]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Analysis / TypeBasedAliasAnalysis.cpp
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = !{ !"an example type tree" }
27 //   !1 = !{ !"int", !0 }
28 //   !2 = !{ !"float", !0 }
29 //   !3 = !{ !"const float", !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a scalar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = !{!"Simple C/C++ TBAA"}
78 // !1 = !{!"omnipotent char", !0} // Scalar type node
79 // !2 = !{!"short", !1}           // Scalar type node
80 // !3 = !{!"A", !2, i64 0}        // Struct type node
81 // !4 = !{!"B", !2, i64 0, !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = !{!4, !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 //===----------------------------------------------------------------------===//
108
109 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
110 #include "llvm/ADT/SetVector.h"
111 #include "llvm/Analysis/AliasAnalysis.h"
112 #include "llvm/Analysis/MemoryLocation.h"
113 #include "llvm/IR/Constants.h"
114 #include "llvm/IR/DerivedTypes.h"
115 #include "llvm/IR/Instruction.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include <cassert>
123 #include <cstdint>
124
125 using namespace llvm;
126
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 // more convenient.
130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
131
132 namespace {
133
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
136 static bool isNewFormatTypeNode(const MDNode *N) {
137   if (N->getNumOperands() < 3)
138     return false;
139   // In the old format the first operand is a string.
140   if (!isa<MDNode>(N->getOperand(0)))
141     return false;
142   return true;
143 }
144
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
147 /// in its operands.
148 template<typename MDNodeTy>
149 class TBAANodeImpl {
150   MDNodeTy *Node = nullptr;
151
152 public:
153   TBAANodeImpl() = default;
154   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
155
156   /// getNode - Get the MDNode for this TBAANode.
157   MDNodeTy *getNode() const { return Node; }
158
159   /// isNewFormat - Return true iff the wrapped type node is in the new
160   /// size-aware format.
161   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
162
163   /// getParent - Get this TBAANode's Alias tree parent.
164   TBAANodeImpl<MDNodeTy> getParent() const {
165     if (isNewFormat())
166       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
167
168     if (Node->getNumOperands() < 2)
169       return TBAANodeImpl<MDNodeTy>();
170     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
171     if (!P)
172       return TBAANodeImpl<MDNodeTy>();
173     // Ok, this node has a valid parent. Return it.
174     return TBAANodeImpl<MDNodeTy>(P);
175   }
176
177   /// Test if this TBAANode represents a type for objects which are
178   /// not modified (by any means) in the context where this
179   /// AliasAnalysis is relevant.
180   bool isTypeImmutable() const {
181     if (Node->getNumOperands() < 3)
182       return false;
183     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
184     if (!CI)
185       return false;
186     return CI->getValue()[0];
187   }
188 };
189
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
191 /// \c MDNode.
192 /// @{
193 using TBAANode = TBAANodeImpl<const MDNode>;
194 using MutableTBAANode = TBAANodeImpl<MDNode>;
195 /// @}
196
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy>
201 class TBAAStructTagNodeImpl {
202   /// This node should be created with createTBAAAccessTag().
203   MDNodeTy *Node;
204
205 public:
206   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
207
208   /// Get the MDNode for this TBAAStructTagNode.
209   MDNodeTy *getNode() const { return Node; }
210
211   /// isNewFormat - Return true iff the wrapped access tag is in the new
212   /// size-aware format.
213   bool isNewFormat() const {
214     if (Node->getNumOperands() < 4)
215       return false;
216     if (MDNodeTy *AccessType = getAccessType())
217       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
218         return false;
219     return true;
220   }
221
222   MDNodeTy *getBaseType() const {
223     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
224   }
225
226   MDNodeTy *getAccessType() const {
227     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
228   }
229
230   uint64_t getOffset() const {
231     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
232   }
233
234   uint64_t getSize() const {
235     if (!isNewFormat())
236       return UINT64_MAX;
237     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
238   }
239
240   /// Test if this TBAAStructTagNode represents a type for objects
241   /// which are not modified (by any means) in the context where this
242   /// AliasAnalysis is relevant.
243   bool isTypeImmutable() const {
244     unsigned OpNo = isNewFormat() ? 4 : 3;
245     if (Node->getNumOperands() < OpNo + 1)
246       return false;
247     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
248     if (!CI)
249       return false;
250     return CI->getValue()[0];
251   }
252 };
253
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
256 /// @{
257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
259 /// @}
260
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode {
265   /// This node should be created with createTBAATypeNode().
266   const MDNode *Node = nullptr;
267
268 public:
269   TBAAStructTypeNode() = default;
270   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
271
272   /// Get the MDNode for this TBAAStructTypeNode.
273   const MDNode *getNode() const { return Node; }
274
275   /// isNewFormat - Return true iff the wrapped type node is in the new
276   /// size-aware format.
277   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
278
279   bool operator==(const TBAAStructTypeNode &Other) const {
280     return getNode() == Other.getNode();
281   }
282
283   /// getId - Return type identifier.
284   Metadata *getId() const {
285     return Node->getOperand(isNewFormat() ? 2 : 0);
286   }
287
288   unsigned getNumFields() const {
289     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
290     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
291     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
292   }
293
294   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
295     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
296     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
297     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
298     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
299     return TBAAStructTypeNode(TypeNode);
300   }
301
302   /// Get this TBAAStructTypeNode's field in the type DAG with
303   /// given offset. Update the offset to be relative to the field type.
304   TBAAStructTypeNode getField(uint64_t &Offset) const {
305     bool NewFormat = isNewFormat();
306     if (NewFormat) {
307       // New-format root and scalar type nodes have no fields.
308       if (Node->getNumOperands() < 6)
309         return TBAAStructTypeNode();
310     } else {
311       // Parent can be omitted for the root node.
312       if (Node->getNumOperands() < 2)
313         return TBAAStructTypeNode();
314
315       // Fast path for a scalar type node and a struct type node with a single
316       // field.
317       if (Node->getNumOperands() <= 3) {
318         uint64_t Cur = Node->getNumOperands() == 2
319                            ? 0
320                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
321                                  ->getZExtValue();
322         Offset -= Cur;
323         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
324         if (!P)
325           return TBAAStructTypeNode();
326         return TBAAStructTypeNode(P);
327       }
328     }
329
330     // Assume the offsets are in order. We return the previous field if
331     // the current offset is bigger than the given offset.
332     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
333     unsigned NumOpsPerField = NewFormat ? 3 : 2;
334     unsigned TheIdx = 0;
335     for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
336          Idx += NumOpsPerField) {
337       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
338                          ->getZExtValue();
339       if (Cur > Offset) {
340         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
341                "TBAAStructTypeNode::getField should have an offset match!");
342         TheIdx = Idx - NumOpsPerField;
343         break;
344       }
345     }
346     // Move along the last field.
347     if (TheIdx == 0)
348       TheIdx = Node->getNumOperands() - NumOpsPerField;
349     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
350                        ->getZExtValue();
351     Offset -= Cur;
352     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
353     if (!P)
354       return TBAAStructTypeNode();
355     return TBAAStructTypeNode(P);
356   }
357 };
358
359 } // end anonymous namespace
360
361 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
362 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
363 /// format.
364 static bool isStructPathTBAA(const MDNode *MD) {
365   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
366   // a TBAA tag.
367   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
368 }
369
370 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
371                                      const MemoryLocation &LocB) {
372   if (!EnableTBAA)
373     return AAResultBase::alias(LocA, LocB);
374
375   // If accesses may alias, chain to the next AliasAnalysis.
376   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
377     return AAResultBase::alias(LocA, LocB);
378
379   // Otherwise return a definitive result.
380   return NoAlias;
381 }
382
383 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
384                                                bool OrLocal) {
385   if (!EnableTBAA)
386     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
387
388   const MDNode *M = Loc.AATags.TBAA;
389   if (!M)
390     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
391
392   // If this is an "immutable" type, we can assume the pointer is pointing
393   // to constant memory.
394   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
395       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
396     return true;
397
398   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
399 }
400
401 FunctionModRefBehavior
402 TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
403   if (!EnableTBAA)
404     return AAResultBase::getModRefBehavior(Call);
405
406   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
407
408   // If this is an "immutable" type, we can assume the call doesn't write
409   // to memory.
410   if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
411     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
412         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
413       Min = FMRB_OnlyReadsMemory;
414
415   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
416 }
417
418 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
419   // Functions don't have metadata. Just chain to the next implementation.
420   return AAResultBase::getModRefBehavior(F);
421 }
422
423 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
424                                             const MemoryLocation &Loc) {
425   if (!EnableTBAA)
426     return AAResultBase::getModRefInfo(Call, Loc);
427
428   if (const MDNode *L = Loc.AATags.TBAA)
429     if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
430       if (!Aliases(L, M))
431         return ModRefInfo::NoModRef;
432
433   return AAResultBase::getModRefInfo(Call, Loc);
434 }
435
436 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
437                                             const CallBase *Call2) {
438   if (!EnableTBAA)
439     return AAResultBase::getModRefInfo(Call1, Call2);
440
441   if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
442     if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
443       if (!Aliases(M1, M2))
444         return ModRefInfo::NoModRef;
445
446   return AAResultBase::getModRefInfo(Call1, Call2);
447 }
448
449 bool MDNode::isTBAAVtableAccess() const {
450   if (!isStructPathTBAA(this)) {
451     if (getNumOperands() < 1)
452       return false;
453     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
454       if (Tag1->getString() == "vtable pointer")
455         return true;
456     }
457     return false;
458   }
459
460   // For struct-path aware TBAA, we use the access type of the tag.
461   TBAAStructTagNode Tag(this);
462   TBAAStructTypeNode AccessType(Tag.getAccessType());
463   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
464     if (Id->getString() == "vtable pointer")
465       return true;
466   return false;
467 }
468
469 static bool matchAccessTags(const MDNode *A, const MDNode *B,
470                             const MDNode **GenericTag = nullptr);
471
472 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
473   const MDNode *GenericTag;
474   matchAccessTags(A, B, &GenericTag);
475   return const_cast<MDNode*>(GenericTag);
476 }
477
478 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
479   if (!A || !B)
480     return nullptr;
481
482   if (A == B)
483     return A;
484
485   SmallSetVector<const MDNode *, 4> PathA;
486   TBAANode TA(A);
487   while (TA.getNode()) {
488     if (PathA.count(TA.getNode()))
489       report_fatal_error("Cycle found in TBAA metadata.");
490     PathA.insert(TA.getNode());
491     TA = TA.getParent();
492   }
493
494   SmallSetVector<const MDNode *, 4> PathB;
495   TBAANode TB(B);
496   while (TB.getNode()) {
497     if (PathB.count(TB.getNode()))
498       report_fatal_error("Cycle found in TBAA metadata.");
499     PathB.insert(TB.getNode());
500     TB = TB.getParent();
501   }
502
503   int IA = PathA.size() - 1;
504   int IB = PathB.size() - 1;
505
506   const MDNode *Ret = nullptr;
507   while (IA >= 0 && IB >= 0) {
508     if (PathA[IA] == PathB[IB])
509       Ret = PathA[IA];
510     else
511       break;
512     --IA;
513     --IB;
514   }
515
516   return Ret;
517 }
518
519 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
520   if (Merge)
521     N.TBAA =
522         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
523   else
524     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
525
526   if (Merge)
527     N.Scope = MDNode::getMostGenericAliasScope(
528         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
529   else
530     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
531
532   if (Merge)
533     N.NoAlias =
534         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
535   else
536     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
537 }
538
539 static const MDNode *createAccessTag(const MDNode *AccessType) {
540   // If there is no access type or the access type is the root node, then
541   // we don't have any useful access tag to return.
542   if (!AccessType || AccessType->getNumOperands() < 2)
543     return nullptr;
544
545   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
546   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
547
548   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
549     // TODO: Take access ranges into account when matching access tags and
550     // fix this code to generate actual access sizes for generic tags.
551     uint64_t AccessSize = UINT64_MAX;
552     auto *SizeNode =
553         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
554     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
555                        const_cast<MDNode*>(AccessType),
556                        OffsetNode, SizeNode};
557     return MDNode::get(AccessType->getContext(), Ops);
558   }
559
560   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
561                      const_cast<MDNode*>(AccessType),
562                      OffsetNode};
563   return MDNode::get(AccessType->getContext(), Ops);
564 }
565
566 static bool hasField(TBAAStructTypeNode BaseType,
567                      TBAAStructTypeNode FieldType) {
568   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
569     TBAAStructTypeNode T = BaseType.getFieldType(I);
570     if (T == FieldType || hasField(T, FieldType))
571       return true;
572   }
573   return false;
574 }
575
576 /// Return true if for two given accesses, one of the accessed objects may be a
577 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
578 /// describe the accesses to the base object and the subobject respectively.
579 /// \p CommonType must be the metadata node describing the common type of the
580 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
581 /// may alias and \p Generic, if not null, points to the most generic access
582 /// tag for the given two.
583 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
584                                      TBAAStructTagNode SubobjectTag,
585                                      const MDNode *CommonType,
586                                      const MDNode **GenericTag,
587                                      bool &MayAlias) {
588   // If the base object is of the least common type, then this may be an access
589   // to its subobject.
590   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
591       BaseTag.getAccessType() == CommonType) {
592     if (GenericTag)
593       *GenericTag = createAccessTag(CommonType);
594     MayAlias = true;
595     return true;
596   }
597
598   // If the access to the base object is through a field of the subobject's
599   // type, then this may be an access to that field. To check for that we start
600   // from the base type, follow the edge with the correct offset in the type DAG
601   // and adjust the offset until we reach the field type or until we reach the
602   // access type.
603   bool NewFormat = BaseTag.isNewFormat();
604   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
605   uint64_t OffsetInBase = BaseTag.getOffset();
606
607   for (;;) {
608     // In the old format there is no distinction between fields and parent
609     // types, so in this case we consider all nodes up to the root.
610     if (!BaseType.getNode()) {
611       assert(!NewFormat && "Did not see access type in access path!");
612       break;
613     }
614
615     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
616       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
617       if (GenericTag) {
618         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
619                                          createAccessTag(CommonType);
620       }
621       MayAlias = SameMemberAccess;
622       return true;
623     }
624
625     // With new-format nodes we stop at the access type.
626     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
627       break;
628
629     // Follow the edge with the correct offset. Offset will be adjusted to
630     // be relative to the field type.
631     BaseType = BaseType.getField(OffsetInBase);
632   }
633
634   // If the base object has a direct or indirect field of the subobject's type,
635   // then this may be an access to that field. We need this to check now that
636   // we support aggregates as access types.
637   if (NewFormat) {
638     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
639     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
640     if (hasField(BaseType, FieldType)) {
641       if (GenericTag)
642         *GenericTag = createAccessTag(CommonType);
643       MayAlias = true;
644       return true;
645     }
646   }
647
648   return false;
649 }
650
651 /// matchTags - Return true if the given couple of accesses are allowed to
652 /// overlap. If \arg GenericTag is not null, then on return it points to the
653 /// most generic access descriptor for the given two.
654 static bool matchAccessTags(const MDNode *A, const MDNode *B,
655                             const MDNode **GenericTag) {
656   if (A == B) {
657     if (GenericTag)
658       *GenericTag = A;
659     return true;
660   }
661
662   // Accesses with no TBAA information may alias with any other accesses.
663   if (!A || !B) {
664     if (GenericTag)
665       *GenericTag = nullptr;
666     return true;
667   }
668
669   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
670   // have taken care of this.
671   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
672   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
673
674   TBAAStructTagNode TagA(A), TagB(B);
675   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
676                                                 TagB.getAccessType());
677
678   // If the final access types have different roots, they're part of different
679   // potentially unrelated type systems, so we must be conservative.
680   if (!CommonType) {
681     if (GenericTag)
682       *GenericTag = nullptr;
683     return true;
684   }
685
686   // If one of the accessed objects may be a subobject of the other, then such
687   // accesses may alias.
688   bool MayAlias;
689   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
690                                CommonType, GenericTag, MayAlias) ||
691       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
692                                CommonType, GenericTag, MayAlias))
693     return MayAlias;
694
695   // Otherwise, we've proved there's no alias.
696   if (GenericTag)
697     *GenericTag = createAccessTag(CommonType);
698   return false;
699 }
700
701 /// Aliases - Test whether the access represented by tag A may alias the
702 /// access represented by tag B.
703 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
704   return matchAccessTags(A, B);
705 }
706
707 AnalysisKey TypeBasedAA::Key;
708
709 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
710   return TypeBasedAAResult();
711 }
712
713 char TypeBasedAAWrapperPass::ID = 0;
714 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
715                 false, true)
716
717 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
718   return new TypeBasedAAWrapperPass();
719 }
720
721 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
722   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
723 }
724
725 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
726   Result.reset(new TypeBasedAAResult());
727   return false;
728 }
729
730 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
731   Result.reset();
732   return false;
733 }
734
735 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
736   AU.setPreservesAll();
737 }