on absence of overflow.
2577 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2578   // We use the multiplicative formula:
2579   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2580   // At each iteration, we take the n-th term of the numeral and divide by the
2581   // (k-n)th term of the denominator.  This division will always produce an
2582   // integral result, and helps reduce the chance of overflow in the
2583   // intermediate computations. However, we can still overflow even when the
2584   // final result would fit.
2585
2586   if (n == 0 || n == k) return 1;
2587   if (k > n) return 0;
2588
2589   if (k > n/2)
2590     k = n-k;
2591
2592   uint64_t r = 1;
2593   for (uint64_t i = 1; i <= k; ++i) {
2594     r = umul_ov(r, n-(i-1), Overflow);
2595     r /= i;
2596   }
2597   return r;
2598 }
2599
2600 /// Determine if any of the operands in this SCEV are a constant or if
2601 /// any of the add or multiply expressions in this SCEV contain a constant.
2602 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2603   SmallVector<const SCEV *, 4> Ops;
2604   Ops.push_back(StartExpr);
2605   while (!Ops.empty()) {
2606     const SCEV *CurrentExpr = Ops.pop_back_val();
2607     if (isa<SCEVConstant>(*CurrentExpr))
2608       return true;
2609
2610     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2611       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2612       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2613     }
2614   }
2615   return false;
2616 }
2617
2618 /// Get a canonical multiply expression, or something simpler if possible.
2619 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2620                                         SCEV::NoWrapFlags Flags) {
2621   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2622          "only nuw or nsw allowed");
2623   assert(!Ops.empty() && "Cannot get empty mul!");
2624   if (Ops.size() == 1) return Ops[0];
2625 #ifndef NDEBUG
2626   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2627   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2628     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2629            "SCEVMulExpr operand types don't match!");
2630 #endif
2631
2632   // Sort by complexity, this groups all similar expression types together.
2633   GroupByComplexity(Ops, &LI, DT);
2634
2635   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2636
2637   // If there are any constants, fold them together.
2638   unsigned Idx = 0;
2639   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2640
2641     // C1*(C2+V) -> C1*C2 + C1*V
2642     if (Ops.size() == 2)
2643         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2644           // If any of Add's ops are Adds or Muls with a constant,
2645           // apply this transformation as well.
2646           if (Add->getNumOperands() == 2)
2647             if (containsConstantSomewhere(Add))
2648               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2649                                 getMulExpr(LHSC, Add->getOperand(1)));
2650
2651     ++Idx;
2652     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2653       // We found two constants, fold them together!
2654       ConstantInt *Fold =
2655           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2656       Ops[0] = getConstant(Fold);
2657       Ops.erase(Ops.begin()+1);  // Erase the folded element
2658       if (Ops.size() == 1) return Ops[0];
2659       LHSC = cast<SCEVConstant>(Ops[0]);
2660     }
2661
2662     // If we are left with a constant one being multiplied, strip it off.
2663     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2664       Ops.erase(Ops.begin());
2665       --Idx;
2666     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2667       // If we have a multiply of zero, it will always be zero.
2668       return Ops[0];
2669     } else if (Ops[0]->isAllOnesValue()) {
2670       // If we have a mul by -1 of an add, try distributing the -1 among the
2671       // add operands.
2672       if (Ops.size() == 2) {
2673         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2674           SmallVector<const SCEV *, 4> NewOps;
2675           bool AnyFolded = false;
2676           for (const SCEV *AddOp : Add->operands()) {
2677             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2678             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2679             NewOps.push_back(Mul);
2680           }
2681           if (AnyFolded)
2682             return getAddExpr(NewOps);
2683         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2684           // Negation preserves a recurrence's no self-wrap property.
2685           SmallVector<const SCEV *, 4> Operands;
2686           for (const SCEV *AddRecOp : AddRec->operands())
2687             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2688
2689           return getAddRecExpr(Operands, AddRec->getLoop(),
2690                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2691         }
2692       }
2693     }
2694
2695     if (Ops.size() == 1)
2696       return Ops[0];
2697   }
2698
2699   // Skip over the add expression until we get to a multiply.
2700   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2701     ++Idx;
2702
2703   // If there are mul operands inline them all into this expression.
2704   if (Idx < Ops.size()) {
2705     bool DeletedMul = false;
2706     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2707       if (Ops.size() > MulOpsInlineThreshold)
2708         break;
2709       // If we have an mul, expand the mul operands onto the end of the operands
2710       // list.
2711       Ops.erase(Ops.begin()+Idx);
2712       Ops.append(Mul->op_begin(), Mul->op_end());
2713       DeletedMul = true;
2714     }
2715
2716     // If we deleted at least one mul, we added operands to the end of the list,
2717     // and they are not necessarily sorted.  Recurse to resort and resimplify
2718     // any operands we just acquired.
2719     if (DeletedMul)
2720       return getMulExpr(Ops);
2721   }
2722
2723   // If there are any add recurrences in the operands list, see if any other
2724   // added values are loop invariant.  If so, we can fold them into the
2725   // recurrence.
2726   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2727     ++Idx;
2728
2729   // Scan over all recurrences, trying to fold loop invariants into them.
2730   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2731     // Scan all of the other operands to this mul and add them to the vector if
2732     // they are loop invariant w.r.t. the recurrence.
2733     SmallVector<const SCEV *, 8> LIOps;
2734     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2735     const Loop *AddRecLoop = AddRec->getLoop();
2736     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2737       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2738         LIOps.push_back(Ops[i]);
2739         Ops.erase(Ops.begin()+i);
2740         --i; --e;
2741       }
2742
2743     // If we found some loop invariants, fold them into the recurrence.
2744     if (!LIOps.empty()) {
2745       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2746       SmallVector<const SCEV *, 4> NewOps;
2747       NewOps.reserve(AddRec->getNumOperands());
2748       const SCEV *Scale = getMulExpr(LIOps);
2749       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2750         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2751
2752       // Build the new addrec. Propagate the NUW and NSW flags if both the
2753       // outer mul and the inner addrec are guaranteed to have no overflow.
2754       //
2755       // No self-wrap cannot be guaranteed after changing the step size, but
2756       // will be inferred if either NUW or NSW is true.
2757       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2758       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2759
2760       // If all of the other operands were loop invariant, we are done.
2761       if (Ops.size() == 1) return NewRec;
2762
2763       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2764       for (unsigned i = 0;; ++i)
2765         if (Ops[i] == AddRec) {
2766           Ops[i] = NewRec;
2767           break;
2768         }
2769       return getMulExpr(Ops);
2770     }
2771
2772     // Okay, if there weren't any loop invariants to be folded, check to see if
2773     // there are multiple AddRec's with the same loop induction variable being
2774     // multiplied together.  If so, we can fold them.
2775
2776     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2777     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2778     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2779     //   ]]],+,...up to x=2n}.
2780     // Note that the arguments to choose() are always integers with values
2781     // known at compile time, never SCEV objects.
2782     //
2783     // The implementation avoids pointless extra computations when the two
2784     // addrec's are of different length (mathematically, it's equivalent to
2785     // an infinite stream of zeros on the right).
2786     bool OpsModified = false;
2787     for (unsigned OtherIdx = Idx+1;
2788          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2789          ++OtherIdx) {
2790       const SCEVAddRecExpr *OtherAddRec =
2791         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2792       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2793         continue;
2794
2795       bool Overflow = false;
2796       Type *Ty = AddRec->getType();
2797       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2798       SmallVector<const SCEV*, 7> AddRecOps;
2799       for (int x = 0, xe = AddRec->getNumOperands() +
2800              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2801         const SCEV *Term = getZero(Ty);
2802         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2803           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2804           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2805                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2806                z < ze && !Overflow; ++z) {
2807             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2808             uint64_t Coeff;
2809             if (LargerThan64Bits)
2810               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2811             else
2812               Coeff = Coeff1*Coeff2;
2813             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2814             const SCEV *Term1 = AddRec->getOperand(y-z);
2815             const SCEV *Term2 = OtherAddRec->getOperand(z);
2816             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2817           }
2818         }
2819         AddRecOps.push_back(Term);
2820       }
2821       if (!Overflow) {
2822         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2823                                               SCEV::FlagAnyWrap);
2824         if (Ops.size() == 2) return NewAddRec;
2825         Ops[Idx] = NewAddRec;
2826         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2827         OpsModified = true;
2828         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2829         if (!AddRec)
2830           break;
2831       }
2832     }
2833     if (OpsModified)
2834       return getMulExpr(Ops);
2835
2836     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2837     // next one.
2838   }
2839
2840   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2841   // already have one, otherwise create a new one.
2842   FoldingSetNodeID ID;
2843   ID.AddInteger(scMulExpr);
2844   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2845     ID.AddPointer(Ops[i]);
2846   void *IP = nullptr;
2847   SCEVMulExpr *S =
2848     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2849   if (!S) {
2850     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2851     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2852     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2853                                         O, Ops.size());
2854     UniqueSCEVs.InsertNode(S, IP);
2855   }
2856   S->setNoWrapFlags(Flags);
2857   return S;
2858 }
2859
2860 /// Get a canonical unsigned division expression, or something simpler if
2861 /// possible.
2862 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2863                                          const SCEV *RHS) {
2864   assert(getEffectiveSCEVType(LHS->getType()) ==
2865          getEffectiveSCEVType(RHS->getType()) &&
2866          "SCEVUDivExpr operand types don't match!");
2867
2868   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2869     if (RHSC->getValue()->equalsInt(1))
2870       return LHS;                               // X udiv 1 --> x
2871     // If the denominator is zero, the result of the udiv is undefined. Don't
2872     // try to analyze it, because the resolution chosen here may differ from
2873     // the resolution chosen in other parts of the compiler.
2874     if (!RHSC->getValue()->isZero()) {
2875       // Determine if the division can be folded into the operands of
2876       // its operands.
2877       // TODO: Generalize this to non-constants by using known-bits information.
2878       Type *Ty = LHS->getType();
2879       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2880       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2881       // For non-power-of-two values, effectively round the value up to the
2882       // nearest power of two.
2883       if (!RHSC->getAPInt().isPowerOf2())
2884         ++MaxShiftAmt;
2885       IntegerType *ExtTy =
2886         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2887       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2888         if (const SCEVConstant *Step =
2889             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2890           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2891           const APInt &StepInt = Step->getAPInt();
2892           const APInt &DivInt = RHSC->getAPInt();
2893           if (!StepInt.urem(DivInt) &&
2894               getZeroExtendExpr(AR, ExtTy) ==
2895               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2896                             getZeroExtendExpr(Step, ExtTy),
2897                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2898             SmallVector<const SCEV *, 4> Operands;
2899             for (const SCEV *Op : AR->operands())
2900               Operands.push_back(getUDivExpr(Op, RHS));
2901             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2902           }
2903           /// Get a canonical UDivExpr for a recurrence.
2904           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2905           // We can currently only fold X%N if X is constant.
2906           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2907           if (StartC && !DivInt.urem(StepInt) &&
2908               getZeroExtendExpr(AR, ExtTy) ==
2909               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2910                             getZeroExtendExpr(Step, ExtTy),
2911                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2912             const APInt &StartInt = StartC->getAPInt();
2913             const APInt &StartRem = StartInt.urem(StepInt);
2914             if (StartRem != 0)
2915               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2916                                   AR->getLoop(), SCEV::FlagNW);
2917           }
2918         }
2919       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2920       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2921         SmallVector<const SCEV *, 4> Operands;
2922         for (const SCEV *Op : M->operands())
2923           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2924         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2925           // Find an operand that's safely divisible.
2926           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2927             const SCEV *Op = M->getOperand(i);
2928             const SCEV *Div = getUDivExpr(Op, RHSC);
2929             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2930               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2931                                                       M->op_end());
2932               Operands[i] = Div;
2933               return getMulExpr(Operands);
2934             }
2935           }
2936       }
2937       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2938       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2939         SmallVector<const SCEV *, 4> Operands;
2940         for (const SCEV *Op : A->operands())
2941           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2942         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2943           Operands.clear();
2944           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2945             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2946             if (isa<SCEVUDivExpr>(Op) ||
2947                 getMulExpr(Op, RHS) != A->getOperand(i))
2948               break;
2949             Operands.push_back(Op);
2950           }
2951           if (Operands.size() == A->getNumOperands())
2952             return getAddExpr(Operands);
2953         }
2954       }
2955
2956       // Fold if both operands are constant.
2957       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2958         Constant *LHSCV = LHSC->getValue();
2959         Constant *RHSCV = RHSC->getValue();
2960         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2961                                                                    RHSCV)));
2962       }
2963     }
2964   }
2965
2966   FoldingSetNodeID ID;
2967   ID.AddInteger(scUDivExpr);
2968   ID.AddPointer(LHS);
2969   ID.AddPointer(RHS);
2970   void *IP = nullptr;
2971   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2972   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2973                                              LHS, RHS);
2974   UniqueSCEVs.InsertNode(S, IP);
2975   return S;
2976 }
2977
2978 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2979   APInt A = C1->getAPInt().abs();
2980   APInt B = C2->getAPInt().abs();
2981   uint32_t ABW = A.getBitWidth();
2982   uint32_t BBW = B.getBitWidth();
2983
2984   if (ABW > BBW)
2985     B = B.zext(ABW);
2986   else if (ABW < BBW)
2987     A = A.zext(BBW);
2988
2989   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
2990 }
2991
2992 /// Get a canonical unsigned division expression, or something simpler if
2993 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2994 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2995 /// it's not exact because the udiv may be clearing bits.
2996 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2997                                               const SCEV *RHS) {
2998   // TODO: we could try to find factors in all sorts of things, but for now we
2999   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3000   // end of this file for inspiration.
3001
3002   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3003   if (!Mul || !Mul->hasNoUnsignedWrap())
3004     return getUDivExpr(LHS, RHS);
3005
3006   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3007     // If the mulexpr multiplies by a constant, then that constant must be the
3008     // first element of the mulexpr.
3009     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3010       if (LHSCst == RHSCst) {
3011         SmallVector<const SCEV *, 2> Operands;
3012         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3013         return getMulExpr(Operands);
3014       }
3015
3016       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3017       // that there's a factor provided by one of the other terms. We need to
3018       // check.
3019       APInt Factor = gcd(LHSCst, RHSCst);
3020       if (!Factor.isIntN(1)) {
3021         LHSCst =
3022             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3023         RHSCst =
3024             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3025         SmallVector<const SCEV *, 2> Operands;
3026         Operands.push_back(LHSCst);
3027         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3028         LHS = getMulExpr(Operands);
3029         RHS = RHSCst;
3030         Mul = dyn_cast<SCEVMulExpr>(LHS);
3031         if (!Mul)
3032           return getUDivExactExpr(LHS, RHS);
3033       }
3034     }
3035   }
3036
3037   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3038     if (Mul->getOperand(i) == RHS) {
3039       SmallVector<const SCEV *, 2> Operands;
3040       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3041       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3042       return getMulExpr(Operands);
3043     }
3044   }
3045
3046   return getUDivExpr(LHS, RHS);
3047 }
3048
3049 /// Get an add recurrence expression for the specified loop.  Simplify the
3050 /// expression as much as possible.
3051 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3052                                            const Loop *L,
3053                                            SCEV::NoWrapFlags Flags) {
3054   SmallVector<const SCEV *, 4> Operands;
3055   Operands.push_back(Start);
3056   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3057     if (StepChrec->getLoop() == L) {
3058       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3059       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3060     }
3061
3062   Operands.push_back(Step);
3063   return getAddRecExpr(Operands, L, Flags);
3064 }
3065
3066 /// Get an add recurrence expression for the specified loop.  Simplify the
3067 /// expression as much as possible.
3068 const SCEV *
3069 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3070                                const Loop *L, SCEV::NoWrapFlags Flags) {
3071   if (Operands.size() == 1) return Operands[0];
3072 #ifndef NDEBUG
3073   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3074   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3075     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3076            "SCEVAddRecExpr operand types don't match!");
3077   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3078     assert(isLoopInvariant(Operands[i], L) &&
3079            "SCEVAddRecExpr operand is not loop-invariant!");
3080 #endif
3081
3082   if (Operands.back()->isZero()) {
3083     Operands.pop_back();
3084     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3085   }
3086
3087   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3088   // use that information to infer NUW and NSW flags. However, computing a
3089   // BE count requires calling getAddRecExpr, so we may not yet have a
3090   // meaningful BE count at this point (and if we don't, we'd be stuck
3091   // with a SCEVCouldNotCompute as the cached BE count).
3092
3093   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3094
3095   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3096   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3097     const Loop *NestedLoop = NestedAR->getLoop();
3098     if (L->contains(NestedLoop)
3099             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3100             : (!NestedLoop->contains(L) &&
3101                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3102       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3103                                                   NestedAR->op_end());
3104       Operands[0] = NestedAR->getStart();
3105       // AddRecs require their operands be loop-invariant with respect to their
3106       // loops. Don't perform this transformation if it would break this
3107       // requirement.
3108       bool AllInvariant = all_of(
3109           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3110
3111       if (AllInvariant) {
3112         // Create a recurrence for the outer loop with the same step size.
3113         //
3114         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3115         // inner recurrence has the same property.
3116         SCEV::NoWrapFlags OuterFlags =
3117           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3118
3119         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3120         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3121           return isLoopInvariant(Op, NestedLoop);
3122         });
3123
3124         if (AllInvariant) {
3125           // Ok, both add recurrences are valid after the transformation.
3126           //
3127           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3128           // the outer recurrence has the same property.
3129           SCEV::NoWrapFlags InnerFlags =
3130             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3131           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3132         }
3133       }
3134       // Reset Operands to its original state.
3135       Operands[0] = NestedAR;
3136     }
3137   }
3138
3139   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3140   // already have one, otherwise create a new one.
3141   FoldingSetNodeID ID;
3142   ID.AddInteger(scAddRecExpr);
3143   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3144     ID.AddPointer(Operands[i]);
3145   ID.AddPointer(L);
3146   void *IP = nullptr;
3147   SCEVAddRecExpr *S =
3148     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3149   if (!S) {
3150     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3151     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3152     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3153                                            O, Operands.size(), L);
3154     UniqueSCEVs.InsertNode(S, IP);
3155   }
3156   S->setNoWrapFlags(Flags);
3157   return S;
3158 }
3159
3160 const SCEV *
3161 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3162                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3163   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3164   // getSCEV(Base)->getType() has the same address space as Base->getType()
3165   // because SCEV::getType() preserves the address space.
3166   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3167   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3168   // instruction to its SCEV, because the Instruction may be guarded by control
3169   // flow and the no-overflow bits may not be valid for the expression in any
3170   // context. This can be fixed similarly to how these flags are handled for
3171   // adds.
3172   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3173                                              : SCEV::FlagAnyWrap;
3174
3175   const SCEV *TotalOffset = getZero(IntPtrTy);
3176   // The array size is unimportant. The first thing we do on CurTy is getting
3177   // its element type.
3178   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3179   for (const SCEV *IndexExpr : IndexExprs) {
3180     // Compute the (potentially symbolic) offset in bytes for this index.
3181     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3182       // For a struct, add the member offset.
3183       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3184       unsigned FieldNo = Index->getZExtValue();
3185       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3186
3187       // Add the field offset to the running total offset.
3188       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3189
3190       // Update CurTy to the type of the field at Index.
3191       CurTy = STy->getTypeAtIndex(Index);
3192     } else {
3193       // Update CurTy to its element type.
3194       CurTy = cast<SequentialType>(CurTy)->getElementType();
3195       // For an array, add the element offset, explicitly scaled.
3196       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3197       // Getelementptr indices are signed.
3198       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3199
3200       // Multiply the index by the element size to compute the element offset.
3201       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3202
3203       // Add the element offset to the running total offset.
3204       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3205     }
3206   }
3207
3208   // Add the total offset from all the GEP indices to the base.
3209   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3210 }
3211
3212 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3213                                          const SCEV *RHS) {
3214   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3215   return getSMaxExpr(Ops);
3216 }
3217
3218 const SCEV *
3219 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3220   assert(!Ops.empty() && "Cannot get empty smax!");
3221   if (Ops.size() == 1) return Ops[0];
3222 #ifndef NDEBUG
3223   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3224   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3225     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3226            "SCEVSMaxExpr operand types don't match!");
3227 #endif
3228
3229   // Sort by complexity, this groups all similar expression types together.
3230   GroupByComplexity(Ops, &LI, DT);
3231
3232   // If there are any constants, fold them together.
3233   unsigned Idx = 0;
3234   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3235     ++Idx;
3236     assert(Idx < Ops.size());
3237     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3238       // We found two constants, fold them together!
3239       ConstantInt *Fold = ConstantInt::get(
3240           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3241       Ops[0] = getConstant(Fold);
3242       Ops.erase(Ops.begin()+1);  // Erase the folded element
3243       if (Ops.size() == 1) return Ops[0];
3244       LHSC = cast<SCEVConstant>(Ops[0]);
3245     }
3246
3247     // If we are left with a constant minimum-int, strip it off.
3248     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3249       Ops.erase(Ops.begin());
3250       --Idx;
3251     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3252       // If we have an smax with a constant maximum-int, it will always be
3253       // maximum-int.
3254       return Ops[0];
3255     }
3256
3257     if (Ops.size() == 1) return Ops[0];
3258   }
3259
3260   // Find the first SMax
3261   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3262     ++Idx;
3263
3264   // Check to see if one of the operands is an SMax. If so, expand its operands
3265   // onto our operand list, and recurse to simplify.
3266   if (Idx < Ops.size()) {
3267     bool DeletedSMax = false;
3268     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3269       Ops.erase(Ops.begin()+Idx);
3270       Ops.append(SMax->op_begin(), SMax->op_end());
3271       DeletedSMax = true;
3272     }
3273
3274     if (DeletedSMax)
3275       return getSMaxExpr(Ops);
3276   }
3277
3278   // Okay, check to see if the same value occurs in the operand list twice.  If
3279   // so, delete one.  Since we sorted the list, these values are required to
3280   // be adjacent.
3281   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3282     //  X smax Y smax Y  -->  X smax Y
3283     //  X smax Y         -->  X, if X is always greater than Y
3284     if (Ops[i] == Ops[i+1] ||
3285         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3286       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3287       --i; --e;
3288     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3289       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3290       --i; --e;
3291     }
3292
3293   if (Ops.size() == 1) return Ops[0];
3294
3295   assert(!Ops.empty() && "Reduced smax down to nothing!");
3296
3297   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3298   // already have one, otherwise create a new one.
3299   FoldingSetNodeID ID;
3300   ID.AddInteger(scSMaxExpr);
3301   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3302     ID.AddPointer(Ops[i]);
3303   void *IP = nullptr;
3304   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3305   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3306   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3307   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3308                                              O, Ops.size());
3309   UniqueSCEVs.InsertNode(S, IP);
3310   return S;
3311 }
3312
3313 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3314                                          const SCEV *RHS) {
3315   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3316   return getUMaxExpr(Ops);
3317 }
3318
3319 const SCEV *
3320 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3321   assert(!Ops.empty() && "Cannot get empty umax!");
3322   if (Ops.size() == 1) return Ops[0];
3323 #ifndef NDEBUG
3324   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3325   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3326     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3327            "SCEVUMaxExpr operand types don't match!");
3328 #endif
3329
3330   // Sort by complexity, this groups all similar expression types together.
3331   GroupByComplexity(Ops, &LI, DT);
3332
3333   // If there are any constants, fold them together.
3334   unsigned Idx = 0;
3335   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3336     ++Idx;
3337     assert(Idx < Ops.size());
3338     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3339       // We found two constants, fold them together!
3340       ConstantInt *Fold = ConstantInt::get(
3341           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3342       Ops[0] = getConstant(Fold);
3343       Ops.erase(Ops.begin()+1);  // Erase the folded element
3344       if (Ops.size() == 1) return Ops[0];
3345       LHSC = cast<SCEVConstant>(Ops[0]);
3346     }
3347
3348     // If we are left with a constant minimum-int, strip it off.
3349     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3350       Ops.erase(Ops.begin());
3351       --Idx;
3352     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3353       // If we have an umax with a constant maximum-int, it will always be
3354       // maximum-int.
3355       return Ops[0];
3356     }
3357
3358     if (Ops.size() == 1) return Ops[0];
3359   }
3360
3361   // Find the first UMax
3362   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3363     ++Idx;
3364
3365   // Check to see if one of the operands is a UMax. If so, expand its operands
3366   // onto our operand list, and recurse to simplify.
3367   if (Idx < Ops.size()) {
3368     bool DeletedUMax = false;
3369     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3370       Ops.erase(Ops.begin()+Idx);
3371       Ops.append(UMax->op_begin(), UMax->op_end());
3372       DeletedUMax = true;
3373     }
3374
3375     if (DeletedUMax)
3376       return getUMaxExpr(Ops);
3377   }
3378
3379   // Okay, check to see if the same value occurs in the operand list twice.  If
3380   // so, delete one.  Since we sorted the list, these values are required to
3381   // be adjacent.
3382   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3383     //  X umax Y umax Y  -->  X umax Y
3384     //  X umax Y         -->  X, if X is always greater than Y
3385     if (Ops[i] == Ops[i+1] ||
3386         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3387       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3388       --i; --e;
3389     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3390       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3391       --i; --e;
3392     }
3393
3394   if (Ops.size() == 1) return Ops[0];
3395
3396   assert(!Ops.empty() && "Reduced umax down to nothing!");
3397
3398   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3399   // already have one, otherwise create a new one.
3400   FoldingSetNodeID ID;
3401   ID.AddInteger(scUMaxExpr);
3402   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3403     ID.AddPointer(Ops[i]);
3404   void *IP = nullptr;
3405   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3406   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3407   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3408   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3409                                              O, Ops.size());
3410   UniqueSCEVs.InsertNode(S, IP);
3411   return S;
3412 }
3413
3414 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3415                                          const SCEV *RHS) {
3416   // ~smax(~x, ~y) == smin(x, y).
3417   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3418 }
3419
3420 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3421                                          const SCEV *RHS) {
3422   // ~umax(~x, ~y) == umin(x, y)
3423   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3424 }
3425
3426 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3427   // We can bypass creating a target-independent
3428   // constant expression and then folding it back into a ConstantInt.
3429   // This is just a compile-time optimization.
3430   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3431 }
3432
3433 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3434                                              StructType *STy,
3435                                              unsigned FieldNo) {
3436   // We can bypass creating a target-independent
3437   // constant expression and then folding it back into a ConstantInt.
3438   // This is just a compile-time optimization.
3439   return getConstant(
3440       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3441 }
3442
3443 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3444   // Don't attempt to do anything other than create a SCEVUnknown object
3445   // here.  createSCEV only calls getUnknown after checking for all other
3446   // interesting possibilities, and any other code that calls getUnknown
3447   // is doing so in order to hide a value from SCEV canonicalization.
3448
3449   FoldingSetNodeID ID;
3450   ID.AddInteger(scUnknown);
3451   ID.AddPointer(V);
3452   void *IP = nullptr;
3453   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3454     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3455            "Stale SCEVUnknown in uniquing map!");
3456     return S;
3457   }
3458   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3459                                             FirstUnknown);
3460   FirstUnknown = cast<SCEVUnknown>(S);
3461   UniqueSCEVs.InsertNode(S, IP);
3462   return S;
3463 }
3464
3465 //===----------------------------------------------------------------------===//
3466 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3467 //
3468
3469 /// Test if values of the given type are analyzable within the SCEV
3470 /// framework. This primarily includes integer types, and it can optionally
3471 /// include pointer types if the ScalarEvolution class has access to
3472 /// target-specific information.
3473 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3474   // Integers and pointers are always SCEVable.
3475   return Ty->isIntegerTy() || Ty->isPointerTy();
3476 }
3477
3478 /// Return the size in bits of the specified type, for which isSCEVable must
3479 /// return true.
3480 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3481   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3482   return getDataLayout().getTypeSizeInBits(Ty);
3483 }
3484
3485 /// Return a type with the same bitwidth as the given type and which represents
3486 /// how SCEV will treat the given type, for which isSCEVable must return
3487 /// true. For pointer types, this is the pointer-sized integer type.
3488 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3489   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3490
3491   if (Ty->isIntegerTy())
3492     return Ty;
3493
3494   // The only other support type is pointer.
3495   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3496   return getDataLayout().getIntPtrType(Ty);
3497 }
3498
3499 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3500   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3501 }
3502
3503 const SCEV *ScalarEvolution::getCouldNotCompute() {
3504   return CouldNotCompute.get();
3505 }
3506
3507 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3508   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3509     auto *SU = dyn_cast<SCEVUnknown>(S);
3510     return SU && SU->getValue() == nullptr;
3511   });
3512
3513   return !ContainsNulls;
3514 }
3515
3516 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3517   HasRecMapType::iterator I = HasRecMap.find(S);
3518   if (I != HasRecMap.end())
3519     return I->second;
3520
3521   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3522   HasRecMap.insert({S, FoundAddRec});
3523   return FoundAddRec;
3524 }
3525
3526 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3527 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3528 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3529 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3530   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3531   if (!Add)
3532     return {S, nullptr};
3533
3534   if (Add->getNumOperands() != 2)
3535     return {S, nullptr};
3536
3537   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3538   if (!ConstOp)
3539     return {S, nullptr};
3540
3541   return {Add->getOperand(1), ConstOp->getValue()};
3542 }
3543
3544 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3545 /// by the value and offset from any ValueOffsetPair in the set.
3546 SetVector<ScalarEvolution::ValueOffsetPair> *
3547 ScalarEvolution::getSCEVValues(const SCEV *S) {
3548   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3549   if (SI == ExprValueMap.end())
3550     return nullptr;
3551 #ifndef NDEBUG
3552   if (VerifySCEVMap) {
3553     // Check there is no dangling Value in the set returned.
3554     for (const auto &VE : SI->second)
3555       assert(ValueExprMap.count(VE.first));
3556   }
3557 #endif
3558   return &SI->second;
3559 }
3560
3561 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3562 /// cannot be used separately. eraseValueFromMap should be used to remove
3563 /// V from ValueExprMap and ExprValueMap at the same time.
3564 void ScalarEvolution::eraseValueFromMap(Value *V) {
3565   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3566   if (I != ValueExprMap.end()) {
3567     const SCEV *S = I->second;
3568     // Remove {V, 0} from the set of ExprValueMap[S]
3569     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3570       SV->remove({V, nullptr});
3571
3572     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3573     const SCEV *Stripped;
3574     ConstantInt *Offset;
3575     std::tie(Stripped, Offset) = splitAddExpr(S);
3576     if (Offset != nullptr) {
3577       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3578         SV->remove({V, Offset});
3579     }
3580     ValueExprMap.erase(V);
3581   }
3582 }
3583
3584 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3585 /// create a new one.
3586 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3587   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3588
3589   const SCEV *S = getExistingSCEV(V);
3590   if (S == nullptr) {
3591     S = createSCEV(V);
3592     // During PHI resolution, it is possible to create two SCEVs for the same
3593     // V, so it is needed to double check whether V->S is inserted into
3594     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3595     std::pair<ValueExprMapType::iterator, bool> Pair =
3596         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3597     if (Pair.second) {
3598       ExprValueMap[S].insert({V, nullptr});
3599
3600       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3601       // ExprValueMap.
3602       const SCEV *Stripped = S;
3603       ConstantInt *Offset = nullptr;
3604       std::tie(Stripped, Offset) = splitAddExpr(S);
3605       // If stripped is SCEVUnknown, don't bother to save
3606       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3607       // increase the complexity of the expansion code.
3608       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3609       // because it may generate add/sub instead of GEP in SCEV expansion.
3610       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3611           !isa<GetElementPtrInst>(V))
3612         ExprValueMap[Stripped].insert({V, Offset});
3613     }
3614   }
3615   return S;
3616 }
3617
3618 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3619   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3620
3621   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3622   if (I != ValueExprMap.end()) {
3623     const SCEV *S = I->second;
3624     if (checkValidity(S))
3625       return S;
3626     eraseValueFromMap(V);
3627     forgetMemoizedResults(S);
3628   }
3629   return nullptr;
3630 }
3631
3632 /// Return a SCEV corresponding to -V = -1*V
3633 ///
3634 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3635                                              SCEV::NoWrapFlags Flags) {
3636   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3637     return getConstant(
3638                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3639
3640   Type *Ty = V->getType();
3641   Ty = getEffectiveSCEVType(Ty);
3642   return getMulExpr(
3643       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3644 }
3645
3646 /// Return a SCEV corresponding to ~V = -1-V
3647 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3648   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3649     return getConstant(
3650                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3651
3652   Type *Ty = V->getType();
3653   Ty = getEffectiveSCEVType(Ty);
3654   const SCEV *AllOnes =
3655                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3656   return getMinusSCEV(AllOnes, V);
3657 }
3658
3659 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3660                                           SCEV::NoWrapFlags Flags) {
3661   // Fast path: X - X --> 0.
3662   if (LHS == RHS)
3663     return getZero(LHS->getType());
3664
3665   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3666   // makes it so that we cannot make much use of NUW.
3667   auto AddFlags = SCEV::FlagAnyWrap;
3668   const bool RHSIsNotMinSigned =
3669       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3670   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3671     // Let M be the minimum representable signed value. Then (-1)*RHS
3672     // signed-wraps if and only if RHS is M. That can happen even for
3673     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3674     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3675     // (-1)*RHS, we need to prove that RHS != M.
3676     //
3677     // If LHS is non-negative and we know that LHS - RHS does not
3678     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3679     // either by proving that RHS > M or that LHS >= 0.
3680     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3681       AddFlags = SCEV::FlagNSW;
3682     }
3683   }
3684
3685   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3686   // RHS is NSW and LHS >= 0.
3687   //
3688   // The difficulty here is that the NSW flag may have been proven
3689   // relative to a loop that is to be found in a recurrence in LHS and
3690   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3691   // larger scope than intended.
3692   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3693
3694   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3695 }
3696
3697 const SCEV *
3698 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3699   Type *SrcTy = V->getType();
3700   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3701          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3702          "Cannot truncate or zero extend with non-integer arguments!");
3703   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3704     return V;  // No conversion
3705   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3706     return getTruncateExpr(V, Ty);
3707   return getZeroExtendExpr(V, Ty);
3708 }
3709
3710 const SCEV *
3711 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3712                                          Type *Ty) {
3713   Type *SrcTy = V->getType();
3714   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3715          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3716          "Cannot truncate or zero extend with non-integer arguments!");
3717   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3718     return V;  // No conversion
3719   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3720     return getTruncateExpr(V, Ty);
3721   return getSignExtendExpr(V, Ty);
3722 }
3723
3724 const SCEV *
3725 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3726   Type *SrcTy = V->getType();
3727   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3728          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3729          "Cannot noop or zero extend with non-integer arguments!");
3730   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3731          "getNoopOrZeroExtend cannot truncate!");
3732   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3733     return V;  // No conversion
3734   return getZeroExtendExpr(V, Ty);
3735 }
3736
3737 const SCEV *
3738 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3739   Type *SrcTy = V->getType();
3740   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3741          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3742          "Cannot noop or sign extend with non-integer arguments!");
3743   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3744          "getNoopOrSignExtend cannot truncate!");
3745   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3746     return V;  // No conversion
3747   return getSignExtendExpr(V, Ty);
3748 }
3749
3750 const SCEV *
3751 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3752   Type *SrcTy = V->getType();
3753   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3754          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3755          "Cannot noop or any extend with non-integer arguments!");
3756   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3757          "getNoopOrAnyExtend cannot truncate!");
3758   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3759     return V;  // No conversion
3760   return getAnyExtendExpr(V, Ty);
3761 }
3762
3763 const SCEV *
3764 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3765   Type *SrcTy = V->getType();
3766   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3767          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3768          "Cannot truncate or noop with non-integer arguments!");
3769   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3770          "getTruncateOrNoop cannot extend!");
3771   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3772     return V;  // No conversion
3773   return getTruncateExpr(V, Ty);
3774 }
3775
3776 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3777                                                         const SCEV *RHS) {
3778   const SCEV *PromotedLHS = LHS;
3779   const SCEV *PromotedRHS = RHS;
3780
3781   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3782     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3783   else
3784     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3785
3786   return getUMaxExpr(PromotedLHS, PromotedRHS);
3787 }
3788
3789 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3790                                                         const SCEV *RHS) {
3791   const SCEV *PromotedLHS = LHS;
3792   const SCEV *PromotedRHS = RHS;
3793
3794   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3795     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3796   else
3797     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3798
3799   return getUMinExpr(PromotedLHS, PromotedRHS);
3800 }
3801
3802 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3803   // A pointer operand may evaluate to a nonpointer expression, such as null.
3804   if (!V->getType()->isPointerTy())
3805     return V;
3806
3807   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3808     return getPointerBase(Cast->getOperand());
3809   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3810     const SCEV *PtrOp = nullptr;
3811     for (const SCEV *NAryOp : NAry->operands()) {
3812       if (NAryOp->getType()->isPointerTy()) {
3813         // Cannot find the base of an expression with multiple pointer operands.
3814         if (PtrOp)
3815           return V;
3816         PtrOp = NAryOp;
3817       }
3818     }
3819     if (!PtrOp)
3820       return V;
3821     return getPointerBase(PtrOp);
3822   }
3823   return V;
3824 }
3825
3826 /// Push users of the given Instruction onto the given Worklist.
3827 static void
3828 PushDefUseChildren(Instruction *I,
3829                    SmallVectorImpl<Instruction *> &Worklist) {
3830   // Push the def-use children onto the Worklist stack.
3831   for (User *U : I->users())
3832     Worklist.push_back(cast<Instruction>(U));
3833 }
3834
3835 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3836   SmallVector<Instruction *, 16> Worklist;
3837   PushDefUseChildren(PN, Worklist);
3838
3839   SmallPtrSet<Instruction *, 8> Visited;
3840   Visited.insert(PN);
3841   while (!Worklist.empty()) {
3842     Instruction *I = Worklist.pop_back_val();
3843     if (!Visited.insert(I).second)
3844       continue;
3845
3846     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3847     if (It != ValueExprMap.end()) {
3848       const SCEV *Old = It->second;
3849
3850       // Short-circuit the def-use traversal if the symbolic name
3851       // ceases to appear in expressions.
3852       if (Old != SymName && !hasOperand(Old, SymName))
3853         continue;
3854
3855       // SCEVUnknown for a PHI either means that it has an unrecognized
3856       // structure, it's a PHI that's in the progress of being computed
3857       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3858       // additional loop trip count information isn't going to change anything.
3859       // In the second case, createNodeForPHI will perform the necessary
3860       // updates on its own when it gets to that point. In the third, we do
3861       // want to forget the SCEVUnknown.
3862       if (!isa<PHINode>(I) ||
3863           !isa<SCEVUnknown>(Old) ||
3864           (I != PN && Old == SymName)) {
3865         eraseValueFromMap(It->first);
3866         forgetMemoizedResults(Old);
3867       }
3868     }
3869
3870     PushDefUseChildren(I, Worklist);
3871   }
3872 }
3873
3874 namespace {
3875 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3876 public:
3877   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3878                              ScalarEvolution &SE) {
3879     SCEVInitRewriter Rewriter(L, SE);
3880     const SCEV *Result = Rewriter.visit(S);
3881     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3882   }
3883
3884   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3885       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3886
3887   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3888     if (!SE.isLoopInvariant(Expr, L))
3889       Valid = false;
3890     return Expr;
3891   }
3892
3893   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3894     // Only allow AddRecExprs for this loop.
3895     if (Expr->getLoop() == L)
3896       return Expr->getStart();
3897     Valid = false;
3898     return Expr;
3899   }
3900
3901   bool isValid() { return Valid; }
3902
3903 private:
3904   const Loop *L;
3905   bool Valid;
3906 };
3907
3908 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3909 public:
3910   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3911                              ScalarEvolution &SE) {
3912     SCEVShiftRewriter Rewriter(L, SE);
3913     const SCEV *Result = Rewriter.visit(S);
3914     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3915   }
3916
3917   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3918       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3919
3920   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3921     // Only allow AddRecExprs for this loop.
3922     if (!SE.isLoopInvariant(Expr, L))
3923       Valid = false;
3924     return Expr;
3925   }
3926
3927   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3928     if (Expr->getLoop() == L && Expr->isAffine())
3929       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3930     Valid = false;
3931     return Expr;
3932   }
3933   bool isValid() { return Valid; }
3934
3935 private:
3936   const Loop *L;
3937   bool Valid;
3938 };
3939 } // end anonymous namespace
3940
3941 SCEV::NoWrapFlags
3942 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3943   if (!AR->isAffine())
3944     return SCEV::FlagAnyWrap;
3945
3946   typedef OverflowingBinaryOperator OBO;
3947   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3948
3949   if (!AR->hasNoSignedWrap()) {
3950     ConstantRange AddRecRange = getSignedRange(AR);
3951     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3952
3953     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3954         Instruction::Add, IncRange, OBO::NoSignedWrap);
3955     if (NSWRegion.contains(AddRecRange))
3956       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3957   }
3958
3959   if (!AR->hasNoUnsignedWrap()) {
3960     ConstantRange AddRecRange = getUnsignedRange(AR);
3961     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3962
3963     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3964         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3965     if (NUWRegion.contains(AddRecRange))
3966       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3967   }
3968
3969   return Result;
3970 }
3971
3972 namespace {
3973 /// Represents an abstract binary operation.  This may exist as a
3974 /// normal instruction or constant expression, or may have been
3975 /// derived from an expression tree.
3976 struct BinaryOp {
3977   unsigned Opcode;
3978   Value *LHS;
3979   Value *RHS;
3980   bool IsNSW;
3981   bool IsNUW;
3982
3983   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3984   /// constant expression.
3985   Operator *Op;
3986
3987   explicit BinaryOp(Operator *Op)
3988       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3989         IsNSW(false), IsNUW(false), Op(Op) {
3990     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3991       IsNSW = OBO->hasNoSignedWrap();
3992       IsNUW = OBO->hasNoUnsignedWrap();
3993     }
3994   }
3995
3996   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3997                     bool IsNUW = false)
3998       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3999         Op(nullptr) {}
4000 };
4001 }
4002
4003
4004 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4005 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4006   auto *Op = dyn_cast<Operator>(V);
4007   if (!Op)
4008     return None;
4009
4010   // Implementation detail: all the cleverness here should happen without
4011   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4012   // SCEV expressions when possible, and we should not break that.
4013
4014   switch (Op->getOpcode()) {
4015   case Instruction::Add:
4016   case Instruction::Sub:
4017   case Instruction::Mul:
4018   case Instruction::UDiv:
4019   case Instruction::And:
4020   case Instruction::Or:
4021   case Instruction::AShr:
4022   case Instruction::Shl:
4023     return BinaryOp(Op);
4024
4025   case Instruction::Xor:
4026     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4027       // If the RHS of the xor is a signmask, then this is just an add.
4028       // Instcombine turns add of signmask into xor as a strength reduction step.
4029       if (RHSC->getValue().isSignMask())
4030         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4031     return BinaryOp(Op);
4032
4033   case Instruction::LShr:
4034     // Turn logical shift right of a constant into a unsigned divide.
4035     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4036       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4037
4038       // If the shift count is not less than the bitwidth, the result of
4039       // the shift is undefined. Don't try to analyze it, because the
4040       // resolution chosen here may differ from the resolution chosen in
4041       // other parts of the compiler.
4042       if (SA->getValue().ult(BitWidth)) {
4043         Constant *X =
4044             ConstantInt::get(SA->getContext(),
4045                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4046         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4047       }
4048     }
4049     return BinaryOp(Op);
4050
4051   case Instruction::ExtractValue: {
4052     auto *EVI = cast<ExtractValueInst>(Op);
4053     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4054       break;
4055
4056     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4057     if (!CI)
4058       break;
4059
4060     if (auto *F = CI->getCalledFunction())
4061       switch (F->getIntrinsicID()) {
4062       case Intrinsic::sadd_with_overflow:
4063       case Intrinsic::uadd_with_overflow: {
4064         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4065           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4066                           CI->getArgOperand(1));
4067
4068         // Now that we know that all uses of the arithmetic-result component of
4069         // CI are guarded by the overflow check, we can go ahead and pretend
4070         // that the arithmetic is non-overflowing.
4071         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4072           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4073                           CI->getArgOperand(1), /* IsNSW = */ true,
4074                           /* IsNUW = */ false);
4075         else
4076           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4077                           CI->getArgOperand(1), /* IsNSW = */ false,
4078                           /* IsNUW*/ true);
4079       }
4080
4081       case Intrinsic::ssub_with_overflow:
4082       case Intrinsic::usub_with_overflow:
4083         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4084                         CI->getArgOperand(1));
4085
4086       case Intrinsic::smul_with_overflow:
4087       case Intrinsic::umul_with_overflow:
4088         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4089                         CI->getArgOperand(1));
4090       default:
4091         break;
4092       }
4093   }
4094
4095   default:
4096     break;
4097   }
4098
4099   return None;
4100 }
4101
4102 /// A helper function for createAddRecFromPHI to handle simple cases.
4103 ///
4104 /// This function tries to find an AddRec expression for the simplest (yet most
4105 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4106 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4107 /// technique for finding the AddRec expression.
4108 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4109                                                       Value *BEValueV,
4110                                                       Value *StartValueV) {
4111   const Loop *L = LI.getLoopFor(PN->getParent());
4112   assert(L && L->getHeader() == PN->getParent());
4113   assert(BEValueV && StartValueV);
4114
4115   auto BO = MatchBinaryOp(BEValueV, DT);
4116   if (!BO)
4117     return nullptr;
4118
4119   if (BO->Opcode != Instruction::Add)
4120     return nullptr;
4121
4122   const SCEV *Accum = nullptr;
4123   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4124     Accum = getSCEV(BO->RHS);
4125   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4126     Accum = getSCEV(BO->LHS);
4127
4128   if (!Accum)
4129     return nullptr;
4130
4131   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4132   if (BO->IsNUW)
4133     Flags = setFlags(Flags, SCEV::FlagNUW);
4134   if (BO->IsNSW)
4135     Flags = setFlags(Flags, SCEV::FlagNSW);
4136
4137   const SCEV *StartVal = getSCEV(StartValueV);
4138   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4139
4140   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4141
4142   // We can add Flags to the post-inc expression only if we
4143   // know that it is *undefined behavior* for BEValueV to
4144   // overflow.
4145   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4146     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4147       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4148
4149   return PHISCEV;
4150 }
4151
4152 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4153   const Loop *L = LI.getLoopFor(PN->getParent());
4154   if (!L || L->getHeader() != PN->getParent())
4155     return nullptr;
4156
4157   // The loop may have multiple entrances or multiple exits; we can analyze
4158   // this phi as an addrec if it has a unique entry value and a unique
4159   // backedge value.
4160   Value *BEValueV = nullptr, *StartValueV = nullptr;
4161   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4162     Value *V = PN->getIncomingValue(i);
4163     if (L->contains(PN->getIncomingBlock(i))) {
4164       if (!BEValueV) {
4165         BEValueV = V;
4166       } else if (BEValueV != V) {
4167         BEValueV = nullptr;
4168         break;
4169       }
4170     } else if (!StartValueV) {
4171       StartValueV = V;
4172     } else if (StartValueV != V) {
4173       StartValueV = nullptr;
4174       break;
4175     }
4176   }
4177   if (!BEValueV || !StartValueV)
4178     return nullptr;
4179
4180   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4181          "PHI node already processed?");
4182
4183   // First, try to find AddRec expression without creating a fictituos symbolic
4184   // value for PN.
4185   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4186     return S;
4187
4188   // Handle PHI node value symbolically.
4189   const SCEV *SymbolicName = getUnknown(PN);
4190   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4191
4192   // Using this symbolic name for the PHI, analyze the value coming around
4193   // the back-edge.
4194   const SCEV *BEValue = getSCEV(BEValueV);
4195
4196   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4197   // has a special value for the first iteration of the loop.
4198
4199   // If the value coming around the backedge is an add with the symbolic
4200   // value we just inserted, then we found a simple induction variable!
4201   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4202     // If there is a single occurrence of the symbolic value, replace it
4203     // with a recurrence.
4204     unsigned FoundIndex = Add->getNumOperands();
4205     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4206       if (Add->getOperand(i) == SymbolicName)
4207         if (FoundIndex == e) {
4208           FoundIndex = i;
4209           break;
4210         }
4211
4212     if (FoundIndex != Add->getNumOperands()) {
4213       // Create an add with everything but the specified operand.
4214       SmallVector<const SCEV *, 8> Ops;
4215       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4216         if (i != FoundIndex)
4217           Ops.push_back(Add->getOperand(i));
4218       const SCEV *Accum = getAddExpr(Ops);
4219
4220       // This is not a valid addrec if the step amount is varying each
4221       // loop iteration, but is not itself an addrec in this loop.
4222       if (isLoopInvariant(Accum, L) ||
4223           (isa<SCEVAddRecExpr>(Accum) &&
4224            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4225         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4226
4227         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4228           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4229             if (BO->IsNUW)
4230               Flags = setFlags(Flags, SCEV::FlagNUW);
4231             if (BO->IsNSW)
4232               Flags = setFlags(Flags, SCEV::FlagNSW);
4233           }
4234         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4235           // If the increment is an inbounds GEP, then we know the address
4236           // space cannot be wrapped around. We cannot make any guarantee
4237           // about signed or unsigned overflow because pointers are
4238           // unsigned but we may have a negative index from the base
4239           // pointer. We can guarantee that no unsigned wrap occurs if the
4240           // indices form a positive value.
4241           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4242             Flags = setFlags(Flags, SCEV::FlagNW);
4243
4244             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4245             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4246               Flags = setFlags(Flags, SCEV::FlagNUW);
4247           }
4248
4249           // We cannot transfer nuw and nsw flags from subtraction
4250           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4251           // for instance.
4252         }
4253
4254         const SCEV *StartVal = getSCEV(StartValueV);
4255         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4256
4257         // Okay, for the entire analysis of this edge we assumed the PHI
4258         // to be symbolic.  We now need to go back and purge all of the
4259         // entries for the scalars that use the symbolic expression.
4260         forgetSymbolicName(PN, SymbolicName);
4261         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4262
4263         // We can add Flags to the post-inc expression only if we
4264         // know that it is *undefined behavior* for BEValueV to
4265         // overflow.
4266         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4267           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4268             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4269
4270         return PHISCEV;
4271       }
4272     }
4273   } else {
4274     // Otherwise, this could be a loop like this:
4275     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4276     // In this case, j = {1,+,1}  and BEValue is j.
4277     // Because the other in-value of i (0) fits the evolution of BEValue
4278     // i really is an addrec evolution.
4279     //
4280     // We can generalize this saying that i is the shifted value of BEValue
4281     // by one iteration:
4282     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4283     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4284     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4285     if (Shifted != getCouldNotCompute() &&
4286         Start != getCouldNotCompute()) {
4287       const SCEV *StartVal = getSCEV(StartValueV);
4288       if (Start == StartVal) {
4289         // Okay, for the entire analysis of this edge we assumed the PHI
4290         // to be symbolic.  We now need to go back and purge all of the
4291         // entries for the scalars that use the symbolic expression.
4292         forgetSymbolicName(PN, SymbolicName);
4293         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4294         return Shifted;
4295       }
4296     }
4297   }
4298
4299   // Remove the temporary PHI node SCEV that has been inserted while intending
4300   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4301   // as it will prevent later (possibly simpler) SCEV expressions to be added
4302   // to the ValueExprMap.
4303   eraseValueFromMap(PN);
4304
4305   return nullptr;
4306 }
4307
4308 // Checks if the SCEV S is available at BB.  S is considered available at BB
4309 // if S can be materialized at BB without introducing a fault.
4310 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4311                                BasicBlock *BB) {
4312   struct CheckAvailable {
4313     bool TraversalDone = false;
4314     bool Available = true;
4315
4316     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4317     BasicBlock *BB = nullptr;
4318     DominatorTree &DT;
4319
4320     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4321       : L(L), BB(BB), DT(DT) {}
4322
4323     bool setUnavailable() {
4324       TraversalDone = true;
4325       Available = false;
4326       return false;
4327     }
4328
4329     bool follow(const SCEV *S) {
4330       switch (S->getSCEVType()) {
4331       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4332       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4333         // These expressions are available if their operand(s) is/are.
4334         return true;
4335
4336       case scAddRecExpr: {
4337         // We allow add recurrences that are on the loop BB is in, or some
4338         // outer loop.  This guarantees availability because the value of the
4339         // add recurrence at BB is simply the "current" value of the induction
4340         // variable.  We can relax this in the future; for instance an add
4341         // recurrence on a sibling dominating loop is also available at BB.
4342         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4343         if (L && (ARLoop == L || ARLoop->contains(L)))
4344           return true;
4345
4346         return setUnavailable();
4347       }
4348
4349       case scUnknown: {
4350         // For SCEVUnknown, we check for simple dominance.
4351         const auto *SU = cast<SCEVUnknown>(S);
4352         Value *V = SU->getValue();
4353
4354         if (isa<Argument>(V))
4355           return false;
4356
4357         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4358           return false;
4359
4360         return setUnavailable();
4361       }
4362
4363       case scUDivExpr:
4364       case scCouldNotCompute:
4365         // We do not try to smart about these at all.
4366         return setUnavailable();
4367       }
4368       llvm_unreachable("switch should be fully covered!");
4369     }
4370
4371     bool isDone() { return TraversalDone; }
4372   };
4373
4374   CheckAvailable CA(L, BB, DT);
4375   SCEVTraversal<CheckAvailable> ST(CA);
4376
4377   ST.visitAll(S);
4378   return CA.Available;
4379 }
4380
4381 // Try to match a control flow sequence that branches out at BI and merges back
4382 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4383 // match.
4384 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4385                           Value *&C, Value *&LHS, Value *&RHS) {
4386   C = BI->getCondition();
4387
4388   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4389   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4390
4391   if (!LeftEdge.isSingleEdge())
4392     return false;
4393
4394   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4395
4396   Use &LeftUse = Merge->getOperandUse(0);
4397   Use &RightUse = Merge->getOperandUse(1);
4398
4399   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4400     LHS = LeftUse;
4401     RHS = RightUse;
4402     return true;
4403   }
4404
4405   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4406     LHS = RightUse;
4407     RHS = LeftUse;
4408     return true;
4409   }
4410
4411   return false;
4412 }
4413
4414 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4415   auto IsReachable =
4416       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4417   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4418     const Loop *L = LI.getLoopFor(PN->getParent());
4419
4420     // We don't want to break LCSSA, even in a SCEV expression tree.
4421     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4422       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4423         return nullptr;
4424
4425     // Try to match
4426     //
4427     //  br %cond, label %left, label %right
4428     // left:
4429     //  br label %merge
4430     // right:
4431     //  br label %merge
4432     // merge:
4433     //  V = phi [ %x, %left ], [ %y, %right ]
4434     //
4435     // as "select %cond, %x, %y"
4436
4437     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4438     assert(IDom && "At least the entry block should dominate PN");
4439
4440     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4441     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4442
4443     if (BI && BI->isConditional() &&
4444         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4445         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4446         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4447       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4448   }
4449
4450   return nullptr;
4451 }
4452
4453 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4454   if (const SCEV *S = createAddRecFromPHI(PN))
4455     return S;
4456
4457   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4458     return S;
4459
4460   // If the PHI has a single incoming value, follow that value, unless the
4461   // PHI's incoming blocks are in a different loop, in which case doing so
4462   // risks breaking LCSSA form. Instcombine would normally zap these, but
4463   // it doesn't have DominatorTree information, so it may miss cases.
4464   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
4465     if (LI.replacementPreservesLCSSAForm(PN, V))
4466       return getSCEV(V);
4467
4468   // If it's not a loop phi, we can't handle it yet.
4469   return getUnknown(PN);
4470 }
4471
4472 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4473                                                       Value *Cond,
4474                                                       Value *TrueVal,
4475                                                       Value *FalseVal) {
4476   // Handle "constant" branch or select. This can occur for instance when a
4477   // loop pass transforms an inner loop and moves on to process the outer loop.
4478   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4479     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4480
4481   // Try to match some simple smax or umax patterns.
4482   auto *ICI = dyn_cast<ICmpInst>(Cond);
4483   if (!ICI)
4484     return getUnknown(I);
4485
4486   Value *LHS = ICI->getOperand(0);
4487   Value *RHS = ICI->getOperand(1);
4488
4489   switch (ICI->getPredicate()) {
4490   case ICmpInst::ICMP_SLT:
4491   case ICmpInst::ICMP_SLE:
4492     std::swap(LHS, RHS);
4493     LLVM_FALLTHROUGH;
4494   case ICmpInst::ICMP_SGT:
4495   case ICmpInst::ICMP_SGE:
4496     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4497     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4498     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4499       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4500       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4501       const SCEV *LA = getSCEV(TrueVal);
4502       const SCEV *RA = getSCEV(FalseVal);
4503       const SCEV *LDiff = getMinusSCEV(LA, LS);
4504       const SCEV *RDiff = getMinusSCEV(RA, RS);
4505       if (LDiff == RDiff)
4506         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4507       LDiff = getMinusSCEV(LA, RS);
4508       RDiff = getMinusSCEV(RA, LS);
4509       if (LDiff == RDiff)
4510         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4511     }
4512     break;
4513   case ICmpInst::ICMP_ULT:
4514   case ICmpInst::ICMP_ULE:
4515     std::swap(LHS, RHS);
4516     LLVM_FALLTHROUGH;
4517   case ICmpInst::ICMP_UGT:
4518   case ICmpInst::ICMP_UGE:
4519     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4520     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4521     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4522       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4523       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4524       const SCEV *LA = getSCEV(TrueVal);
4525       const SCEV *RA = getSCEV(FalseVal);
4526       const SCEV *LDiff = getMinusSCEV(LA, LS);
4527       const SCEV *RDiff = getMinusSCEV(RA, RS);
4528       if (LDiff == RDiff)
4529         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4530       LDiff = getMinusSCEV(LA, RS);
4531       RDiff = getMinusSCEV(RA, LS);
4532       if (LDiff == RDiff)
4533         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4534     }
4535     break;
4536   case ICmpInst::ICMP_NE:
4537     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4538     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4539         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4540       const SCEV *One = getOne(I->getType());
4541       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4542       const SCEV *LA = getSCEV(TrueVal);
4543       const SCEV *RA = getSCEV(FalseVal);
4544       const SCEV *LDiff = getMinusSCEV(LA, LS);
4545       const SCEV *RDiff = getMinusSCEV(RA, One);
4546       if (LDiff == RDiff)
4547         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4548     }
4549     break;
4550   case ICmpInst::ICMP_EQ:
4551     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4552     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4553         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4554       const SCEV *One = getOne(I->getType());
4555       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4556       const SCEV *LA = getSCEV(TrueVal);
4557       const SCEV *RA = getSCEV(FalseVal);
4558       const SCEV *LDiff = getMinusSCEV(LA, One);
4559       const SCEV *RDiff = getMinusSCEV(RA, LS);
4560       if (LDiff == RDiff)
4561         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4562     }
4563     break;
4564   default:
4565     break;
4566   }
4567
4568   return getUnknown(I);
4569 }
4570
4571 /// Expand GEP instructions into add and multiply operations. This allows them
4572 /// to be analyzed by regular SCEV code.
4573 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4574   // Don't attempt to analyze GEPs over unsized objects.
4575   if (!GEP->getSourceElementType()->isSized())
4576     return getUnknown(GEP);
4577
4578   SmallVector<const SCEV *, 4> IndexExprs;
4579   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4580     IndexExprs.push_back(getSCEV(*Index));
4581   return getGEPExpr(GEP, IndexExprs);
4582 }
4583
4584 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
4585   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4586     return C->getAPInt().countTrailingZeros();
4587
4588   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4589     return std::min(GetMinTrailingZeros(T->getOperand()),
4590                     (uint32_t)getTypeSizeInBits(T->getType()));
4591
4592   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4593     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4594     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
4595                ? getTypeSizeInBits(E->getType())
4596                : OpRes;
4597   }
4598
4599   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4600     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4601     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
4602                ? getTypeSizeInBits(E->getType())
4603                : OpRes;
4604   }
4605
4606   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4607     // The result is the min of all operands results.
4608     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4609     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4610       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4611     return MinOpRes;
4612   }
4613
4614   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4615     // The result is the sum of all operands results.
4616     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4617     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4618     for (unsigned i = 1, e = M->getNumOperands();
4619          SumOpRes != BitWidth && i != e; ++i)
4620       SumOpRes =
4621           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
4622     return SumOpRes;
4623   }
4624
4625   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4626     // The result is the min of all operands results.
4627     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4628     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4629       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4630     return MinOpRes;
4631   }
4632
4633   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4634     // The result is the min of all operands results.
4635     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4636     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4637       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4638     return MinOpRes;
4639   }
4640
4641   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4642     // The result is the min of all operands results.
4643     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4644     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4645       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4646     return MinOpRes;
4647   }
4648
4649   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4650     // For a SCEVUnknown, ask ValueTracking.
4651     unsigned BitWidth = getTypeSizeInBits(U->getType());
4652     KnownBits Known(BitWidth);
4653     computeKnownBits(U->getValue(), Known, getDataLayout(), 0, &AC,
4654                      nullptr, &DT);
4655     return Known.countMinTrailingZeros();
4656   }
4657
4658   // SCEVUDivExpr
4659   return 0;
4660 }
4661
4662 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4663   auto I = MinTrailingZerosCache.find(S);
4664   if (I != MinTrailingZerosCache.end())
4665     return I->second;
4666
4667   uint32_t Result = GetMinTrailingZerosImpl(S);
4668   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
4669   assert(InsertPair.second && "Should insert a new key");
4670   return InsertPair.first->second;
4671 }
4672
4673 /// Helper method to assign a range to V from metadata present in the IR.
4674 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4675   if (Instruction *I = dyn_cast<Instruction>(V))
4676     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4677       return getConstantRangeFromMetadata(*MD);
4678
4679   return None;
4680 }
4681
4682 /// Determine the range for a particular SCEV.  If SignHint is
4683 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4684 /// with a "cleaner" unsigned (resp. signed) representation.
4685 ConstantRange
4686 ScalarEvolution::getRange(const SCEV *S,
4687                           ScalarEvolution::RangeSignHint SignHint) {
4688   DenseMap<const SCEV *, ConstantRange> &Cache =
4689       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4690                                                        : SignedRanges;
4691
4692   // See if we've computed this range already.
4693   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4694   if (I != Cache.end())
4695     return I->second;
4696
4697   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4698     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4699
4700   unsigned BitWidth = getTypeSizeInBits(S->getType());
4701   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4702
4703   // If the value has known zeros, the maximum value will have those known zeros
4704   // as well.
4705   uint32_t TZ = GetMinTrailingZeros(S);
4706   if (TZ != 0) {
4707     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4708       ConservativeResult =
4709           ConstantRange(APInt::getMinValue(BitWidth),
4710                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4711     else
4712       ConservativeResult = ConstantRange(
4713           APInt::getSignedMinValue(BitWidth),
4714           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4715   }
4716
4717   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4718     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4719     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4720       X = X.add(getRange(Add->getOperand(i), SignHint));
4721     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4722   }
4723
4724   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4725     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4726     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4727       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4728     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4729   }
4730
4731   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4732     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4733     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4734       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4735     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4736   }
4737
4738   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4739     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4740     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4741       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4742     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4743   }
4744
4745   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4746     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4747     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4748     return setRange(UDiv, SignHint,
4749                     ConservativeResult.intersectWith(X.udiv(Y)));
4750   }
4751
4752   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4753     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4754     return setRange(ZExt, SignHint,
4755                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4756   }
4757
4758   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4759     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4760     return setRange(SExt, SignHint,
4761                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4762   }
4763
4764   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4765     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4766     return setRange(Trunc, SignHint,
4767                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4768   }
4769
4770   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4771     // If there's no unsigned wrap, the value will never be less than its
4772     // initial value.
4773     if (AddRec->hasNoUnsignedWrap())
4774       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4775         if (!C->getValue()->isZero())
4776           ConservativeResult = ConservativeResult.intersectWith(
4777               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4778
4779     // If there's no signed wrap, and all the operands have the same sign or
4780     // zero, the value won't ever change sign.
4781     if (AddRec->hasNoSignedWrap()) {
4782       bool AllNonNeg = true;
4783       bool AllNonPos = true;
4784       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4785         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4786         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4787       }
4788       if (AllNonNeg)
4789         ConservativeResult = ConservativeResult.intersectWith(
4790           ConstantRange(APInt(BitWidth, 0),
4791                         APInt::getSignedMinValue(BitWidth)));
4792       else if (AllNonPos)
4793         ConservativeResult = ConservativeResult.intersectWith(
4794           ConstantRange(APInt::getSignedMinValue(BitWidth),
4795                         APInt(BitWidth, 1)));
4796     }
4797
4798     // TODO: non-affine addrec
4799     if (AddRec->isAffine()) {
4800       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4801       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4802           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4803         auto RangeFromAffine = getRangeForAffineAR(
4804             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4805             BitWidth);
4806         if (!RangeFromAffine.isFullSet())
4807           ConservativeResult =
4808               ConservativeResult.intersectWith(RangeFromAffine);
4809
4810         auto RangeFromFactoring = getRangeViaFactoring(
4811             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4812             BitWidth);
4813         if (!RangeFromFactoring.isFullSet())
4814           ConservativeResult =
4815               ConservativeResult.intersectWith(RangeFromFactoring);
4816       }
4817     }
4818
4819     return setRange(AddRec, SignHint, std::move(ConservativeResult));
4820   }
4821
4822   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4823     // Check if the IR explicitly contains !range metadata.
4824     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4825     if (MDRange.hasValue())
4826       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4827
4828     // Split here to avoid paying the compile-time cost of calling both
4829     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4830     // if needed.
4831     const DataLayout &DL = getDataLayout();
4832     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4833       // For a SCEVUnknown, ask ValueTracking.
4834       KnownBits Known(BitWidth);
4835       computeKnownBits(U->getValue(), Known, DL, 0, &AC, nullptr, &DT);
4836       if (Known.One != ~Known.Zero + 1)
4837         ConservativeResult =
4838             ConservativeResult.intersectWith(ConstantRange(Known.One,
4839                                                            ~Known.Zero + 1));
4840     } else {
4841       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4842              "generalize as needed!");
4843       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4844       if (NS > 1)
4845         ConservativeResult = ConservativeResult.intersectWith(
4846             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4847                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4848     }
4849
4850     return setRange(U, SignHint, std::move(ConservativeResult));
4851   }
4852
4853   return setRange(S, SignHint, std::move(ConservativeResult));
4854 }
4855
4856 // Given a StartRange, Step and MaxBECount for an expression compute a range of
4857 // values that the expression can take. Initially, the expression has a value
4858 // from StartRange and then is changed by Step up to MaxBECount times. Signed
4859 // argument defines if we treat Step as signed or unsigned.
4860 static ConstantRange getRangeForAffineARHelper(APInt Step,
4861                                                const ConstantRange &StartRange,
4862                                                const APInt &MaxBECount,
4863                                                unsigned BitWidth, bool Signed) {
4864   // If either Step or MaxBECount is 0, then the expression won't change, and we
4865   // just need to return the initial range.
4866   if (Step == 0 || MaxBECount == 0)
4867     return StartRange;
4868
4869   // If we don't know anything about the initial value (i.e. StartRange is
4870   // FullRange), then we don't know anything about the final range either.
4871   // Return FullRange.
4872   if (StartRange.isFullSet())
4873     return ConstantRange(BitWidth, /* isFullSet = */ true);
4874
4875   // If Step is signed and negative, then we use its absolute value, but we also
4876   // note that we're moving in the opposite direction.
4877   bool Descending = Signed && Step.isNegative();
4878
4879   if (Signed)
4880     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
4881     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
4882     // This equations hold true due to the well-defined wrap-around behavior of
4883     // APInt.
4884     Step = Step.abs();
4885
4886   // Check if Offset is more than full span of BitWidth. If it is, the
4887   // expression is guaranteed to overflow.
4888   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
4889     return ConstantRange(BitWidth, /* isFullSet = */ true);
4890
4891   // Offset is by how much the expression can change. Checks above guarantee no
4892   // overflow here.
4893   APInt Offset = Step * MaxBECount;
4894
4895   // Minimum value of the final range will match the minimal value of StartRange
4896   // if the expression is increasing and will be decreased by Offset otherwise.
4897   // Maximum value of the final range will match the maximal value of StartRange
4898   // if the expression is decreasing and will be increased by Offset otherwise.
4899   APInt StartLower = StartRange.getLower();
4900   APInt StartUpper = StartRange.getUpper() - 1;
4901   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
4902                                    : (StartUpper + std::move(Offset));
4903
4904   // It's possible that the new minimum/maximum value will fall into the initial
4905   // range (due to wrap around). This means that the expression can take any
4906   // value in this bitwidth, and we have to return full range.
4907   if (StartRange.contains(MovedBoundary))
4908     return ConstantRange(BitWidth, /* isFullSet = */ true);
4909
4910   APInt NewLower =
4911       Descending ? std::move(MovedBoundary) : std::move(StartLower);
4912   APInt NewUpper =
4913       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
4914   NewUpper += 1;
4915
4916   // If we end up with full range, return a proper full range.
4917   if (NewLower == NewUpper)
4918     return ConstantRange(BitWidth, /* isFullSet = */ true);
4919
4920   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
4921   return ConstantRange(std::move(NewLower), std::move(NewUpper));
4922 }
4923
4924 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4925                                                    const SCEV *Step,
4926                                                    const SCEV *MaxBECount,
4927                                                    unsigned BitWidth) {
4928   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4929          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4930          "Precondition!");
4931
4932   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4933   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4934   APInt MaxBECountValue = MaxBECountRange.getUnsignedMax();
4935
4936   // First, consider step signed.
4937   ConstantRange StartSRange = getSignedRange(Start);
4938   ConstantRange StepSRange = getSignedRange(Step);
4939
4940   // If Step can be both positive and negative, we need to find ranges for the
4941   // maximum absolute step values in both directions and union them.
4942   ConstantRange SR =
4943       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
4944                                 MaxBECountValue, BitWidth, /* Signed = */ true);
4945   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
4946                                               StartSRange, MaxBECountValue,
4947                                               BitWidth, /* Signed = */ true));
4948
4949   // Next, consider step unsigned.
4950   ConstantRange UR = getRangeForAffineARHelper(
4951       getUnsignedRange(Step).getUnsignedMax(), getUnsignedRange(Start),
4952       MaxBECountValue, BitWidth, /* Signed = */ false);
4953
4954   // Finally, intersect signed and unsigned ranges.
4955   return SR.intersectWith(UR);
4956 }
4957
4958 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4959                                                     const SCEV *Step,
4960                                                     const SCEV *MaxBECount,
4961                                                     unsigned BitWidth) {
4962   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4963   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4964
4965   struct SelectPattern {
4966     Value *Condition = nullptr;
4967     APInt TrueValue;
4968     APInt FalseValue;
4969
4970     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4971                            const SCEV *S) {
4972       Optional<unsigned> CastOp;
4973       APInt Offset(BitWidth, 0);
4974
4975       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4976              "Should be!");
4977
4978       // Peel off a constant offset:
4979       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4980         // In the future we could consider being smarter here and handle
4981         // {Start+Step,+,Step} too.
4982         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4983           return;
4984
4985         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4986         S = SA->getOperand(1);
4987       }
4988
4989       // Peel off a cast operation
4990       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4991         CastOp = SCast->getSCEVType();
4992         S = SCast->getOperand();
4993       }
4994
4995       using namespace llvm::PatternMatch;
4996
4997       auto *SU = dyn_cast<SCEVUnknown>(S);
4998       const APInt *TrueVal, *FalseVal;
4999       if (!SU ||
5000           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5001                                           m_APInt(FalseVal)))) {
5002         Condition = nullptr;
5003         return;
5004       }
5005
5006       TrueValue = *TrueVal;
5007       FalseValue = *FalseVal;
5008
5009       // Re-apply the cast we peeled off earlier
5010       if (CastOp.hasValue())
5011         switch (*CastOp) {
5012         default:
5013           llvm_unreachable("Unknown SCEV cast type!");
5014
5015         case scTruncate:
5016           TrueValue = TrueValue.trunc(BitWidth);
5017           FalseValue = FalseValue.trunc(BitWidth);
5018           break;
5019         case scZeroExtend:
5020           TrueValue = TrueValue.zext(BitWidth);
5021           FalseValue = FalseValue.zext(BitWidth);
5022           break;
5023         case scSignExtend:
5024           TrueValue = TrueValue.sext(BitWidth);
5025           FalseValue = FalseValue.sext(BitWidth);
5026           break;
5027         }
5028
5029       // Re-apply the constant offset we peeled off earlier
5030       TrueValue += Offset;
5031       FalseValue += Offset;
5032     }
5033
5034     bool isRecognized() { return Condition != nullptr; }
5035   };
5036
5037   SelectPattern StartPattern(*this, BitWidth, Start);
5038   if (!StartPattern.isRecognized())
5039     return ConstantRange(BitWidth, /* isFullSet = */ true);
5040
5041   SelectPattern StepPattern(*this, BitWidth, Step);
5042   if (!StepPattern.isRecognized())
5043     return ConstantRange(BitWidth, /* isFullSet = */ true);
5044
5045   if (StartPattern.Condition != StepPattern.Condition) {
5046     // We don't handle this case today; but we could, by considering four
5047     // possibilities below instead of two. I'm not sure if there are cases where
5048     // that will help over what getRange already does, though.
5049     return ConstantRange(BitWidth, /* isFullSet = */ true);
5050   }
5051
5052   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5053   // construct arbitrary general SCEV expressions here.  This function is called
5054   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5055   // say) can end up caching a suboptimal value.
5056
5057   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5058   // C2352 and C2512 (otherwise it isn't needed).
5059
5060   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5061   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5062   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5063   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5064
5065   ConstantRange TrueRange =
5066       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5067   ConstantRange FalseRange =
5068       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5069
5070   return TrueRange.unionWith(FalseRange);
5071 }
5072
5073 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5074   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5075   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5076
5077   // Return early if there are no flags to propagate to the SCEV.
5078   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5079   if (BinOp->hasNoUnsignedWrap())
5080     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5081   if (BinOp->hasNoSignedWrap())
5082     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5083   if (Flags == SCEV::FlagAnyWrap)
5084     return SCEV::FlagAnyWrap;
5085
5086   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5087 }
5088
5089 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5090   // Here we check that I is in the header of the innermost loop containing I,
5091   // since we only deal with instructions in the loop header. The actual loop we
5092   // need to check later will come from an add recurrence, but getting that
5093   // requires computing the SCEV of the operands, which can be expensive. This
5094   // check we can do cheaply to rule out some cases early.
5095   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5096   if (InnermostContainingLoop == nullptr ||
5097       InnermostContainingLoop->getHeader() != I->getParent())
5098     return false;
5099
5100   // Only proceed if we can prove that I does not yield poison.
5101   if (!programUndefinedIfFullPoison(I))
5102     return false;
5103
5104   // At this point we know that if I is executed, then it does not wrap
5105   // according to at least one of NSW or NUW. If I is not executed, then we do
5106   // not know if the calculation that I represents would wrap. Multiple
5107   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5108   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5109   // derived from other instructions that map to the same SCEV. We cannot make
5110   // that guarantee for cases where I is not executed. So we need to find the
5111   // loop that I is considered in relation to and prove that I is executed for
5112   // every iteration of that loop. That implies that the value that I
5113   // calculates does not wrap anywhere in the loop, so then we can apply the
5114   // flags to the SCEV.
5115   //
5116   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5117   // from different loops, so that we know which loop to prove that I is
5118   // executed in.
5119   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5120     // I could be an extractvalue from a call to an overflow intrinsic.
5121     // TODO: We can do better here in some cases.
5122     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5123       return false;
5124     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5125     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5126       bool AllOtherOpsLoopInvariant = true;
5127       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5128            ++OtherOpIndex) {
5129         if (OtherOpIndex != OpIndex) {
5130           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5131           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5132             AllOtherOpsLoopInvariant = false;
5133             break;
5134           }
5135         }
5136       }
5137       if (AllOtherOpsLoopInvariant &&
5138           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5139         return true;
5140     }
5141   }
5142   return false;
5143 }
5144
5145 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5146   // If we know that \c I can never be poison period, then that's enough.
5147   if (isSCEVExprNeverPoison(I))
5148     return true;
5149
5150   // For an add recurrence specifically, we assume that infinite loops without
5151   // side effects are undefined behavior, and then reason as follows:
5152   //
5153   // If the add recurrence is poison in any iteration, it is poison on all
5154   // future iterations (since incrementing poison yields poison). If the result
5155   // of the add recurrence is fed into the loop latch condition and the loop
5156   // does not contain any throws or exiting blocks other than the latch, we now
5157   // have the ability to "choose" whether the backedge is taken or not (by
5158   // choosing a sufficiently evil value for the poison feeding into the branch)
5159   // for every iteration including and after the one in which \p I first became
5160   // poison.  There are two possibilities (let's call the iteration in which \p
5161   // I first became poison as K):
5162   //
5163   //  1. In the set of iterations including and after K, the loop body executes
5164   //     no side effects.  In this case executing the backege an infinte number
5165   //     of times will yield undefined behavior.
5166   //
5167   //  2. In the set of iterations including and after K, the loop body executes
5168   //     at least one side effect.  In this case, that specific instance of side
5169   //     effect is control dependent on poison, which also yields undefined
5170   //     behavior.
5171
5172   auto *ExitingBB = L->getExitingBlock();
5173   auto *LatchBB = L->getLoopLatch();
5174   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5175     return false;
5176
5177   SmallPtrSet<const Instruction *, 16> Pushed;
5178   SmallVector<const Instruction *, 8> PoisonStack;
5179
5180   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5181   // things that are known to be fully poison under that assumption go on the
5182   // PoisonStack.
5183   Pushed.insert(I);
5184   PoisonStack.push_back(I);
5185
5186   bool LatchControlDependentOnPoison = false;
5187   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5188     const Instruction *Poison = PoisonStack.pop_back_val();
5189
5190     for (auto *PoisonUser : Poison->users()) {
5191       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
5192         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5193           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5194       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5195         assert(BI->isConditional() && "Only possibility!");
5196         if (BI->getParent() == LatchBB) {
5197           LatchControlDependentOnPoison = true;
5198           break;
5199         }
5200       }
5201     }
5202   }
5203
5204   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5205 }
5206
5207 ScalarEvolution::LoopProperties
5208 ScalarEvolution::getLoopProperties(const Loop *L) {
5209   typedef ScalarEvolution::LoopProperties LoopProperties;
5210
5211   auto Itr = LoopPropertiesCache.find(L);
5212   if (Itr == LoopPropertiesCache.end()) {
5213     auto HasSideEffects = [](Instruction *I) {
5214       if (auto *SI = dyn_cast<StoreInst>(I))
5215         return !SI->isSimple();
5216
5217       return I->mayHaveSideEffects();
5218     };
5219
5220     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5221                          /*HasNoSideEffects*/ true};
5222
5223     for (auto *BB : L->getBlocks())
5224       for (auto &I : *BB) {
5225         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5226           LP.HasNoAbnormalExits = false;
5227         if (HasSideEffects(&I))
5228           LP.HasNoSideEffects = false;
5229         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5230           break; // We're already as pessimistic as we can get.
5231       }
5232
5233     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5234     assert(InsertPair.second && "We just checked!");
5235     Itr = InsertPair.first;
5236   }
5237
5238   return Itr->second;
5239 }
5240
5241 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5242   if (!isSCEVable(V->getType()))
5243     return getUnknown(V);
5244
5245   if (Instruction *I = dyn_cast<Instruction>(V)) {
5246     // Don't attempt to analyze instructions in blocks that aren't
5247     // reachable. Such instructions don't matter, and they aren't required
5248     // to obey basic rules for definitions dominating uses which this
5249     // analysis depends on.
5250     if (!DT.isReachableFromEntry(I->getParent()))
5251       return getUnknown(V);
5252   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5253     return getConstant(CI);
5254   else if (isa<ConstantPointerNull>(V))
5255     return getZero(V->getType());
5256   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5257     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5258   else if (!isa<ConstantExpr>(V))
5259     return getUnknown(V);
5260
5261   Operator *U = cast<Operator>(V);
5262   if (auto BO = MatchBinaryOp(U, DT)) {
5263     switch (BO->Opcode) {
5264     case Instruction::Add: {
5265       // The simple thing to do would be to just call getSCEV on both operands
5266       // and call getAddExpr with the result. However if we're looking at a
5267       // bunch of things all added together, this can be quite inefficient,
5268       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5269       // Instead, gather up all the operands and make a single getAddExpr call.
5270       // LLVM IR canonical form means we need only traverse the left operands.
5271       SmallVector<const SCEV *, 4> AddOps;
5272       do {
5273         if (BO->Op) {
5274           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5275             AddOps.push_back(OpSCEV);
5276             break;
5277           }
5278
5279           // If a NUW or NSW flag can be applied to the SCEV for this
5280           // addition, then compute the SCEV for this addition by itself
5281           // with a separate call to getAddExpr. We need to do that
5282           // instead of pushing the operands of the addition onto AddOps,
5283           // since the flags are only known to apply to this particular
5284           // addition - they may not apply to other additions that can be
5285           // formed with operands from AddOps.
5286           const SCEV *RHS = getSCEV(BO->RHS);
5287           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5288           if (Flags != SCEV::FlagAnyWrap) {
5289             const SCEV *LHS = getSCEV(BO->LHS);
5290             if (BO->Opcode == Instruction::Sub)
5291               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5292             else
5293               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5294             break;
5295           }
5296         }
5297
5298         if (BO->Opcode == Instruction::Sub)
5299           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5300         else
5301           AddOps.push_back(getSCEV(BO->RHS));
5302
5303         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5304         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5305                        NewBO->Opcode != Instruction::Sub)) {
5306           AddOps.push_back(getSCEV(BO->LHS));
5307           break;
5308         }
5309         BO = NewBO;
5310       } while (true);
5311
5312       return getAddExpr(AddOps);
5313     }
5314
5315     case Instruction::Mul: {
5316       SmallVector<const SCEV *, 4> MulOps;
5317       do {
5318         if (BO->Op) {
5319           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5320             MulOps.push_back(OpSCEV);
5321             break;
5322           }
5323
5324           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5325           if (Flags != SCEV::FlagAnyWrap) {
5326             MulOps.push_back(
5327                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5328             break;
5329           }
5330         }
5331
5332         MulOps.push_back(getSCEV(BO->RHS));
5333         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5334         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5335           MulOps.push_back(getSCEV(BO->LHS));
5336           break;
5337         }
5338         BO = NewBO;
5339       } while (true);
5340
5341       return getMulExpr(MulOps);
5342     }
5343     case Instruction::UDiv:
5344       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5345     case Instruction::Sub: {
5346       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5347       if (BO->Op)
5348         Flags = getNoWrapFlagsFromUB(BO->Op);
5349       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5350     }
5351     case Instruction::And:
5352       // For an expression like x&255 that merely masks off the high bits,
5353       // use zext(trunc(x)) as the SCEV expression.
5354       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5355         if (CI->isNullValue())
5356           return getSCEV(BO->RHS);
5357         if (CI->isAllOnesValue())
5358           return getSCEV(BO->LHS);
5359         const APInt &A = CI->getValue();
5360
5361         // Instcombine's ShrinkDemandedConstant may strip bits out of
5362         // constants, obscuring what would otherwise be a low-bits mask.
5363         // Use computeKnownBits to compute what ShrinkDemandedConstant
5364         // knew about to reconstruct a low-bits mask value.
5365         unsigned LZ = A.countLeadingZeros();
5366         unsigned TZ = A.countTrailingZeros();
5367         unsigned BitWidth = A.getBitWidth();
5368         KnownBits Known(BitWidth);
5369         computeKnownBits(BO->LHS, Known, getDataLayout(),
5370                          0, &AC, nullptr, &DT);
5371
5372         APInt EffectiveMask =
5373             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5374         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
5375           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
5376           const SCEV *LHS = getSCEV(BO->LHS);
5377           const SCEV *ShiftedLHS = nullptr;
5378           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
5379             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
5380               // For an expression like (x * 8) & 8, simplify the multiply.
5381               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
5382               unsigned GCD = std::min(MulZeros, TZ);
5383               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
5384               SmallVector<const SCEV*, 4> MulOps;
5385               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
5386               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
5387               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
5388               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
5389             }
5390           }
5391           if (!ShiftedLHS)
5392             ShiftedLHS = getUDivExpr(LHS, MulCount);
5393           return getMulExpr(
5394               getZeroExtendExpr(
5395                   getTruncateExpr(ShiftedLHS,
5396                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5397                   BO->LHS->getType()),
5398               MulCount);
5399         }
5400       }
5401       break;
5402
5403     case Instruction::Or:
5404       // If the RHS of the Or is a constant, we may have something like:
5405       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5406       // optimizations will transparently handle this case.
5407       //
5408       // In order for this transformation to be safe, the LHS must be of the
5409       // form X*(2^n) and the Or constant must be less than 2^n.
5410       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5411         const SCEV *LHS = getSCEV(BO->LHS);
5412         const APInt &CIVal = CI->getValue();
5413         if (GetMinTrailingZeros(LHS) >=
5414             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5415           // Build a plain add SCEV.
5416           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5417           // If the LHS of the add was an addrec and it has no-wrap flags,
5418           // transfer the no-wrap flags, since an or won't introduce a wrap.
5419           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5420             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5421             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5422                 OldAR->getNoWrapFlags());
5423           }
5424           return S;
5425         }
5426       }
5427       break;
5428
5429     case Instruction::Xor:
5430       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5431         // If the RHS of xor is -1, then this is a not operation.
5432         if (CI->isAllOnesValue())
5433           return getNotSCEV(getSCEV(BO->LHS));
5434
5435         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5436         // This is a variant of the check for xor with -1, and it handles
5437         // the case where instcombine has trimmed non-demanded bits out
5438         // of an xor with -1.
5439         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5440           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5441             if (LBO->getOpcode() == Instruction::And &&
5442                 LCI->getValue() == CI->getValue())
5443               if (const SCEVZeroExtendExpr *Z =
5444                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5445                 Type *UTy = BO->LHS->getType();
5446                 const SCEV *Z0 = Z->getOperand();
5447                 Type *Z0Ty = Z0->getType();
5448                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5449
5450                 // If C is a low-bits mask, the zero extend is serving to
5451                 // mask off the high bits. Complement the operand and
5452                 // re-apply the zext.
5453                 if (CI->getValue().isMask(Z0TySize))
5454                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5455
5456                 // If C is a single bit, it may be in the sign-bit position
5457                 // before the zero-extend. In this case, represent the xor
5458                 // using an add, which is equivalent, and re-apply the zext.
5459                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5460                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5461                     Trunc.isSignMask())
5462                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5463                                            UTy);
5464               }
5465       }
5466       break;
5467
5468   case Instruction::Shl:
5469     // Turn shift left of a constant amount into a multiply.
5470     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5471       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5472
5473       // If the shift count is not less than the bitwidth, the result of
5474       // the shift is undefined. Don't try to analyze it, because the
5475       // resolution chosen here may differ from the resolution chosen in
5476       // other parts of the compiler.
5477       if (SA->getValue().uge(BitWidth))
5478         break;
5479
5480       // It is currently not resolved how to interpret NSW for left
5481       // shift by BitWidth - 1, so we avoid applying flags in that
5482       // case. Remove this check (or this comment) once the situation
5483       // is resolved. See
5484       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5485       // and http://reviews.llvm.org/D8890 .
5486       auto Flags = SCEV::FlagAnyWrap;
5487       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5488         Flags = getNoWrapFlagsFromUB(BO->Op);
5489
5490       Constant *X = ConstantInt::get(getContext(),
5491         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5492       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5493     }
5494     break;
5495
5496     case Instruction::AShr:
5497       // AShr X, C, where C is a constant.
5498       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
5499       if (!CI)
5500         break;
5501
5502       Type *OuterTy = BO->LHS->getType();
5503       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
5504       // If the shift count is not less than the bitwidth, the result of
5505       // the shift is undefined. Don't try to analyze it, because the
5506       // resolution chosen here may differ from the resolution chosen in
5507       // other parts of the compiler.
5508       if (CI->getValue().uge(BitWidth))
5509         break;
5510
5511       if (CI->isNullValue())
5512         return getSCEV(BO->LHS); // shift by zero --> noop
5513
5514       uint64_t AShrAmt = CI->getZExtValue();
5515       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
5516
5517       Operator *L = dyn_cast<Operator>(BO->LHS);
5518       if (L && L->getOpcode() == Instruction::Shl) {
5519         // X = Shl A, n
5520         // Y = AShr X, m
5521         // Both n and m are constant.
5522
5523         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
5524         if (L->getOperand(1) == BO->RHS)
5525           // For a two-shift sext-inreg, i.e. n = m,
5526           // use sext(trunc(x)) as the SCEV expression.
5527           return getSignExtendExpr(
5528               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
5529
5530         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
5531         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
5532           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
5533           if (ShlAmt > AShrAmt) {
5534             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
5535             // expression. We already checked that ShlAmt < BitWidth, so
5536             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
5537             // ShlAmt - AShrAmt < Amt.
5538             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
5539                                             ShlAmt - AShrAmt);
5540             return getSignExtendExpr(
5541                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
5542                 getConstant(Mul)), OuterTy);
5543           }
5544         }
5545       }
5546       break;
5547     }
5548   }
5549
5550   switch (U->getOpcode()) {
5551   case Instruction::Trunc:
5552     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5553
5554   case Instruction::ZExt:
5555     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5556
5557   case Instruction::SExt:
5558     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5559
5560   case Instruction::BitCast:
5561     // BitCasts are no-op casts so we just eliminate the cast.
5562     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5563       return getSCEV(U->getOperand(0));
5564     break;
5565
5566   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5567   // lead to pointer expressions which cannot safely be expanded to GEPs,
5568   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5569   // simplifying integer expressions.
5570
5571   case Instruction::GetElementPtr:
5572     return createNodeForGEP(cast<GEPOperator>(U));
5573
5574   case Instruction::PHI:
5575     return createNodeForPHI(cast<PHINode>(U));
5576
5577   case Instruction::Select:
5578     // U can also be a select constant expr, which let fall through.  Since
5579     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5580     // constant expressions cannot have instructions as operands, we'd have
5581     // returned getUnknown for a select constant expressions anyway.
5582     if (isa<Instruction>(U))
5583       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5584                                       U->getOperand(1), U->getOperand(2));
5585     break;
5586
5587   case Instruction::Call:
5588   case Instruction::Invoke:
5589     if (Value *RV = CallSite(U).getReturnedArgOperand())
5590       return getSCEV(RV);
5591     break;
5592   }
5593
5594   return getUnknown(V);
5595 }
5596
5597
5598
5599 //===----------------------------------------------------------------------===//
5600 //                   Iteration Count Computation Code
5601 //
5602
5603 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
5604   if (!ExitCount)
5605     return 0;
5606
5607   ConstantInt *ExitConst = ExitCount->getValue();
5608
5609   // Guard against huge trip counts.
5610   if (ExitConst->getValue().getActiveBits() > 32)
5611     return 0;
5612
5613   // In case of integer overflow, this returns 0, which is correct.
5614   return ((unsigned)ExitConst->getZExtValue()) + 1;
5615 }
5616
5617 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
5618   if (BasicBlock *ExitingBB = L->getExitingBlock())
5619     return getSmallConstantTripCount(L, ExitingBB);
5620
5621   // No trip count information for multiple exits.
5622   return 0;
5623 }
5624
5625 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
5626                                                     BasicBlock *ExitingBlock) {
5627   assert(ExitingBlock && "Must pass a non-null exiting block!");
5628   assert(L->isLoopExiting(ExitingBlock) &&
5629          "Exiting block must actually branch out of the loop!");
5630   const SCEVConstant *ExitCount =
5631       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5632   return getConstantTripCount(ExitCount);
5633 }
5634
5635 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
5636   const auto *MaxExitCount =
5637       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
5638   return getConstantTripCount(MaxExitCount);
5639 }
5640
5641 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
5642   if (BasicBlock *ExitingBB = L->getExitingBlock())
5643     return getSmallConstantTripMultiple(L, ExitingBB);
5644
5645   // No trip multiple information for multiple exits.
5646   return 0;
5647 }
5648
5649 /// Returns the largest constant divisor of the trip count of this loop as a
5650 /// normal unsigned value, if possible. This means that the actual trip count is
5651 /// always a multiple of the returned value (don't forget the trip count could
5652 /// very well be zero as well!).
5653 ///
5654 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5655 /// multiple of a constant (which is also the case if the trip count is simply
5656 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5657 /// if the trip count is very large (>= 2^32).
5658 ///
5659 /// As explained in the comments for getSmallConstantTripCount, this assumes
5660 /// that control exits the loop via ExitingBlock.
5661 unsigned
5662 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
5663                                               BasicBlock *ExitingBlock) {
5664   assert(ExitingBlock && "Must pass a non-null exiting block!");
5665   assert(L->isLoopExiting(ExitingBlock) &&
5666          "Exiting block must actually branch out of the loop!");
5667   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5668   if (ExitCount == getCouldNotCompute())
5669     return 1;
5670
5671   // Get the trip count from the BE count by adding 1.
5672   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5673
5674   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
5675   if (!TC)
5676     // Attempt to factor more general cases. Returns the greatest power of
5677     // two divisor. If overflow happens, the trip count expression is still
5678     // divisible by the greatest power of 2 divisor returned.
5679     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
5680
5681   ConstantInt *Result = TC->getValue();
5682
5683   // Guard against huge trip counts (this requires checking
5684   // for zero to handle the case where the trip count == -1 and the
5685   // addition wraps).
5686   if (!Result || Result->getValue().getActiveBits() > 32 ||
5687       Result->getValue().getActiveBits() == 0)
5688     return 1;
5689
5690   return (unsigned)Result->getZExtValue();
5691 }
5692
5693 /// Get the expression for the number of loop iterations for which this loop is
5694 /// guaranteed not to exit via ExitingBlock. Otherwise return
5695 /// SCEVCouldNotCompute.
5696 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
5697                                           BasicBlock *ExitingBlock) {
5698   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5699 }
5700
5701 const SCEV *
5702 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5703                                                  SCEVUnionPredicate &Preds) {
5704   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5705 }
5706
5707 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5708   return getBackedgeTakenInfo(L).getExact(this);
5709 }
5710
5711 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5712 /// known never to be less than the actual backedge taken count.
5713 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5714   return getBackedgeTakenInfo(L).getMax(this);
5715 }
5716
5717 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
5718   return getBackedgeTakenInfo(L).isMaxOrZero(this);
5719 }
5720
5721 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5722 static void
5723 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5724   BasicBlock *Header = L->getHeader();
5725
5726   // Push all Loop-header PHIs onto the Worklist stack.
5727   for (BasicBlock::iterator I = Header->begin();
5728        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5729     Worklist.push_back(PN);
5730 }
5731
5732 const ScalarEvolution::BackedgeTakenInfo &
5733 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5734   auto &BTI = getBackedgeTakenInfo(L);
5735   if (BTI.hasFullInfo())
5736     return BTI;
5737
5738   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5739
5740   if (!Pair.second)
5741     return Pair.first->second;
5742
5743   BackedgeTakenInfo Result =
5744       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5745
5746   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
5747 }
5748
5749 const ScalarEvolution::BackedgeTakenInfo &
5750 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5751   // Initially insert an invalid entry for this loop. If the insertion
5752   // succeeds, proceed to actually compute a backedge-taken count and
5753   // update the value. The temporary CouldNotCompute value tells SCEV
5754   // code elsewhere that it shouldn't attempt to request a new
5755   // backedge-taken count, which could result in infinite recursion.
5756   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5757       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5758   if (!Pair.second)
5759     return Pair.first->second;
5760
5761   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5762   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5763   // must be cleared in this scope.
5764   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5765
5766   if (Result.getExact(this) != getCouldNotCompute()) {
5767     assert(isLoopInvariant(Result.getExact(this), L) &&
5768            isLoopInvariant(Result.getMax(this), L) &&
5769            "Computed backedge-taken count isn't loop invariant for loop!");
5770     ++NumTripCountsComputed;
5771   }
5772   else if (Result.getMax(this) == getCouldNotCompute() &&
5773            isa<PHINode>(L->getHeader()->begin())) {
5774     // Only count loops that have phi nodes as not being computable.
5775     ++NumTripCountsNotComputed;
5776   }
5777
5778   // Now that we know more about the trip count for this loop, forget any
5779   // existing SCEV values for PHI nodes in this loop since they are only
5780   // conservative estimates made without the benefit of trip count
5781   // information. This is similar to the code in forgetLoop, except that
5782   // it handles SCEVUnknown PHI nodes specially.
5783   if (Result.hasAnyInfo()) {
5784     SmallVector<Instruction *, 16> Worklist;
5785     PushLoopPHIs(L, Worklist);
5786
5787     SmallPtrSet<Instruction *, 8> Visited;
5788     while (!Worklist.empty()) {
5789       Instruction *I = Worklist.pop_back_val();
5790       if (!Visited.insert(I).second)
5791         continue;
5792
5793       ValueExprMapType::iterator It =
5794         ValueExprMap.find_as(static_cast<Value *>(I));
5795       if (It != ValueExprMap.end()) {
5796         const SCEV *Old = It->second;
5797
5798         // SCEVUnknown for a PHI either means that it has an unrecognized
5799         // structure, or it's a PHI that's in the progress of being computed
5800         // by createNodeForPHI.  In the former case, additional loop trip
5801         // count information isn't going to change anything. In the later
5802         // case, createNodeForPHI will perform the necessary updates on its
5803         // own when it gets to that point.
5804         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5805           eraseValueFromMap(It->first);
5806           forgetMemoizedResults(Old);
5807         }
5808         if (PHINode *PN = dyn_cast<PHINode>(I))
5809           ConstantEvolutionLoopExitValue.erase(PN);
5810       }
5811
5812       PushDefUseChildren(I, Worklist);
5813     }
5814   }
5815
5816   // Re-lookup the insert position, since the call to
5817   // computeBackedgeTakenCount above could result in a
5818   // recusive call to getBackedgeTakenInfo (on a different
5819   // loop), which would invalidate the iterator computed
5820   // earlier.
5821   return BackedgeTakenCounts.find(L)->second = std::move(Result);
5822 }
5823
5824 void ScalarEvolution::forgetLoop(const Loop *L) {
5825   // Drop any stored trip count value.
5826   auto RemoveLoopFromBackedgeMap =
5827       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5828         auto BTCPos = Map.find(L);
5829         if (BTCPos != Map.end()) {
5830           BTCPos->second.clear();
5831           Map.erase(BTCPos);
5832         }
5833       };
5834
5835   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5836   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5837
5838   // Drop information about expressions based on loop-header PHIs.
5839   SmallVector<Instruction *, 16> Worklist;
5840   PushLoopPHIs(L, Worklist);
5841
5842   SmallPtrSet<Instruction *, 8> Visited;
5843   while (!Worklist.empty()) {
5844     Instruction *I = Worklist.pop_back_val();
5845     if (!Visited.insert(I).second)
5846       continue;
5847
5848     ValueExprMapType::iterator It =
5849       ValueExprMap.find_as(static_cast<Value *>(I));
5850     if (It != ValueExprMap.end()) {
5851       eraseValueFromMap(It->first);
5852       forgetMemoizedResults(It->second);
5853       if (PHINode *PN = dyn_cast<PHINode>(I))
5854         ConstantEvolutionLoopExitValue.erase(PN);
5855     }
5856
5857     PushDefUseChildren(I, Worklist);
5858   }
5859
5860   // Forget all contained loops too, to avoid dangling entries in the
5861   // ValuesAtScopes map.
5862   for (Loop *I : *L)
5863     forgetLoop(I);
5864
5865   LoopPropertiesCache.erase(L);
5866 }
5867
5868 void ScalarEvolution::forgetValue(Value *V) {
5869   Instruction *I = dyn_cast<Instruction>(V);
5870   if (!I) return;
5871
5872   // Drop information about expressions based on loop-header PHIs.
5873   SmallVector<Instruction *, 16> Worklist;
5874   Worklist.push_back(I);
5875
5876   SmallPtrSet<Instruction *, 8> Visited;
5877   while (!Worklist.empty()) {
5878     I = Worklist.pop_back_val();
5879     if (!Visited.insert(I).second)
5880       continue;
5881
5882     ValueExprMapType::iterator It =
5883       ValueExprMap.find_as(static_cast<Value *>(I));
5884     if (It != ValueExprMap.end()) {
5885       eraseValueFromMap(It->first);
5886       forgetMemoizedResults(It->second);
5887       if (PHINode *PN = dyn_cast<PHINode>(I))
5888         ConstantEvolutionLoopExitValue.erase(PN);
5889     }
5890
5891     PushDefUseChildren(I, Worklist);
5892   }
5893 }
5894
5895 /// Get the exact loop backedge taken count considering all loop exits. A
5896 /// computable result can only be returned for loops with a single exit.
5897 /// Returning the minimum taken count among all exits is incorrect because one
5898 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5899 /// the limit of each loop test is never skipped. This is a valid assumption as
5900 /// long as the loop exits via that test. For precise results, it is the
5901 /// caller's responsibility to specify the relevant loop exit using
5902 /// getExact(ExitingBlock, SE).
5903 const SCEV *
5904 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
5905                                              SCEVUnionPredicate *Preds) const {
5906   // If any exits were not computable, the loop is not computable.
5907   if (!isComplete() || ExitNotTaken.empty())
5908     return SE->getCouldNotCompute();
5909
5910   const SCEV *BECount = nullptr;
5911   for (auto &ENT : ExitNotTaken) {
5912     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5913
5914     if (!BECount)
5915       BECount = ENT.ExactNotTaken;
5916     else if (BECount != ENT.ExactNotTaken)
5917       return SE->getCouldNotCompute();
5918     if (Preds && !ENT.hasAlwaysTruePredicate())
5919       Preds->add(ENT.Predicate.get());
5920
5921     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
5922            "Predicate should be always true!");
5923   }
5924
5925   assert(BECount && "Invalid not taken count for loop exit");
5926   return BECount;
5927 }
5928
5929 /// Get the exact not taken count for this loop exit.
5930 const SCEV *
5931 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5932                                              ScalarEvolution *SE) const {
5933   for (auto &ENT : ExitNotTaken)
5934     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
5935       return ENT.ExactNotTaken;
5936
5937   return SE->getCouldNotCompute();
5938 }
5939
5940 /// getMax - Get the max backedge taken count for the loop.
5941 const SCEV *
5942 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5943   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5944     return !ENT.hasAlwaysTruePredicate();
5945   };
5946
5947   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
5948     return SE->getCouldNotCompute();
5949
5950   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
5951          "No point in having a non-constant max backedge taken count!");
5952   return getMax();
5953 }
5954
5955 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
5956   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5957     return !ENT.hasAlwaysTruePredicate();
5958   };
5959   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
5960 }
5961
5962 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5963                                                     ScalarEvolution *SE) const {
5964   if (getMax() && getMax() != SE->getCouldNotCompute() &&
5965       SE->hasOperand(getMax(), S))
5966     return true;
5967
5968   for (auto &ENT : ExitNotTaken)
5969     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5970         SE->hasOperand(ENT.ExactNotTaken, S))
5971       return true;
5972
5973   return false;
5974 }
5975
5976 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
5977     : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) {
5978   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
5979           isa<SCEVConstant>(MaxNotTaken)) &&
5980          "No point in having a non-constant max backedge taken count!");
5981 }
5982
5983 ScalarEvolution::ExitLimit::ExitLimit(
5984     const SCEV *E, const SCEV *M, bool MaxOrZero,
5985     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
5986     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
5987   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
5988           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
5989          "Exact is not allowed to be less precise than Max");
5990   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
5991           isa<SCEVConstant>(MaxNotTaken)) &&
5992          "No point in having a non-constant max backedge taken count!");
5993   for (auto *PredSet : PredSetList)
5994     for (auto *P : *PredSet)
5995       addPredicate(P);
5996 }
5997
5998 ScalarEvolution::ExitLimit::ExitLimit(
5999     const SCEV *E, const SCEV *M, bool MaxOrZero,
6000     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6001     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6002   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6003           isa<SCEVConstant>(MaxNotTaken)) &&
6004          "No point in having a non-constant max backedge taken count!");
6005 }
6006
6007 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6008                                       bool MaxOrZero)
6009     : ExitLimit(E, M, MaxOrZero, None) {
6010   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6011           isa<SCEVConstant>(MaxNotTaken)) &&
6012          "No point in having a non-constant max backedge taken count!");
6013 }
6014
6015 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6016 /// computable exit into a persistent ExitNotTakenInfo array.
6017 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6018     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6019         &&ExitCounts,
6020     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6021     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6022   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
6023   ExitNotTaken.reserve(ExitCounts.size());
6024   std::transform(
6025       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6026       [&](const EdgeExitInfo &EEI) {
6027         BasicBlock *ExitBB = EEI.first;
6028         const ExitLimit &EL = EEI.second;
6029         if (EL.Predicates.empty())
6030           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6031
6032         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6033         for (auto *Pred : EL.Predicates)
6034           Predicate->add(Pred);
6035
6036         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6037       });
6038   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6039          "No point in having a non-constant max backedge taken count!");
6040 }
6041
6042 /// Invalidate this result and free the ExitNotTakenInfo array.
6043 void ScalarEvolution::BackedgeTakenInfo::clear() {
6044   ExitNotTaken.clear();
6045 }
6046
6047 /// Compute the number of times the backedge of the specified loop will execute.
6048 ScalarEvolution::BackedgeTakenInfo
6049 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6050                                            bool AllowPredicates) {
6051   SmallVector<BasicBlock *, 8> ExitingBlocks;
6052   L->getExitingBlocks(ExitingBlocks);
6053
6054   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
6055
6056   SmallVector<EdgeExitInfo, 4> ExitCounts;
6057   bool CouldComputeBECount = true;
6058   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6059   const SCEV *MustExitMaxBECount = nullptr;
6060   const SCEV *MayExitMaxBECount = nullptr;
6061   bool MustExitMaxOrZero = false;
6062
6063   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6064   // and compute maxBECount.
6065   // Do a union of all the predicates here.
6066   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6067     BasicBlock *ExitBB = ExitingBlocks[i];
6068     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6069
6070     assert((AllowPredicates || EL.Predicates.empty()) &&
6071            "Predicated exit limit when predicates are not allowed!");
6072
6073     // 1. For each exit that can be computed, add an entry to ExitCounts.
6074     // CouldComputeBECount is true only if all exits can be computed.
6075     if (EL.ExactNotTaken == getCouldNotCompute())
6076       // We couldn't compute an exact value for this exit, so
6077       // we won't be able to compute an exact value for the loop.
6078       CouldComputeBECount = false;
6079     else
6080       ExitCounts.emplace_back(ExitBB, EL);
6081
6082     // 2. Derive the loop's MaxBECount from each exit's max number of
6083     // non-exiting iterations. Partition the loop exits into two kinds:
6084     // LoopMustExits and LoopMayExits.
6085     //
6086     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6087     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6088     // MaxBECount is the minimum EL.MaxNotTaken of computable
6089     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6090     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6091     // computable EL.MaxNotTaken.
6092     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6093         DT.dominates(ExitBB, Latch)) {
6094       if (!MustExitMaxBECount) {
6095         MustExitMaxBECount = EL.MaxNotTaken;
6096         MustExitMaxOrZero = EL.MaxOrZero;
6097       } else {
6098         MustExitMaxBECount =
6099             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6100       }
6101     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6102       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6103         MayExitMaxBECount = EL.MaxNotTaken;
6104       else {
6105         MayExitMaxBECount =
6106             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6107       }
6108     }
6109   }
6110   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6111     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6112   // The loop backedge will be taken the maximum or zero times if there's
6113   // a single exit that must be taken the maximum or zero times.
6114   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6115   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6116                            MaxBECount, MaxOrZero);
6117 }
6118
6119 ScalarEvolution::ExitLimit
6120 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6121                                   bool AllowPredicates) {
6122
6123   // Okay, we've chosen an exiting block.  See what condition causes us to exit
6124   // at this block and remember the exit block and whether all other targets
6125   // lead to the loop header.
6126   bool MustExecuteLoopHeader = true;
6127   BasicBlock *Exit = nullptr;
6128   for (auto *SBB : successors(ExitingBlock))
6129     if (!L->contains(SBB)) {
6130       if (Exit) // Multiple exit successors.
6131         return getCouldNotCompute();
6132       Exit = SBB;
6133     } else if (SBB != L->getHeader()) {
6134       MustExecuteLoopHeader = false;
6135     }
6136
6137   // At this point, we know we have a conditional branch that determines whether
6138   // the loop is exited.  However, we don't know if the branch is executed each
6139   // time through the loop.  If not, then the execution count of the branch will
6140   // not be equal to the trip count of the loop.
6141   //
6142   // Currently we check for this by checking to see if the Exit branch goes to
6143   // the loop header.  If so, we know it will always execute the same number of
6144   // times as the loop.  We also handle the case where the exit block *is* the
6145   // loop header.  This is common for un-rotated loops.
6146   //
6147   // If both of those tests fail, walk up the unique predecessor chain to the
6148   // header, stopping if there is an edge that doesn't exit the loop. If the
6149   // header is reached, the execution count of the branch will be equal to the
6150   // trip count of the loop.
6151   //
6152   //  More extensive analysis could be done to handle more cases here.
6153   //
6154   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
6155     // The simple checks failed, try climbing the unique predecessor chain
6156     // up to the header.
6157     bool Ok = false;
6158     for (BasicBlock *BB = ExitingBlock; BB; ) {
6159       BasicBlock *Pred = BB->getUniquePredecessor();
6160       if (!Pred)
6161         return getCouldNotCompute();
6162       TerminatorInst *PredTerm = Pred->getTerminator();
6163       for (const BasicBlock *PredSucc : PredTerm->successors()) {
6164         if (PredSucc == BB)
6165           continue;
6166         // If the predecessor has a successor that isn't BB and isn't
6167         // outside the loop, assume the worst.
6168         if (L->contains(PredSucc))
6169           return getCouldNotCompute();
6170       }
6171       if (Pred == L->getHeader()) {
6172         Ok = true;
6173         break;
6174       }
6175       BB = Pred;
6176     }
6177     if (!Ok)
6178       return getCouldNotCompute();
6179   }
6180
6181   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6182   TerminatorInst *Term = ExitingBlock->getTerminator();
6183   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
6184     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
6185     // Proceed to the next level to examine the exit condition expression.
6186     return computeExitLimitFromCond(
6187         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
6188         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
6189   }
6190
6191   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
6192     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
6193                                                 /*ControlsExit=*/IsOnlyExit);
6194
6195   return getCouldNotCompute();
6196 }
6197
6198 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
6199     const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB,
6200     bool ControlsExit, bool AllowPredicates) {
6201   ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates);
6202   return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB,
6203                                         ControlsExit, AllowPredicates);
6204 }
6205
6206 Optional<ScalarEvolution::ExitLimit>
6207 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
6208                                       BasicBlock *TBB, BasicBlock *FBB,
6209                                       bool ControlsExit, bool AllowPredicates) {
6210   (void)this->L;
6211   (void)this->TBB;
6212   (void)this->FBB;
6213   (void)this->AllowPredicates;
6214
6215   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6216          this->AllowPredicates == AllowPredicates &&
6217          "Variance in assumed invariant key components!");
6218   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
6219   if (Itr == TripCountMap.end())
6220     return None;
6221   return Itr->second;
6222 }
6223
6224 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
6225                                              BasicBlock *TBB, BasicBlock *FBB,
6226                                              bool ControlsExit,
6227                                              bool AllowPredicates,
6228                                              const ExitLimit &EL) {
6229   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6230          this->AllowPredicates == AllowPredicates &&
6231          "Variance in assumed invariant key components!");
6232
6233   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
6234   assert(InsertResult.second && "Expected successful insertion!");
6235   (void)InsertResult;
6236 }
6237
6238 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
6239     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6240     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6241
6242   if (auto MaybeEL =
6243           Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates))
6244     return *MaybeEL;
6245
6246   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB,
6247                                               ControlsExit, AllowPredicates);
6248   Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL);
6249   return EL;
6250 }
6251
6252 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
6253     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6254     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6255   // Check if the controlling expression for this loop is an And or Or.
6256   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
6257     if (BO->getOpcode() == Instruction::And) {
6258       // Recurse on the operands of the and.
6259       bool EitherMayExit = L->contains(TBB);
6260       ExitLimit EL0 = computeExitLimitFromCondCached(
6261           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6262           AllowPredicates);
6263       ExitLimit EL1 = computeExitLimitFromCondCached(
6264           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6265           AllowPredicates);
6266       const SCEV *BECount = getCouldNotCompute();
6267       const SCEV *MaxBECount = getCouldNotCompute();
6268       if (EitherMayExit) {
6269         // Both conditions must be true for the loop to continue executing.
6270         // Choose the less conservative count.
6271         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6272             EL1.ExactNotTaken == getCouldNotCompute())
6273           BECount = getCouldNotCompute();
6274         else
6275           BECount =
6276               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6277         if (EL0.MaxNotTaken == getCouldNotCompute())
6278           MaxBECount = EL1.MaxNotTaken;
6279         else if (EL1.MaxNotTaken == getCouldNotCompute())
6280           MaxBECount = EL0.MaxNotTaken;
6281         else
6282           MaxBECount =
6283               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6284       } else {
6285         // Both conditions must be true at the same time for the loop to exit.
6286         // For now, be conservative.
6287         assert(L->contains(FBB) && "Loop block has no successor in loop!");
6288         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6289           MaxBECount = EL0.MaxNotTaken;
6290         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6291           BECount = EL0.ExactNotTaken;
6292       }
6293
6294       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
6295       // to be more aggressive when computing BECount than when computing
6296       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
6297       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
6298       // to not.
6299       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
6300           !isa<SCEVCouldNotCompute>(BECount))
6301         MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax());
6302
6303       return ExitLimit(BECount, MaxBECount, false,
6304                        {&EL0.Predicates, &EL1.Predicates});
6305     }
6306     if (BO->getOpcode() == Instruction::Or) {
6307       // Recurse on the operands of the or.
6308       bool EitherMayExit = L->contains(FBB);
6309       ExitLimit EL0 = computeExitLimitFromCondCached(
6310           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6311           AllowPredicates);
6312       ExitLimit EL1 = computeExitLimitFromCondCached(
6313           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6314           AllowPredicates);
6315       const SCEV *BECount = getCouldNotCompute();
6316       const SCEV *MaxBECount = getCouldNotCompute();
6317       if (EitherMayExit) {
6318         // Both conditions must be false for the loop to continue executing.
6319         // Choose the less conservative count.
6320         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6321             EL1.ExactNotTaken == getCouldNotCompute())
6322           BECount = getCouldNotCompute();
6323         else
6324           BECount =
6325               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6326         if (EL0.MaxNotTaken == getCouldNotCompute())
6327           MaxBECount = EL1.MaxNotTaken;
6328         else if (EL1.MaxNotTaken == getCouldNotCompute())
6329           MaxBECount = EL0.MaxNotTaken;
6330         else
6331           MaxBECount =
6332               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6333       } else {
6334         // Both conditions must be false at the same time for the loop to exit.
6335         // For now, be conservative.
6336         assert(L->contains(TBB) && "Loop block has no successor in loop!");
6337         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6338           MaxBECount = EL0.MaxNotTaken;
6339         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6340           BECount = EL0.ExactNotTaken;
6341       }
6342
6343       return ExitLimit(BECount, MaxBECount, false,
6344                        {&EL0.Predicates, &EL1.Predicates});
6345     }
6346   }
6347
6348   // With an icmp, it may be feasible to compute an exact backedge-taken count.
6349   // Proceed to the next level to examine the icmp.
6350   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
6351     ExitLimit EL =
6352         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
6353     if (EL.hasFullInfo() || !AllowPredicates)
6354       return EL;
6355
6356     // Try again, but use SCEV predicates this time.
6357     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
6358                                     /*AllowPredicates=*/true);
6359   }
6360
6361   // Check for a constant condition. These are normally stripped out by
6362   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6363   // preserve the CFG and is temporarily leaving constant conditions
6364   // in place.
6365   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6366     if (L->contains(FBB) == !CI->getZExtValue())
6367       // The backedge is always taken.
6368       return getCouldNotCompute();
6369     else
6370       // The backedge is never taken.
6371       return getZero(CI->getType());
6372   }
6373
6374   // If it's not an integer or pointer comparison then compute it the hard way.
6375   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6376 }
6377
6378 ScalarEvolution::ExitLimit
6379 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6380                                           ICmpInst *ExitCond,
6381                                           BasicBlock *TBB,
6382                                           BasicBlock *FBB,
6383                                           bool ControlsExit,
6384                                           bool AllowPredicates) {
6385
6386   // If the condition was exit on true, convert the condition to exit on false
6387   ICmpInst::Predicate Cond;
6388   if (!L->contains(FBB))
6389     Cond = ExitCond->getPredicate();
6390   else
6391     Cond = ExitCond->getInversePredicate();
6392
6393   // Handle common loops like: for (X = "string"; *X; ++X)
6394   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6395     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6396       ExitLimit ItCnt =
6397         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6398       if (ItCnt.hasAnyInfo())
6399         return ItCnt;
6400     }
6401
6402   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6403   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6404
6405   // Try to evaluate any dependencies out of the loop.
6406   LHS = getSCEVAtScope(LHS, L);
6407   RHS = getSCEVAtScope(RHS, L);
6408
6409   // At this point, we would like to compute how many iterations of the
6410   // loop the predicate will return true for these inputs.
6411   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6412     // If there is a loop-invariant, force it into the RHS.
6413     std::swap(LHS, RHS);
6414     Cond = ICmpInst::getSwappedPredicate(Cond);
6415   }
6416
6417   // Simplify the operands before analyzing them.
6418   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6419
6420   // If we have a comparison of a chrec against a constant, try to use value
6421   // ranges to answer this query.
6422   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6423     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6424       if (AddRec->getLoop() == L) {
6425         // Form the constant range.
6426         ConstantRange CompRange =
6427             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
6428
6429         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6430         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6431       }
6432
6433   switch (Cond) {
6434   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6435     // Convert to: while (X-Y != 0)
6436     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6437                                 AllowPredicates);
6438     if (EL.hasAnyInfo()) return EL;
6439     break;
6440   }
6441   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6442     // Convert to: while (X-Y == 0)
6443     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6444     if (EL.hasAnyInfo()) return EL;
6445     break;
6446   }
6447   case ICmpInst::ICMP_SLT:
6448   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6449     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6450     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6451                                     AllowPredicates);
6452     if (EL.hasAnyInfo()) return EL;
6453     break;
6454   }
6455   case ICmpInst::ICMP_SGT:
6456   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6457     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6458     ExitLimit EL =
6459         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6460                             AllowPredicates);
6461     if (EL.hasAnyInfo()) return EL;
6462     break;
6463   }
6464   default:
6465     break;
6466   }
6467
6468   auto *ExhaustiveCount =
6469       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6470
6471   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6472     return ExhaustiveCount;
6473
6474   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6475                                       ExitCond->getOperand(1), L, Cond);
6476 }
6477
6478 ScalarEvolution::ExitLimit
6479 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6480                                                       SwitchInst *Switch,
6481                                                       BasicBlock *ExitingBlock,
6482                                                       bool ControlsExit) {
6483   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6484
6485   // Give up if the exit is the default dest of a switch.
6486   if (Switch->getDefaultDest() == ExitingBlock)
6487     return getCouldNotCompute();
6488
6489   assert(L->contains(Switch->getDefaultDest()) &&
6490          "Default case must not exit the loop!");
6491   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6492   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6493
6494   // while (X != Y) --> while (X-Y != 0)
6495   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6496   if (EL.hasAnyInfo())
6497     return EL;
6498
6499   return getCouldNotCompute();
6500 }
6501
6502 static ConstantInt *
6503 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6504                                 ScalarEvolution &SE) {
6505   const SCEV *InVal = SE.getConstant(C);
6506   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6507   assert(isa<SCEVConstant>(Val) &&
6508          "Evaluation of SCEV at constant didn't fold correctly?");
6509   return cast<SCEVConstant>(Val)->getValue();
6510 }
6511
6512 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6513 /// compute the backedge execution count.
6514 ScalarEvolution::ExitLimit
6515 ScalarEvolution::computeLoadConstantCompareExitLimit(
6516   LoadInst *LI,
6517   Constant *RHS,
6518   const Loop *L,
6519   ICmpInst::Predicate predicate) {
6520
6521   if (LI->isVolatile()) return getCouldNotCompute();
6522
6523   // Check to see if the loaded pointer is a getelementptr of a global.
6524   // TODO: Use SCEV instead of manually grubbing with GEPs.
6525   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6526   if (!GEP) return getCouldNotCompute();
6527
6528   // Make sure that it is really a constant global we are gepping, with an
6529   // initializer, and make sure the first IDX is really 0.
6530   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6531   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6532       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6533       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6534     return getCouldNotCompute();
6535
6536   // Okay, we allow one non-constant index into the GEP instruction.
6537   Value *VarIdx = nullptr;
6538   std::vector<Constant*> Indexes;
6539   unsigned VarIdxNum = 0;
6540   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6541     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6542       Indexes.push_back(CI);
6543     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6544       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6545       VarIdx = GEP->getOperand(i);
6546       VarIdxNum = i-2;
6547       Indexes.push_back(nullptr);
6548     }
6549
6550   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6551   if (!VarIdx)
6552     return getCouldNotCompute();
6553
6554   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6555   // Check to see if X is a loop variant variable value now.
6556   const SCEV *Idx = getSCEV(VarIdx);
6557   Idx = getSCEVAtScope(Idx, L);
6558
6559   // We can only recognize very limited forms of loop index expressions, in
6560   // particular, only affine AddRec's like {C1,+,C2}.
6561   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6562   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6563       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6564       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6565     return getCouldNotCompute();
6566
6567   unsigned MaxSteps = MaxBruteForceIterations;
6568   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6569     ConstantInt *ItCst = ConstantInt::get(
6570                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6571     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6572
6573     // Form the GEP offset.
6574     Indexes[VarIdxNum] = Val;
6575
6576     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6577                                                          Indexes);
6578     if (!Result) break;  // Cannot compute!
6579
6580     // Evaluate the condition for this iteration.
6581     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6582     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6583     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6584       ++NumArrayLenItCounts;
6585       return getConstant(ItCst);   // Found terminating iteration!
6586     }
6587   }
6588   return getCouldNotCompute();
6589 }
6590
6591 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6592     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6593   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6594   if (!RHS)
6595     return getCouldNotCompute();
6596
6597   const BasicBlock *Latch = L->getLoopLatch();
6598   if (!Latch)
6599     return getCouldNotCompute();
6600
6601   const BasicBlock *Predecessor = L->getLoopPredecessor();
6602   if (!Predecessor)
6603     return getCouldNotCompute();
6604
6605   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6606   // Return LHS in OutLHS and shift_opt in OutOpCode.
6607   auto MatchPositiveShift =
6608       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6609
6610     using namespace PatternMatch;
6611
6612     ConstantInt *ShiftAmt;
6613     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6614       OutOpCode = Instruction::LShr;
6615     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6616       OutOpCode = Instruction::AShr;
6617     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6618       OutOpCode = Instruction::Shl;
6619     else
6620       return false;
6621
6622     return ShiftAmt->getValue().isStrictlyPositive();
6623   };
6624
6625   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6626   //
6627   // loop:
6628   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6629   //   %iv.shifted = lshr i32 %iv, <positive constant>
6630   //
6631   // Return true on a successful match.  Return the corresponding PHI node (%iv
6632   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6633   auto MatchShiftRecurrence =
6634       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6635     Optional<Instruction::BinaryOps> PostShiftOpCode;
6636
6637     {
6638       Instruction::BinaryOps OpC;
6639       Value *V;
6640
6641       // If we encounter a shift instruction, "peel off" the shift operation,
6642       // and remember that we did so.  Later when we inspect %iv's backedge
6643       // value, we will make sure that the backedge value uses the same
6644       // operation.
6645       //
6646       // Note: the peeled shift operation does not have to be the same
6647       // instruction as the one feeding into the PHI's backedge value.  We only
6648       // really care about it being the same *kind* of shift instruction --
6649       // that's all that is required for our later inferences to hold.
6650       if (MatchPositiveShift(LHS, V, OpC)) {
6651         PostShiftOpCode = OpC;
6652         LHS = V;
6653       }
6654     }
6655
6656     PNOut = dyn_cast<PHINode>(LHS);
6657     if (!PNOut || PNOut->getParent() != L->getHeader())
6658       return false;
6659
6660     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6661     Value *OpLHS;
6662
6663     return
6664         // The backedge value for the PHI node must be a shift by a positive
6665         // amount
6666         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6667
6668         // of the PHI node itself
6669         OpLHS == PNOut &&
6670
6671         // and the kind of shift should be match the kind of shift we peeled
6672         // off, if any.
6673         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6674   };
6675
6676   PHINode *PN;
6677   Instruction::BinaryOps OpCode;
6678   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6679     return getCouldNotCompute();
6680
6681   const DataLayout &DL = getDataLayout();
6682
6683   // The key rationale for this optimization is that for some kinds of shift
6684   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6685   // within a finite number of iterations.  If the condition guarding the
6686   // backedge (in the sense that the backedge is taken if the condition is true)
6687   // is false for the value the shift recurrence stabilizes to, then we know
6688   // that the backedge is taken only a finite number of times.
6689
6690   ConstantInt *StableValue = nullptr;
6691   switch (OpCode) {
6692   default:
6693     llvm_unreachable("Impossible case!");
6694
6695   case Instruction::AShr: {
6696     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6697     // bitwidth(K) iterations.
6698     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6699     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
6700                                        Predecessor->getTerminator(), &DT);
6701     auto *Ty = cast<IntegerType>(RHS->getType());
6702     if (Known.isNonNegative())
6703       StableValue = ConstantInt::get(Ty, 0);
6704     else if (Known.isNegative())
6705       StableValue = ConstantInt::get(Ty, -1, true);
6706     else
6707       return getCouldNotCompute();
6708
6709     break;
6710   }
6711   case Instruction::LShr:
6712   case Instruction::Shl:
6713     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6714     // stabilize to 0 in at most bitwidth(K) iterations.
6715     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6716     break;
6717   }
6718
6719   auto *Result =
6720       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6721   assert(Result->getType()->isIntegerTy(1) &&
6722          "Otherwise cannot be an operand to a branch instruction");
6723
6724   if (Result->isZeroValue()) {
6725     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6726     const SCEV *UpperBound =
6727         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6728     return ExitLimit(getCouldNotCompute(), UpperBound, false);
6729   }
6730
6731   return getCouldNotCompute();
6732 }
6733
6734 /// Return true if we can constant fold an instruction of the specified type,
6735 /// assuming that all operands were constants.
6736 static bool CanConstantFold(const Instruction *I) {
6737   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6738       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6739       isa<LoadInst>(I))
6740     return true;
6741
6742   if (const CallInst *CI = dyn_cast<CallInst>(I))
6743     if (const Function *F = CI->getCalledFunction())
6744       return canConstantFoldCallTo(F);
6745   return false;
6746 }
6747
6748 /// Determine whether this instruction can constant evolve within this loop
6749 /// assuming its operands can all constant evolve.
6750 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6751   // An instruction outside of the loop can't be derived from a loop PHI.
6752   if (!L->contains(I)) return false;
6753
6754   if (isa<PHINode>(I)) {
6755     // We don't currently keep track of the control flow needed to evaluate
6756     // PHIs, so we cannot handle PHIs inside of loops.
6757     return L->getHeader() == I->getParent();
6758   }
6759
6760   // If we won't be able to constant fold this expression even if the operands
6761   // are constants, bail early.
6762   return CanConstantFold(I);
6763 }
6764
6765 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6766 /// recursing through each instruction operand until reaching a loop header phi.
6767 static PHINode *
6768 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6769                                DenseMap<Instruction *, PHINode *> &PHIMap,
6770                                unsigned Depth) {
6771   if (Depth > MaxConstantEvolvingDepth)
6772     return nullptr;
6773
6774   // Otherwise, we can evaluate this instruction if all of its operands are
6775   // constant or derived from a PHI node themselves.
6776   PHINode *PHI = nullptr;
6777   for (Value *Op : UseInst->operands()) {
6778     if (isa<Constant>(Op)) continue;
6779
6780     Instruction *OpInst = dyn_cast<Instruction>(Op);
6781     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6782
6783     PHINode *P = dyn_cast<PHINode>(OpInst);
6784     if (!P)
6785       // If this operand is already visited, reuse the prior result.
6786       // We may have P != PHI if this is the deepest point at which the
6787       // inconsistent paths meet.
6788       P = PHIMap.lookup(OpInst);
6789     if (!P) {
6790       // Recurse and memoize the results, whether a phi is found or not.
6791       // This recursive call invalidates pointers into PHIMap.
6792       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
6793       PHIMap[OpInst] = P;
6794     }
6795     if (!P)
6796       return nullptr;  // Not evolving from PHI
6797     if (PHI && PHI != P)
6798       return nullptr;  // Evolving from multiple different PHIs.
6799     PHI = P;
6800   }
6801   // This is a expression evolving from a constant PHI!
6802   return PHI;
6803 }
6804
6805 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6806 /// in the loop that V is derived from.  We allow arbitrary operations along the
6807 /// way, but the operands of an operation must either be constants or a value
6808 /// derived from a constant PHI.  If this expression does not fit with these
6809 /// constraints, return null.
6810 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6811   Instruction *I = dyn_cast<Instruction>(V);
6812   if (!I || !canConstantEvolve(I, L)) return nullptr;
6813
6814   if (PHINode *PN = dyn_cast<PHINode>(I))
6815     return PN;
6816
6817   // Record non-constant instructions contained by the loop.
6818   DenseMap<Instruction *, PHINode *> PHIMap;
6819   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
6820 }
6821
6822 /// EvaluateExpression - Given an expression that passes the
6823 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6824 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6825 /// reason, return null.
6826 static Constant *EvaluateExpression(Value *V, const Loop *L,
6827                                     DenseMap<Instruction *, Constant *> &Vals,
6828                                     const DataLayout &DL,
6829                                     const TargetLibraryInfo *TLI) {
6830   // Convenient constant check, but redundant for recursive calls.
6831   if (Constant *C = dyn_cast<Constant>(V)) return C;
6832   Instruction *I = dyn_cast<Instruction>(V);
6833   if (!I) return nullptr;
6834
6835   if (Constant *C = Vals.lookup(I)) return C;
6836
6837   // An instruction inside the loop depends on a value outside the loop that we
6838   // weren't given a mapping for, or a value such as a call inside the loop.
6839   if (!canConstantEvolve(I, L)) return nullptr;
6840
6841   // An unmapped PHI can be due to a branch or another loop inside this loop,
6842   // or due to this not being the initial iteration through a loop where we
6843   // couldn't compute the evolution of this particular PHI last time.
6844   if (isa<PHINode>(I)) return nullptr;
6845
6846   std::vector<Constant*> Operands(I->getNumOperands());
6847
6848   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6849     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6850     if (!Operand) {
6851       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6852       if (!Operands[i]) return nullptr;
6853       continue;
6854     }
6855     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6856     Vals[Operand] = C;
6857     if (!C) return nullptr;
6858     Operands[i] = C;
6859   }
6860
6861   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6862     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6863                                            Operands[1], DL, TLI);
6864   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6865     if (!LI->isVolatile())
6866       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6867   }
6868   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6869 }
6870
6871
6872 // If every incoming value to PN except the one for BB is a specific Constant,
6873 // return that, else return nullptr.
6874 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6875   Constant *IncomingVal = nullptr;
6876
6877   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6878     if (PN->getIncomingBlock(i) == BB)
6879       continue;
6880
6881     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6882     if (!CurrentVal)
6883       return nullptr;
6884
6885     if (IncomingVal != CurrentVal) {
6886       if (IncomingVal)
6887         return nullptr;
6888       IncomingVal = CurrentVal;
6889     }
6890   }
6891
6892   return IncomingVal;
6893 }
6894
6895 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6896 /// in the header of its containing loop, we know the loop executes a
6897 /// constant number of times, and the PHI node is just a recurrence
6898 /// involving constants, fold it.
6899 Constant *
6900 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6901                                                    const APInt &BEs,
6902                                                    const Loop *L) {
6903   auto I = ConstantEvolutionLoopExitValue.find(PN);
6904   if (I != ConstantEvolutionLoopExitValue.end())
6905     return I->second;
6906
6907   if (BEs.ugt(MaxBruteForceIterations))
6908     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6909
6910   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6911
6912   DenseMap<Instruction *, Constant *> CurrentIterVals;
6913   BasicBlock *Header = L->getHeader();
6914   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6915
6916   BasicBlock *Latch = L->getLoopLatch();
6917   if (!Latch)
6918     return nullptr;
6919
6920   for (auto &I : *Header) {
6921     PHINode *PHI = dyn_cast<PHINode>(&I);
6922     if (!PHI) break;
6923     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6924     if (!StartCST) continue;
6925     CurrentIterVals[PHI] = StartCST;
6926   }
6927   if (!CurrentIterVals.count(PN))
6928     return RetVal = nullptr;
6929
6930   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6931
6932   // Execute the loop symbolically to determine the exit value.
6933   if (BEs.getActiveBits() >= 32)
6934     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6935
6936   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6937   unsigned IterationNum = 0;
6938   const DataLayout &DL = getDataLayout();
6939   for (; ; ++IterationNum) {
6940     if (IterationNum == NumIterations)
6941       return RetVal = CurrentIterVals[PN];  // Got exit value!
6942
6943     // Compute the value of the PHIs for the next iteration.
6944     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6945     DenseMap<Instruction *, Constant *> NextIterVals;
6946     Constant *NextPHI =
6947         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6948     if (!NextPHI)
6949       return nullptr;        // Couldn't evaluate!
6950     NextIterVals[PN] = NextPHI;
6951
6952     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6953
6954     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6955     // cease to be able to evaluate one of them or if they stop evolving,
6956     // because that doesn't necessarily prevent us from computing PN.
6957     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6958     for (const auto &I : CurrentIterVals) {
6959       PHINode *PHI = dyn_cast<PHINode>(I.first);
6960       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6961       PHIsToCompute.emplace_back(PHI, I.second);
6962     }
6963     // We use two distinct loops because EvaluateExpression may invalidate any
6964     // iterators into CurrentIterVals.
6965     for (const auto &I : PHIsToCompute) {
6966       PHINode *PHI = I.first;
6967       Constant *&NextPHI = NextIterVals[PHI];
6968       if (!NextPHI) {   // Not already computed.
6969         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6970         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6971       }
6972       if (NextPHI != I.second)
6973         StoppedEvolving = false;
6974     }
6975
6976     // If all entries in CurrentIterVals == NextIterVals then we can stop
6977     // iterating, the loop can't continue to change.
6978     if (StoppedEvolving)
6979       return RetVal = CurrentIterVals[PN];
6980
6981     CurrentIterVals.swap(NextIterVals);
6982   }
6983 }
6984
6985 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6986                                                           Value *Cond,
6987                                                           bool ExitWhen) {
6988   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6989   if (!PN) return getCouldNotCompute();
6990
6991   // If the loop is canonicalized, the PHI will have exactly two entries.
6992   // That's the only form we support here.
6993   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6994
6995   DenseMap<Instruction *, Constant *> CurrentIterVals;
6996   BasicBlock *Header = L->getHeader();
6997   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6998
6999   BasicBlock *Latch = L->getLoopLatch();
7000   assert(Latch && "Should follow from NumIncomingValues == 2!");
7001
7002   for (auto &I : *Header) {
7003     PHINode *PHI = dyn_cast<PHINode>(&I);
7004     if (!PHI)
7005       break;
7006     auto *StartCST = getOtherIncomingValue(PHI, Latch);
7007     if (!StartCST) continue;
7008     CurrentIterVals[PHI] = StartCST;
7009   }
7010   if (!CurrentIterVals.count(PN))
7011     return getCouldNotCompute();
7012
7013   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7014   // the loop symbolically to determine when the condition gets a value of
7015   // "ExitWhen".
7016   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7017   const DataLayout &DL = getDataLayout();
7018   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7019     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7020         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7021
7022     // Couldn't symbolically evaluate.
7023     if (!CondVal) return getCouldNotCompute();
7024
7025     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7026       ++NumBruteForceTripCountsComputed;
7027       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7028     }
7029
7030     // Update all the PHI nodes for the next iteration.
7031     DenseMap<Instruction *, Constant *> NextIterVals;
7032
7033     // Create a list of which PHIs we need to compute. We want to do this before
7034     // calling EvaluateExpression on them because that may invalidate iterators
7035     // into CurrentIterVals.
7036     SmallVector<PHINode *, 8> PHIsToCompute;
7037     for (const auto &I : CurrentIterVals) {
7038       PHINode *PHI = dyn_cast<PHINode>(I.first);
7039       if (!PHI || PHI->getParent() != Header) continue;
7040       PHIsToCompute.push_back(PHI);
7041     }
7042     for (PHINode *PHI : PHIsToCompute) {
7043       Constant *&NextPHI = NextIterVals[PHI];
7044       if (NextPHI) continue;    // Already computed!
7045
7046       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7047       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7048     }
7049     CurrentIterVals.swap(NextIterVals);
7050   }
7051
7052   // Too many iterations were needed to evaluate.
7053   return getCouldNotCompute();
7054 }
7055
7056 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7057   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7058       ValuesAtScopes[V];
7059   // Check to see if we've folded this expression at this loop before.
7060   for (auto &LS : Values)
7061     if (LS.first == L)
7062       return LS.second ? LS.second : V;
7063
7064   Values.emplace_back(L, nullptr);
7065
7066   // Otherwise compute it.
7067   const SCEV *C = computeSCEVAtScope(V, L);
7068   for (auto &LS : reverse(ValuesAtScopes[V]))
7069     if (LS.first == L) {
7070       LS.second = C;
7071       break;
7072     }
7073   return C;
7074 }
7075
7076 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7077 /// will return Constants for objects which aren't represented by a
7078 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7079 /// Returns NULL if the SCEV isn't representable as a Constant.
7080 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7081   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7082     case scCouldNotCompute:
7083     case scAddRecExpr:
7084       break;
7085     case scConstant:
7086       return cast<SCEVConstant>(V)->getValue();
7087     case scUnknown:
7088       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7089     case scSignExtend: {
7090       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7091       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7092         return ConstantExpr::getSExt(CastOp, SS->getType());
7093       break;
7094     }
7095     case scZeroExtend: {
7096       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7097       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7098         return ConstantExpr::getZExt(CastOp, SZ->getType());
7099       break;
7100     }
7101     case scTruncate: {
7102       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7103       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7104         return ConstantExpr::getTrunc(CastOp, ST->getType());
7105       break;
7106     }
7107     case scAddExpr: {
7108       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7109       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7110         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7111           unsigned AS = PTy->getAddressSpace();
7112           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7113           C = ConstantExpr::getBitCast(C, DestPtrTy);
7114         }
7115         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7116           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7117           if (!C2) return nullptr;
7118
7119           // First pointer!
7120           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7121             unsigned AS = C2->getType()->getPointerAddressSpace();
7122             std::swap(C, C2);
7123             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7124             // The offsets have been converted to bytes.  We can add bytes to an
7125             // i8* by GEP with the byte count in the first index.
7126             C = ConstantExpr::getBitCast(C, DestPtrTy);
7127           }
7128
7129           // Don't bother trying to sum two pointers. We probably can't
7130           // statically compute a load that results from it anyway.
7131           if (C2->getType()->isPointerTy())
7132             return nullptr;
7133
7134           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7135             if (PTy->getElementType()->isStructTy())
7136               C2 = ConstantExpr::getIntegerCast(
7137                   C2, Type::getInt32Ty(C->getContext()), true);
7138             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7139           } else
7140             C = ConstantExpr::getAdd(C, C2);
7141         }
7142         return C;
7143       }
7144       break;
7145     }
7146     case scMulExpr: {
7147       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7148       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7149         // Don't bother with pointers at all.
7150         if (C->getType()->isPointerTy()) return nullptr;
7151         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7152           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7153           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7154           C = ConstantExpr::getMul(C, C2);
7155         }
7156         return C;
7157       }
7158       break;
7159     }
7160     case scUDivExpr: {
7161       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7162       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7163         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
7164           if (LHS->getType() == RHS->getType())
7165             return ConstantExpr::getUDiv(LHS, RHS);
7166       break;
7167     }
7168     case scSMaxExpr:
7169     case scUMaxExpr:
7170       break; // TODO: smax, umax.
7171   }
7172   return nullptr;
7173 }
7174
7175 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
7176   if (isa<SCEVConstant>(V)) return V;
7177
7178   // If this instruction is evolved from a constant-evolving PHI, compute the
7179   // exit value from the loop without using SCEVs.
7180   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
7181     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
7182       const Loop *LI = this->LI[I->getParent()];
7183       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
7184         if (PHINode *PN = dyn_cast<PHINode>(I))
7185           if (PN->getParent() == LI->getHeader()) {
7186             // Okay, there is no closed form solution for the PHI node.  Check
7187             // to see if the loop that contains it has a known backedge-taken
7188             // count.  If so, we may be able to force computation of the exit
7189             // value.
7190             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
7191             if (const SCEVConstant *BTCC =
7192                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
7193               // Okay, we know how many times the containing loop executes.  If
7194               // this is a constant evolving PHI node, get the final value at
7195               // the specified iteration number.
7196               Constant *RV =
7197                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
7198               if (RV) return getSCEV(RV);
7199             }
7200           }
7201
7202       // Okay, this is an expression that we cannot symbolically evaluate
7203       // into a SCEV.  Check to see if it's possible to symbolically evaluate
7204       // the arguments into constants, and if so, try to constant propagate the
7205       // result.  This is particularly useful for computing loop exit values.
7206       if (CanConstantFold(I)) {
7207         SmallVector<Constant *, 4> Operands;
7208         bool MadeImprovement = false;
7209         for (Value *Op : I->operands()) {
7210           if (Constant *C = dyn_cast<Constant>(Op)) {
7211             Operands.push_back(C);
7212             continue;
7213           }
7214
7215           // If any of the operands is non-constant and if they are
7216           // non-integer and non-pointer, don't even try to analyze them
7217           // with scev techniques.
7218           if (!isSCEVable(Op->getType()))
7219             return V;
7220
7221           const SCEV *OrigV = getSCEV(Op);
7222           const SCEV *OpV = getSCEVAtScope(OrigV, L);
7223           MadeImprovement |= OrigV != OpV;
7224
7225           Constant *C = BuildConstantFromSCEV(OpV);
7226           if (!C) return V;
7227           if (C->getType() != Op->getType())
7228             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
7229                                                               Op->getType(),
7230                                                               false),
7231                                       C, Op->getType());
7232           Operands.push_back(C);
7233         }
7234
7235         // Check to see if getSCEVAtScope actually made an improvement.
7236         if (MadeImprovement) {
7237           Constant *C = nullptr;
7238           const DataLayout &DL = getDataLayout();
7239           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
7240             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7241                                                 Operands[1], DL, &TLI);
7242           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
7243             if (!LI->isVolatile())
7244               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7245           } else
7246             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
7247           if (!C) return V;
7248           return getSCEV(C);
7249         }
7250       }
7251     }
7252
7253     // This is some other type of SCEVUnknown, just return it.
7254     return V;
7255   }
7256
7257   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
7258     // Avoid performing the look-up in the common case where the specified
7259     // expression has no loop-variant portions.
7260     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
7261       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7262       if (OpAtScope != Comm->getOperand(i)) {
7263         // Okay, at least one of these operands is loop variant but might be
7264         // foldable.  Build a new instance of the folded commutative expression.
7265         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
7266                                             Comm->op_begin()+i);
7267         NewOps.push_back(OpAtScope);
7268
7269         for (++i; i != e; ++i) {
7270           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7271           NewOps.push_back(OpAtScope);
7272         }
7273         if (isa<SCEVAddExpr>(Comm))
7274           return getAddExpr(NewOps);
7275         if (isa<SCEVMulExpr>(Comm))
7276           return getMulExpr(NewOps);
7277         if (isa<SCEVSMaxExpr>(Comm))
7278           return getSMaxExpr(NewOps);
7279         if (isa<SCEVUMaxExpr>(Comm))
7280           return getUMaxExpr(NewOps);
7281         llvm_unreachable("Unknown commutative SCEV type!");
7282       }
7283     }
7284     // If we got here, all operands are loop invariant.
7285     return Comm;
7286   }
7287
7288   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
7289     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
7290     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
7291     if (LHS == Div->getLHS() && RHS == Div->getRHS())
7292       return Div;   // must be loop invariant
7293     return getUDivExpr(LHS, RHS);
7294   }
7295
7296   // If this is a loop recurrence for a loop that does not contain L, then we
7297   // are dealing with the final value computed by the loop.
7298   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
7299     // First, attempt to evaluate each operand.
7300     // Avoid performing the look-up in the common case where the specified
7301     // expression has no loop-variant portions.
7302     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
7303       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
7304       if (OpAtScope == AddRec->getOperand(i))
7305         continue;
7306
7307       // Okay, at least one of these operands is loop variant but might be
7308       // foldable.  Build a new instance of the folded commutative expression.
7309       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
7310                                           AddRec->op_begin()+i);
7311       NewOps.push_back(OpAtScope);
7312       for (++i; i != e; ++i)
7313         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
7314
7315       const SCEV *FoldedRec =
7316         getAddRecExpr(NewOps, AddRec->getLoop(),
7317                       AddRec->getNoWrapFlags(SCEV::FlagNW));
7318       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
7319       // The addrec may be folded to a nonrecurrence, for example, if the
7320       // induction variable is multiplied by zero after constant folding. Go
7321       // ahead and return the folded value.
7322       if (!AddRec)
7323         return FoldedRec;
7324       break;
7325     }
7326
7327     // If the scope is outside the addrec's loop, evaluate it by using the
7328     // loop exit value of the addrec.
7329     if (!AddRec->getLoop()->contains(L)) {
7330       // To evaluate this recurrence, we need to know how many times the AddRec
7331       // loop iterates.  Compute this now.
7332       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
7333       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
7334
7335       // Then, evaluate the AddRec.
7336       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
7337     }
7338
7339     return AddRec;
7340   }
7341
7342   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
7343     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7344     if (Op == Cast->getOperand())
7345       return Cast;  // must be loop invariant
7346     return getZeroExtendExpr(Op, Cast->getType());
7347   }
7348
7349   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
7350     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7351     if (Op == Cast->getOperand())
7352       return Cast;  // must be loop invariant
7353     return getSignExtendExpr(Op, Cast->getType());
7354   }
7355
7356   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
7357     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7358     if (Op == Cast->getOperand())
7359       return Cast;  // must be loop invariant
7360     return getTruncateExpr(Op, Cast->getType());
7361   }
7362
7363   llvm_unreachable("Unknown SCEV type!");
7364 }
7365
7366 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
7367   return getSCEVAtScope(getSCEV(V), L);
7368 }
7369
7370 /// Finds the minimum unsigned root of the following equation:
7371 ///
7372 ///     A * X = B (mod N)
7373 ///
7374 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7375 /// A and B isn't important.
7376 ///
7377 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7378 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
7379                                                ScalarEvolution &SE) {
7380   uint32_t BW = A.getBitWidth();
7381   assert(BW == SE.getTypeSizeInBits(B->getType()));
7382   assert(A != 0 && "A must be non-zero.");
7383
7384   // 1. D = gcd(A, N)
7385   //
7386   // The gcd of A and N may have only one prime factor: 2. The number of
7387   // trailing zeros in A is its multiplicity
7388   uint32_t Mult2 = A.countTrailingZeros();
7389   // D = 2^Mult2
7390
7391   // 2. Check if B is divisible by D.
7392   //
7393   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7394   // is not less than multiplicity of this prime factor for D.
7395   if (SE.GetMinTrailingZeros(B) < Mult2)
7396     return SE.getCouldNotCompute();
7397
7398   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7399   // modulo (N / D).
7400   //
7401   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
7402   // (N / D) in general. The inverse itself always fits into BW bits, though,
7403   // so we immediately truncate it.
7404   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7405   APInt Mod(BW + 1, 0);
7406   Mod.setBit(BW - Mult2);  // Mod = N / D
7407   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
7408
7409   // 4. Compute the minimum unsigned root of the equation:
7410   // I * (B / D) mod (N / D)
7411   // To simplify the computation, we factor out the divide by D:
7412   // (I * B mod N) / D
7413   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
7414   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
7415 }
7416
7417 /// Find the roots of the quadratic equation for the given quadratic chrec
7418 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7419 /// two SCEVCouldNotCompute objects.
7420 ///
7421 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7422 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7423   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7424   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7425   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7426   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7427
7428   // We currently can only solve this if the coefficients are constants.
7429   if (!LC || !MC || !NC)
7430     return None;
7431
7432   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7433   const APInt &L = LC->getAPInt();
7434   const APInt &M = MC->getAPInt();
7435   const APInt &N = NC->getAPInt();
7436   APInt Two(BitWidth, 2);
7437
7438   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7439
7440   // The A coefficient is N/2
7441   APInt A = N.sdiv(Two);
7442
7443   // The B coefficient is M-N/2
7444   APInt B = M;
7445   B -= A; // A is the same as N/2.
7446
7447   // The C coefficient is L.
7448   const APInt& C = L;
7449
7450   // Compute the B^2-4ac term.
7451   APInt SqrtTerm = B;
7452   SqrtTerm *= B;
7453   SqrtTerm -= 4 * (A * C);
7454
7455   if (SqrtTerm.isNegative()) {
7456     // The loop is provably infinite.
7457     return None;
7458   }
7459
7460   // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7461   // integer value or else APInt::sqrt() will assert.
7462   APInt SqrtVal = SqrtTerm.sqrt();
7463
7464   // Compute the two solutions for the quadratic formula.
7465   // The divisions must be performed as signed divisions.
7466   APInt NegB = -std::move(B);
7467   APInt TwoA = std::move(A);
7468   TwoA <<= 1;
7469   if (TwoA.isNullValue())
7470     return None;
7471
7472   LLVMContext &Context = SE.getContext();
7473
7474   ConstantInt *Solution1 =
7475     ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7476   ConstantInt *Solution2 =
7477     ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7478
7479   return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7480                         cast<SCEVConstant>(SE.getConstant(Solution2)));
7481 }
7482
7483 ScalarEvolution::ExitLimit
7484 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7485                               bool AllowPredicates) {
7486
7487   // This is only used for loops with a "x != y" exit test. The exit condition
7488   // is now expressed as a single expression, V = x-y. So the exit test is
7489   // effectively V != 0.  We know and take advantage of the fact that this
7490   // expression only being used in a comparison by zero context.
7491
7492   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
7493   // If the value is a constant
7494   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7495     // If the value is already zero, the branch will execute zero times.
7496     if (C->getValue()->isZero()) return C;
7497     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7498   }
7499
7500   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7501   if (!AddRec && AllowPredicates)
7502     // Try to make this an AddRec using runtime tests, in the first X
7503     // iterations of this loop, where X is the SCEV expression found by the
7504     // algorithm below.
7505     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
7506
7507   if (!AddRec || AddRec->getLoop() != L)
7508     return getCouldNotCompute();
7509
7510   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7511   // the quadratic equation to solve it.
7512   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7513     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7514       const SCEVConstant *R1 = Roots->first;
7515       const SCEVConstant *R2 = Roots->second;
7516       // Pick the smallest positive root value.
7517       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7518               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7519         if (!CB->getZExtValue())
7520           std::swap(R1, R2); // R1 is the minimum root now.
7521
7522         // We can only use this value if the chrec ends up with an exact zero
7523         // value at this index.  When solving for "X*X != 5", for example, we
7524         // should not accept a root of 2.
7525         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7526         if (Val->isZero())
7527           // We found a quadratic root!
7528           return ExitLimit(R1, R1, false, Predicates);
7529       }
7530     }
7531     return getCouldNotCompute();
7532   }
7533
7534   // Otherwise we can only handle this if it is affine.
7535   if (!AddRec->isAffine())
7536     return getCouldNotCompute();
7537
7538   // If this is an affine expression, the execution count of this branch is
7539   // the minimum unsigned root of the following equation:
7540   //
7541   //     Start + Step*N = 0 (mod 2^BW)
7542   //
7543   // equivalent to:
7544   //
7545   //             Step*N = -Start (mod 2^BW)
7546   //
7547   // where BW is the common bit width of Start and Step.
7548
7549   // Get the initial value for the loop.
7550   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7551   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7552
7553   // For now we handle only constant steps.
7554   //
7555   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7556   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7557   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7558   // We have not yet seen any such cases.
7559   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7560   if (!StepC || StepC->getValue()->equalsInt(0))
7561     return getCouldNotCompute();
7562
7563   // For positive steps (counting up until unsigned overflow):
7564   //   N = -Start/Step (as unsigned)
7565   // For negative steps (counting down to zero):
7566   //   N = Start/-Step
7567   // First compute the unsigned distance from zero in the direction of Step.
7568   bool CountDown = StepC->getAPInt().isNegative();
7569   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7570
7571   // Handle unitary steps, which cannot wraparound.
7572   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7573   //   N = Distance (as unsigned)
7574   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7575     APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax();
7576
7577     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
7578     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
7579     // case, and see if we can improve the bound.
7580     //
7581     // Explicitly handling this here is necessary because getUnsignedRange
7582     // isn't context-sensitive; it doesn't know that we only care about the
7583     // range inside the loop.
7584     const SCEV *Zero = getZero(Distance->getType());
7585     const SCEV *One = getOne(Distance->getType());
7586     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
7587     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
7588       // If Distance + 1 doesn't overflow, we can compute the maximum distance
7589       // as "unsigned_max(Distance + 1) - 1".
7590       ConstantRange CR = getUnsignedRange(DistancePlusOne);
7591       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
7592     }
7593     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
7594   }
7595
7596   // If the condition controls loop exit (the loop exits only if the expression
7597   // is true) and the addition is no-wrap we can use unsigned divide to
7598   // compute the backedge count.  In this case, the step may not divide the
7599   // distance, but we don't care because if the condition is "missed" the loop
7600   // will have undefined behavior due to wrapping.
7601   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7602       loopHasNoAbnormalExits(AddRec->getLoop())) {
7603     const SCEV *Exact =
7604         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7605     const SCEV *Max =
7606         Exact == getCouldNotCompute()
7607             ? Exact
7608             : getConstant(getUnsignedRange(Exact).getUnsignedMax());
7609     return ExitLimit(Exact, Max, false, Predicates);
7610   }
7611
7612   // Solve the general equation.
7613   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
7614                                                getNegativeSCEV(Start), *this);
7615   const SCEV *M = E == getCouldNotCompute()
7616                       ? E
7617                       : getConstant(getUnsignedRange(E).getUnsignedMax());
7618   return ExitLimit(E, M, false, Predicates);
7619 }
7620
7621 ScalarEvolution::ExitLimit
7622 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7623   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7624   // handle them yet except for the trivial case.  This could be expanded in the
7625   // future as needed.
7626
7627   // If the value is a constant, check to see if it is known to be non-zero
7628   // already.  If so, the backedge will execute zero times.
7629   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7630     if (!C->getValue()->isNullValue())
7631       return getZero(C->getType());
7632     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7633   }
7634
7635   // We could implement others, but I really doubt anyone writes loops like
7636   // this, and if they did, they would already be constant folded.
7637   return getCouldNotCompute();
7638 }
7639
7640 std::pair<BasicBlock *, BasicBlock *>
7641 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7642   // If the block has a unique predecessor, then there is no path from the
7643   // predecessor to the block that does not go through the direct edge
7644   // from the predecessor to the block.
7645   if (BasicBlock *Pred = BB->getSinglePredecessor())
7646     return {Pred, BB};
7647
7648   // A loop's header is defined to be a block that dominates the loop.
7649   // If the header has a unique predecessor outside the loop, it must be
7650   // a block that has exactly one successor that can reach the loop.
7651   if (Loop *L = LI.getLoopFor(BB))
7652     return {L->getLoopPredecessor(), L->getHeader()};
7653
7654   return {nullptr, nullptr};
7655 }
7656
7657 /// SCEV structural equivalence is usually sufficient for testing whether two
7658 /// expressions are equal, however for the purposes of looking for a condition
7659 /// guarding a loop, it can be useful to be a little more general, since a
7660 /// front-end may have replicated the controlling expression.
7661 ///
7662 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7663   // Quick check to see if they are the same SCEV.
7664   if (A == B) return true;
7665
7666   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7667     // Not all instructions that are "identical" compute the same value.  For
7668     // instance, two distinct alloca instructions allocating the same type are
7669     // identical and do not read memory; but compute distinct values.
7670     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7671   };
7672
7673   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7674   // two different instructions with the same value. Check for this case.
7675   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7676     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7677       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7678         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7679           if (ComputesEqualValues(AI, BI))
7680             return true;
7681
7682   // Otherwise assume they may have a different value.
7683   return false;
7684 }
7685
7686 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7687                                            const SCEV *&LHS, const SCEV *&RHS,
7688                                            unsigned Depth) {
7689   bool Changed = false;
7690
7691   // If we hit the max recursion limit bail out.
7692   if (Depth >= 3)
7693     return false;
7694
7695   // Canonicalize a constant to the right side.
7696   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7697     // Check for both operands constant.
7698     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7699       if (ConstantExpr::getICmp(Pred,
7700                                 LHSC->getValue(),
7701                                 RHSC->getValue())->isNullValue())
7702         goto trivially_false;
7703       else
7704         goto trivially_true;
7705     }
7706     // Otherwise swap the operands to put the constant on the right.
7707     std::swap(LHS, RHS);
7708     Pred = ICmpInst::getSwappedPredicate(Pred);
7709     Changed = true;
7710   }
7711
7712   // If we're comparing an addrec with a value which is loop-invariant in the
7713   // addrec's loop, put the addrec on the left. Also make a dominance check,
7714   // as both operands could be addrecs loop-invariant in each other's loop.
7715   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7716     const Loop *L = AR->getLoop();
7717     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7718       std::swap(LHS, RHS);
7719       Pred = ICmpInst::getSwappedPredicate(Pred);
7720       Changed = true;
7721     }
7722   }
7723
7724   // If there's a constant operand, canonicalize comparisons with boundary
7725   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7726   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7727     const APInt &RA = RC->getAPInt();
7728
7729     bool SimplifiedByConstantRange = false;
7730
7731     if (!ICmpInst::isEquality(Pred)) {
7732       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
7733       if (ExactCR.isFullSet())
7734         goto trivially_true;
7735       else if (ExactCR.isEmptySet())
7736         goto trivially_false;
7737
7738       APInt NewRHS;
7739       CmpInst::Predicate NewPred;
7740       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
7741           ICmpInst::isEquality(NewPred)) {
7742         // We were able to convert an inequality to an equality.
7743         Pred = NewPred;
7744         RHS = getConstant(NewRHS);
7745         Changed = SimplifiedByConstantRange = true;
7746       }
7747     }
7748
7749     if (!SimplifiedByConstantRange) {
7750       switch (Pred) {
7751       default:
7752         break;
7753       case ICmpInst::ICMP_EQ:
7754       case ICmpInst::ICMP_NE:
7755         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7756         if (!RA)
7757           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7758             if (const SCEVMulExpr *ME =
7759                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7760               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7761                   ME->getOperand(0)->isAllOnesValue()) {
7762                 RHS = AE->getOperand(1);
7763                 LHS = ME->getOperand(1);
7764                 Changed = true;
7765               }
7766         break;
7767
7768
7769         // The "Should have been caught earlier!" messages refer to the fact
7770         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
7771         // should have fired on the corresponding cases, and canonicalized the
7772         // check to trivially_true or trivially_false.
7773
7774       case ICmpInst::ICMP_UGE:
7775         assert(!RA.isMinValue() && "Should have been caught earlier!");
7776         Pred = ICmpInst::ICMP_UGT;
7777         RHS = getConstant(RA - 1);
7778         Changed = true;
7779         break;
7780       case ICmpInst::ICMP_ULE:
7781         assert(!RA.isMaxValue() && "Should have been caught earlier!");
7782         Pred = ICmpInst::ICMP_ULT;
7783         RHS = getConstant(RA + 1);
7784         Changed = true;
7785         break;
7786       case ICmpInst::ICMP_SGE:
7787         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
7788         Pred = ICmpInst::ICMP_SGT;
7789         RHS = getConstant(RA - 1);
7790         Changed = true;
7791         break;
7792       case ICmpInst::ICMP_SLE:
7793         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
7794         Pred = ICmpInst::ICMP_SLT;
7795         RHS = getConstant(RA + 1);
7796         Changed = true;
7797         break;
7798       }
7799     }
7800   }
7801
7802   // Check for obvious equality.
7803   if (HasSameValue(LHS, RHS)) {
7804     if (ICmpInst::isTrueWhenEqual(Pred))
7805       goto trivially_true;
7806     if (ICmpInst::isFalseWhenEqual(Pred))
7807       goto trivially_false;
7808   }
7809
7810   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7811   // adding or subtracting 1 from one of the operands.
7812   switch (Pred) {
7813   case ICmpInst::ICMP_SLE:
7814     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7815       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7816                        SCEV::FlagNSW);
7817       Pred = ICmpInst::ICMP_SLT;
7818       Changed = true;
7819     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7820       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7821                        SCEV::FlagNSW);
7822       Pred = ICmpInst::ICMP_SLT;
7823       Changed = true;
7824     }
7825     break;
7826   case ICmpInst::ICMP_SGE:
7827     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7828       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7829                        SCEV::FlagNSW);
7830       Pred = ICmpInst::ICMP_SGT;
7831       Changed = true;
7832     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7833       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7834                        SCEV::FlagNSW);
7835       Pred = ICmpInst::ICMP_SGT;
7836       Changed = true;
7837     }
7838     break;
7839   case ICmpInst::ICMP_ULE:
7840     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7841       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7842                        SCEV::FlagNUW);
7843       Pred = ICmpInst::ICMP_ULT;
7844       Changed = true;
7845     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7846       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7847       Pred = ICmpInst::ICMP_ULT;
7848       Changed = true;
7849     }
7850     break;
7851   case ICmpInst::ICMP_UGE:
7852     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7853       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7854       Pred = ICmpInst::ICMP_UGT;
7855       Changed = true;
7856     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7857       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7858                        SCEV::FlagNUW);
7859       Pred = ICmpInst::ICMP_UGT;
7860       Changed = true;
7861     }
7862     break;
7863   default:
7864     break;
7865   }
7866
7867   // TODO: More simplifications are possible here.
7868
7869   // Recursively simplify until we either hit a recursion limit or nothing
7870   // changes.
7871   if (Changed)
7872     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7873
7874   return Changed;
7875
7876 trivially_true:
7877   // Return 0 == 0.
7878   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7879   Pred = ICmpInst::ICMP_EQ;
7880   return true;
7881
7882 trivially_false:
7883   // Return 0 != 0.
7884   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7885   Pred = ICmpInst::ICMP_NE;
7886   return true;
7887 }
7888
7889 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7890   return getSignedRange(S).getSignedMax().isNegative();
7891 }
7892
7893 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7894   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7895 }
7896
7897 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7898   return !getSignedRange(S).getSignedMin().isNegative();
7899 }
7900
7901 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7902   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7903 }
7904
7905 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7906   return isKnownNegative(S) || isKnownPositive(S);
7907 }
7908
7909 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7910                                        const SCEV *LHS, const SCEV *RHS) {
7911   // Canonicalize the inputs first.
7912   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7913
7914   // If LHS or RHS is an addrec, check to see if the condition is true in
7915   // every iteration of the loop.
7916   // If LHS and RHS are both addrec, both conditions must be true in
7917   // every iteration of the loop.
7918   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7919   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7920   bool LeftGuarded = false;
7921   bool RightGuarded = false;
7922   if (LAR) {
7923     const Loop *L = LAR->getLoop();
7924     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7925         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7926       if (!RAR) return true;
7927       LeftGuarded = true;
7928     }
7929   }
7930   if (RAR) {
7931     const Loop *L = RAR->getLoop();
7932     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7933         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7934       if (!LAR) return true;
7935       RightGuarded = true;
7936     }
7937   }
7938   if (LeftGuarded && RightGuarded)
7939     return true;
7940
7941   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7942     return true;
7943
7944   // Otherwise see what can be done with known constant ranges.
7945   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7946 }
7947
7948 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7949                                            ICmpInst::Predicate Pred,
7950                                            bool &Increasing) {
7951   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7952
7953 #ifndef NDEBUG
7954   // Verify an invariant: inverting the predicate should turn a monotonically
7955   // increasing change to a monotonically decreasing one, and vice versa.
7956   bool IncreasingSwapped;
7957   bool ResultSwapped = isMonotonicPredicateImpl(
7958       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7959
7960   assert(Result == ResultSwapped && "should be able to analyze both!");
7961   if (ResultSwapped)
7962     assert(Increasing == !IncreasingSwapped &&
7963            "monotonicity should flip as we flip the predicate");
7964 #endif
7965
7966   return Result;
7967 }
7968
7969 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7970                                                ICmpInst::Predicate Pred,
7971                                                bool &Increasing) {
7972
7973   // A zero step value for LHS means the induction variable is essentially a
7974   // loop invariant value. We don't really depend on the predicate actually
7975   // flipping from false to true (for increasing predicates, and the other way
7976   // around for decreasing predicates), all we care about is that *if* the
7977   // predicate changes then it only changes from false to true.
7978   //
7979   // A zero step value in itself is not very useful, but there may be places
7980   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7981   // as general as possible.
7982
7983   switch (Pred) {
7984   default:
7985     return false; // Conservative answer
7986
7987   case ICmpInst::ICMP_UGT:
7988   case ICmpInst::ICMP_UGE:
7989   case ICmpInst::ICMP_ULT:
7990   case ICmpInst::ICMP_ULE:
7991     if (!LHS->hasNoUnsignedWrap())
7992       return false;
7993
7994     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7995     return true;
7996
7997   case ICmpInst::ICMP_SGT:
7998   case ICmpInst::ICMP_SGE:
7999   case ICmpInst::ICMP_SLT:
8000   case ICmpInst::ICMP_SLE: {
8001     if (!LHS->hasNoSignedWrap())
8002       return false;
8003
8004     const SCEV *Step = LHS->getStepRecurrence(*this);
8005
8006     if (isKnownNonNegative(Step)) {
8007       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8008       return true;
8009     }
8010
8011     if (isKnownNonPositive(Step)) {
8012       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8013       return true;
8014     }
8015
8016     return false;
8017   }
8018
8019   }
8020
8021   llvm_unreachable("switch has default clause!");
8022 }
8023
8024 bool ScalarEvolution::isLoopInvariantPredicate(
8025     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
8026     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
8027     const SCEV *&InvariantRHS) {
8028
8029   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
8030   if (!isLoopInvariant(RHS, L)) {
8031     if (!isLoopInvariant(LHS, L))
8032       return false;
8033
8034     std::swap(LHS, RHS);
8035     Pred = ICmpInst::getSwappedPredicate(Pred);
8036   }
8037
8038   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8039   if (!ArLHS || ArLHS->getLoop() != L)
8040     return false;
8041
8042   bool Increasing;
8043   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
8044     return false;
8045
8046   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
8047   // true as the loop iterates, and the backedge is control dependent on
8048   // "ArLHS `Pred` RHS" == true then we can reason as follows:
8049   //
8050   //   * if the predicate was false in the first iteration then the predicate
8051   //     is never evaluated again, since the loop exits without taking the
8052   //     backedge.
8053   //   * if the predicate was true in the first iteration then it will
8054   //     continue to be true for all future iterations since it is
8055   //     monotonically increasing.
8056   //
8057   // For both the above possibilities, we can replace the loop varying
8058   // predicate with its value on the first iteration of the loop (which is
8059   // loop invariant).
8060   //
8061   // A similar reasoning applies for a monotonically decreasing predicate, by
8062   // replacing true with false and false with true in the above two bullets.
8063
8064   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
8065
8066   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
8067     return false;
8068
8069   InvariantPred = Pred;
8070   InvariantLHS = ArLHS->getStart();
8071   InvariantRHS = RHS;
8072   return true;
8073 }
8074
8075 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
8076     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8077   if (HasSameValue(LHS, RHS))
8078     return ICmpInst::isTrueWhenEqual(Pred);
8079
8080   // This code is split out from isKnownPredicate because it is called from
8081   // within isLoopEntryGuardedByCond.
8082
8083   auto CheckRanges =
8084       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
8085     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
8086         .contains(RangeLHS);
8087   };
8088
8089   // The check at the top of the function catches the case where the values are
8090   // known to be equal.
8091   if (Pred == CmpInst::ICMP_EQ)
8092     return false;
8093
8094   if (Pred == CmpInst::ICMP_NE)
8095     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
8096            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
8097            isKnownNonZero(getMinusSCEV(LHS, RHS));
8098
8099   if (CmpInst::isSigned(Pred))
8100     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
8101
8102   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
8103 }
8104
8105 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
8106                                                     const SCEV *LHS,
8107                                                     const SCEV *RHS) {
8108
8109   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
8110   // Return Y via OutY.
8111   auto MatchBinaryAddToConst =
8112       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
8113              SCEV::NoWrapFlags ExpectedFlags) {
8114     const SCEV *NonConstOp, *ConstOp;
8115     SCEV::NoWrapFlags FlagsPresent;
8116
8117     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
8118         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
8119       return false;
8120
8121     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
8122     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
8123   };
8124
8125   APInt C;
8126
8127   switch (Pred) {
8128   default:
8129     break;
8130
8131   case ICmpInst::ICMP_SGE:
8132     std::swap(LHS, RHS);
8133   case ICmpInst::ICMP_SLE:
8134     // X s<= (X + C)<nsw> if C >= 0
8135     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
8136       return true;
8137
8138     // (X + C)<nsw> s<= X if C <= 0
8139     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
8140         !C.isStrictlyPositive())
8141       return true;
8142     break;
8143
8144   case ICmpInst::ICMP_SGT:
8145     std::swap(LHS, RHS);
8146   case ICmpInst::ICMP_SLT:
8147     // X s< (X + C)<nsw> if C > 0
8148     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
8149         C.isStrictlyPositive())
8150       return true;
8151
8152     // (X + C)<nsw> s< X if C < 0
8153     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
8154       return true;
8155     break;
8156   }
8157
8158   return false;
8159 }
8160
8161 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
8162                                                    const SCEV *LHS,
8163                                                    const SCEV *RHS) {
8164   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
8165     return false;
8166
8167   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
8168   // the stack can result in exponential time complexity.
8169   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
8170
8171   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
8172   //
8173   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
8174   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
8175   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
8176   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
8177   // use isKnownPredicate later if needed.
8178   return isKnownNonNegative(RHS) &&
8179          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
8180          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
8181 }
8182
8183 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
8184                                         ICmpInst::Predicate Pred,
8185                                         const SCEV *LHS, const SCEV *RHS) {
8186   // No need to even try if we know the module has no guards.
8187   if (!HasGuards)
8188     return false;
8189
8190   return any_of(*BB, [&](Instruction &I) {
8191     using namespace llvm::PatternMatch;
8192
8193     Value *Condition;
8194     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
8195                          m_Value(Condition))) &&
8196            isImpliedCond(Pred, LHS, RHS, Condition, false);
8197   });
8198 }
8199
8200 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
8201 /// protected by a conditional between LHS and RHS.  This is used to
8202 /// to eliminate casts.
8203 bool
8204 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
8205                                              ICmpInst::Predicate Pred,
8206                                              const SCEV *LHS, const SCEV *RHS) {
8207   // Interpret a null as meaning no loop, where there is obviously no guard
8208   // (interprocedural conditions notwithstanding).
8209   if (!L) return true;
8210
8211   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8212     return true;
8213
8214   BasicBlock *Latch = L->getLoopLatch();
8215   if (!Latch)
8216     return false;
8217
8218   BranchInst *LoopContinuePredicate =
8219     dyn_cast<BranchInst>(Latch->getTerminator());
8220   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
8221       isImpliedCond(Pred, LHS, RHS,
8222                     LoopContinuePredicate->getCondition(),
8223                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
8224     return true;
8225
8226   // We don't want more than one activation of the following loops on the stack
8227   // -- that can lead to O(n!) time complexity.
8228   if (WalkingBEDominatingConds)
8229     return false;
8230
8231   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
8232
8233   // See if we can exploit a trip count to prove the predicate.
8234   const auto &BETakenInfo = getBackedgeTakenInfo(L);
8235   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
8236   if (LatchBECount != getCouldNotCompute()) {
8237     // We know that Latch branches back to the loop header exactly
8238     // LatchBECount times.  This means the backdege condition at Latch is
8239     // equivalent to  "{0,+,1} u< LatchBECount".
8240     Type *Ty = LatchBECount->getType();
8241     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
8242     const SCEV *LoopCounter =
8243       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
8244     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
8245                       LatchBECount))
8246       return true;
8247   }
8248
8249   // Check conditions due to any @llvm.assume intrinsics.
8250   for (auto &AssumeVH : AC.assumptions()) {
8251     if (!AssumeVH)
8252       continue;
8253     auto *CI = cast<CallInst>(AssumeVH);
8254     if (!DT.dominates(CI, Latch->getTerminator()))
8255       continue;
8256
8257     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8258       return true;
8259   }
8260
8261   // If the loop is not reachable from the entry block, we risk running into an
8262   // infinite loop as we walk up into the dom tree.  These loops do not matter
8263   // anyway, so we just return a conservative answer when we see them.
8264   if (!DT.isReachableFromEntry(L->getHeader()))
8265     return false;
8266
8267   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
8268     return true;
8269
8270   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
8271        DTN != HeaderDTN; DTN = DTN->getIDom()) {
8272
8273     assert(DTN && "should reach the loop header before reaching the root!");
8274
8275     BasicBlock *BB = DTN->getBlock();
8276     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
8277       return true;
8278
8279     BasicBlock *PBB = BB->getSinglePredecessor();
8280     if (!PBB)
8281       continue;
8282
8283     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
8284     if (!ContinuePredicate || !ContinuePredicate->isConditional())
8285       continue;
8286
8287     Value *Condition = ContinuePredicate->getCondition();
8288
8289     // If we have an edge `E` within the loop body that dominates the only
8290     // latch, the condition guarding `E` also guards the backedge.  This
8291     // reasoning works only for loops with a single latch.
8292
8293     BasicBlockEdge DominatingEdge(PBB, BB);
8294     if (DominatingEdge.isSingleEdge()) {
8295       // We're constructively (and conservatively) enumerating edges within the
8296       // loop body that dominate the latch.  The dominator tree better agree
8297       // with us on this:
8298       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8299
8300       if (isImpliedCond(Pred, LHS, RHS, Condition,
8301                         BB != ContinuePredicate->getSuccessor(0)))
8302         return true;
8303     }
8304   }
8305
8306   return false;
8307 }
8308
8309 bool
8310 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8311                                           ICmpInst::Predicate Pred,
8312                                           const SCEV *LHS, const SCEV *RHS) {
8313   // Interpret a null as meaning no loop, where there is obviously no guard
8314   // (interprocedural conditions notwithstanding).
8315   if (!L) return false;
8316
8317   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8318     return true;
8319
8320   // Starting at the loop predecessor, climb up the predecessor chain, as long
8321   // as there are predecessors that can be found that have unique successors
8322   // leading to the original header.
8323   for (std::pair<BasicBlock *, BasicBlock *>
8324          Pair(L->getLoopPredecessor(), L->getHeader());
8325        Pair.first;
8326        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8327
8328     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8329       return true;
8330
8331     BranchInst *LoopEntryPredicate =
8332       dyn_cast<BranchInst>(Pair.first->getTerminator());
8333     if (!LoopEntryPredicate ||
8334         LoopEntryPredicate->isUnconditional())
8335       continue;
8336
8337     if (isImpliedCond(Pred, LHS, RHS,
8338                       LoopEntryPredicate->getCondition(),
8339                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8340       return true;
8341   }
8342
8343   // Check conditions due to any @llvm.assume intrinsics.
8344   for (auto &AssumeVH : AC.assumptions()) {
8345     if (!AssumeVH)
8346       continue;
8347     auto *CI = cast<CallInst>(AssumeVH);
8348     if (!DT.dominates(CI, L->getHeader()))
8349       continue;
8350
8351     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8352       return true;
8353   }
8354
8355   return false;
8356 }
8357
8358 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8359                                     const SCEV *LHS, const SCEV *RHS,
8360                                     Value *FoundCondValue,
8361                                     bool Inverse) {
8362   if (!PendingLoopPredicates.insert(FoundCondValue).second)
8363     return false;
8364
8365   auto ClearOnExit =
8366       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8367
8368   // Recursively handle And and Or conditions.
8369   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8370     if (BO->getOpcode() == Instruction::And) {
8371       if (!Inverse)
8372         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8373                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8374     } else if (BO->getOpcode() == Instruction::Or) {
8375       if (Inverse)
8376         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8377                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8378     }
8379   }
8380
8381   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8382   if (!ICI) return false;
8383
8384   // Now that we found a conditional branch that dominates the loop or controls
8385   // the loop latch. Check to see if it is the comparison we are looking for.
8386   ICmpInst::Predicate FoundPred;
8387   if (Inverse)
8388     FoundPred = ICI->getInversePredicate();
8389   else
8390     FoundPred = ICI->getPredicate();
8391
8392   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8393   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8394
8395   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8396 }
8397
8398 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8399                                     const SCEV *RHS,
8400                                     ICmpInst::Predicate FoundPred,
8401                                     const SCEV *FoundLHS,
8402                                     const SCEV *FoundRHS) {
8403   // Balance the types.
8404   if (getTypeSizeInBits(LHS->getType()) <
8405       getTypeSizeInBits(FoundLHS->getType())) {
8406     if (CmpInst::isSigned(Pred)) {
8407       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8408       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8409     } else {
8410       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8411       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8412     }
8413   } else if (getTypeSizeInBits(LHS->getType()) >
8414       getTypeSizeInBits(FoundLHS->getType())) {
8415     if (CmpInst::isSigned(FoundPred)) {
8416       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8417       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8418     } else {
8419       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8420       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8421     }
8422   }
8423
8424   // Canonicalize the query to match the way instcombine will have
8425   // canonicalized the comparison.
8426   if (SimplifyICmpOperands(Pred, LHS, RHS))
8427     if (LHS == RHS)
8428       return CmpInst::isTrueWhenEqual(Pred);
8429   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8430     if (FoundLHS == FoundRHS)
8431       return CmpInst::isFalseWhenEqual(FoundPred);
8432
8433   // Check to see if we can make the LHS or RHS match.
8434   if (LHS == FoundRHS || RHS == FoundLHS) {
8435     if (isa<SCEVConstant>(RHS)) {
8436       std::swap(FoundLHS, FoundRHS);
8437       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8438     } else {
8439       std::swap(LHS, RHS);
8440       Pred = ICmpInst::getSwappedPredicate(Pred);
8441     }
8442   }
8443
8444   // Check whether the found predicate is the same as the desired predicate.
8445   if (FoundPred == Pred)
8446     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8447
8448   // Check whether swapping the found predicate makes it the same as the
8449   // desired predicate.
8450   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8451     if (isa<SCEVConstant>(RHS))
8452       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8453     else
8454       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8455                                    RHS, LHS, FoundLHS, FoundRHS);
8456   }
8457
8458   // Unsigned comparison is the same as signed comparison when both the operands
8459   // are non-negative.
8460   if (CmpInst::isUnsigned(FoundPred) &&
8461       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8462       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8463     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8464
8465   // Check if we can make progress by sharpening ranges.
8466   if (FoundPred == ICmpInst::ICMP_NE &&
8467       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8468
8469     const SCEVConstant *C = nullptr;
8470     const SCEV *V = nullptr;
8471
8472     if (isa<SCEVConstant>(FoundLHS)) {
8473       C = cast<SCEVConstant>(FoundLHS);
8474       V = FoundRHS;
8475     } else {
8476       C = cast<SCEVConstant>(FoundRHS);
8477       V = FoundLHS;
8478     }
8479
8480     // The guarding predicate tells us that C != V. If the known range
8481     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8482     // range we consider has to correspond to same signedness as the
8483     // predicate we're interested in folding.
8484
8485     APInt Min = ICmpInst::isSigned(Pred) ?
8486         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8487
8488     if (Min == C->getAPInt()) {
8489       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8490       // This is true even if (Min + 1) wraps around -- in case of
8491       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8492
8493       APInt SharperMin = Min + 1;
8494
8495       switch (Pred) {
8496         case ICmpInst::ICMP_SGE:
8497         case ICmpInst::ICMP_UGE:
8498           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8499           // RHS, we're done.
8500           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8501                                     getConstant(SharperMin)))
8502             return true;
8503
8504         case ICmpInst::ICMP_SGT:
8505         case ICmpInst::ICMP_UGT:
8506           // We know from the range information that (V `Pred` Min ||
8507           // V == Min).  We know from the guarding condition that !(V
8508           // == Min).  This gives us
8509           //
8510           //       V `Pred` Min || V == Min && !(V == Min)
8511           //   =>  V `Pred` Min
8512           //
8513           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8514
8515           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8516             return true;
8517
8518         default:
8519           // No change
8520           break;
8521       }
8522     }
8523   }
8524
8525   // Check whether the actual condition is beyond sufficient.
8526   if (FoundPred == ICmpInst::ICMP_EQ)
8527     if (ICmpInst::isTrueWhenEqual(Pred))
8528       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8529         return true;
8530   if (Pred == ICmpInst::ICMP_NE)
8531     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8532       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8533         return true;
8534
8535   // Otherwise assume the worst.
8536   return false;
8537 }
8538
8539 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8540                                      const SCEV *&L, const SCEV *&R,
8541                                      SCEV::NoWrapFlags &Flags) {
8542   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8543   if (!AE || AE->getNumOperands() != 2)
8544     return false;
8545
8546   L = AE->getOperand(0);
8547   R = AE->getOperand(1);
8548   Flags = AE->getNoWrapFlags();
8549   return true;
8550 }
8551
8552 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8553                                                            const SCEV *Less) {
8554   // We avoid subtracting expressions here because this function is usually
8555   // fairly deep in the call stack (i.e. is called many times).
8556
8557   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8558     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8559     const auto *MAR = cast<SCEVAddRecExpr>(More);
8560
8561     if (LAR->getLoop() != MAR->getLoop())
8562       return None;
8563
8564     // We look at affine expressions only; not for correctness but to keep
8565     // getStepRecurrence cheap.
8566     if (!LAR->isAffine() || !MAR->isAffine())
8567       return None;
8568
8569     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8570       return None;
8571
8572     Less = LAR->getStart();
8573     More = MAR->getStart();
8574
8575     // fall through
8576   }
8577
8578   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8579     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8580     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8581     return M - L;
8582   }
8583
8584   const SCEV *L, *R;
8585   SCEV::NoWrapFlags Flags;
8586   if (splitBinaryAdd(Less, L, R, Flags))
8587     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8588       if (R == More)
8589         return -(LC->getAPInt());
8590
8591   if (splitBinaryAdd(More, L, R, Flags))
8592     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8593       if (R == Less)
8594         return LC->getAPInt();
8595
8596   return None;
8597 }
8598
8599 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8600     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8601     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8602   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8603     return false;
8604
8605   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8606   if (!AddRecLHS)
8607     return false;
8608
8609   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8610   if (!AddRecFoundLHS)
8611     return false;
8612
8613   // We'd like to let SCEV reason about control dependencies, so we constrain
8614   // both the inequalities to be about add recurrences on the same loop.  This
8615   // way we can use isLoopEntryGuardedByCond later.
8616
8617   const Loop *L = AddRecFoundLHS->getLoop();
8618   if (L != AddRecLHS->getLoop())
8619     return false;
8620
8621   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8622   //
8623   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8624   //                                                                  ... (2)
8625   //
8626   // Informal proof for (2), assuming (1) [*]:
8627   //
8628   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8629   //
8630   // Then
8631   //
8632   //       FoundLHS s< FoundRHS s< INT_MIN - C
8633   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8634   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8635   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8636   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8637   // <=>  FoundLHS + C s< FoundRHS + C
8638   //
8639   // [*]: (1) can be proved by ruling out overflow.
8640   //
8641   // [**]: This can be proved by analyzing all the four possibilities:
8642   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8643   //    (A s>= 0, B s>= 0).
8644   //
8645   // Note:
8646   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8647   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8648   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8649   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8650   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8651   // C)".
8652
8653   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8654   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8655   if (!LDiff || !RDiff || *LDiff != *RDiff)
8656     return false;
8657
8658   if (LDiff->isMinValue())
8659     return true;
8660
8661   APInt FoundRHSLimit;
8662
8663   if (Pred == CmpInst::ICMP_ULT) {
8664     FoundRHSLimit = -(*RDiff);
8665   } else {
8666     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8667     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8668   }
8669
8670   // Try to prove (1) or (2), as needed.
8671   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8672                                   getConstant(FoundRHSLimit));
8673 }
8674
8675 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8676                                             const SCEV *LHS, const SCEV *RHS,
8677                                             const SCEV *FoundLHS,
8678                                             const SCEV *FoundRHS) {
8679   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8680     return true;
8681
8682   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8683     return true;
8684
8685   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8686                                      FoundLHS, FoundRHS) ||
8687          // ~x < ~y --> x > y
8688          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8689                                      getNotSCEV(FoundRHS),
8690                                      getNotSCEV(FoundLHS));
8691 }
8692
8693
8694 /// If Expr computes ~A, return A else return nullptr
8695 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8696   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8697   if (!Add || Add->getNumOperands() != 2 ||
8698       !Add->getOperand(0)->isAllOnesValue())
8699     return nullptr;
8700
8701   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8702   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8703       !AddRHS->getOperand(0)->isAllOnesValue())
8704     return nullptr;
8705
8706   return AddRHS->getOperand(1);
8707 }
8708
8709
8710 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8711 template<typename MaxExprType>
8712 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8713                               const SCEV *Candidate) {
8714   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8715   if (!MaxExpr) return false;
8716
8717   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8718 }
8719
8720
8721 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8722 template<typename MaxExprType>
8723 static bool IsMinConsistingOf(ScalarEvolution &SE,
8724                               const SCEV *MaybeMinExpr,
8725                               const SCEV *Candidate) {
8726   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8727   if (!MaybeMaxExpr)
8728     return false;
8729
8730   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8731 }
8732
8733 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8734                                            ICmpInst::Predicate Pred,
8735                                            const SCEV *LHS, const SCEV *RHS) {
8736
8737   // If both sides are affine addrecs for the same loop, with equal
8738   // steps, and we know the recurrences don't wrap, then we only
8739   // need to check the predicate on the starting values.
8740
8741   if (!ICmpInst::isRelational(Pred))
8742     return false;
8743
8744   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8745   if (!LAR)
8746     return false;
8747   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8748   if (!RAR)
8749     return false;
8750   if (LAR->getLoop() != RAR->getLoop())
8751     return false;
8752   if (!LAR->isAffine() || !RAR->isAffine())
8753     return false;
8754
8755   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8756     return false;
8757
8758   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8759                          SCEV::FlagNSW : SCEV::FlagNUW;
8760   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8761     return false;
8762
8763   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8764 }
8765
8766 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8767 /// expression?
8768 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8769                                         ICmpInst::Predicate Pred,
8770                                         const SCEV *LHS, const SCEV *RHS) {
8771   switch (Pred) {
8772   default:
8773     return false;
8774
8775   case ICmpInst::ICMP_SGE:
8776     std::swap(LHS, RHS);
8777     LLVM_FALLTHROUGH;
8778   case ICmpInst::ICMP_SLE:
8779     return
8780       // min(A, ...) <= A
8781       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8782       // A <= max(A, ...)
8783       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8784
8785   case ICmpInst::ICMP_UGE:
8786     std::swap(LHS, RHS);
8787     LLVM_FALLTHROUGH;
8788   case ICmpInst::ICMP_ULE:
8789     return
8790       // min(A, ...) <= A
8791       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8792       // A <= max(A, ...)
8793       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8794   }
8795
8796   llvm_unreachable("covered switch fell through?!");
8797 }
8798
8799 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
8800                                              const SCEV *LHS, const SCEV *RHS,
8801                                              const SCEV *FoundLHS,
8802                                              const SCEV *FoundRHS,
8803                                              unsigned Depth) {
8804   assert(getTypeSizeInBits(LHS->getType()) ==
8805              getTypeSizeInBits(RHS->getType()) &&
8806          "LHS and RHS have different sizes?");
8807   assert(getTypeSizeInBits(FoundLHS->getType()) ==
8808              getTypeSizeInBits(FoundRHS->getType()) &&
8809          "FoundLHS and FoundRHS have different sizes?");
8810   // We want to avoid hurting the compile time with analysis of too big trees.
8811   if (Depth > MaxSCEVOperationsImplicationDepth)
8812     return false;
8813   // We only want to work with ICMP_SGT comparison so far.
8814   // TODO: Extend to ICMP_UGT?
8815   if (Pred == ICmpInst::ICMP_SLT) {
8816     Pred = ICmpInst::ICMP_SGT;
8817     std::swap(LHS, RHS);
8818     std::swap(FoundLHS, FoundRHS);
8819   }
8820   if (Pred != ICmpInst::ICMP_SGT)
8821     return false;
8822
8823   auto GetOpFromSExt = [&](const SCEV *S) {
8824     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
8825       return Ext->getOperand();
8826     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
8827     // the constant in some cases.
8828     return S;
8829   };
8830
8831   // Acquire values from extensions.
8832   auto *OrigFoundLHS = FoundLHS;
8833   LHS = GetOpFromSExt(LHS);
8834   FoundLHS = GetOpFromSExt(FoundLHS);
8835
8836   // Is the SGT predicate can be proved trivially or using the found context.
8837   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
8838     return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
8839            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
8840                                   FoundRHS, Depth + 1);
8841   };
8842
8843   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
8844     // We want to avoid creation of any new non-constant SCEV. Since we are
8845     // going to compare the operands to RHS, we should be certain that we don't
8846     // need any size extensions for this. So let's decline all cases when the
8847     // sizes of types of LHS and RHS do not match.
8848     // TODO: Maybe try to get RHS from sext to catch more cases?
8849     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
8850       return false;
8851
8852     // Should not overflow.
8853     if (!LHSAddExpr->hasNoSignedWrap())
8854       return false;
8855
8856     auto *LL = LHSAddExpr->getOperand(0);
8857     auto *LR = LHSAddExpr->getOperand(1);
8858     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
8859
8860     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
8861     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
8862       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
8863     };
8864     // Try to prove the following rule:
8865     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
8866     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
8867     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
8868       return true;
8869   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
8870     Value *LL, *LR;
8871     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
8872     using namespace llvm::PatternMatch;
8873     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
8874       // Rules for division.
8875       // We are going to perform some comparisons with Denominator and its
8876       // derivative expressions. In general case, creating a SCEV for it may
8877       // lead to a complex analysis of the entire graph, and in particular it
8878       // can request trip count recalculation for the same loop. This would
8879       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
8880       // this, we only want to create SCEVs that are constants in this section.
8881       // So we bail if Denominator is not a constant.
8882       if (!isa<ConstantInt>(LR))
8883         return false;
8884
8885       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
8886
8887       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
8888       // then a SCEV for the numerator already exists and matches with FoundLHS.
8889       auto *Numerator = getExistingSCEV(LL);
8890       if (!Numerator || Numerator->getType() != FoundLHS->getType())
8891         return false;
8892
8893       // Make sure that the numerator matches with FoundLHS and the denominator
8894       // is positive.
8895       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
8896         return false;
8897
8898       auto *DTy = Denominator->getType();
8899       auto *FRHSTy = FoundRHS->getType();
8900       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
8901         // One of types is a pointer and another one is not. We cannot extend
8902         // them properly to a wider type, so let us just reject this case.
8903         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
8904         // to avoid this check.
8905         return false;
8906
8907       // Given that:
8908       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
8909       auto *WTy = getWiderType(DTy, FRHSTy);
8910       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
8911       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
8912
8913       // Try to prove the following rule:
8914       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
8915       // For example, given that FoundLHS > 2. It means that FoundLHS is at
8916       // least 3. If we divide it by Denominator < 4, we will have at least 1.
8917       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
8918       if (isKnownNonPositive(RHS) &&
8919           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
8920         return true;
8921
8922       // Try to prove the following rule:
8923       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
8924       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
8925       // If we divide it by Denominator > 2, then:
8926       // 1. If FoundLHS is negative, then the result is 0.
8927       // 2. If FoundLHS is non-negative, then the result is non-negative.
8928       // Anyways, the result is non-negative.
8929       auto *MinusOne = getNegativeSCEV(getOne(WTy));
8930       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
8931       if (isKnownNegative(RHS) &&
8932           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
8933         return true;
8934     }
8935   }
8936
8937   return false;
8938 }
8939
8940 bool
8941 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
8942                                            const SCEV *LHS, const SCEV *RHS) {
8943   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8944          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8945          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8946          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8947 }
8948
8949 bool
8950 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8951                                              const SCEV *LHS, const SCEV *RHS,
8952                                              const SCEV *FoundLHS,
8953                                              const SCEV *FoundRHS) {
8954   switch (Pred) {
8955   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8956   case ICmpInst::ICMP_EQ:
8957   case ICmpInst::ICMP_NE:
8958     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8959       return true;
8960     break;
8961   case ICmpInst::ICMP_SLT:
8962   case ICmpInst::ICMP_SLE:
8963     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8964         isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8965       return true;
8966     break;
8967   case ICmpInst::ICMP_SGT:
8968   case ICmpInst::ICMP_SGE:
8969     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8970         isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8971       return true;
8972     break;
8973   case ICmpInst::ICMP_ULT:
8974   case ICmpInst::ICMP_ULE:
8975     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8976         isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8977       return true;
8978     break;
8979   case ICmpInst::ICMP_UGT:
8980   case ICmpInst::ICMP_UGE:
8981     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8982         isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8983       return true;
8984     break;
8985   }
8986
8987   // Maybe it can be proved via operations?
8988   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
8989     return true;
8990
8991   return false;
8992 }
8993
8994 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8995                                                      const SCEV *LHS,
8996                                                      const SCEV *RHS,
8997                                                      const SCEV *FoundLHS,
8998                                                      const SCEV *FoundRHS) {
8999   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
9000     // The restriction on `FoundRHS` be lifted easily -- it exists only to
9001     // reduce the compile time impact of this optimization.
9002     return false;
9003
9004   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
9005   if (!Addend)
9006     return false;
9007
9008   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
9009
9010   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
9011   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
9012   ConstantRange FoundLHSRange =
9013       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
9014
9015   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
9016   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
9017
9018   // We can also compute the range of values for `LHS` that satisfy the
9019   // consequent, "`LHS` `Pred` `RHS`":
9020   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
9021   ConstantRange SatisfyingLHSRange =
9022       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
9023
9024   // The antecedent implies the consequent if every value of `LHS` that
9025   // satisfies the antecedent also satisfies the consequent.
9026   return SatisfyingLHSRange.contains(LHSRange);
9027 }
9028
9029 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
9030                                          bool IsSigned, bool NoWrap) {
9031   assert(isKnownPositive(Stride) && "Positive stride expected!");
9032
9033   if (NoWrap) return false;
9034
9035   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9036   const SCEV *One = getOne(Stride->getType());
9037
9038   if (IsSigned) {
9039     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
9040     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
9041     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
9042                                 .getSignedMax();
9043
9044     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
9045     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
9046   }
9047
9048   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
9049   APInt MaxValue = APInt::getMaxValue(BitWidth);
9050   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
9051                               .getUnsignedMax();
9052
9053   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
9054   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
9055 }
9056
9057 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
9058                                          bool IsSigned, bool NoWrap) {
9059   if (NoWrap) return false;
9060
9061   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9062   const SCEV *One = getOne(Stride->getType());
9063
9064   if (IsSigned) {
9065     APInt MinRHS = getSignedRange(RHS).getSignedMin();
9066     APInt MinValue = APInt::getSignedMinValue(BitWidth);
9067     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
9068                                .getSignedMax();
9069
9070     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
9071     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
9072   }
9073
9074   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
9075   APInt MinValue = APInt::getMinValue(BitWidth);
9076   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
9077                             .getUnsignedMax();
9078
9079   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
9080   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
9081 }
9082
9083 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
9084                                             bool Equality) {
9085   const SCEV *One = getOne(Step->getType());
9086   Delta = Equality ? getAddExpr(Delta, Step)
9087                    : getAddExpr(Delta, getMinusSCEV(Step, One));
9088   return getUDivExpr(Delta, Step);
9089 }
9090
9091 ScalarEvolution::ExitLimit
9092 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
9093                                   const Loop *L, bool IsSigned,
9094                                   bool ControlsExit, bool AllowPredicates) {
9095   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9096   // We handle only IV < Invariant
9097   if (!isLoopInvariant(RHS, L))
9098     return getCouldNotCompute();
9099
9100   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9101   bool PredicatedIV = false;
9102
9103   if (!IV && AllowPredicates) {
9104     // Try to make this an AddRec using runtime tests, in the first X
9105     // iterations of this loop, where X is the SCEV expression found by the
9106     // algorithm below.
9107     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9108     PredicatedIV = true;
9109   }
9110
9111   // Avoid weird loops
9112   if (!IV || IV->getLoop() != L || !IV->isAffine())
9113     return getCouldNotCompute();
9114
9115   bool NoWrap = ControlsExit &&
9116                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9117
9118   const SCEV *Stride = IV->getStepRecurrence(*this);
9119
9120   bool PositiveStride = isKnownPositive(Stride);
9121
9122   // Avoid negative or zero stride values.
9123   if (!PositiveStride) {
9124     // We can compute the correct backedge taken count for loops with unknown
9125     // strides if we can prove that the loop is not an infinite loop with side
9126     // effects. Here's the loop structure we are trying to handle -
9127     //
9128     // i = start
9129     // do {
9130     //   A[i] = i;
9131     //   i += s;
9132     // } while (i < end);
9133     //
9134     // The backedge taken count for such loops is evaluated as -
9135     // (max(end, start + stride) - start - 1) /u stride
9136     //
9137     // The additional preconditions that we need to check to prove correctness
9138     // of the above formula is as follows -
9139     //
9140     // a) IV is either nuw or nsw depending upon signedness (indicated by the
9141     //    NoWrap flag).
9142     // b) loop is single exit with no side effects.
9143     //
9144     //
9145     // Precondition a) implies that if the stride is negative, this is a single
9146     // trip loop. The backedge taken count formula reduces to zero in this case.
9147     //
9148     // Precondition b) implies that the unknown stride cannot be zero otherwise
9149     // we have UB.
9150     //
9151     // The positive stride case is the same as isKnownPositive(Stride) returning
9152     // true (original behavior of the function).
9153     //
9154     // We want to make sure that the stride is truly unknown as there are edge
9155     // cases where ScalarEvolution propagates no wrap flags to the
9156     // post-increment/decrement IV even though the increment/decrement operation
9157     // itself is wrapping. The computed backedge taken count may be wrong in
9158     // such cases. This is prevented by checking that the stride is not known to
9159     // be either positive or non-positive. For example, no wrap flags are
9160     // propagated to the post-increment IV of this loop with a trip count of 2 -
9161     //
9162     // unsigned char i;
9163     // for(i=127; i<128; i+=129)
9164     //   A[i] = i;
9165     //
9166     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
9167         !loopHasNoSideEffects(L))
9168       return getCouldNotCompute();
9169
9170   } else if (!Stride->isOne() &&
9171              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
9172     // Avoid proven overflow cases: this will ensure that the backedge taken
9173     // count will not generate any unsigned overflow. Relaxed no-overflow
9174     // conditions exploit NoWrapFlags, allowing to optimize in presence of
9175     // undefined behaviors like the case of C language.
9176     return getCouldNotCompute();
9177
9178   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
9179                                       : ICmpInst::ICMP_ULT;
9180   const SCEV *Start = IV->getStart();
9181   const SCEV *End = RHS;
9182   // If the backedge is taken at least once, then it will be taken
9183   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
9184   // is the LHS value of the less-than comparison the first time it is evaluated
9185   // and End is the RHS.
9186   const SCEV *BECountIfBackedgeTaken =
9187     computeBECount(getMinusSCEV(End, Start), Stride, false);
9188   // If the loop entry is guarded by the result of the backedge test of the
9189   // first loop iteration, then we know the backedge will be taken at least
9190   // once and so the backedge taken count is as above. If not then we use the
9191   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
9192   // as if the backedge is taken at least once max(End,Start) is End and so the
9193   // result is as above, and if not max(End,Start) is Start so we get a backedge
9194   // count of zero.
9195   const SCEV *BECount;
9196   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
9197     BECount = BECountIfBackedgeTaken;
9198   else {
9199     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
9200     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
9201   }
9202
9203   const SCEV *MaxBECount;
9204   bool MaxOrZero = false;
9205   if (isa<SCEVConstant>(BECount))
9206     MaxBECount = BECount;
9207   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
9208     // If we know exactly how many times the backedge will be taken if it's
9209     // taken at least once, then the backedge count will either be that or
9210     // zero.
9211     MaxBECount = BECountIfBackedgeTaken;
9212     MaxOrZero = true;
9213   } else {
9214     // Calculate the maximum backedge count based on the range of values
9215     // permitted by Start, End, and Stride.
9216     APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
9217                               : getUnsignedRange(Start).getUnsignedMin();
9218
9219     unsigned BitWidth = getTypeSizeInBits(LHS->getType());
9220
9221     APInt StrideForMaxBECount;
9222
9223     if (PositiveStride)
9224       StrideForMaxBECount =
9225         IsSigned ? getSignedRange(Stride).getSignedMin()
9226                  : getUnsignedRange(Stride).getUnsignedMin();
9227     else
9228       // Using a stride of 1 is safe when computing max backedge taken count for
9229       // a loop with unknown stride.
9230       StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
9231
9232     APInt Limit =
9233       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
9234                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
9235
9236     // Although End can be a MAX expression we estimate MaxEnd considering only
9237     // the case End = RHS. This is safe because in the other case (End - Start)
9238     // is zero, leading to a zero maximum backedge taken count.
9239     APInt MaxEnd =
9240       IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
9241                : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
9242
9243     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
9244                                 getConstant(StrideForMaxBECount), false);
9245   }
9246
9247   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
9248       !isa<SCEVCouldNotCompute>(BECount))
9249     MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax());
9250
9251   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
9252 }
9253
9254 ScalarEvolution::ExitLimit
9255 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
9256                                      const Loop *L, bool IsSigned,
9257                                      bool ControlsExit, bool AllowPredicates) {
9258   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9259   // We handle only IV > Invariant
9260   if (!isLoopInvariant(RHS, L))
9261     return getCouldNotCompute();
9262
9263   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9264   if (!IV && AllowPredicates)
9265     // Try to make this an AddRec using runtime tests, in the first X
9266     // iterations of this loop, where X is the SCEV expression found by the
9267     // algorithm below.
9268     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9269
9270   // Avoid weird loops
9271   if (!IV || IV->getLoop() != L || !IV->isAffine())
9272     return getCouldNotCompute();
9273
9274   bool NoWrap = ControlsExit &&
9275                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9276
9277   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
9278
9279   // Avoid negative or zero stride values
9280   if (!isKnownPositive(Stride))
9281     return getCouldNotCompute();
9282
9283   // Avoid proven overflow cases: this will ensure that the backedge taken count
9284   // will not generate any unsigned overflow. Relaxed no-overflow conditions
9285   // exploit NoWrapFlags, allowing to optimize in presence of undefined
9286   // behaviors like the case of C language.
9287   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
9288     return getCouldNotCompute();
9289
9290   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
9291                                       : ICmpInst::ICMP_UGT;
9292
9293   const SCEV *Start = IV->getStart();
9294   const SCEV *End = RHS;
9295   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
9296     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
9297
9298   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
9299
9300   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
9301                             : getUnsignedRange(Start).getUnsignedMax();
9302
9303   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
9304                              : getUnsignedRange(Stride).getUnsignedMin();
9305
9306   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
9307   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
9308                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
9309
9310   // Although End can be a MIN expression we estimate MinEnd considering only
9311   // the case End = RHS. This is safe because in the other case (Start - End)
9312   // is zero, leading to a zero maximum backedge taken count.
9313   APInt MinEnd =
9314     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
9315              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
9316
9317
9318   const SCEV *MaxBECount = getCouldNotCompute();
9319   if (isa<SCEVConstant>(BECount))
9320     MaxBECount = BECount;
9321   else
9322     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
9323                                 getConstant(MinStride), false);
9324
9325   if (isa<SCEVCouldNotCompute>(MaxBECount))
9326     MaxBECount = BECount;
9327
9328   return ExitLimit(BECount, MaxBECount, false, Predicates);
9329 }
9330
9331 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
9332                                                     ScalarEvolution &SE) const {
9333   if (Range.isFullSet())  // Infinite loop.
9334     return SE.getCouldNotCompute();
9335
9336   // If the start is a non-zero constant, shift the range to simplify things.
9337   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
9338     if (!SC->getValue()->isZero()) {
9339       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
9340       Operands[0] = SE.getZero(SC->getType());
9341       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
9342                                              getNoWrapFlags(FlagNW));
9343       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
9344         return ShiftedAddRec->getNumIterationsInRange(
9345             Range.subtract(SC->getAPInt()), SE);
9346       // This is strange and shouldn't happen.
9347       return SE.getCouldNotCompute();
9348     }
9349
9350   // The only time we can solve this is when we have all constant indices.
9351   // Otherwise, we cannot determine the overflow conditions.
9352   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
9353     return SE.getCouldNotCompute();
9354
9355   // Okay at this point we know that all elements of the chrec are constants and
9356   // that the start element is zero.
9357
9358   // First check to see if the range contains zero.  If not, the first
9359   // iteration exits.
9360   unsigned BitWidth = SE.getTypeSizeInBits(getType());
9361   if (!Range.contains(APInt(BitWidth, 0)))
9362     return SE.getZero(getType());
9363
9364   if (isAffine()) {
9365     // If this is an affine expression then we have this situation:
9366     //   Solve {0,+,A} in Range  ===  Ax in Range
9367
9368     // We know that zero is in the range.  If A is positive then we know that
9369     // the upper value of the range must be the first possible exit value.
9370     // If A is negative then the lower of the range is the last possible loop
9371     // value.  Also note that we already checked for a full range.
9372     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
9373     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
9374
9375     // The exit value should be (End+A)/A.
9376     APInt ExitVal = (End + A).udiv(A);
9377     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
9378
9379     // Evaluate at the exit value.  If we really did fall out of the valid
9380     // range, then we computed our trip count, otherwise wrap around or other
9381     // things must have happened.
9382     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
9383     if (Range.contains(Val->getValue()))
9384       return SE.getCouldNotCompute();  // Something strange happened
9385
9386     // Ensure that the previous value is in the range.  This is a sanity check.
9387     assert(Range.contains(
9388            EvaluateConstantChrecAtConstant(this,
9389            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
9390            "Linear scev computation is off in a bad way!");
9391     return SE.getConstant(ExitValue);
9392   } else if (isQuadratic()) {
9393     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
9394     // quadratic equation to solve it.  To do this, we must frame our problem in
9395     // terms of figuring out when zero is crossed, instead of when
9396     // Range.getUpper() is crossed.
9397     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
9398     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
9399     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
9400
9401     // Next, solve the constructed addrec
9402     if (auto Roots =
9403             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
9404       const SCEVConstant *R1 = Roots->first;
9405       const SCEVConstant *R2 = Roots->second;
9406       // Pick the smallest positive root value.
9407       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
9408               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
9409         if (!CB->getZExtValue())
9410           std::swap(R1, R2); // R1 is the minimum root now.
9411
9412         // Make sure the root is not off by one.  The returned iteration should
9413         // not be in the range, but the previous one should be.  When solving
9414         // for "X*X < 5", for example, we should not return a root of 2.
9415         ConstantInt *R1Val =
9416             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
9417         if (Range.contains(R1Val->getValue())) {
9418           // The next iteration must be out of the range...
9419           ConstantInt *NextVal =
9420               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
9421
9422           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9423           if (!Range.contains(R1Val->getValue()))
9424             return SE.getConstant(NextVal);
9425           return SE.getCouldNotCompute(); // Something strange happened
9426         }
9427
9428         // If R1 was not in the range, then it is a good return value.  Make
9429         // sure that R1-1 WAS in the range though, just in case.
9430         ConstantInt *NextVal =
9431             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
9432         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9433         if (Range.contains(R1Val->getValue()))
9434           return R1;
9435         return SE.getCouldNotCompute(); // Something strange happened
9436       }
9437     }
9438   }
9439
9440   return SE.getCouldNotCompute();
9441 }
9442
9443 // Return true when S contains at least an undef value.
9444 static inline bool containsUndefs(const SCEV *S) {
9445   return SCEVExprContains(S, [](const SCEV *S) {
9446     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
9447       return isa<UndefValue>(SU->getValue());
9448     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
9449       return isa<UndefValue>(SC->getValue());
9450     return false;
9451   });
9452 }
9453
9454 namespace {
9455 // Collect all steps of SCEV expressions.
9456 struct SCEVCollectStrides {
9457   ScalarEvolution &SE;
9458   SmallVectorImpl<const SCEV *> &Strides;
9459
9460   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9461       : SE(SE), Strides(S) {}
9462
9463   bool follow(const SCEV *S) {
9464     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9465       Strides.push_back(AR->getStepRecurrence(SE));
9466     return true;
9467   }
9468   bool isDone() const { return false; }
9469 };
9470
9471 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9472 struct SCEVCollectTerms {
9473   SmallVectorImpl<const SCEV *> &Terms;
9474
9475   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9476       : Terms(T) {}
9477
9478   bool follow(const SCEV *S) {
9479     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
9480         isa<SCEVSignExtendExpr>(S)) {
9481       if (!containsUndefs(S))
9482         Terms.push_back(S);
9483
9484       // Stop recursion: once we collected a term, do not walk its operands.
9485       return false;
9486     }
9487
9488     // Keep looking.
9489     return true;
9490   }
9491   bool isDone() const { return false; }
9492 };
9493
9494 // Check if a SCEV contains an AddRecExpr.
9495 struct SCEVHasAddRec {
9496   bool &ContainsAddRec;
9497
9498   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9499    ContainsAddRec = false;
9500   }
9501
9502   bool follow(const SCEV *S) {
9503     if (isa<SCEVAddRecExpr>(S)) {
9504       ContainsAddRec = true;
9505
9506       // Stop recursion: once we collected a term, do not walk its operands.
9507       return false;
9508     }
9509
9510     // Keep looking.
9511     return true;
9512   }
9513   bool isDone() const { return false; }
9514 };
9515
9516 // Find factors that are multiplied with an expression that (possibly as a
9517 // subexpression) contains an AddRecExpr. In the expression:
9518 //
9519 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9520 //
9521 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9522 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9523 // parameters as they form a product with an induction variable.
9524 //
9525 // This collector expects all array size parameters to be in the same MulExpr.
9526 // It might be necessary to later add support for collecting parameters that are
9527 // spread over different nested MulExpr.
9528 struct SCEVCollectAddRecMultiplies {
9529   SmallVectorImpl<const SCEV *> &Terms;
9530   ScalarEvolution &SE;
9531
9532   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9533       : Terms(T), SE(SE) {}
9534
9535   bool follow(const SCEV *S) {
9536     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9537       bool HasAddRec = false;
9538       SmallVector<const SCEV *, 0> Operands;
9539       for (auto Op : Mul->operands()) {
9540         if (isa<SCEVUnknown>(Op)) {
9541           Operands.push_back(Op);
9542         } else {
9543           bool ContainsAddRec;
9544           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9545           visitAll(Op, ContiansAddRec);
9546           HasAddRec |= ContainsAddRec;
9547         }
9548       }
9549       if (Operands.size() == 0)
9550         return true;
9551
9552       if (!HasAddRec)
9553         return false;
9554
9555       Terms.push_back(SE.getMulExpr(Operands));
9556       // Stop recursion: once we collected a term, do not walk its operands.
9557       return false;
9558     }
9559
9560     // Keep looking.
9561     return true;
9562   }
9563   bool isDone() const { return false; }
9564 };
9565 }
9566
9567 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9568 /// two places:
9569 ///   1) The strides of AddRec expressions.
9570 ///   2) Unknowns that are multiplied with AddRec expressions.
9571 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9572     SmallVectorImpl<const SCEV *> &Terms) {
9573   SmallVector<const SCEV *, 4> Strides;
9574   SCEVCollectStrides StrideCollector(*this, Strides);
9575   visitAll(Expr, StrideCollector);
9576
9577   DEBUG({
9578       dbgs() << "Strides:\n";
9579       for (const SCEV *S : Strides)
9580         dbgs() << *S << "\n";
9581     });
9582
9583   for (const SCEV *S : Strides) {
9584     SCEVCollectTerms TermCollector(Terms);
9585     visitAll(S, TermCollector);
9586   }
9587
9588   DEBUG({
9589       dbgs() << "Terms:\n";
9590       for (const SCEV *T : Terms)
9591         dbgs() << *T << "\n";
9592     });
9593
9594   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9595   visitAll(Expr, MulCollector);
9596 }
9597
9598 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9599                                    SmallVectorImpl<const SCEV *> &Terms,
9600                                    SmallVectorImpl<const SCEV *> &Sizes) {
9601   int Last = Terms.size() - 1;
9602   const SCEV *Step = Terms[Last];
9603
9604   // End of recursion.
9605   if (Last == 0) {
9606     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9607       SmallVector<const SCEV *, 2> Qs;
9608       for (const SCEV *Op : M->operands())
9609         if (!isa<SCEVConstant>(Op))
9610           Qs.push_back(Op);
9611
9612       Step = SE.getMulExpr(Qs);
9613     }
9614
9615     Sizes.push_back(Step);
9616     return true;
9617   }
9618
9619   for (const SCEV *&Term : Terms) {
9620     // Normalize the terms before the next call to findArrayDimensionsRec.
9621     const SCEV *Q, *R;
9622     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9623
9624     // Bail out when GCD does not evenly divide one of the terms.
9625     if (!R->isZero())
9626       return false;
9627
9628     Term = Q;
9629   }
9630
9631   // Remove all SCEVConstants.
9632   Terms.erase(
9633       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9634       Terms.end());
9635
9636   if (Terms.size() > 0)
9637     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9638       return false;
9639
9640   Sizes.push_back(Step);
9641   return true;
9642 }
9643
9644
9645 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9646 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9647   for (const SCEV *T : Terms)
9648     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
9649       return true;
9650   return false;
9651 }
9652
9653 // Return the number of product terms in S.
9654 static inline int numberOfTerms(const SCEV *S) {
9655   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9656     return Expr->getNumOperands();
9657   return 1;
9658 }
9659
9660 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9661   if (isa<SCEVConstant>(T))
9662     return nullptr;
9663
9664   if (isa<SCEVUnknown>(T))
9665     return T;
9666
9667   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9668     SmallVector<const SCEV *, 2> Factors;
9669     for (const SCEV *Op : M->operands())
9670       if (!isa<SCEVConstant>(Op))
9671         Factors.push_back(Op);
9672
9673     return SE.getMulExpr(Factors);
9674   }
9675
9676   return T;
9677 }
9678
9679 /// Return the size of an element read or written by Inst.
9680 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9681   Type *Ty;
9682   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9683     Ty = Store->getValueOperand()->getType();
9684   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9685     Ty = Load->getType();
9686   else
9687     return nullptr;
9688
9689   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9690   return getSizeOfExpr(ETy, Ty);
9691 }
9692
9693 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9694                                           SmallVectorImpl<const SCEV *> &Sizes,
9695                                           const SCEV *ElementSize) {
9696   if (Terms.size() < 1 || !ElementSize)
9697     return;
9698
9699   // Early return when Terms do not contain parameters: we do not delinearize
9700   // non parametric SCEVs.
9701   if (!containsParameters(Terms))
9702     return;
9703
9704   DEBUG({
9705       dbgs() << "Terms:\n";
9706       for (const SCEV *T : Terms)
9707         dbgs() << *T << "\n";
9708     });
9709
9710   // Remove duplicates.
9711   array_pod_sort(Terms.begin(), Terms.end());
9712   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9713
9714   // Put larger terms first.
9715   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9716     return numberOfTerms(LHS) > numberOfTerms(RHS);
9717   });
9718
9719   // Try to divide all terms by the element size. If term is not divisible by
9720   // element size, proceed with the original term.
9721   for (const SCEV *&Term : Terms) {
9722     const SCEV *Q, *R;
9723     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
9724     if (!Q->isZero())
9725       Term = Q;
9726   }
9727
9728   SmallVector<const SCEV *, 4> NewTerms;
9729
9730   // Remove constant factors.
9731   for (const SCEV *T : Terms)
9732     if (const SCEV *NewT = removeConstantFactors(*this, T))
9733       NewTerms.push_back(NewT);
9734
9735   DEBUG({
9736       dbgs() << "Terms after sorting:\n";
9737       for (const SCEV *T : NewTerms)
9738         dbgs() << *T << "\n";
9739     });
9740
9741   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
9742     Sizes.clear();
9743     return;
9744   }
9745
9746   // The last element to be pushed into Sizes is the size of an element.
9747   Sizes.push_back(ElementSize);
9748
9749   DEBUG({
9750       dbgs() << "Sizes:\n";
9751       for (const SCEV *S : Sizes)
9752         dbgs() << *S << "\n";
9753     });
9754 }
9755
9756 void ScalarEvolution::computeAccessFunctions(
9757     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9758     SmallVectorImpl<const SCEV *> &Sizes) {
9759
9760   // Early exit in case this SCEV is not an affine multivariate function.
9761   if (Sizes.empty())
9762     return;
9763
9764   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9765     if (!AR->isAffine())
9766       return;
9767
9768   const SCEV *Res = Expr;
9769   int Last = Sizes.size() - 1;
9770   for (int i = Last; i >= 0; i--) {
9771     const SCEV *Q, *R;
9772     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9773
9774     DEBUG({
9775         dbgs() << "Res: " << *Res << "\n";
9776         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9777         dbgs() << "Res divided by Sizes[i]:\n";
9778         dbgs() << "Quotient: " << *Q << "\n";
9779         dbgs() << "Remainder: " << *R << "\n";
9780       });
9781
9782     Res = Q;
9783
9784     // Do not record the last subscript corresponding to the size of elements in
9785     // the array.
9786     if (i == Last) {
9787
9788       // Bail out if the remainder is too complex.
9789       if (isa<SCEVAddRecExpr>(R)) {
9790         Subscripts.clear();
9791         Sizes.clear();
9792         return;
9793       }
9794
9795       continue;
9796     }
9797
9798     // Record the access function for the current subscript.
9799     Subscripts.push_back(R);
9800   }
9801
9802   // Also push in last position the remainder of the last division: it will be
9803   // the access function of the innermost dimension.
9804   Subscripts.push_back(Res);
9805
9806   std::reverse(Subscripts.begin(), Subscripts.end());
9807
9808   DEBUG({
9809       dbgs() << "Subscripts:\n";
9810       for (const SCEV *S : Subscripts)
9811         dbgs() << *S << "\n";
9812     });
9813 }
9814
9815 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9816 /// sizes of an array access. Returns the remainder of the delinearization that
9817 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9818 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9819 /// expressions in the stride and base of a SCEV corresponding to the
9820 /// computation of a GCD (greatest common divisor) of base and stride.  When
9821 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9822 ///
9823 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9824 ///
9825 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9826 ///
9827 ///    for (long i = 0; i < n; i++)
9828 ///      for (long j = 0; j < m; j++)
9829 ///        for (long k = 0; k < o; k++)
9830 ///          A[i][j][k] = 1.0;
9831 ///  }
9832 ///
9833 /// the delinearization input is the following AddRec SCEV:
9834 ///
9835 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9836 ///
9837 /// From this SCEV, we are able to say that the base offset of the access is %A
9838 /// because it appears as an offset that does not divide any of the strides in
9839 /// the loops:
9840 ///
9841 ///  CHECK: Base offset: %A
9842 ///
9843 /// and then SCEV->delinearize determines the size of some of the dimensions of
9844 /// the array as these are the multiples by which the strides are happening:
9845 ///
9846 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9847 ///
9848 /// Note that the outermost dimension remains of UnknownSize because there are
9849 /// no strides that would help identifying the size of the last dimension: when
9850 /// the array has been statically allocated, one could compute the size of that
9851 /// dimension by dividing the overall size of the array by the size of the known
9852 /// dimensions: %m * %o * 8.
9853 ///
9854 /// Finally delinearize provides the access functions for the array reference
9855 /// that does correspond to A[i][j][k] of the above C testcase:
9856 ///
9857 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9858 ///
9859 /// The testcases are checking the output of a function pass:
9860 /// DelinearizationPass that walks through all loads and stores of a function
9861 /// asking for the SCEV of the memory access with respect to all enclosing
9862 /// loops, calling SCEV->delinearize on that and printing the results.
9863
9864 void ScalarEvolution::delinearize(const SCEV *Expr,
9865                                  SmallVectorImpl<const SCEV *> &Subscripts,
9866                                  SmallVectorImpl<const SCEV *> &Sizes,
9867                                  const SCEV *ElementSize) {
9868   // First step: collect parametric terms.
9869   SmallVector<const SCEV *, 4> Terms;
9870   collectParametricTerms(Expr, Terms);
9871
9872   if (Terms.empty())
9873     return;
9874
9875   // Second step: find subscript sizes.
9876   findArrayDimensions(Terms, Sizes, ElementSize);
9877
9878   if (Sizes.empty())
9879     return;
9880
9881   // Third step: compute the access functions for each subscript.
9882   computeAccessFunctions(Expr, Subscripts, Sizes);
9883
9884   if (Subscripts.empty())
9885     return;
9886
9887   DEBUG({
9888       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9889       dbgs() << "ArrayDecl[UnknownSize]";
9890       for (const SCEV *S : Sizes)
9891         dbgs() << "[" << *S << "]";
9892
9893       dbgs() << "\nArrayRef";
9894       for (const SCEV *S : Subscripts)
9895         dbgs() << "[" << *S << "]";
9896       dbgs() << "\n";
9897     });
9898 }
9899
9900 //===----------------------------------------------------------------------===//
9901 //                   SCEVCallbackVH Class Implementation
9902 //===----------------------------------------------------------------------===//
9903
9904 void ScalarEvolution::SCEVCallbackVH::deleted() {
9905   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9906   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9907     SE->ConstantEvolutionLoopExitValue.erase(PN);
9908   SE->eraseValueFromMap(getValPtr());
9909   // this now dangles!
9910 }
9911
9912 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9913   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9914
9915   // Forget all the expressions associated with users of the old value,
9916   // so that future queries will recompute the expressions using the new
9917   // value.
9918   Value *Old = getValPtr();
9919   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9920   SmallPtrSet<User *, 8> Visited;
9921   while (!Worklist.empty()) {
9922     User *U = Worklist.pop_back_val();
9923     // Deleting the Old value will cause this to dangle. Postpone
9924     // that until everything else is done.
9925     if (U == Old)
9926       continue;
9927     if (!Visited.insert(U).second)
9928       continue;
9929     if (PHINode *PN = dyn_cast<PHINode>(U))
9930       SE->ConstantEvolutionLoopExitValue.erase(PN);
9931     SE->eraseValueFromMap(U);
9932     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9933   }
9934   // Delete the Old value.
9935   if (PHINode *PN = dyn_cast<PHINode>(Old))
9936     SE->ConstantEvolutionLoopExitValue.erase(PN);
9937   SE->eraseValueFromMap(Old);
9938   // this now dangles!
9939 }
9940
9941 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9942   : CallbackVH(V), SE(se) {}
9943
9944 //===----------------------------------------------------------------------===//
9945 //                   ScalarEvolution Class Implementation
9946 //===----------------------------------------------------------------------===//
9947
9948 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9949                                  AssumptionCache &AC, DominatorTree &DT,
9950                                  LoopInfo &LI)
9951     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9952       CouldNotCompute(new SCEVCouldNotCompute()),
9953       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9954       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9955       FirstUnknown(nullptr) {
9956
9957   // To use guards for proving predicates, we need to scan every instruction in
9958   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9959   // time if the IR does not actually contain any calls to
9960   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9961   //
9962   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9963   // to _add_ guards to the module when there weren't any before, and wants
9964   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9965   // efficient in lieu of being smart in that rather obscure case.
9966
9967   auto *GuardDecl = F.getParent()->getFunction(
9968       Intrinsic::getName(Intrinsic::experimental_guard));
9969   HasGuards = GuardDecl && !GuardDecl->use_empty();
9970 }
9971
9972 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9973     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9974       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9975       ValueExprMap(std::move(Arg.ValueExprMap)),
9976       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
9977       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9978       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
9979       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9980       PredicatedBackedgeTakenCounts(
9981           std::move(Arg.PredicatedBackedgeTakenCounts)),
9982       ConstantEvolutionLoopExitValue(
9983           std::move(Arg.ConstantEvolutionLoopExitValue)),
9984       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9985       LoopDispositions(std::move(Arg.LoopDispositions)),
9986       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
9987       BlockDispositions(std::move(Arg.BlockDispositions)),
9988       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9989       SignedRanges(std::move(Arg.SignedRanges)),
9990       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9991       UniquePreds(std::move(Arg.UniquePreds)),
9992       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9993       FirstUnknown(Arg.FirstUnknown) {
9994   Arg.FirstUnknown = nullptr;
9995 }
9996
9997 ScalarEvolution::~ScalarEvolution() {
9998   // Iterate through all the SCEVUnknown instances and call their
9999   // destructors, so that they release their references to their values.
10000   for (SCEVUnknown *U = FirstUnknown; U;) {
10001     SCEVUnknown *Tmp = U;
10002     U = U->Next;
10003     Tmp->~SCEVUnknown();
10004   }
10005   FirstUnknown = nullptr;
10006
10007   ExprValueMap.clear();
10008   ValueExprMap.clear();
10009   HasRecMap.clear();
10010
10011   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
10012   // that a loop had multiple computable exits.
10013   for (auto &BTCI : BackedgeTakenCounts)
10014     BTCI.second.clear();
10015   for (auto &BTCI : PredicatedBackedgeTakenCounts)
10016     BTCI.second.clear();
10017
10018   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
10019   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
10020   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
10021 }
10022
10023 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
10024   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
10025 }
10026
10027 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
10028                           const Loop *L) {
10029   // Print all inner loops first
10030   for (Loop *I : *L)
10031     PrintLoopInfo(OS, SE, I);
10032
10033   OS << "Loop ";
10034   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10035   OS << ": ";
10036
10037   SmallVector<BasicBlock *, 8> ExitBlocks;
10038   L->getExitBlocks(ExitBlocks);
10039   if (ExitBlocks.size() != 1)
10040     OS << "<multiple exits> ";
10041
10042   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10043     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
10044   } else {
10045     OS << "Unpredictable backedge-taken count. ";
10046   }
10047
10048   OS << "\n"
10049         "Loop ";
10050   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10051   OS << ": ";
10052
10053   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
10054     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
10055     if (SE->isBackedgeTakenCountMaxOrZero(L))
10056       OS << ", actual taken count either this or zero.";
10057   } else {
10058     OS << "Unpredictable max backedge-taken count. ";
10059   }
10060
10061   OS << "\n"
10062         "Loop ";
10063   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10064   OS << ": ";
10065
10066   SCEVUnionPredicate Pred;
10067   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
10068   if (!isa<SCEVCouldNotCompute>(PBT)) {
10069     OS << "Predicated backedge-taken count is " << *PBT << "\n";
10070     OS << " Predicates:\n";
10071     Pred.print(OS, 4);
10072   } else {
10073     OS << "Unpredictable predicated backedge-taken count. ";
10074   }
10075   OS << "\n";
10076
10077   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10078     OS << "Loop ";
10079     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10080     OS << ": ";
10081     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
10082   }
10083 }
10084
10085 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
10086   switch (LD) {
10087   case ScalarEvolution::LoopVariant:
10088     return "Variant";
10089   case ScalarEvolution::LoopInvariant:
10090     return "Invariant";
10091   case ScalarEvolution::LoopComputable:
10092     return "Computable";
10093   }
10094   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
10095 }
10096
10097 void ScalarEvolution::print(raw_ostream &OS) const {
10098   // ScalarEvolution's implementation of the print method is to print
10099   // out SCEV values of all instructions that are interesting. Doing
10100   // this potentially causes it to create new SCEV objects though,
10101   // which technically conflicts with the const qualifier. This isn't
10102   // observable from outside the class though, so casting away the
10103   // const isn't dangerous.
10104   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10105
10106   OS << "Classifying expressions for: ";
10107   F.printAsOperand(OS, /*PrintType=*/false);
10108   OS << "\n";
10109   for (Instruction &I : instructions(F))
10110     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
10111       OS << I << '\n';
10112       OS << "  -->  ";
10113       const SCEV *SV = SE.getSCEV(&I);
10114       SV->print(OS);
10115       if (!isa<SCEVCouldNotCompute>(SV)) {
10116         OS << " U: ";
10117         SE.getUnsignedRange(SV).print(OS);
10118         OS << " S: ";
10119         SE.getSignedRange(SV).print(OS);
10120       }
10121
10122       const Loop *L = LI.getLoopFor(I.getParent());
10123
10124       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
10125       if (AtUse != SV) {
10126         OS << "  -->  ";
10127         AtUse->print(OS);
10128         if (!isa<SCEVCouldNotCompute>(AtUse)) {
10129           OS << " U: ";
10130           SE.getUnsignedRange(AtUse).print(OS);
10131           OS << " S: ";
10132           SE.getSignedRange(AtUse).print(OS);
10133         }
10134       }
10135
10136       if (L) {
10137         OS << "\t\t" "Exits: ";
10138         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
10139         if (!SE.isLoopInvariant(ExitValue, L)) {
10140           OS << "<<Unknown>>";
10141         } else {
10142           OS << *ExitValue;
10143         }
10144
10145         bool First = true;
10146         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
10147           if (First) {
10148             OS << "\t\t" "LoopDispositions: { ";
10149             First = false;
10150           } else {
10151             OS << ", ";
10152           }
10153
10154           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10155           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
10156         }
10157
10158         for (auto *InnerL : depth_first(L)) {
10159           if (InnerL == L)
10160             continue;
10161           if (First) {
10162             OS << "\t\t" "LoopDispositions: { ";
10163             First = false;
10164           } else {
10165             OS << ", ";
10166           }
10167
10168           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10169           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
10170         }
10171
10172         OS << " }";
10173       }
10174
10175       OS << "\n";
10176     }
10177
10178   OS << "Determining loop execution counts for: ";
10179   F.printAsOperand(OS, /*PrintType=*/false);
10180   OS << "\n";
10181   for (Loop *I : LI)
10182     PrintLoopInfo(OS, &SE, I);
10183 }
10184
10185 ScalarEvolution::LoopDisposition
10186 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
10187   auto &Values = LoopDispositions[S];
10188   for (auto &V : Values) {
10189     if (V.getPointer() == L)
10190       return V.getInt();
10191   }
10192   Values.emplace_back(L, LoopVariant);
10193   LoopDisposition D = computeLoopDisposition(S, L);
10194   auto &Values2 = LoopDispositions[S];
10195   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10196     if (V.getPointer() == L) {
10197       V.setInt(D);
10198       break;
10199     }
10200   }
10201   return D;
10202 }
10203
10204 ScalarEvolution::LoopDisposition
10205 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
10206   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10207   case scConstant:
10208     return LoopInvariant;
10209   case scTruncate:
10210   case scZeroExtend:
10211   case scSignExtend:
10212     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
10213   case scAddRecExpr: {
10214     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10215
10216     // If L is the addrec's loop, it's computable.
10217     if (AR->getLoop() == L)
10218       return LoopComputable;
10219
10220     // Add recurrences are never invariant in the function-body (null loop).
10221     if (!L)
10222       return LoopVariant;
10223
10224     // This recurrence is variant w.r.t. L if L contains AR's loop.
10225     if (L->contains(AR->getLoop()))
10226       return LoopVariant;
10227
10228     // This recurrence is invariant w.r.t. L if AR's loop contains L.
10229     if (AR->getLoop()->contains(L))
10230       return LoopInvariant;
10231
10232     // This recurrence is variant w.r.t. L if any of its operands
10233     // are variant.
10234     for (auto *Op : AR->operands())
10235       if (!isLoopInvariant(Op, L))
10236         return LoopVariant;
10237
10238     // Otherwise it's loop-invariant.
10239     return LoopInvariant;
10240   }
10241   case scAddExpr:
10242   case scMulExpr:
10243   case scUMaxExpr:
10244   case scSMaxExpr: {
10245     bool HasVarying = false;
10246     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
10247       LoopDisposition D = getLoopDisposition(Op, L);
10248       if (D == LoopVariant)
10249         return LoopVariant;
10250       if (D == LoopComputable)
10251         HasVarying = true;
10252     }
10253     return HasVarying ? LoopComputable : LoopInvariant;
10254   }
10255   case scUDivExpr: {
10256     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10257     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
10258     if (LD == LoopVariant)
10259       return LoopVariant;
10260     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
10261     if (RD == LoopVariant)
10262       return LoopVariant;
10263     return (LD == LoopInvariant && RD == LoopInvariant) ?
10264            LoopInvariant : LoopComputable;
10265   }
10266   case scUnknown:
10267     // All non-instruction values are loop invariant.  All instructions are loop
10268     // invariant if they are not contained in the specified loop.
10269     // Instructions are never considered invariant in the function body
10270     // (null loop) because they are defined within the "loop".
10271     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
10272       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
10273     return LoopInvariant;
10274   case scCouldNotCompute:
10275     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10276   }
10277   llvm_unreachable("Unknown SCEV kind!");
10278 }
10279
10280 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
10281   return getLoopDisposition(S, L) == LoopInvariant;
10282 }
10283
10284 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
10285   return getLoopDisposition(S, L) == LoopComputable;
10286 }
10287
10288 ScalarEvolution::BlockDisposition
10289 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10290   auto &Values = BlockDispositions[S];
10291   for (auto &V : Values) {
10292     if (V.getPointer() == BB)
10293       return V.getInt();
10294   }
10295   Values.emplace_back(BB, DoesNotDominateBlock);
10296   BlockDisposition D = computeBlockDisposition(S, BB);
10297   auto &Values2 = BlockDispositions[S];
10298   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10299     if (V.getPointer() == BB) {
10300       V.setInt(D);
10301       break;
10302     }
10303   }
10304   return D;
10305 }
10306
10307 ScalarEvolution::BlockDisposition
10308 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10309   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10310   case scConstant:
10311     return ProperlyDominatesBlock;
10312   case scTruncate:
10313   case scZeroExtend:
10314   case scSignExtend:
10315     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
10316   case scAddRecExpr: {
10317     // This uses a "dominates" query instead of "properly dominates" query
10318     // to test for proper dominance too, because the instruction which
10319     // produces the addrec's value is a PHI, and a PHI effectively properly
10320     // dominates its entire containing block.
10321     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10322     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
10323       return DoesNotDominateBlock;
10324
10325     // Fall through into SCEVNAryExpr handling.
10326     LLVM_FALLTHROUGH;
10327   }
10328   case scAddExpr:
10329   case scMulExpr:
10330   case scUMaxExpr:
10331   case scSMaxExpr: {
10332     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
10333     bool Proper = true;
10334     for (const SCEV *NAryOp : NAry->operands()) {
10335       BlockDisposition D = getBlockDisposition(NAryOp, BB);
10336       if (D == DoesNotDominateBlock)
10337         return DoesNotDominateBlock;
10338       if (D == DominatesBlock)
10339         Proper = false;
10340     }
10341     return Proper ? ProperlyDominatesBlock : DominatesBlock;
10342   }
10343   case scUDivExpr: {
10344     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10345     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
10346     BlockDisposition LD = getBlockDisposition(LHS, BB);
10347     if (LD == DoesNotDominateBlock)
10348       return DoesNotDominateBlock;
10349     BlockDisposition RD = getBlockDisposition(RHS, BB);
10350     if (RD == DoesNotDominateBlock)
10351       return DoesNotDominateBlock;
10352     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
10353       ProperlyDominatesBlock : DominatesBlock;
10354   }
10355   case scUnknown:
10356     if (Instruction *I =
10357           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
10358       if (I->getParent() == BB)
10359         return DominatesBlock;
10360       if (DT.properlyDominates(I->getParent(), BB))
10361         return ProperlyDominatesBlock;
10362       return DoesNotDominateBlock;
10363     }
10364     return ProperlyDominatesBlock;
10365   case scCouldNotCompute:
10366     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10367   }
10368   llvm_unreachable("Unknown SCEV kind!");
10369 }
10370
10371 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
10372   return getBlockDisposition(S, BB) >= DominatesBlock;
10373 }
10374
10375 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
10376   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
10377 }
10378
10379 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
10380   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
10381 }
10382
10383 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
10384   ValuesAtScopes.erase(S);
10385   LoopDispositions.erase(S);
10386   BlockDispositions.erase(S);
10387   UnsignedRanges.erase(S);
10388   SignedRanges.erase(S);
10389   ExprValueMap.erase(S);
10390   HasRecMap.erase(S);
10391   MinTrailingZerosCache.erase(S);
10392
10393   auto RemoveSCEVFromBackedgeMap =
10394       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
10395         for (auto I = Map.begin(), E = Map.end(); I != E;) {
10396           BackedgeTakenInfo &BEInfo = I->second;
10397           if (BEInfo.hasOperand(S, this)) {
10398             BEInfo.clear();
10399             Map.erase(I++);
10400           } else
10401             ++I;
10402         }
10403       };
10404
10405   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
10406   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
10407 }
10408
10409 void ScalarEvolution::verify() const {
10410   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10411   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10412
10413   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
10414
10415   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
10416   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
10417     const SCEV *visitConstant(const SCEVConstant *Constant) {
10418       return SE.getConstant(Constant->getAPInt());
10419     }
10420     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10421       return SE.getUnknown(Expr->getValue());
10422     }
10423
10424     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
10425       return SE.getCouldNotCompute();
10426     }
10427     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
10428   };
10429
10430   SCEVMapper SCM(SE2);
10431
10432   while (!LoopStack.empty()) {
10433     auto *L = LoopStack.pop_back_val();
10434     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
10435
10436     auto *CurBECount = SCM.visit(
10437         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
10438     auto *NewBECount = SE2.getBackedgeTakenCount(L);
10439
10440     if (CurBECount == SE2.getCouldNotCompute() ||
10441         NewBECount == SE2.getCouldNotCompute()) {
10442       // NB! This situation is legal, but is very suspicious -- whatever pass
10443       // change the loop to make a trip count go from could not compute to
10444       // computable or vice-versa *should have* invalidated SCEV.  However, we
10445       // choose not to assert here (for now) since we don't want false
10446       // positives.
10447       continue;
10448     }
10449
10450     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
10451       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
10452       // not propagate undef aggressively).  This means we can (and do) fail
10453       // verification in cases where a transform makes the trip count of a loop
10454       // go from "undef" to "undef+1" (say).  The transform is fine, since in
10455       // both cases the loop iterates "undef" times, but SCEV thinks we
10456       // increased the trip count of the loop by 1 incorrectly.
10457       continue;
10458     }
10459
10460     if (SE.getTypeSizeInBits(CurBECount->getType()) >
10461         SE.getTypeSizeInBits(NewBECount->getType()))
10462       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
10463     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
10464              SE.getTypeSizeInBits(NewBECount->getType()))
10465       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
10466
10467     auto *ConstantDelta =
10468         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
10469
10470     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
10471       dbgs() << "Trip Count Changed!\n";
10472       dbgs() << "Old: " << *CurBECount << "\n";
10473       dbgs() << "New: " << *NewBECount << "\n";
10474       dbgs() << "Delta: " << *ConstantDelta << "\n";
10475       std::abort();
10476     }
10477   }
10478 }
10479
10480 bool ScalarEvolution::invalidate(
10481     Function &F, const PreservedAnalyses &PA,
10482     FunctionAnalysisManager::Invalidator &Inv) {
10483   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
10484   // of its dependencies is invalidated.
10485   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
10486   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
10487          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
10488          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
10489          Inv.invalidate<LoopAnalysis>(F, PA);
10490 }
10491
10492 AnalysisKey ScalarEvolutionAnalysis::Key;
10493
10494 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10495                                              FunctionAnalysisManager &AM) {
10496   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10497                          AM.getResult<AssumptionAnalysis>(F),
10498                          AM.getResult<DominatorTreeAnalysis>(F),
10499                          AM.getResult<LoopAnalysis>(F));
10500 }
10501
10502 PreservedAnalyses
10503 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10504   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10505   return PreservedAnalyses::all();
10506 }
10507
10508 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10509                       "Scalar Evolution Analysis", false, true)
10510 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10511 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10512 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10513 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10514 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10515                     "Scalar Evolution Analysis", false, true)
10516 char ScalarEvolutionWrapperPass::ID = 0;
10517
10518 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10519   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10520 }
10521
10522 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10523   SE.reset(new ScalarEvolution(
10524       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10525       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10526       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10527       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10528   return false;
10529 }
10530
10531 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10532
10533 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10534   SE->print(OS);
10535 }
10536
10537 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10538   if (!VerifySCEV)
10539     return;
10540
10541   SE->verify();
10542 }
10543
10544 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10545   AU.setPreservesAll();
10546   AU.addRequiredTransitive<AssumptionCacheTracker>();
10547   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10548   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10549   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10550 }
10551
10552 const SCEVPredicate *
10553 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10554                                    const SCEVConstant *RHS) {
10555   FoldingSetNodeID ID;
10556   // Unique this node based on the arguments
10557   ID.AddInteger(SCEVPredicate::P_Equal);
10558   ID.AddPointer(LHS);
10559   ID.AddPointer(RHS);
10560   void *IP = nullptr;
10561   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10562     return S;
10563   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10564       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10565   UniquePreds.InsertNode(Eq, IP);
10566   return Eq;
10567 }
10568
10569 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10570     const SCEVAddRecExpr *AR,
10571     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10572   FoldingSetNodeID ID;
10573   // Unique this node based on the arguments
10574   ID.AddInteger(SCEVPredicate::P_Wrap);
10575   ID.AddPointer(AR);
10576   ID.AddInteger(AddedFlags);
10577   void *IP = nullptr;
10578   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10579     return S;
10580   auto *OF = new (SCEVAllocator)
10581       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10582   UniquePreds.InsertNode(OF, IP);
10583   return OF;
10584 }
10585
10586 namespace {
10587
10588 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10589 public:
10590   /// Rewrites \p S in the context of a loop L and the SCEV predication
10591   /// infrastructure.
10592   ///
10593   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
10594   /// equivalences present in \p Pred.
10595   ///
10596   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
10597   /// \p NewPreds such that the result will be an AddRecExpr.
10598   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10599                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10600                              SCEVUnionPredicate *Pred) {
10601     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
10602     return Rewriter.visit(S);
10603   }
10604
10605   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10606                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10607                         SCEVUnionPredicate *Pred)
10608       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
10609
10610   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10611     if (Pred) {
10612       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
10613       for (auto *Pred : ExprPreds)
10614         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10615           if (IPred->getLHS() == Expr)
10616             return IPred->getRHS();
10617     }
10618
10619     return Expr;
10620   }
10621
10622   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10623     const SCEV *Operand = visit(Expr->getOperand());
10624     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10625     if (AR && AR->getLoop() == L && AR->isAffine()) {
10626       // This couldn't be folded because the operand didn't have the nuw
10627       // flag. Add the nusw flag as an assumption that we could make.
10628       const SCEV *Step = AR->getStepRecurrence(SE);
10629       Type *Ty = Expr->getType();
10630       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10631         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10632                                 SE.getSignExtendExpr(Step, Ty), L,
10633                                 AR->getNoWrapFlags());
10634     }
10635     return SE.getZeroExtendExpr(Operand, Expr->getType());
10636   }
10637
10638   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10639     const SCEV *Operand = visit(Expr->getOperand());
10640     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10641     if (AR && AR->getLoop() == L && AR->isAffine()) {
10642       // This couldn't be folded because the operand didn't have the nsw
10643       // flag. Add the nssw flag as an assumption that we could make.
10644       const SCEV *Step = AR->getStepRecurrence(SE);
10645       Type *Ty = Expr->getType();
10646       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10647         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10648                                 SE.getSignExtendExpr(Step, Ty), L,
10649                                 AR->getNoWrapFlags());
10650     }
10651     return SE.getSignExtendExpr(Operand, Expr->getType());
10652   }
10653
10654 private:
10655   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10656                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10657     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10658     if (!NewPreds) {
10659       // Check if we've already made this assumption.
10660       return Pred && Pred->implies(A);
10661     }
10662     NewPreds->insert(A);
10663     return true;
10664   }
10665
10666   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
10667   SCEVUnionPredicate *Pred;
10668   const Loop *L;
10669 };
10670 } // end anonymous namespace
10671
10672 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10673                                                    SCEVUnionPredicate &Preds) {
10674   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
10675 }
10676
10677 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
10678     const SCEV *S, const Loop *L,
10679     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
10680
10681   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
10682   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
10683   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10684
10685   if (!AddRec)
10686     return nullptr;
10687
10688   // Since the transformation was successful, we can now transfer the SCEV
10689   // predicates.
10690   for (auto *P : TransformPreds)
10691     Preds.insert(P);
10692
10693   return AddRec;
10694 }
10695
10696 /// SCEV predicates
10697 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10698                              SCEVPredicateKind Kind)
10699     : FastID(ID), Kind(Kind) {}
10700
10701 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10702                                        const SCEVUnknown *LHS,
10703                                        const SCEVConstant *RHS)
10704     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10705
10706 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10707   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10708
10709   if (!Op)
10710     return false;
10711
10712   return Op->LHS == LHS && Op->RHS == RHS;
10713 }
10714
10715 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10716
10717 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10718
10719 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10720   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10721 }
10722
10723 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10724                                      const SCEVAddRecExpr *AR,
10725                                      IncrementWrapFlags Flags)
10726     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10727
10728 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10729
10730 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10731   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10732
10733   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10734 }
10735
10736 bool SCEVWrapPredicate::isAlwaysTrue() const {
10737   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10738   IncrementWrapFlags IFlags = Flags;
10739
10740   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10741     IFlags = clearFlags(IFlags, IncrementNSSW);
10742
10743   return IFlags == IncrementAnyWrap;
10744 }
10745
10746 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10747   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10748   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10749     OS << "<nusw>";
10750   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10751     OS << "<nssw>";
10752   OS << "\n";
10753 }
10754
10755 SCEVWrapPredicate::IncrementWrapFlags
10756 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10757                                    ScalarEvolution &SE) {
10758   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10759   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10760
10761   // We can safely transfer the NSW flag as NSSW.
10762   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10763     ImpliedFlags = IncrementNSSW;
10764
10765   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10766     // If the increment is positive, the SCEV NUW flag will also imply the
10767     // WrapPredicate NUSW flag.
10768     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10769       if (Step->getValue()->getValue().isNonNegative())
10770         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10771   }
10772
10773   return ImpliedFlags;
10774 }
10775
10776 /// Union predicates don't get cached so create a dummy set ID for it.
10777 SCEVUnionPredicate::SCEVUnionPredicate()
10778     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10779
10780 bool SCEVUnionPredicate::isAlwaysTrue() const {
10781   return all_of(Preds,
10782                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10783 }
10784
10785 ArrayRef<const SCEVPredicate *>
10786 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10787   auto I = SCEVToPreds.find(Expr);
10788   if (I == SCEVToPreds.end())
10789     return ArrayRef<const SCEVPredicate *>();
10790   return I->second;
10791 }
10792
10793 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10794   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10795     return all_of(Set->Preds,
10796                   [this](const SCEVPredicate *I) { return this->implies(I); });
10797
10798   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10799   if (ScevPredsIt == SCEVToPreds.end())
10800     return false;
10801   auto &SCEVPreds = ScevPredsIt->second;
10802
10803   return any_of(SCEVPreds,
10804                 [N](const SCEVPredicate *I) { return I->implies(N); });
10805 }
10806
10807 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10808
10809 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10810   for (auto Pred : Preds)
10811     Pred->print(OS, Depth);
10812 }
10813
10814 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10815   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10816     for (auto Pred : Set->Preds)
10817       add(Pred);
10818     return;
10819   }
10820
10821   if (implies(N))
10822     return;
10823
10824   const SCEV *Key = N->getExpr();
10825   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10826                 " associated expression!");
10827
10828   SCEVToPreds[Key].push_back(N);
10829   Preds.push_back(N);
10830 }
10831
10832 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10833                                                      Loop &L)
10834     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10835
10836 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10837   const SCEV *Expr = SE.getSCEV(V);
10838   RewriteEntry &Entry = RewriteMap[Expr];
10839
10840   // If we already have an entry and the version matches, return it.
10841   if (Entry.second && Generation == Entry.first)
10842     return Entry.second;
10843
10844   // We found an entry but it's stale. Rewrite the stale entry
10845   // according to the current predicate.
10846   if (Entry.second)
10847     Expr = Entry.second;
10848
10849   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10850   Entry = {Generation, NewSCEV};
10851
10852   return NewSCEV;
10853 }
10854
10855 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10856   if (!BackedgeCount) {
10857     SCEVUnionPredicate BackedgePred;
10858     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10859     addPredicate(BackedgePred);
10860   }
10861   return BackedgeCount;
10862 }
10863
10864 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10865   if (Preds.implies(&Pred))
10866     return;
10867   Preds.add(&Pred);
10868   updateGeneration();
10869 }
10870
10871 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10872   return Preds;
10873 }
10874
10875 void PredicatedScalarEvolution::updateGeneration() {
10876   // If the generation number wrapped recompute everything.
10877   if (++Generation == 0) {
10878     for (auto &II : RewriteMap) {
10879       const SCEV *Rewritten = II.second.second;
10880       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10881     }
10882   }
10883 }
10884
10885 void PredicatedScalarEvolution::setNoOverflow(
10886     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10887   const SCEV *Expr = getSCEV(V);
10888   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10889
10890   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10891
10892   // Clear the statically implied flags.
10893   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10894   addPredicate(*SE.getWrapPredicate(AR, Flags));
10895
10896   auto II = FlagsMap.insert({V, Flags});
10897   if (!II.second)
10898     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10899 }
10900
10901 bool PredicatedScalarEvolution::hasNoOverflow(
10902     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10903   const SCEV *Expr = getSCEV(V);
10904   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10905
10906   Flags = SCEVWrapPredicate::clearFlags(
10907       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10908
10909   auto II = FlagsMap.find(V);
10910
10911   if (II != FlagsMap.end())
10912     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10913
10914   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10915 }
10916
10917 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10918   const SCEV *Expr = this->getSCEV(V);
10919   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
10920   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
10921
10922   if (!New)
10923     return nullptr;
10924
10925   for (auto *P : NewPreds)
10926     Preds.add(P);
10927
10928   updateGeneration();
10929   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10930   return New;
10931 }
10932
10933 PredicatedScalarEvolution::PredicatedScalarEvolution(
10934     const PredicatedScalarEvolution &Init)
10935     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10936       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10937   for (const auto &I : Init.FlagsMap)
10938     FlagsMap.insert(I);
10939 }
10940
10941 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10942   // For each block.
10943   for (auto *BB : L.getBlocks())
10944     for (auto &I : *BB) {
10945       if (!SE.isSCEVable(I.getType()))
10946         continue;
10947
10948       auto *Expr = SE.getSCEV(&I);
10949       auto II = RewriteMap.find(Expr);
10950
10951       if (II == RewriteMap.end())
10952         continue;
10953
10954       // Don't print things that are not interesting.
10955       if (II->second.second == Expr)
10956         continue;
10957
10958       OS.indent(Depth) << "[PSE]" << I << ":\n";
10959       OS.indent(Depth + 2) << *Expr << "\n";
10960       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10961     }
10962 }