]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/TargetTransformInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / TargetTransformInfo.cpp
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfoImpl.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <utility>
23
24 using namespace llvm;
25 using namespace PatternMatch;
26
27 #define DEBUG_TYPE "tti"
28
29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
30                                      cl::Hidden,
31                                      cl::desc("Recognize reduction patterns."));
32
33 namespace {
34 /// No-op implementation of the TTI interface using the utility base
35 /// classes.
36 ///
37 /// This is used when no target specific information is available.
38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
39   explicit NoTTIImpl(const DataLayout &DL)
40       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
41 };
42 }
43
44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
45     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
46
47 TargetTransformInfo::~TargetTransformInfo() {}
48
49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
50     : TTIImpl(std::move(Arg.TTIImpl)) {}
51
52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
53   TTIImpl = std::move(RHS.TTIImpl);
54   return *this;
55 }
56
57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
58                                           Type *OpTy) const {
59   int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
60   assert(Cost >= 0 && "TTI should not produce negative costs!");
61   return Cost;
62 }
63
64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
65   int Cost = TTIImpl->getCallCost(FTy, NumArgs);
66   assert(Cost >= 0 && "TTI should not produce negative costs!");
67   return Cost;
68 }
69
70 int TargetTransformInfo::getCallCost(const Function *F,
71                                      ArrayRef<const Value *> Arguments) const {
72   int Cost = TTIImpl->getCallCost(F, Arguments);
73   assert(Cost >= 0 && "TTI should not produce negative costs!");
74   return Cost;
75 }
76
77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
78   return TTIImpl->getInliningThresholdMultiplier();
79 }
80
81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
82                                     ArrayRef<const Value *> Operands) const {
83   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
84 }
85
86 int TargetTransformInfo::getExtCost(const Instruction *I,
87                                     const Value *Src) const {
88   return TTIImpl->getExtCost(I, Src);
89 }
90
91 int TargetTransformInfo::getIntrinsicCost(
92     Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
93   int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
94   assert(Cost >= 0 && "TTI should not produce negative costs!");
95   return Cost;
96 }
97
98 unsigned
99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
100                                                       unsigned &JTSize) const {
101   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
102 }
103
104 int TargetTransformInfo::getUserCost(const User *U,
105     ArrayRef<const Value *> Operands) const {
106   int Cost = TTIImpl->getUserCost(U, Operands);
107   assert(Cost >= 0 && "TTI should not produce negative costs!");
108   return Cost;
109 }
110
111 bool TargetTransformInfo::hasBranchDivergence() const {
112   return TTIImpl->hasBranchDivergence();
113 }
114
115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
116   return TTIImpl->isSourceOfDivergence(V);
117 }
118
119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
120   return TTIImpl->isAlwaysUniform(V);
121 }
122
123 unsigned TargetTransformInfo::getFlatAddressSpace() const {
124   return TTIImpl->getFlatAddressSpace();
125 }
126
127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
128   return TTIImpl->isLoweredToCall(F);
129 }
130
131 void TargetTransformInfo::getUnrollingPreferences(
132     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
133   return TTIImpl->getUnrollingPreferences(L, SE, UP);
134 }
135
136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
137   return TTIImpl->isLegalAddImmediate(Imm);
138 }
139
140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
141   return TTIImpl->isLegalICmpImmediate(Imm);
142 }
143
144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
145                                                 int64_t BaseOffset,
146                                                 bool HasBaseReg,
147                                                 int64_t Scale,
148                                                 unsigned AddrSpace,
149                                                 Instruction *I) const {
150   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
151                                         Scale, AddrSpace, I);
152 }
153
154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
155   return TTIImpl->isLSRCostLess(C1, C2);
156 }
157
158 bool TargetTransformInfo::canMacroFuseCmp() const {
159   return TTIImpl->canMacroFuseCmp();
160 }
161
162 bool TargetTransformInfo::shouldFavorPostInc() const {
163   return TTIImpl->shouldFavorPostInc();
164 }
165
166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
167   return TTIImpl->isLegalMaskedStore(DataType);
168 }
169
170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
171   return TTIImpl->isLegalMaskedLoad(DataType);
172 }
173
174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
175   return TTIImpl->isLegalMaskedGather(DataType);
176 }
177
178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
179   return TTIImpl->isLegalMaskedScatter(DataType);
180 }
181
182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
183   return TTIImpl->hasDivRemOp(DataType, IsSigned);
184 }
185
186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
187                                              unsigned AddrSpace) const {
188   return TTIImpl->hasVolatileVariant(I, AddrSpace);
189 }
190
191 bool TargetTransformInfo::prefersVectorizedAddressing() const {
192   return TTIImpl->prefersVectorizedAddressing();
193 }
194
195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
196                                               int64_t BaseOffset,
197                                               bool HasBaseReg,
198                                               int64_t Scale,
199                                               unsigned AddrSpace) const {
200   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
201                                            Scale, AddrSpace);
202   assert(Cost >= 0 && "TTI should not produce negative costs!");
203   return Cost;
204 }
205
206 bool TargetTransformInfo::LSRWithInstrQueries() const {
207   return TTIImpl->LSRWithInstrQueries();
208 }
209
210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
211   return TTIImpl->isTruncateFree(Ty1, Ty2);
212 }
213
214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
215   return TTIImpl->isProfitableToHoist(I);
216 }
217
218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
219
220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
221   return TTIImpl->isTypeLegal(Ty);
222 }
223
224 unsigned TargetTransformInfo::getJumpBufAlignment() const {
225   return TTIImpl->getJumpBufAlignment();
226 }
227
228 unsigned TargetTransformInfo::getJumpBufSize() const {
229   return TTIImpl->getJumpBufSize();
230 }
231
232 bool TargetTransformInfo::shouldBuildLookupTables() const {
233   return TTIImpl->shouldBuildLookupTables();
234 }
235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
236   return TTIImpl->shouldBuildLookupTablesForConstant(C);
237 }
238
239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
240   return TTIImpl->useColdCCForColdCall(F);
241 }
242
243 unsigned TargetTransformInfo::
244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
245   return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
246 }
247
248 unsigned TargetTransformInfo::
249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
250                                  unsigned VF) const {
251   return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
252 }
253
254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
255   return TTIImpl->supportsEfficientVectorElementLoadStore();
256 }
257
258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
259   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
260 }
261
262 const TargetTransformInfo::MemCmpExpansionOptions *
263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const {
264   return TTIImpl->enableMemCmpExpansion(IsZeroCmp);
265 }
266
267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
268   return TTIImpl->enableInterleavedAccessVectorization();
269 }
270
271 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
272   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
273 }
274
275 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
276                                                          unsigned BitWidth,
277                                                          unsigned AddressSpace,
278                                                          unsigned Alignment,
279                                                          bool *Fast) const {
280   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
281                                                  Alignment, Fast);
282 }
283
284 TargetTransformInfo::PopcntSupportKind
285 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
286   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
287 }
288
289 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
290   return TTIImpl->haveFastSqrt(Ty);
291 }
292
293 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
294   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
295 }
296
297 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
298   int Cost = TTIImpl->getFPOpCost(Ty);
299   assert(Cost >= 0 && "TTI should not produce negative costs!");
300   return Cost;
301 }
302
303 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
304                                                const APInt &Imm,
305                                                Type *Ty) const {
306   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
307   assert(Cost >= 0 && "TTI should not produce negative costs!");
308   return Cost;
309 }
310
311 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
312   int Cost = TTIImpl->getIntImmCost(Imm, Ty);
313   assert(Cost >= 0 && "TTI should not produce negative costs!");
314   return Cost;
315 }
316
317 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
318                                        const APInt &Imm, Type *Ty) const {
319   int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
320   assert(Cost >= 0 && "TTI should not produce negative costs!");
321   return Cost;
322 }
323
324 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
325                                        const APInt &Imm, Type *Ty) const {
326   int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
327   assert(Cost >= 0 && "TTI should not produce negative costs!");
328   return Cost;
329 }
330
331 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
332   return TTIImpl->getNumberOfRegisters(Vector);
333 }
334
335 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
336   return TTIImpl->getRegisterBitWidth(Vector);
337 }
338
339 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
340   return TTIImpl->getMinVectorRegisterBitWidth();
341 }
342
343 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
344   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
345 }
346
347 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
348   return TTIImpl->getMinimumVF(ElemWidth);
349 }
350
351 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
352     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
353   return TTIImpl->shouldConsiderAddressTypePromotion(
354       I, AllowPromotionWithoutCommonHeader);
355 }
356
357 unsigned TargetTransformInfo::getCacheLineSize() const {
358   return TTIImpl->getCacheLineSize();
359 }
360
361 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
362   const {
363   return TTIImpl->getCacheSize(Level);
364 }
365
366 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
367   CacheLevel Level) const {
368   return TTIImpl->getCacheAssociativity(Level);
369 }
370
371 unsigned TargetTransformInfo::getPrefetchDistance() const {
372   return TTIImpl->getPrefetchDistance();
373 }
374
375 unsigned TargetTransformInfo::getMinPrefetchStride() const {
376   return TTIImpl->getMinPrefetchStride();
377 }
378
379 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
380   return TTIImpl->getMaxPrefetchIterationsAhead();
381 }
382
383 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
384   return TTIImpl->getMaxInterleaveFactor(VF);
385 }
386
387 int TargetTransformInfo::getArithmeticInstrCost(
388     unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
389     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
390     OperandValueProperties Opd2PropInfo,
391     ArrayRef<const Value *> Args) const {
392   int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
393                                              Opd1PropInfo, Opd2PropInfo, Args);
394   assert(Cost >= 0 && "TTI should not produce negative costs!");
395   return Cost;
396 }
397
398 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
399                                         Type *SubTp) const {
400   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
401   assert(Cost >= 0 && "TTI should not produce negative costs!");
402   return Cost;
403 }
404
405 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
406                                  Type *Src, const Instruction *I) const {
407   assert ((I == nullptr || I->getOpcode() == Opcode) &&
408           "Opcode should reflect passed instruction.");
409   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
410   assert(Cost >= 0 && "TTI should not produce negative costs!");
411   return Cost;
412 }
413
414 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
415                                                   VectorType *VecTy,
416                                                   unsigned Index) const {
417   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
418   assert(Cost >= 0 && "TTI should not produce negative costs!");
419   return Cost;
420 }
421
422 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
423   int Cost = TTIImpl->getCFInstrCost(Opcode);
424   assert(Cost >= 0 && "TTI should not produce negative costs!");
425   return Cost;
426 }
427
428 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
429                                  Type *CondTy, const Instruction *I) const {
430   assert ((I == nullptr || I->getOpcode() == Opcode) &&
431           "Opcode should reflect passed instruction.");
432   int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
433   assert(Cost >= 0 && "TTI should not produce negative costs!");
434   return Cost;
435 }
436
437 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
438                                             unsigned Index) const {
439   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
440   assert(Cost >= 0 && "TTI should not produce negative costs!");
441   return Cost;
442 }
443
444 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
445                                          unsigned Alignment,
446                                          unsigned AddressSpace,
447                                          const Instruction *I) const {
448   assert ((I == nullptr || I->getOpcode() == Opcode) &&
449           "Opcode should reflect passed instruction.");
450   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
451   assert(Cost >= 0 && "TTI should not produce negative costs!");
452   return Cost;
453 }
454
455 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
456                                                unsigned Alignment,
457                                                unsigned AddressSpace) const {
458   int Cost =
459       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
460   assert(Cost >= 0 && "TTI should not produce negative costs!");
461   return Cost;
462 }
463
464 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
465                                                 Value *Ptr, bool VariableMask,
466                                                 unsigned Alignment) const {
467   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
468                                              Alignment);
469   assert(Cost >= 0 && "TTI should not produce negative costs!");
470   return Cost;
471 }
472
473 int TargetTransformInfo::getInterleavedMemoryOpCost(
474     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
475     unsigned Alignment, unsigned AddressSpace) const {
476   int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
477                                                  Alignment, AddressSpace);
478   assert(Cost >= 0 && "TTI should not produce negative costs!");
479   return Cost;
480 }
481
482 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
483                                     ArrayRef<Type *> Tys, FastMathFlags FMF,
484                                     unsigned ScalarizationCostPassed) const {
485   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
486                                             ScalarizationCostPassed);
487   assert(Cost >= 0 && "TTI should not produce negative costs!");
488   return Cost;
489 }
490
491 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
492            ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
493   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
494   assert(Cost >= 0 && "TTI should not produce negative costs!");
495   return Cost;
496 }
497
498 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
499                                           ArrayRef<Type *> Tys) const {
500   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
501   assert(Cost >= 0 && "TTI should not produce negative costs!");
502   return Cost;
503 }
504
505 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
506   return TTIImpl->getNumberOfParts(Tp);
507 }
508
509 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
510                                                    ScalarEvolution *SE,
511                                                    const SCEV *Ptr) const {
512   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
513   assert(Cost >= 0 && "TTI should not produce negative costs!");
514   return Cost;
515 }
516
517 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
518                                                     bool IsPairwiseForm) const {
519   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
520   assert(Cost >= 0 && "TTI should not produce negative costs!");
521   return Cost;
522 }
523
524 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
525                                                 bool IsPairwiseForm,
526                                                 bool IsUnsigned) const {
527   int Cost =
528       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
529   assert(Cost >= 0 && "TTI should not produce negative costs!");
530   return Cost;
531 }
532
533 unsigned
534 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
535   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
536 }
537
538 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
539                                              MemIntrinsicInfo &Info) const {
540   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
541 }
542
543 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
544   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
545 }
546
547 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
548     IntrinsicInst *Inst, Type *ExpectedType) const {
549   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
550 }
551
552 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
553                                                      Value *Length,
554                                                      unsigned SrcAlign,
555                                                      unsigned DestAlign) const {
556   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
557                                             DestAlign);
558 }
559
560 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
561     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
562     unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
563   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
564                                              SrcAlign, DestAlign);
565 }
566
567 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
568                                               const Function *Callee) const {
569   return TTIImpl->areInlineCompatible(Caller, Callee);
570 }
571
572 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
573                                              Type *Ty) const {
574   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
575 }
576
577 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
578                                               Type *Ty) const {
579   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
580 }
581
582 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
583   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
584 }
585
586 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
587   return TTIImpl->isLegalToVectorizeLoad(LI);
588 }
589
590 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
591   return TTIImpl->isLegalToVectorizeStore(SI);
592 }
593
594 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
595     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
596   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
597                                               AddrSpace);
598 }
599
600 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
601     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
602   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
603                                                AddrSpace);
604 }
605
606 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
607                                                   unsigned LoadSize,
608                                                   unsigned ChainSizeInBytes,
609                                                   VectorType *VecTy) const {
610   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
611 }
612
613 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
614                                                    unsigned StoreSize,
615                                                    unsigned ChainSizeInBytes,
616                                                    VectorType *VecTy) const {
617   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
618 }
619
620 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
621                                                 Type *Ty, ReductionFlags Flags) const {
622   return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
623 }
624
625 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
626   return TTIImpl->shouldExpandReduction(II);
627 }
628
629 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
630   return TTIImpl->getInstructionLatency(I);
631 }
632
633 static TargetTransformInfo::OperandValueKind
634 getOperandInfo(Value *V, TargetTransformInfo::OperandValueProperties &OpProps) {
635   TargetTransformInfo::OperandValueKind OpInfo =
636       TargetTransformInfo::OK_AnyValue;
637   OpProps = TargetTransformInfo::OP_None;
638
639   if (auto *CI = dyn_cast<ConstantInt>(V)) {
640     if (CI->getValue().isPowerOf2())
641       OpProps = TargetTransformInfo::OP_PowerOf2;
642     return TargetTransformInfo::OK_UniformConstantValue;
643   }
644
645   const Value *Splat = getSplatValue(V);
646
647   // Check for a splat of a constant or for a non uniform vector of constants
648   // and check if the constant(s) are all powers of two.
649   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
650     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
651     if (Splat) {
652       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
653       if (auto *CI = dyn_cast<ConstantInt>(Splat))
654         if (CI->getValue().isPowerOf2())
655           OpProps = TargetTransformInfo::OP_PowerOf2;
656     } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
657       OpProps = TargetTransformInfo::OP_PowerOf2;
658       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
659         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
660           if (CI->getValue().isPowerOf2())
661             continue;
662         OpProps = TargetTransformInfo::OP_None;
663         break;
664       }
665     }
666   }
667
668   // Check for a splat of a uniform value. This is not loop aware, so return
669   // true only for the obviously uniform cases (argument, globalvalue)
670   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
671     OpInfo = TargetTransformInfo::OK_UniformValue;
672
673   return OpInfo;
674 }
675
676 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
677                                      unsigned Level) {
678   // We don't need a shuffle if we just want to have element 0 in position 0 of
679   // the vector.
680   if (!SI && Level == 0 && IsLeft)
681     return true;
682   else if (!SI)
683     return false;
684
685   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
686
687   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
688   // we look at the left or right side.
689   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
690     Mask[i] = val;
691
692   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
693   return Mask == ActualMask;
694 }
695
696 namespace {
697 /// Kind of the reduction data.
698 enum ReductionKind {
699   RK_None,           /// Not a reduction.
700   RK_Arithmetic,     /// Binary reduction data.
701   RK_MinMax,         /// Min/max reduction data.
702   RK_UnsignedMinMax, /// Unsigned min/max reduction data.
703 };
704 /// Contains opcode + LHS/RHS parts of the reduction operations.
705 struct ReductionData {
706   ReductionData() = delete;
707   ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
708       : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
709     assert(Kind != RK_None && "expected binary or min/max reduction only.");
710   }
711   unsigned Opcode = 0;
712   Value *LHS = nullptr;
713   Value *RHS = nullptr;
714   ReductionKind Kind = RK_None;
715   bool hasSameData(ReductionData &RD) const {
716     return Kind == RD.Kind && Opcode == RD.Opcode;
717   }
718 };
719 } // namespace
720
721 static Optional<ReductionData> getReductionData(Instruction *I) {
722   Value *L, *R;
723   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
724     return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
725   if (auto *SI = dyn_cast<SelectInst>(I)) {
726     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
727         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
728         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
729         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
730         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
731         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
732       auto *CI = cast<CmpInst>(SI->getCondition());
733       return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
734     }
735     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
736         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
737       auto *CI = cast<CmpInst>(SI->getCondition());
738       return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
739     }
740   }
741   return llvm::None;
742 }
743
744 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
745                                                    unsigned Level,
746                                                    unsigned NumLevels) {
747   // Match one level of pairwise operations.
748   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
749   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
750   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
751   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
752   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
753   if (!I)
754     return RK_None;
755
756   assert(I->getType()->isVectorTy() && "Expecting a vector type");
757
758   Optional<ReductionData> RD = getReductionData(I);
759   if (!RD)
760     return RK_None;
761
762   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
763   if (!LS && Level)
764     return RK_None;
765   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
766   if (!RS && Level)
767     return RK_None;
768
769   // On level 0 we can omit one shufflevector instruction.
770   if (!Level && !RS && !LS)
771     return RK_None;
772
773   // Shuffle inputs must match.
774   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
775   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
776   Value *NextLevelOp = nullptr;
777   if (NextLevelOpR && NextLevelOpL) {
778     // If we have two shuffles their operands must match.
779     if (NextLevelOpL != NextLevelOpR)
780       return RK_None;
781
782     NextLevelOp = NextLevelOpL;
783   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
784     // On the first level we can omit the shufflevector <0, undef,...>. So the
785     // input to the other shufflevector <1, undef> must match with one of the
786     // inputs to the current binary operation.
787     // Example:
788     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
789     //  %BinOp        = fadd          %NextLevelOpL, %R
790     if (NextLevelOpL && NextLevelOpL != RD->RHS)
791       return RK_None;
792     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
793       return RK_None;
794
795     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
796   } else
797     return RK_None;
798
799   // Check that the next levels binary operation exists and matches with the
800   // current one.
801   if (Level + 1 != NumLevels) {
802     Optional<ReductionData> NextLevelRD =
803         getReductionData(cast<Instruction>(NextLevelOp));
804     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
805       return RK_None;
806   }
807
808   // Shuffle mask for pairwise operation must match.
809   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
810     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
811       return RK_None;
812   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
813     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
814       return RK_None;
815   } else {
816     return RK_None;
817   }
818
819   if (++Level == NumLevels)
820     return RD->Kind;
821
822   // Match next level.
823   return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
824                                        NumLevels);
825 }
826
827 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
828                                             unsigned &Opcode, Type *&Ty) {
829   if (!EnableReduxCost)
830     return RK_None;
831
832   // Need to extract the first element.
833   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
834   unsigned Idx = ~0u;
835   if (CI)
836     Idx = CI->getZExtValue();
837   if (Idx != 0)
838     return RK_None;
839
840   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
841   if (!RdxStart)
842     return RK_None;
843   Optional<ReductionData> RD = getReductionData(RdxStart);
844   if (!RD)
845     return RK_None;
846
847   Type *VecTy = RdxStart->getType();
848   unsigned NumVecElems = VecTy->getVectorNumElements();
849   if (!isPowerOf2_32(NumVecElems))
850     return RK_None;
851
852   // We look for a sequence of shuffle,shuffle,add triples like the following
853   // that builds a pairwise reduction tree.
854   //
855   //  (X0, X1, X2, X3)
856   //   (X0 + X1, X2 + X3, undef, undef)
857   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
858   //
859   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
860   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
861   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
862   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
863   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
864   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
865   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
866   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
867   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
868   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
869   // %r = extractelement <4 x float> %bin.rdx8, i32 0
870   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
871       RK_None)
872     return RK_None;
873
874   Opcode = RD->Opcode;
875   Ty = VecTy;
876
877   return RD->Kind;
878 }
879
880 static std::pair<Value *, ShuffleVectorInst *>
881 getShuffleAndOtherOprd(Value *L, Value *R) {
882   ShuffleVectorInst *S = nullptr;
883
884   if ((S = dyn_cast<ShuffleVectorInst>(L)))
885     return std::make_pair(R, S);
886
887   S = dyn_cast<ShuffleVectorInst>(R);
888   return std::make_pair(L, S);
889 }
890
891 static ReductionKind
892 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
893                               unsigned &Opcode, Type *&Ty) {
894   if (!EnableReduxCost)
895     return RK_None;
896
897   // Need to extract the first element.
898   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
899   unsigned Idx = ~0u;
900   if (CI)
901     Idx = CI->getZExtValue();
902   if (Idx != 0)
903     return RK_None;
904
905   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
906   if (!RdxStart)
907     return RK_None;
908   Optional<ReductionData> RD = getReductionData(RdxStart);
909   if (!RD)
910     return RK_None;
911
912   Type *VecTy = ReduxRoot->getOperand(0)->getType();
913   unsigned NumVecElems = VecTy->getVectorNumElements();
914   if (!isPowerOf2_32(NumVecElems))
915     return RK_None;
916
917   // We look for a sequence of shuffles and adds like the following matching one
918   // fadd, shuffle vector pair at a time.
919   //
920   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
921   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
922   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
923   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
924   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
925   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
926   // %r = extractelement <4 x float> %bin.rdx8, i32 0
927
928   unsigned MaskStart = 1;
929   Instruction *RdxOp = RdxStart;
930   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
931   unsigned NumVecElemsRemain = NumVecElems;
932   while (NumVecElemsRemain - 1) {
933     // Check for the right reduction operation.
934     if (!RdxOp)
935       return RK_None;
936     Optional<ReductionData> RDLevel = getReductionData(RdxOp);
937     if (!RDLevel || !RDLevel->hasSameData(*RD))
938       return RK_None;
939
940     Value *NextRdxOp;
941     ShuffleVectorInst *Shuffle;
942     std::tie(NextRdxOp, Shuffle) =
943         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
944
945     // Check the current reduction operation and the shuffle use the same value.
946     if (Shuffle == nullptr)
947       return RK_None;
948     if (Shuffle->getOperand(0) != NextRdxOp)
949       return RK_None;
950
951     // Check that shuffle masks matches.
952     for (unsigned j = 0; j != MaskStart; ++j)
953       ShuffleMask[j] = MaskStart + j;
954     // Fill the rest of the mask with -1 for undef.
955     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
956
957     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
958     if (ShuffleMask != Mask)
959       return RK_None;
960
961     RdxOp = dyn_cast<Instruction>(NextRdxOp);
962     NumVecElemsRemain /= 2;
963     MaskStart *= 2;
964   }
965
966   Opcode = RD->Opcode;
967   Ty = VecTy;
968   return RD->Kind;
969 }
970
971 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
972   switch (I->getOpcode()) {
973   case Instruction::GetElementPtr:
974     return getUserCost(I);
975
976   case Instruction::Ret:
977   case Instruction::PHI:
978   case Instruction::Br: {
979     return getCFInstrCost(I->getOpcode());
980   }
981   case Instruction::Add:
982   case Instruction::FAdd:
983   case Instruction::Sub:
984   case Instruction::FSub:
985   case Instruction::Mul:
986   case Instruction::FMul:
987   case Instruction::UDiv:
988   case Instruction::SDiv:
989   case Instruction::FDiv:
990   case Instruction::URem:
991   case Instruction::SRem:
992   case Instruction::FRem:
993   case Instruction::Shl:
994   case Instruction::LShr:
995   case Instruction::AShr:
996   case Instruction::And:
997   case Instruction::Or:
998   case Instruction::Xor: {
999     TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1000     TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1001     Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1002     Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1003     SmallVector<const Value *, 2> Operands(I->operand_values());
1004     return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1005                                   Op1VP, Op2VP, Operands);
1006   }
1007   case Instruction::Select: {
1008     const SelectInst *SI = cast<SelectInst>(I);
1009     Type *CondTy = SI->getCondition()->getType();
1010     return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1011   }
1012   case Instruction::ICmp:
1013   case Instruction::FCmp: {
1014     Type *ValTy = I->getOperand(0)->getType();
1015     return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1016   }
1017   case Instruction::Store: {
1018     const StoreInst *SI = cast<StoreInst>(I);
1019     Type *ValTy = SI->getValueOperand()->getType();
1020     return getMemoryOpCost(I->getOpcode(), ValTy,
1021                                 SI->getAlignment(),
1022                                 SI->getPointerAddressSpace(), I);
1023   }
1024   case Instruction::Load: {
1025     const LoadInst *LI = cast<LoadInst>(I);
1026     return getMemoryOpCost(I->getOpcode(), I->getType(),
1027                                 LI->getAlignment(),
1028                                 LI->getPointerAddressSpace(), I);
1029   }
1030   case Instruction::ZExt:
1031   case Instruction::SExt:
1032   case Instruction::FPToUI:
1033   case Instruction::FPToSI:
1034   case Instruction::FPExt:
1035   case Instruction::PtrToInt:
1036   case Instruction::IntToPtr:
1037   case Instruction::SIToFP:
1038   case Instruction::UIToFP:
1039   case Instruction::Trunc:
1040   case Instruction::FPTrunc:
1041   case Instruction::BitCast:
1042   case Instruction::AddrSpaceCast: {
1043     Type *SrcTy = I->getOperand(0)->getType();
1044     return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1045   }
1046   case Instruction::ExtractElement: {
1047     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1048     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1049     unsigned Idx = -1;
1050     if (CI)
1051       Idx = CI->getZExtValue();
1052
1053     // Try to match a reduction sequence (series of shufflevector and vector
1054     // adds followed by a extractelement).
1055     unsigned ReduxOpCode;
1056     Type *ReduxType;
1057
1058     switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1059     case RK_Arithmetic:
1060       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1061                                              /*IsPairwiseForm=*/false);
1062     case RK_MinMax:
1063       return getMinMaxReductionCost(
1064           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1065           /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1066     case RK_UnsignedMinMax:
1067       return getMinMaxReductionCost(
1068           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1069           /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1070     case RK_None:
1071       break;
1072     }
1073
1074     switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1075     case RK_Arithmetic:
1076       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1077                                              /*IsPairwiseForm=*/true);
1078     case RK_MinMax:
1079       return getMinMaxReductionCost(
1080           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1081           /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1082     case RK_UnsignedMinMax:
1083       return getMinMaxReductionCost(
1084           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1085           /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1086     case RK_None:
1087       break;
1088     }
1089
1090     return getVectorInstrCost(I->getOpcode(),
1091                                    EEI->getOperand(0)->getType(), Idx);
1092   }
1093   case Instruction::InsertElement: {
1094     const InsertElementInst * IE = cast<InsertElementInst>(I);
1095     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1096     unsigned Idx = -1;
1097     if (CI)
1098       Idx = CI->getZExtValue();
1099     return getVectorInstrCost(I->getOpcode(),
1100                                    IE->getType(), Idx);
1101   }
1102   case Instruction::ShuffleVector: {
1103     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1104     // TODO: Identify and add costs for insert/extract subvector, etc.
1105     if (Shuffle->changesLength())
1106       return -1;
1107
1108     if (Shuffle->isIdentity())
1109       return 0;
1110
1111     Type *Ty = Shuffle->getType();
1112     if (Shuffle->isReverse())
1113       return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1114
1115     if (Shuffle->isSelect())
1116       return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1117
1118     if (Shuffle->isTranspose())
1119       return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1120
1121     if (Shuffle->isZeroEltSplat())
1122       return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1123
1124     if (Shuffle->isSingleSource())
1125       return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1126
1127     return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1128   }
1129   case Instruction::Call:
1130     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1131       SmallVector<Value *, 4> Args(II->arg_operands());
1132
1133       FastMathFlags FMF;
1134       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1135         FMF = FPMO->getFastMathFlags();
1136
1137       return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1138                                         Args, FMF);
1139     }
1140     return -1;
1141   default:
1142     // We don't have any information on this instruction.
1143     return -1;
1144   }
1145 }
1146
1147 TargetTransformInfo::Concept::~Concept() {}
1148
1149 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1150
1151 TargetIRAnalysis::TargetIRAnalysis(
1152     std::function<Result(const Function &)> TTICallback)
1153     : TTICallback(std::move(TTICallback)) {}
1154
1155 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1156                                                FunctionAnalysisManager &) {
1157   return TTICallback(F);
1158 }
1159
1160 AnalysisKey TargetIRAnalysis::Key;
1161
1162 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1163   return Result(F.getParent()->getDataLayout());
1164 }
1165
1166 // Register the basic pass.
1167 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1168                 "Target Transform Information", false, true)
1169 char TargetTransformInfoWrapperPass::ID = 0;
1170
1171 void TargetTransformInfoWrapperPass::anchor() {}
1172
1173 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1174     : ImmutablePass(ID) {
1175   initializeTargetTransformInfoWrapperPassPass(
1176       *PassRegistry::getPassRegistry());
1177 }
1178
1179 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1180     TargetIRAnalysis TIRA)
1181     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1182   initializeTargetTransformInfoWrapperPassPass(
1183       *PassRegistry::getPassRegistry());
1184 }
1185
1186 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1187   FunctionAnalysisManager DummyFAM;
1188   TTI = TIRA.run(F, DummyFAM);
1189   return *TTI;
1190 }
1191
1192 ImmutablePass *
1193 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1194   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1195 }