]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/AsmParser/LLParser.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54
55 using namespace llvm;
56
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73
74   return ParseTopLevelEntities() || ValidateEndOfModule() ||
75          ValidateEndOfIndex();
76 }
77
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103
104   return false;
105 }
106
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   if (!M)
124     return false;
125   // Handle any function attribute group forward references.
126   for (const auto &RAG : ForwardRefAttrGroups) {
127     Value *V = RAG.first;
128     const std::vector<unsigned> &Attrs = RAG.second;
129     AttrBuilder B;
130
131     for (const auto &Attr : Attrs)
132       B.merge(NumberedAttrBuilders[Attr]);
133
134     if (Function *Fn = dyn_cast<Function>(V)) {
135       AttributeList AS = Fn->getAttributes();
136       AttrBuilder FnAttrs(AS.getFnAttributes());
137       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138
139       FnAttrs.merge(B);
140
141       // If the alignment was parsed as an attribute, move to the alignment
142       // field.
143       if (FnAttrs.hasAlignmentAttr()) {
144         Fn->setAlignment(FnAttrs.getAlignment());
145         FnAttrs.removeAttribute(Attribute::Alignment);
146       }
147
148       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
149                             AttributeSet::get(Context, FnAttrs));
150       Fn->setAttributes(AS);
151     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152       AttributeList AS = CI->getAttributes();
153       AttrBuilder FnAttrs(AS.getFnAttributes());
154       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
155       FnAttrs.merge(B);
156       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
157                             AttributeSet::get(Context, FnAttrs));
158       CI->setAttributes(AS);
159     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
160       AttributeList AS = II->getAttributes();
161       AttrBuilder FnAttrs(AS.getFnAttributes());
162       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
163       FnAttrs.merge(B);
164       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
165                             AttributeSet::get(Context, FnAttrs));
166       II->setAttributes(AS);
167     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
168       AttrBuilder Attrs(GV->getAttributes());
169       Attrs.merge(B);
170       GV->setAttributes(AttributeSet::get(Context,Attrs));
171     } else {
172       llvm_unreachable("invalid object with forward attribute group reference");
173     }
174   }
175
176   // If there are entries in ForwardRefBlockAddresses at this point, the
177   // function was never defined.
178   if (!ForwardRefBlockAddresses.empty())
179     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
180                  "expected function name in blockaddress");
181
182   for (const auto &NT : NumberedTypes)
183     if (NT.second.second.isValid())
184       return Error(NT.second.second,
185                    "use of undefined type '%" + Twine(NT.first) + "'");
186
187   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
188        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
189     if (I->second.second.isValid())
190       return Error(I->second.second,
191                    "use of undefined type named '" + I->getKey() + "'");
192
193   if (!ForwardRefComdats.empty())
194     return Error(ForwardRefComdats.begin()->second,
195                  "use of undefined comdat '$" +
196                      ForwardRefComdats.begin()->first + "'");
197
198   if (!ForwardRefVals.empty())
199     return Error(ForwardRefVals.begin()->second.second,
200                  "use of undefined value '@" + ForwardRefVals.begin()->first +
201                  "'");
202
203   if (!ForwardRefValIDs.empty())
204     return Error(ForwardRefValIDs.begin()->second.second,
205                  "use of undefined value '@" +
206                  Twine(ForwardRefValIDs.begin()->first) + "'");
207
208   if (!ForwardRefMDNodes.empty())
209     return Error(ForwardRefMDNodes.begin()->second.second,
210                  "use of undefined metadata '!" +
211                  Twine(ForwardRefMDNodes.begin()->first) + "'");
212
213   // Resolve metadata cycles.
214   for (auto &N : NumberedMetadata) {
215     if (N.second && !N.second->isResolved())
216       N.second->resolveCycles();
217   }
218
219   for (auto *Inst : InstsWithTBAATag) {
220     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
221     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
222     auto *UpgradedMD = UpgradeTBAANode(*MD);
223     if (MD != UpgradedMD)
224       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
225   }
226
227   // Look for intrinsic functions and CallInst that need to be upgraded
228   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
229     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230
231   // Some types could be renamed during loading if several modules are
232   // loaded in the same LLVMContext (LTO scenario). In this case we should
233   // remangle intrinsics names as well.
234   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
235     Function *F = &*FI++;
236     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
237       F->replaceAllUsesWith(Remangled.getValue());
238       F->eraseFromParent();
239     }
240   }
241
242   if (UpgradeDebugInfo)
243     llvm::UpgradeDebugInfo(*M);
244
245   UpgradeModuleFlags(*M);
246   UpgradeSectionAttributes(*M);
247
248   if (!Slots)
249     return false;
250   // Initialize the slot mapping.
251   // Because by this point we've parsed and validated everything, we can "steal"
252   // the mapping from LLParser as it doesn't need it anymore.
253   Slots->GlobalValues = std::move(NumberedVals);
254   Slots->MetadataNodes = std::move(NumberedMetadata);
255   for (const auto &I : NamedTypes)
256     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
257   for (const auto &I : NumberedTypes)
258     Slots->Types.insert(std::make_pair(I.first, I.second.first));
259
260   return false;
261 }
262
263 /// Do final validity and sanity checks at the end of the index.
264 bool LLParser::ValidateEndOfIndex() {
265   if (!Index)
266     return false;
267
268   if (!ForwardRefValueInfos.empty())
269     return Error(ForwardRefValueInfos.begin()->second.front().second,
270                  "use of undefined summary '^" +
271                      Twine(ForwardRefValueInfos.begin()->first) + "'");
272
273   if (!ForwardRefAliasees.empty())
274     return Error(ForwardRefAliasees.begin()->second.front().second,
275                  "use of undefined summary '^" +
276                      Twine(ForwardRefAliasees.begin()->first) + "'");
277
278   if (!ForwardRefTypeIds.empty())
279     return Error(ForwardRefTypeIds.begin()->second.front().second,
280                  "use of undefined type id summary '^" +
281                      Twine(ForwardRefTypeIds.begin()->first) + "'");
282
283   return false;
284 }
285
286 //===----------------------------------------------------------------------===//
287 // Top-Level Entities
288 //===----------------------------------------------------------------------===//
289
290 bool LLParser::ParseTopLevelEntities() {
291   // If there is no Module, then parse just the summary index entries.
292   if (!M) {
293     while (true) {
294       switch (Lex.getKind()) {
295       case lltok::Eof:
296         return false;
297       case lltok::SummaryID:
298         if (ParseSummaryEntry())
299           return true;
300         break;
301       case lltok::kw_source_filename:
302         if (ParseSourceFileName())
303           return true;
304         break;
305       default:
306         // Skip everything else
307         Lex.Lex();
308       }
309     }
310   }
311   while (true) {
312     switch (Lex.getKind()) {
313     default:         return TokError("expected top-level entity");
314     case lltok::Eof: return false;
315     case lltok::kw_declare: if (ParseDeclare()) return true; break;
316     case lltok::kw_define:  if (ParseDefine()) return true; break;
317     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
318     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
319     case lltok::kw_source_filename:
320       if (ParseSourceFileName())
321         return true;
322       break;
323     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
324     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
325     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
326     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
327     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
328     case lltok::ComdatVar:  if (parseComdat()) return true; break;
329     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
330     case lltok::SummaryID:
331       if (ParseSummaryEntry())
332         return true;
333       break;
334     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
335     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
336     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
337     case lltok::kw_uselistorder_bb:
338       if (ParseUseListOrderBB())
339         return true;
340       break;
341     }
342   }
343 }
344
345 /// toplevelentity
346 ///   ::= 'module' 'asm' STRINGCONSTANT
347 bool LLParser::ParseModuleAsm() {
348   assert(Lex.getKind() == lltok::kw_module);
349   Lex.Lex();
350
351   std::string AsmStr;
352   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
353       ParseStringConstant(AsmStr)) return true;
354
355   M->appendModuleInlineAsm(AsmStr);
356   return false;
357 }
358
359 /// toplevelentity
360 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
361 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
362 bool LLParser::ParseTargetDefinition() {
363   assert(Lex.getKind() == lltok::kw_target);
364   std::string Str;
365   switch (Lex.Lex()) {
366   default: return TokError("unknown target property");
367   case lltok::kw_triple:
368     Lex.Lex();
369     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
370         ParseStringConstant(Str))
371       return true;
372     M->setTargetTriple(Str);
373     return false;
374   case lltok::kw_datalayout:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
377         ParseStringConstant(Str))
378       return true;
379     if (DataLayoutStr.empty())
380       M->setDataLayout(Str);
381     return false;
382   }
383 }
384
385 /// toplevelentity
386 ///   ::= 'source_filename' '=' STRINGCONSTANT
387 bool LLParser::ParseSourceFileName() {
388   assert(Lex.getKind() == lltok::kw_source_filename);
389   Lex.Lex();
390   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
391       ParseStringConstant(SourceFileName))
392     return true;
393   if (M)
394     M->setSourceFileName(SourceFileName);
395   return false;
396 }
397
398 /// toplevelentity
399 ///   ::= 'deplibs' '=' '[' ']'
400 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
401 /// FIXME: Remove in 4.0. Currently parse, but ignore.
402 bool LLParser::ParseDepLibs() {
403   assert(Lex.getKind() == lltok::kw_deplibs);
404   Lex.Lex();
405   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
406       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
407     return true;
408
409   if (EatIfPresent(lltok::rsquare))
410     return false;
411
412   do {
413     std::string Str;
414     if (ParseStringConstant(Str)) return true;
415   } while (EatIfPresent(lltok::comma));
416
417   return ParseToken(lltok::rsquare, "expected ']' at end of list");
418 }
419
420 /// ParseUnnamedType:
421 ///   ::= LocalVarID '=' 'type' type
422 bool LLParser::ParseUnnamedType() {
423   LocTy TypeLoc = Lex.getLoc();
424   unsigned TypeID = Lex.getUIntVal();
425   Lex.Lex(); // eat LocalVarID;
426
427   if (ParseToken(lltok::equal, "expected '=' after name") ||
428       ParseToken(lltok::kw_type, "expected 'type' after '='"))
429     return true;
430
431   Type *Result = nullptr;
432   if (ParseStructDefinition(TypeLoc, "",
433                             NumberedTypes[TypeID], Result)) return true;
434
435   if (!isa<StructType>(Result)) {
436     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
437     if (Entry.first)
438       return Error(TypeLoc, "non-struct types may not be recursive");
439     Entry.first = Result;
440     Entry.second = SMLoc();
441   }
442
443   return false;
444 }
445
446 /// toplevelentity
447 ///   ::= LocalVar '=' 'type' type
448 bool LLParser::ParseNamedType() {
449   std::string Name = Lex.getStrVal();
450   LocTy NameLoc = Lex.getLoc();
451   Lex.Lex();  // eat LocalVar.
452
453   if (ParseToken(lltok::equal, "expected '=' after name") ||
454       ParseToken(lltok::kw_type, "expected 'type' after name"))
455     return true;
456
457   Type *Result = nullptr;
458   if (ParseStructDefinition(NameLoc, Name,
459                             NamedTypes[Name], Result)) return true;
460
461   if (!isa<StructType>(Result)) {
462     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
463     if (Entry.first)
464       return Error(NameLoc, "non-struct types may not be recursive");
465     Entry.first = Result;
466     Entry.second = SMLoc();
467   }
468
469   return false;
470 }
471
472 /// toplevelentity
473 ///   ::= 'declare' FunctionHeader
474 bool LLParser::ParseDeclare() {
475   assert(Lex.getKind() == lltok::kw_declare);
476   Lex.Lex();
477
478   std::vector<std::pair<unsigned, MDNode *>> MDs;
479   while (Lex.getKind() == lltok::MetadataVar) {
480     unsigned MDK;
481     MDNode *N;
482     if (ParseMetadataAttachment(MDK, N))
483       return true;
484     MDs.push_back({MDK, N});
485   }
486
487   Function *F;
488   if (ParseFunctionHeader(F, false))
489     return true;
490   for (auto &MD : MDs)
491     F->addMetadata(MD.first, *MD.second);
492   return false;
493 }
494
495 /// toplevelentity
496 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
497 bool LLParser::ParseDefine() {
498   assert(Lex.getKind() == lltok::kw_define);
499   Lex.Lex();
500
501   Function *F;
502   return ParseFunctionHeader(F, true) ||
503          ParseOptionalFunctionMetadata(*F) ||
504          ParseFunctionBody(*F);
505 }
506
507 /// ParseGlobalType
508 ///   ::= 'constant'
509 ///   ::= 'global'
510 bool LLParser::ParseGlobalType(bool &IsConstant) {
511   if (Lex.getKind() == lltok::kw_constant)
512     IsConstant = true;
513   else if (Lex.getKind() == lltok::kw_global)
514     IsConstant = false;
515   else {
516     IsConstant = false;
517     return TokError("expected 'global' or 'constant'");
518   }
519   Lex.Lex();
520   return false;
521 }
522
523 bool LLParser::ParseOptionalUnnamedAddr(
524     GlobalVariable::UnnamedAddr &UnnamedAddr) {
525   if (EatIfPresent(lltok::kw_unnamed_addr))
526     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
527   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
528     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
529   else
530     UnnamedAddr = GlobalValue::UnnamedAddr::None;
531   return false;
532 }
533
534 /// ParseUnnamedGlobal:
535 ///   OptionalVisibility (ALIAS | IFUNC) ...
536 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
537 ///   OptionalDLLStorageClass
538 ///                                                     ...   -> global variable
539 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
540 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
541 ///                OptionalDLLStorageClass
542 ///                                                     ...   -> global variable
543 bool LLParser::ParseUnnamedGlobal() {
544   unsigned VarID = NumberedVals.size();
545   std::string Name;
546   LocTy NameLoc = Lex.getLoc();
547
548   // Handle the GlobalID form.
549   if (Lex.getKind() == lltok::GlobalID) {
550     if (Lex.getUIntVal() != VarID)
551       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
552                    Twine(VarID) + "'");
553     Lex.Lex(); // eat GlobalID;
554
555     if (ParseToken(lltok::equal, "expected '=' after name"))
556       return true;
557   }
558
559   bool HasLinkage;
560   unsigned Linkage, Visibility, DLLStorageClass;
561   bool DSOLocal;
562   GlobalVariable::ThreadLocalMode TLM;
563   GlobalVariable::UnnamedAddr UnnamedAddr;
564   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
565                            DSOLocal) ||
566       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
567     return true;
568
569   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
570     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
571                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572
573   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
574                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
575 }
576
577 /// ParseNamedGlobal:
578 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
579 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
580 ///                 OptionalVisibility OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::ParseNamedGlobal() {
583   assert(Lex.getKind() == lltok::GlobalVar);
584   LocTy NameLoc = Lex.getLoc();
585   std::string Name = Lex.getStrVal();
586   Lex.Lex();
587
588   bool HasLinkage;
589   unsigned Linkage, Visibility, DLLStorageClass;
590   bool DSOLocal;
591   GlobalVariable::ThreadLocalMode TLM;
592   GlobalVariable::UnnamedAddr UnnamedAddr;
593   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
594       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
595                            DSOLocal) ||
596       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
597     return true;
598
599   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
600     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
601                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602
603   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
604                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
605 }
606
607 bool LLParser::parseComdat() {
608   assert(Lex.getKind() == lltok::ComdatVar);
609   std::string Name = Lex.getStrVal();
610   LocTy NameLoc = Lex.getLoc();
611   Lex.Lex();
612
613   if (ParseToken(lltok::equal, "expected '=' here"))
614     return true;
615
616   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
617     return TokError("expected comdat type");
618
619   Comdat::SelectionKind SK;
620   switch (Lex.getKind()) {
621   default:
622     return TokError("unknown selection kind");
623   case lltok::kw_any:
624     SK = Comdat::Any;
625     break;
626   case lltok::kw_exactmatch:
627     SK = Comdat::ExactMatch;
628     break;
629   case lltok::kw_largest:
630     SK = Comdat::Largest;
631     break;
632   case lltok::kw_noduplicates:
633     SK = Comdat::NoDuplicates;
634     break;
635   case lltok::kw_samesize:
636     SK = Comdat::SameSize;
637     break;
638   }
639   Lex.Lex();
640
641   // See if the comdat was forward referenced, if so, use the comdat.
642   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
643   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
644   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
645     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646
647   Comdat *C;
648   if (I != ComdatSymTab.end())
649     C = &I->second;
650   else
651     C = M->getOrInsertComdat(Name);
652   C->setSelectionKind(SK);
653
654   return false;
655 }
656
657 // MDString:
658 //   ::= '!' STRINGCONSTANT
659 bool LLParser::ParseMDString(MDString *&Result) {
660   std::string Str;
661   if (ParseStringConstant(Str)) return true;
662   Result = MDString::get(Context, Str);
663   return false;
664 }
665
666 // MDNode:
667 //   ::= '!' MDNodeNumber
668 bool LLParser::ParseMDNodeID(MDNode *&Result) {
669   // !{ ..., !42, ... }
670   LocTy IDLoc = Lex.getLoc();
671   unsigned MID = 0;
672   if (ParseUInt32(MID))
673     return true;
674
675   // If not a forward reference, just return it now.
676   if (NumberedMetadata.count(MID)) {
677     Result = NumberedMetadata[MID];
678     return false;
679   }
680
681   // Otherwise, create MDNode forward reference.
682   auto &FwdRef = ForwardRefMDNodes[MID];
683   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684
685   Result = FwdRef.first.get();
686   NumberedMetadata[MID].reset(Result);
687   return false;
688 }
689
690 /// ParseNamedMetadata:
691 ///   !foo = !{ !1, !2 }
692 bool LLParser::ParseNamedMetadata() {
693   assert(Lex.getKind() == lltok::MetadataVar);
694   std::string Name = Lex.getStrVal();
695   Lex.Lex();
696
697   if (ParseToken(lltok::equal, "expected '=' here") ||
698       ParseToken(lltok::exclaim, "Expected '!' here") ||
699       ParseToken(lltok::lbrace, "Expected '{' here"))
700     return true;
701
702   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
703   if (Lex.getKind() != lltok::rbrace)
704     do {
705       MDNode *N = nullptr;
706       // Parse DIExpressions inline as a special case. They are still MDNodes,
707       // so they can still appear in named metadata. Remove this logic if they
708       // become plain Metadata.
709       if (Lex.getKind() == lltok::MetadataVar &&
710           Lex.getStrVal() == "DIExpression") {
711         if (ParseDIExpression(N, /*IsDistinct=*/false))
712           return true;
713       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
714                  ParseMDNodeID(N)) {
715         return true;
716       }
717       NMD->addOperand(N);
718     } while (EatIfPresent(lltok::comma));
719
720   return ParseToken(lltok::rbrace, "expected end of metadata node");
721 }
722
723 /// ParseStandaloneMetadata:
724 ///   !42 = !{...}
725 bool LLParser::ParseStandaloneMetadata() {
726   assert(Lex.getKind() == lltok::exclaim);
727   Lex.Lex();
728   unsigned MetadataID = 0;
729
730   MDNode *Init;
731   if (ParseUInt32(MetadataID) ||
732       ParseToken(lltok::equal, "expected '=' here"))
733     return true;
734
735   // Detect common error, from old metadata syntax.
736   if (Lex.getKind() == lltok::Type)
737     return TokError("unexpected type in metadata definition");
738
739   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
740   if (Lex.getKind() == lltok::MetadataVar) {
741     if (ParseSpecializedMDNode(Init, IsDistinct))
742       return true;
743   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
744              ParseMDTuple(Init, IsDistinct))
745     return true;
746
747   // See if this was forward referenced, if so, handle it.
748   auto FI = ForwardRefMDNodes.find(MetadataID);
749   if (FI != ForwardRefMDNodes.end()) {
750     FI->second.first->replaceAllUsesWith(Init);
751     ForwardRefMDNodes.erase(FI);
752
753     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
754   } else {
755     if (NumberedMetadata.count(MetadataID))
756       return TokError("Metadata id is already used");
757     NumberedMetadata[MetadataID].reset(Init);
758   }
759
760   return false;
761 }
762
763 // Skips a single module summary entry.
764 bool LLParser::SkipModuleSummaryEntry() {
765   // Each module summary entry consists of a tag for the entry
766   // type, followed by a colon, then the fields surrounded by nested sets of
767   // parentheses. The "tag:" looks like a Label. Once parsing support is
768   // in place we will look for the tokens corresponding to the expected tags.
769   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
770       Lex.getKind() != lltok::kw_typeid)
771     return TokError(
772         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
773   Lex.Lex();
774   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
775       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
776     return true;
777   // Now walk through the parenthesized entry, until the number of open
778   // parentheses goes back down to 0 (the first '(' was parsed above).
779   unsigned NumOpenParen = 1;
780   do {
781     switch (Lex.getKind()) {
782     case lltok::lparen:
783       NumOpenParen++;
784       break;
785     case lltok::rparen:
786       NumOpenParen--;
787       break;
788     case lltok::Eof:
789       return TokError("found end of file while parsing summary entry");
790     default:
791       // Skip everything in between parentheses.
792       break;
793     }
794     Lex.Lex();
795   } while (NumOpenParen > 0);
796   return false;
797 }
798
799 /// SummaryEntry
800 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
801 bool LLParser::ParseSummaryEntry() {
802   assert(Lex.getKind() == lltok::SummaryID);
803   unsigned SummaryID = Lex.getUIntVal();
804
805   // For summary entries, colons should be treated as distinct tokens,
806   // not an indication of the end of a label token.
807   Lex.setIgnoreColonInIdentifiers(true);
808
809   Lex.Lex();
810   if (ParseToken(lltok::equal, "expected '=' here"))
811     return true;
812
813   // If we don't have an index object, skip the summary entry.
814   if (!Index)
815     return SkipModuleSummaryEntry();
816
817   switch (Lex.getKind()) {
818   case lltok::kw_gv:
819     return ParseGVEntry(SummaryID);
820   case lltok::kw_module:
821     return ParseModuleEntry(SummaryID);
822   case lltok::kw_typeid:
823     return ParseTypeIdEntry(SummaryID);
824     break;
825   default:
826     return Error(Lex.getLoc(), "unexpected summary kind");
827   }
828   Lex.setIgnoreColonInIdentifiers(false);
829   return false;
830 }
831
832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
833   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
834          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
835 }
836
837 // If there was an explicit dso_local, update GV. In the absence of an explicit
838 // dso_local we keep the default value.
839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
840   if (DSOLocal)
841     GV.setDSOLocal(true);
842 }
843
844 /// parseIndirectSymbol:
845 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
846 ///                     OptionalVisibility OptionalDLLStorageClass
847 ///                     OptionalThreadLocal OptionalUnnamedAddr
848 //                      'alias|ifunc' IndirectSymbol
849 ///
850 /// IndirectSymbol
851 ///   ::= TypeAndValue
852 ///
853 /// Everything through OptionalUnnamedAddr has already been parsed.
854 ///
855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
856                                    unsigned L, unsigned Visibility,
857                                    unsigned DLLStorageClass, bool DSOLocal,
858                                    GlobalVariable::ThreadLocalMode TLM,
859                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
860   bool IsAlias;
861   if (Lex.getKind() == lltok::kw_alias)
862     IsAlias = true;
863   else if (Lex.getKind() == lltok::kw_ifunc)
864     IsAlias = false;
865   else
866     llvm_unreachable("Not an alias or ifunc!");
867   Lex.Lex();
868
869   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
870
871   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
872     return Error(NameLoc, "invalid linkage type for alias");
873
874   if (!isValidVisibilityForLinkage(Visibility, L))
875     return Error(NameLoc,
876                  "symbol with local linkage must have default visibility");
877
878   Type *Ty;
879   LocTy ExplicitTypeLoc = Lex.getLoc();
880   if (ParseType(Ty) ||
881       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
882     return true;
883
884   Constant *Aliasee;
885   LocTy AliaseeLoc = Lex.getLoc();
886   if (Lex.getKind() != lltok::kw_bitcast &&
887       Lex.getKind() != lltok::kw_getelementptr &&
888       Lex.getKind() != lltok::kw_addrspacecast &&
889       Lex.getKind() != lltok::kw_inttoptr) {
890     if (ParseGlobalTypeAndValue(Aliasee))
891       return true;
892   } else {
893     // The bitcast dest type is not present, it is implied by the dest type.
894     ValID ID;
895     if (ParseValID(ID))
896       return true;
897     if (ID.Kind != ValID::t_Constant)
898       return Error(AliaseeLoc, "invalid aliasee");
899     Aliasee = ID.ConstantVal;
900   }
901
902   Type *AliaseeType = Aliasee->getType();
903   auto *PTy = dyn_cast<PointerType>(AliaseeType);
904   if (!PTy)
905     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
906   unsigned AddrSpace = PTy->getAddressSpace();
907
908   if (IsAlias && Ty != PTy->getElementType())
909     return Error(
910         ExplicitTypeLoc,
911         "explicit pointee type doesn't match operand's pointee type");
912
913   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
914     return Error(
915         ExplicitTypeLoc,
916         "explicit pointee type should be a function type");
917
918   GlobalValue *GVal = nullptr;
919
920   // See if the alias was forward referenced, if so, prepare to replace the
921   // forward reference.
922   if (!Name.empty()) {
923     GVal = M->getNamedValue(Name);
924     if (GVal) {
925       if (!ForwardRefVals.erase(Name))
926         return Error(NameLoc, "redefinition of global '@" + Name + "'");
927     }
928   } else {
929     auto I = ForwardRefValIDs.find(NumberedVals.size());
930     if (I != ForwardRefValIDs.end()) {
931       GVal = I->second.first;
932       ForwardRefValIDs.erase(I);
933     }
934   }
935
936   // Okay, create the alias but do not insert it into the module yet.
937   std::unique_ptr<GlobalIndirectSymbol> GA;
938   if (IsAlias)
939     GA.reset(GlobalAlias::create(Ty, AddrSpace,
940                                  (GlobalValue::LinkageTypes)Linkage, Name,
941                                  Aliasee, /*Parent*/ nullptr));
942   else
943     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
944                                  (GlobalValue::LinkageTypes)Linkage, Name,
945                                  Aliasee, /*Parent*/ nullptr));
946   GA->setThreadLocalMode(TLM);
947   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
948   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
949   GA->setUnnamedAddr(UnnamedAddr);
950   maybeSetDSOLocal(DSOLocal, *GA);
951
952   if (Name.empty())
953     NumberedVals.push_back(GA.get());
954
955   if (GVal) {
956     // Verify that types agree.
957     if (GVal->getType() != GA->getType())
958       return Error(
959           ExplicitTypeLoc,
960           "forward reference and definition of alias have different types");
961
962     // If they agree, just RAUW the old value with the alias and remove the
963     // forward ref info.
964     GVal->replaceAllUsesWith(GA.get());
965     GVal->eraseFromParent();
966   }
967
968   // Insert into the module, we know its name won't collide now.
969   if (IsAlias)
970     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
971   else
972     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
973   assert(GA->getName() == Name && "Should not be a name conflict!");
974
975   // The module owns this now
976   GA.release();
977
978   return false;
979 }
980
981 /// ParseGlobal
982 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
983 ///       OptionalVisibility OptionalDLLStorageClass
984 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
985 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
986 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
987 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
988 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
989 ///       Const OptionalAttrs
990 ///
991 /// Everything up to and including OptionalUnnamedAddr has been parsed
992 /// already.
993 ///
994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
995                            unsigned Linkage, bool HasLinkage,
996                            unsigned Visibility, unsigned DLLStorageClass,
997                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
998                            GlobalVariable::UnnamedAddr UnnamedAddr) {
999   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1000     return Error(NameLoc,
1001                  "symbol with local linkage must have default visibility");
1002
1003   unsigned AddrSpace;
1004   bool IsConstant, IsExternallyInitialized;
1005   LocTy IsExternallyInitializedLoc;
1006   LocTy TyLoc;
1007
1008   Type *Ty = nullptr;
1009   if (ParseOptionalAddrSpace(AddrSpace) ||
1010       ParseOptionalToken(lltok::kw_externally_initialized,
1011                          IsExternallyInitialized,
1012                          &IsExternallyInitializedLoc) ||
1013       ParseGlobalType(IsConstant) ||
1014       ParseType(Ty, TyLoc))
1015     return true;
1016
1017   // If the linkage is specified and is external, then no initializer is
1018   // present.
1019   Constant *Init = nullptr;
1020   if (!HasLinkage ||
1021       !GlobalValue::isValidDeclarationLinkage(
1022           (GlobalValue::LinkageTypes)Linkage)) {
1023     if (ParseGlobalValue(Ty, Init))
1024       return true;
1025   }
1026
1027   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1028     return Error(TyLoc, "invalid type for global variable");
1029
1030   GlobalValue *GVal = nullptr;
1031
1032   // See if the global was forward referenced, if so, use the global.
1033   if (!Name.empty()) {
1034     GVal = M->getNamedValue(Name);
1035     if (GVal) {
1036       if (!ForwardRefVals.erase(Name))
1037         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038     }
1039   } else {
1040     auto I = ForwardRefValIDs.find(NumberedVals.size());
1041     if (I != ForwardRefValIDs.end()) {
1042       GVal = I->second.first;
1043       ForwardRefValIDs.erase(I);
1044     }
1045   }
1046
1047   GlobalVariable *GV;
1048   if (!GVal) {
1049     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1050                             Name, nullptr, GlobalVariable::NotThreadLocal,
1051                             AddrSpace);
1052   } else {
1053     if (GVal->getValueType() != Ty)
1054       return Error(TyLoc,
1055             "forward reference and definition of global have different types");
1056
1057     GV = cast<GlobalVariable>(GVal);
1058
1059     // Move the forward-reference to the correct spot in the module.
1060     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1061   }
1062
1063   if (Name.empty())
1064     NumberedVals.push_back(GV);
1065
1066   // Set the parsed properties on the global.
1067   if (Init)
1068     GV->setInitializer(Init);
1069   GV->setConstant(IsConstant);
1070   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1071   maybeSetDSOLocal(DSOLocal, *GV);
1072   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1073   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1074   GV->setExternallyInitialized(IsExternallyInitialized);
1075   GV->setThreadLocalMode(TLM);
1076   GV->setUnnamedAddr(UnnamedAddr);
1077
1078   // Parse attributes on the global.
1079   while (Lex.getKind() == lltok::comma) {
1080     Lex.Lex();
1081
1082     if (Lex.getKind() == lltok::kw_section) {
1083       Lex.Lex();
1084       GV->setSection(Lex.getStrVal());
1085       if (ParseToken(lltok::StringConstant, "expected global section string"))
1086         return true;
1087     } else if (Lex.getKind() == lltok::kw_align) {
1088       unsigned Alignment;
1089       if (ParseOptionalAlignment(Alignment)) return true;
1090       GV->setAlignment(Alignment);
1091     } else if (Lex.getKind() == lltok::MetadataVar) {
1092       if (ParseGlobalObjectMetadataAttachment(*GV))
1093         return true;
1094     } else {
1095       Comdat *C;
1096       if (parseOptionalComdat(Name, C))
1097         return true;
1098       if (C)
1099         GV->setComdat(C);
1100       else
1101         return TokError("unknown global variable property!");
1102     }
1103   }
1104
1105   AttrBuilder Attrs;
1106   LocTy BuiltinLoc;
1107   std::vector<unsigned> FwdRefAttrGrps;
1108   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1109     return true;
1110   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1111     GV->setAttributes(AttributeSet::get(Context, Attrs));
1112     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1113   }
1114
1115   return false;
1116 }
1117
1118 /// ParseUnnamedAttrGrp
1119 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1120 bool LLParser::ParseUnnamedAttrGrp() {
1121   assert(Lex.getKind() == lltok::kw_attributes);
1122   LocTy AttrGrpLoc = Lex.getLoc();
1123   Lex.Lex();
1124
1125   if (Lex.getKind() != lltok::AttrGrpID)
1126     return TokError("expected attribute group id");
1127
1128   unsigned VarID = Lex.getUIntVal();
1129   std::vector<unsigned> unused;
1130   LocTy BuiltinLoc;
1131   Lex.Lex();
1132
1133   if (ParseToken(lltok::equal, "expected '=' here") ||
1134       ParseToken(lltok::lbrace, "expected '{' here") ||
1135       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1136                                  BuiltinLoc) ||
1137       ParseToken(lltok::rbrace, "expected end of attribute group"))
1138     return true;
1139
1140   if (!NumberedAttrBuilders[VarID].hasAttributes())
1141     return Error(AttrGrpLoc, "attribute group has no attributes");
1142
1143   return false;
1144 }
1145
1146 /// ParseFnAttributeValuePairs
1147 ///   ::= <attr> | <attr> '=' <value>
1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1149                                           std::vector<unsigned> &FwdRefAttrGrps,
1150                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1151   bool HaveError = false;
1152
1153   B.clear();
1154
1155   while (true) {
1156     lltok::Kind Token = Lex.getKind();
1157     if (Token == lltok::kw_builtin)
1158       BuiltinLoc = Lex.getLoc();
1159     switch (Token) {
1160     default:
1161       if (!inAttrGrp) return HaveError;
1162       return Error(Lex.getLoc(), "unterminated attribute group");
1163     case lltok::rbrace:
1164       // Finished.
1165       return false;
1166
1167     case lltok::AttrGrpID: {
1168       // Allow a function to reference an attribute group:
1169       //
1170       //   define void @foo() #1 { ... }
1171       if (inAttrGrp)
1172         HaveError |=
1173           Error(Lex.getLoc(),
1174               "cannot have an attribute group reference in an attribute group");
1175
1176       unsigned AttrGrpNum = Lex.getUIntVal();
1177       if (inAttrGrp) break;
1178
1179       // Save the reference to the attribute group. We'll fill it in later.
1180       FwdRefAttrGrps.push_back(AttrGrpNum);
1181       break;
1182     }
1183     // Target-dependent attributes:
1184     case lltok::StringConstant: {
1185       if (ParseStringAttribute(B))
1186         return true;
1187       continue;
1188     }
1189
1190     // Target-independent attributes:
1191     case lltok::kw_align: {
1192       // As a hack, we allow function alignment to be initially parsed as an
1193       // attribute on a function declaration/definition or added to an attribute
1194       // group and later moved to the alignment field.
1195       unsigned Alignment;
1196       if (inAttrGrp) {
1197         Lex.Lex();
1198         if (ParseToken(lltok::equal, "expected '=' here") ||
1199             ParseUInt32(Alignment))
1200           return true;
1201       } else {
1202         if (ParseOptionalAlignment(Alignment))
1203           return true;
1204       }
1205       B.addAlignmentAttr(Alignment);
1206       continue;
1207     }
1208     case lltok::kw_alignstack: {
1209       unsigned Alignment;
1210       if (inAttrGrp) {
1211         Lex.Lex();
1212         if (ParseToken(lltok::equal, "expected '=' here") ||
1213             ParseUInt32(Alignment))
1214           return true;
1215       } else {
1216         if (ParseOptionalStackAlignment(Alignment))
1217           return true;
1218       }
1219       B.addStackAlignmentAttr(Alignment);
1220       continue;
1221     }
1222     case lltok::kw_allocsize: {
1223       unsigned ElemSizeArg;
1224       Optional<unsigned> NumElemsArg;
1225       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1226       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1227         return true;
1228       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1229       continue;
1230     }
1231     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1232     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1233     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1234     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1235     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1236     case lltok::kw_inaccessiblememonly:
1237       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1238     case lltok::kw_inaccessiblemem_or_argmemonly:
1239       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1240     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1241     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1242     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1243     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1244     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1245     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1246     case lltok::kw_noimplicitfloat:
1247       B.addAttribute(Attribute::NoImplicitFloat); break;
1248     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1249     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1250     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1251     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1252     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1253     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1254     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1255     case lltok::kw_optforfuzzing:
1256       B.addAttribute(Attribute::OptForFuzzing); break;
1257     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1258     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1259     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1260     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1261     case lltok::kw_returns_twice:
1262       B.addAttribute(Attribute::ReturnsTwice); break;
1263     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1264     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1265     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1266     case lltok::kw_sspstrong:
1267       B.addAttribute(Attribute::StackProtectStrong); break;
1268     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1269     case lltok::kw_shadowcallstack:
1270       B.addAttribute(Attribute::ShadowCallStack); break;
1271     case lltok::kw_sanitize_address:
1272       B.addAttribute(Attribute::SanitizeAddress); break;
1273     case lltok::kw_sanitize_hwaddress:
1274       B.addAttribute(Attribute::SanitizeHWAddress); break;
1275     case lltok::kw_sanitize_thread:
1276       B.addAttribute(Attribute::SanitizeThread); break;
1277     case lltok::kw_sanitize_memory:
1278       B.addAttribute(Attribute::SanitizeMemory); break;
1279     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1280     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1281     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1282
1283     // Error handling.
1284     case lltok::kw_inreg:
1285     case lltok::kw_signext:
1286     case lltok::kw_zeroext:
1287       HaveError |=
1288         Error(Lex.getLoc(),
1289               "invalid use of attribute on a function");
1290       break;
1291     case lltok::kw_byval:
1292     case lltok::kw_dereferenceable:
1293     case lltok::kw_dereferenceable_or_null:
1294     case lltok::kw_inalloca:
1295     case lltok::kw_nest:
1296     case lltok::kw_noalias:
1297     case lltok::kw_nocapture:
1298     case lltok::kw_nonnull:
1299     case lltok::kw_returned:
1300     case lltok::kw_sret:
1301     case lltok::kw_swifterror:
1302     case lltok::kw_swiftself:
1303       HaveError |=
1304         Error(Lex.getLoc(),
1305               "invalid use of parameter-only attribute on a function");
1306       break;
1307     }
1308
1309     Lex.Lex();
1310   }
1311 }
1312
1313 //===----------------------------------------------------------------------===//
1314 // GlobalValue Reference/Resolution Routines.
1315 //===----------------------------------------------------------------------===//
1316
1317 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1318                                               const std::string &Name) {
1319   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1320     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1321   else
1322     return new GlobalVariable(*M, PTy->getElementType(), false,
1323                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1324                               nullptr, GlobalVariable::NotThreadLocal,
1325                               PTy->getAddressSpace());
1326 }
1327
1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1329 /// forward reference record if needed.  This can return null if the value
1330 /// exists but does not have the right type.
1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1332                                     LocTy Loc) {
1333   PointerType *PTy = dyn_cast<PointerType>(Ty);
1334   if (!PTy) {
1335     Error(Loc, "global variable reference must have pointer type");
1336     return nullptr;
1337   }
1338
1339   // Look this name up in the normal function symbol table.
1340   GlobalValue *Val =
1341     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1342
1343   // If this is a forward reference for the value, see if we already created a
1344   // forward ref record.
1345   if (!Val) {
1346     auto I = ForwardRefVals.find(Name);
1347     if (I != ForwardRefVals.end())
1348       Val = I->second.first;
1349   }
1350
1351   // If we have the value in the symbol table or fwd-ref table, return it.
1352   if (Val) {
1353     if (Val->getType() == Ty) return Val;
1354     Error(Loc, "'@" + Name + "' defined with type '" +
1355           getTypeString(Val->getType()) + "'");
1356     return nullptr;
1357   }
1358
1359   // Otherwise, create a new forward reference for this value and remember it.
1360   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1361   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1362   return FwdVal;
1363 }
1364
1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1366   PointerType *PTy = dyn_cast<PointerType>(Ty);
1367   if (!PTy) {
1368     Error(Loc, "global variable reference must have pointer type");
1369     return nullptr;
1370   }
1371
1372   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1373
1374   // If this is a forward reference for the value, see if we already created a
1375   // forward ref record.
1376   if (!Val) {
1377     auto I = ForwardRefValIDs.find(ID);
1378     if (I != ForwardRefValIDs.end())
1379       Val = I->second.first;
1380   }
1381
1382   // If we have the value in the symbol table or fwd-ref table, return it.
1383   if (Val) {
1384     if (Val->getType() == Ty) return Val;
1385     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1386           getTypeString(Val->getType()) + "'");
1387     return nullptr;
1388   }
1389
1390   // Otherwise, create a new forward reference for this value and remember it.
1391   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1392   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1393   return FwdVal;
1394 }
1395
1396 //===----------------------------------------------------------------------===//
1397 // Comdat Reference/Resolution Routines.
1398 //===----------------------------------------------------------------------===//
1399
1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1401   // Look this name up in the comdat symbol table.
1402   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1403   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1404   if (I != ComdatSymTab.end())
1405     return &I->second;
1406
1407   // Otherwise, create a new forward reference for this value and remember it.
1408   Comdat *C = M->getOrInsertComdat(Name);
1409   ForwardRefComdats[Name] = Loc;
1410   return C;
1411 }
1412
1413 //===----------------------------------------------------------------------===//
1414 // Helper Routines.
1415 //===----------------------------------------------------------------------===//
1416
1417 /// ParseToken - If the current token has the specified kind, eat it and return
1418 /// success.  Otherwise, emit the specified error and return failure.
1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1420   if (Lex.getKind() != T)
1421     return TokError(ErrMsg);
1422   Lex.Lex();
1423   return false;
1424 }
1425
1426 /// ParseStringConstant
1427 ///   ::= StringConstant
1428 bool LLParser::ParseStringConstant(std::string &Result) {
1429   if (Lex.getKind() != lltok::StringConstant)
1430     return TokError("expected string constant");
1431   Result = Lex.getStrVal();
1432   Lex.Lex();
1433   return false;
1434 }
1435
1436 /// ParseUInt32
1437 ///   ::= uint32
1438 bool LLParser::ParseUInt32(uint32_t &Val) {
1439   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1440     return TokError("expected integer");
1441   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1442   if (Val64 != unsigned(Val64))
1443     return TokError("expected 32-bit integer (too large)");
1444   Val = Val64;
1445   Lex.Lex();
1446   return false;
1447 }
1448
1449 /// ParseUInt64
1450 ///   ::= uint64
1451 bool LLParser::ParseUInt64(uint64_t &Val) {
1452   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1453     return TokError("expected integer");
1454   Val = Lex.getAPSIntVal().getLimitedValue();
1455   Lex.Lex();
1456   return false;
1457 }
1458
1459 /// ParseTLSModel
1460 ///   := 'localdynamic'
1461 ///   := 'initialexec'
1462 ///   := 'localexec'
1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1464   switch (Lex.getKind()) {
1465     default:
1466       return TokError("expected localdynamic, initialexec or localexec");
1467     case lltok::kw_localdynamic:
1468       TLM = GlobalVariable::LocalDynamicTLSModel;
1469       break;
1470     case lltok::kw_initialexec:
1471       TLM = GlobalVariable::InitialExecTLSModel;
1472       break;
1473     case lltok::kw_localexec:
1474       TLM = GlobalVariable::LocalExecTLSModel;
1475       break;
1476   }
1477
1478   Lex.Lex();
1479   return false;
1480 }
1481
1482 /// ParseOptionalThreadLocal
1483 ///   := /*empty*/
1484 ///   := 'thread_local'
1485 ///   := 'thread_local' '(' tlsmodel ')'
1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1487   TLM = GlobalVariable::NotThreadLocal;
1488   if (!EatIfPresent(lltok::kw_thread_local))
1489     return false;
1490
1491   TLM = GlobalVariable::GeneralDynamicTLSModel;
1492   if (Lex.getKind() == lltok::lparen) {
1493     Lex.Lex();
1494     return ParseTLSModel(TLM) ||
1495       ParseToken(lltok::rparen, "expected ')' after thread local model");
1496   }
1497   return false;
1498 }
1499
1500 /// ParseOptionalAddrSpace
1501 ///   := /*empty*/
1502 ///   := 'addrspace' '(' uint32 ')'
1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1504   AddrSpace = 0;
1505   if (!EatIfPresent(lltok::kw_addrspace))
1506     return false;
1507   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1508          ParseUInt32(AddrSpace) ||
1509          ParseToken(lltok::rparen, "expected ')' in address space");
1510 }
1511
1512 /// ParseStringAttribute
1513 ///   := StringConstant
1514 ///   := StringConstant '=' StringConstant
1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1516   std::string Attr = Lex.getStrVal();
1517   Lex.Lex();
1518   std::string Val;
1519   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1520     return true;
1521   B.addAttribute(Attr, Val);
1522   return false;
1523 }
1524
1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1527   bool HaveError = false;
1528
1529   B.clear();
1530
1531   while (true) {
1532     lltok::Kind Token = Lex.getKind();
1533     switch (Token) {
1534     default:  // End of attributes.
1535       return HaveError;
1536     case lltok::StringConstant: {
1537       if (ParseStringAttribute(B))
1538         return true;
1539       continue;
1540     }
1541     case lltok::kw_align: {
1542       unsigned Alignment;
1543       if (ParseOptionalAlignment(Alignment))
1544         return true;
1545       B.addAlignmentAttr(Alignment);
1546       continue;
1547     }
1548     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1549     case lltok::kw_dereferenceable: {
1550       uint64_t Bytes;
1551       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1552         return true;
1553       B.addDereferenceableAttr(Bytes);
1554       continue;
1555     }
1556     case lltok::kw_dereferenceable_or_null: {
1557       uint64_t Bytes;
1558       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1559         return true;
1560       B.addDereferenceableOrNullAttr(Bytes);
1561       continue;
1562     }
1563     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1564     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1565     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1566     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1567     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1568     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1569     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1570     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1571     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1572     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1573     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1574     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1575     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1576     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1577     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1578
1579     case lltok::kw_alignstack:
1580     case lltok::kw_alwaysinline:
1581     case lltok::kw_argmemonly:
1582     case lltok::kw_builtin:
1583     case lltok::kw_inlinehint:
1584     case lltok::kw_jumptable:
1585     case lltok::kw_minsize:
1586     case lltok::kw_naked:
1587     case lltok::kw_nobuiltin:
1588     case lltok::kw_noduplicate:
1589     case lltok::kw_noimplicitfloat:
1590     case lltok::kw_noinline:
1591     case lltok::kw_nonlazybind:
1592     case lltok::kw_noredzone:
1593     case lltok::kw_noreturn:
1594     case lltok::kw_nocf_check:
1595     case lltok::kw_nounwind:
1596     case lltok::kw_optforfuzzing:
1597     case lltok::kw_optnone:
1598     case lltok::kw_optsize:
1599     case lltok::kw_returns_twice:
1600     case lltok::kw_sanitize_address:
1601     case lltok::kw_sanitize_hwaddress:
1602     case lltok::kw_sanitize_memory:
1603     case lltok::kw_sanitize_thread:
1604     case lltok::kw_ssp:
1605     case lltok::kw_sspreq:
1606     case lltok::kw_sspstrong:
1607     case lltok::kw_safestack:
1608     case lltok::kw_shadowcallstack:
1609     case lltok::kw_strictfp:
1610     case lltok::kw_uwtable:
1611       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1612       break;
1613     }
1614
1615     Lex.Lex();
1616   }
1617 }
1618
1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1621   bool HaveError = false;
1622
1623   B.clear();
1624
1625   while (true) {
1626     lltok::Kind Token = Lex.getKind();
1627     switch (Token) {
1628     default:  // End of attributes.
1629       return HaveError;
1630     case lltok::StringConstant: {
1631       if (ParseStringAttribute(B))
1632         return true;
1633       continue;
1634     }
1635     case lltok::kw_dereferenceable: {
1636       uint64_t Bytes;
1637       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1638         return true;
1639       B.addDereferenceableAttr(Bytes);
1640       continue;
1641     }
1642     case lltok::kw_dereferenceable_or_null: {
1643       uint64_t Bytes;
1644       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1645         return true;
1646       B.addDereferenceableOrNullAttr(Bytes);
1647       continue;
1648     }
1649     case lltok::kw_align: {
1650       unsigned Alignment;
1651       if (ParseOptionalAlignment(Alignment))
1652         return true;
1653       B.addAlignmentAttr(Alignment);
1654       continue;
1655     }
1656     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1657     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1658     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1659     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1660     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1661
1662     // Error handling.
1663     case lltok::kw_byval:
1664     case lltok::kw_inalloca:
1665     case lltok::kw_nest:
1666     case lltok::kw_nocapture:
1667     case lltok::kw_returned:
1668     case lltok::kw_sret:
1669     case lltok::kw_swifterror:
1670     case lltok::kw_swiftself:
1671       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1672       break;
1673
1674     case lltok::kw_alignstack:
1675     case lltok::kw_alwaysinline:
1676     case lltok::kw_argmemonly:
1677     case lltok::kw_builtin:
1678     case lltok::kw_cold:
1679     case lltok::kw_inlinehint:
1680     case lltok::kw_jumptable:
1681     case lltok::kw_minsize:
1682     case lltok::kw_naked:
1683     case lltok::kw_nobuiltin:
1684     case lltok::kw_noduplicate:
1685     case lltok::kw_noimplicitfloat:
1686     case lltok::kw_noinline:
1687     case lltok::kw_nonlazybind:
1688     case lltok::kw_noredzone:
1689     case lltok::kw_noreturn:
1690     case lltok::kw_nocf_check:
1691     case lltok::kw_nounwind:
1692     case lltok::kw_optforfuzzing:
1693     case lltok::kw_optnone:
1694     case lltok::kw_optsize:
1695     case lltok::kw_returns_twice:
1696     case lltok::kw_sanitize_address:
1697     case lltok::kw_sanitize_hwaddress:
1698     case lltok::kw_sanitize_memory:
1699     case lltok::kw_sanitize_thread:
1700     case lltok::kw_ssp:
1701     case lltok::kw_sspreq:
1702     case lltok::kw_sspstrong:
1703     case lltok::kw_safestack:
1704     case lltok::kw_shadowcallstack:
1705     case lltok::kw_strictfp:
1706     case lltok::kw_uwtable:
1707       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1708       break;
1709
1710     case lltok::kw_readnone:
1711     case lltok::kw_readonly:
1712       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1713     }
1714
1715     Lex.Lex();
1716   }
1717 }
1718
1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1720   HasLinkage = true;
1721   switch (Kind) {
1722   default:
1723     HasLinkage = false;
1724     return GlobalValue::ExternalLinkage;
1725   case lltok::kw_private:
1726     return GlobalValue::PrivateLinkage;
1727   case lltok::kw_internal:
1728     return GlobalValue::InternalLinkage;
1729   case lltok::kw_weak:
1730     return GlobalValue::WeakAnyLinkage;
1731   case lltok::kw_weak_odr:
1732     return GlobalValue::WeakODRLinkage;
1733   case lltok::kw_linkonce:
1734     return GlobalValue::LinkOnceAnyLinkage;
1735   case lltok::kw_linkonce_odr:
1736     return GlobalValue::LinkOnceODRLinkage;
1737   case lltok::kw_available_externally:
1738     return GlobalValue::AvailableExternallyLinkage;
1739   case lltok::kw_appending:
1740     return GlobalValue::AppendingLinkage;
1741   case lltok::kw_common:
1742     return GlobalValue::CommonLinkage;
1743   case lltok::kw_extern_weak:
1744     return GlobalValue::ExternalWeakLinkage;
1745   case lltok::kw_external:
1746     return GlobalValue::ExternalLinkage;
1747   }
1748 }
1749
1750 /// ParseOptionalLinkage
1751 ///   ::= /*empty*/
1752 ///   ::= 'private'
1753 ///   ::= 'internal'
1754 ///   ::= 'weak'
1755 ///   ::= 'weak_odr'
1756 ///   ::= 'linkonce'
1757 ///   ::= 'linkonce_odr'
1758 ///   ::= 'available_externally'
1759 ///   ::= 'appending'
1760 ///   ::= 'common'
1761 ///   ::= 'extern_weak'
1762 ///   ::= 'external'
1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1764                                     unsigned &Visibility,
1765                                     unsigned &DLLStorageClass,
1766                                     bool &DSOLocal) {
1767   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1768   if (HasLinkage)
1769     Lex.Lex();
1770   ParseOptionalDSOLocal(DSOLocal);
1771   ParseOptionalVisibility(Visibility);
1772   ParseOptionalDLLStorageClass(DLLStorageClass);
1773
1774   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1775     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1776   }
1777
1778   return false;
1779 }
1780
1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1782   switch (Lex.getKind()) {
1783   default:
1784     DSOLocal = false;
1785     break;
1786   case lltok::kw_dso_local:
1787     DSOLocal = true;
1788     Lex.Lex();
1789     break;
1790   case lltok::kw_dso_preemptable:
1791     DSOLocal = false;
1792     Lex.Lex();
1793     break;
1794   }
1795 }
1796
1797 /// ParseOptionalVisibility
1798 ///   ::= /*empty*/
1799 ///   ::= 'default'
1800 ///   ::= 'hidden'
1801 ///   ::= 'protected'
1802 ///
1803 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1804   switch (Lex.getKind()) {
1805   default:
1806     Res = GlobalValue::DefaultVisibility;
1807     return;
1808   case lltok::kw_default:
1809     Res = GlobalValue::DefaultVisibility;
1810     break;
1811   case lltok::kw_hidden:
1812     Res = GlobalValue::HiddenVisibility;
1813     break;
1814   case lltok::kw_protected:
1815     Res = GlobalValue::ProtectedVisibility;
1816     break;
1817   }
1818   Lex.Lex();
1819 }
1820
1821 /// ParseOptionalDLLStorageClass
1822 ///   ::= /*empty*/
1823 ///   ::= 'dllimport'
1824 ///   ::= 'dllexport'
1825 ///
1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1827   switch (Lex.getKind()) {
1828   default:
1829     Res = GlobalValue::DefaultStorageClass;
1830     return;
1831   case lltok::kw_dllimport:
1832     Res = GlobalValue::DLLImportStorageClass;
1833     break;
1834   case lltok::kw_dllexport:
1835     Res = GlobalValue::DLLExportStorageClass;
1836     break;
1837   }
1838   Lex.Lex();
1839 }
1840
1841 /// ParseOptionalCallingConv
1842 ///   ::= /*empty*/
1843 ///   ::= 'ccc'
1844 ///   ::= 'fastcc'
1845 ///   ::= 'intel_ocl_bicc'
1846 ///   ::= 'coldcc'
1847 ///   ::= 'x86_stdcallcc'
1848 ///   ::= 'x86_fastcallcc'
1849 ///   ::= 'x86_thiscallcc'
1850 ///   ::= 'x86_vectorcallcc'
1851 ///   ::= 'arm_apcscc'
1852 ///   ::= 'arm_aapcscc'
1853 ///   ::= 'arm_aapcs_vfpcc'
1854 ///   ::= 'msp430_intrcc'
1855 ///   ::= 'avr_intrcc'
1856 ///   ::= 'avr_signalcc'
1857 ///   ::= 'ptx_kernel'
1858 ///   ::= 'ptx_device'
1859 ///   ::= 'spir_func'
1860 ///   ::= 'spir_kernel'
1861 ///   ::= 'x86_64_sysvcc'
1862 ///   ::= 'win64cc'
1863 ///   ::= 'webkit_jscc'
1864 ///   ::= 'anyregcc'
1865 ///   ::= 'preserve_mostcc'
1866 ///   ::= 'preserve_allcc'
1867 ///   ::= 'ghccc'
1868 ///   ::= 'swiftcc'
1869 ///   ::= 'x86_intrcc'
1870 ///   ::= 'hhvmcc'
1871 ///   ::= 'hhvm_ccc'
1872 ///   ::= 'cxx_fast_tlscc'
1873 ///   ::= 'amdgpu_vs'
1874 ///   ::= 'amdgpu_ls'
1875 ///   ::= 'amdgpu_hs'
1876 ///   ::= 'amdgpu_es'
1877 ///   ::= 'amdgpu_gs'
1878 ///   ::= 'amdgpu_ps'
1879 ///   ::= 'amdgpu_cs'
1880 ///   ::= 'amdgpu_kernel'
1881 ///   ::= 'cc' UINT
1882 ///
1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1884   switch (Lex.getKind()) {
1885   default:                       CC = CallingConv::C; return false;
1886   case lltok::kw_ccc:            CC = CallingConv::C; break;
1887   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1888   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1889   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1890   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1891   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1892   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1893   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1894   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1895   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1896   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1897   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1898   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1899   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1900   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1901   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1902   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1903   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1904   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1905   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1906   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1907   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1908   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1909   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1910   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1911   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1912   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1913   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1914   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1915   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1916   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1917   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1918   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1919   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1920   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1921   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1922   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1923   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1924   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1925   case lltok::kw_cc: {
1926       Lex.Lex();
1927       return ParseUInt32(CC);
1928     }
1929   }
1930
1931   Lex.Lex();
1932   return false;
1933 }
1934
1935 /// ParseMetadataAttachment
1936 ///   ::= !dbg !42
1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1938   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1939
1940   std::string Name = Lex.getStrVal();
1941   Kind = M->getMDKindID(Name);
1942   Lex.Lex();
1943
1944   return ParseMDNode(MD);
1945 }
1946
1947 /// ParseInstructionMetadata
1948 ///   ::= !dbg !42 (',' !dbg !57)*
1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1950   do {
1951     if (Lex.getKind() != lltok::MetadataVar)
1952       return TokError("expected metadata after comma");
1953
1954     unsigned MDK;
1955     MDNode *N;
1956     if (ParseMetadataAttachment(MDK, N))
1957       return true;
1958
1959     Inst.setMetadata(MDK, N);
1960     if (MDK == LLVMContext::MD_tbaa)
1961       InstsWithTBAATag.push_back(&Inst);
1962
1963     // If this is the end of the list, we're done.
1964   } while (EatIfPresent(lltok::comma));
1965   return false;
1966 }
1967
1968 /// ParseGlobalObjectMetadataAttachment
1969 ///   ::= !dbg !57
1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1971   unsigned MDK;
1972   MDNode *N;
1973   if (ParseMetadataAttachment(MDK, N))
1974     return true;
1975
1976   GO.addMetadata(MDK, *N);
1977   return false;
1978 }
1979
1980 /// ParseOptionalFunctionMetadata
1981 ///   ::= (!dbg !57)*
1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1983   while (Lex.getKind() == lltok::MetadataVar)
1984     if (ParseGlobalObjectMetadataAttachment(F))
1985       return true;
1986   return false;
1987 }
1988
1989 /// ParseOptionalAlignment
1990 ///   ::= /* empty */
1991 ///   ::= 'align' 4
1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1993   Alignment = 0;
1994   if (!EatIfPresent(lltok::kw_align))
1995     return false;
1996   LocTy AlignLoc = Lex.getLoc();
1997   if (ParseUInt32(Alignment)) return true;
1998   if (!isPowerOf2_32(Alignment))
1999     return Error(AlignLoc, "alignment is not a power of two");
2000   if (Alignment > Value::MaximumAlignment)
2001     return Error(AlignLoc, "huge alignments are not supported yet");
2002   return false;
2003 }
2004
2005 /// ParseOptionalDerefAttrBytes
2006 ///   ::= /* empty */
2007 ///   ::= AttrKind '(' 4 ')'
2008 ///
2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2011                                            uint64_t &Bytes) {
2012   assert((AttrKind == lltok::kw_dereferenceable ||
2013           AttrKind == lltok::kw_dereferenceable_or_null) &&
2014          "contract!");
2015
2016   Bytes = 0;
2017   if (!EatIfPresent(AttrKind))
2018     return false;
2019   LocTy ParenLoc = Lex.getLoc();
2020   if (!EatIfPresent(lltok::lparen))
2021     return Error(ParenLoc, "expected '('");
2022   LocTy DerefLoc = Lex.getLoc();
2023   if (ParseUInt64(Bytes)) return true;
2024   ParenLoc = Lex.getLoc();
2025   if (!EatIfPresent(lltok::rparen))
2026     return Error(ParenLoc, "expected ')'");
2027   if (!Bytes)
2028     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2029   return false;
2030 }
2031
2032 /// ParseOptionalCommaAlign
2033 ///   ::=
2034 ///   ::= ',' align 4
2035 ///
2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2037 /// end.
2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2039                                        bool &AteExtraComma) {
2040   AteExtraComma = false;
2041   while (EatIfPresent(lltok::comma)) {
2042     // Metadata at the end is an early exit.
2043     if (Lex.getKind() == lltok::MetadataVar) {
2044       AteExtraComma = true;
2045       return false;
2046     }
2047
2048     if (Lex.getKind() != lltok::kw_align)
2049       return Error(Lex.getLoc(), "expected metadata or 'align'");
2050
2051     if (ParseOptionalAlignment(Alignment)) return true;
2052   }
2053
2054   return false;
2055 }
2056
2057 /// ParseOptionalCommaAddrSpace
2058 ///   ::=
2059 ///   ::= ',' addrspace(1)
2060 ///
2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2062 /// end.
2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2064                                            LocTy &Loc,
2065                                            bool &AteExtraComma) {
2066   AteExtraComma = false;
2067   while (EatIfPresent(lltok::comma)) {
2068     // Metadata at the end is an early exit.
2069     if (Lex.getKind() == lltok::MetadataVar) {
2070       AteExtraComma = true;
2071       return false;
2072     }
2073
2074     Loc = Lex.getLoc();
2075     if (Lex.getKind() != lltok::kw_addrspace)
2076       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2077
2078     if (ParseOptionalAddrSpace(AddrSpace))
2079       return true;
2080   }
2081
2082   return false;
2083 }
2084
2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2086                                        Optional<unsigned> &HowManyArg) {
2087   Lex.Lex();
2088
2089   auto StartParen = Lex.getLoc();
2090   if (!EatIfPresent(lltok::lparen))
2091     return Error(StartParen, "expected '('");
2092
2093   if (ParseUInt32(BaseSizeArg))
2094     return true;
2095
2096   if (EatIfPresent(lltok::comma)) {
2097     auto HowManyAt = Lex.getLoc();
2098     unsigned HowMany;
2099     if (ParseUInt32(HowMany))
2100       return true;
2101     if (HowMany == BaseSizeArg)
2102       return Error(HowManyAt,
2103                    "'allocsize' indices can't refer to the same parameter");
2104     HowManyArg = HowMany;
2105   } else
2106     HowManyArg = None;
2107
2108   auto EndParen = Lex.getLoc();
2109   if (!EatIfPresent(lltok::rparen))
2110     return Error(EndParen, "expected ')'");
2111   return false;
2112 }
2113
2114 /// ParseScopeAndOrdering
2115 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2116 ///   else: ::=
2117 ///
2118 /// This sets Scope and Ordering to the parsed values.
2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2120                                      AtomicOrdering &Ordering) {
2121   if (!isAtomic)
2122     return false;
2123
2124   return ParseScope(SSID) || ParseOrdering(Ordering);
2125 }
2126
2127 /// ParseScope
2128 ///   ::= syncscope("singlethread" | "<target scope>")?
2129 ///
2130 /// This sets synchronization scope ID to the ID of the parsed value.
2131 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2132   SSID = SyncScope::System;
2133   if (EatIfPresent(lltok::kw_syncscope)) {
2134     auto StartParenAt = Lex.getLoc();
2135     if (!EatIfPresent(lltok::lparen))
2136       return Error(StartParenAt, "Expected '(' in syncscope");
2137
2138     std::string SSN;
2139     auto SSNAt = Lex.getLoc();
2140     if (ParseStringConstant(SSN))
2141       return Error(SSNAt, "Expected synchronization scope name");
2142
2143     auto EndParenAt = Lex.getLoc();
2144     if (!EatIfPresent(lltok::rparen))
2145       return Error(EndParenAt, "Expected ')' in syncscope");
2146
2147     SSID = Context.getOrInsertSyncScopeID(SSN);
2148   }
2149
2150   return false;
2151 }
2152
2153 /// ParseOrdering
2154 ///   ::= AtomicOrdering
2155 ///
2156 /// This sets Ordering to the parsed value.
2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2158   switch (Lex.getKind()) {
2159   default: return TokError("Expected ordering on atomic instruction");
2160   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2161   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2162   // Not specified yet:
2163   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2164   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2165   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2166   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2167   case lltok::kw_seq_cst:
2168     Ordering = AtomicOrdering::SequentiallyConsistent;
2169     break;
2170   }
2171   Lex.Lex();
2172   return false;
2173 }
2174
2175 /// ParseOptionalStackAlignment
2176 ///   ::= /* empty */
2177 ///   ::= 'alignstack' '(' 4 ')'
2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2179   Alignment = 0;
2180   if (!EatIfPresent(lltok::kw_alignstack))
2181     return false;
2182   LocTy ParenLoc = Lex.getLoc();
2183   if (!EatIfPresent(lltok::lparen))
2184     return Error(ParenLoc, "expected '('");
2185   LocTy AlignLoc = Lex.getLoc();
2186   if (ParseUInt32(Alignment)) return true;
2187   ParenLoc = Lex.getLoc();
2188   if (!EatIfPresent(lltok::rparen))
2189     return Error(ParenLoc, "expected ')'");
2190   if (!isPowerOf2_32(Alignment))
2191     return Error(AlignLoc, "stack alignment is not a power of two");
2192   return false;
2193 }
2194
2195 /// ParseIndexList - This parses the index list for an insert/extractvalue
2196 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2197 /// comma at the end of the line and find that it is followed by metadata.
2198 /// Clients that don't allow metadata can call the version of this function that
2199 /// only takes one argument.
2200 ///
2201 /// ParseIndexList
2202 ///    ::=  (',' uint32)+
2203 ///
2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2205                               bool &AteExtraComma) {
2206   AteExtraComma = false;
2207
2208   if (Lex.getKind() != lltok::comma)
2209     return TokError("expected ',' as start of index list");
2210
2211   while (EatIfPresent(lltok::comma)) {
2212     if (Lex.getKind() == lltok::MetadataVar) {
2213       if (Indices.empty()) return TokError("expected index");
2214       AteExtraComma = true;
2215       return false;
2216     }
2217     unsigned Idx = 0;
2218     if (ParseUInt32(Idx)) return true;
2219     Indices.push_back(Idx);
2220   }
2221
2222   return false;
2223 }
2224
2225 //===----------------------------------------------------------------------===//
2226 // Type Parsing.
2227 //===----------------------------------------------------------------------===//
2228
2229 /// ParseType - Parse a type.
2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2231   SMLoc TypeLoc = Lex.getLoc();
2232   switch (Lex.getKind()) {
2233   default:
2234     return TokError(Msg);
2235   case lltok::Type:
2236     // Type ::= 'float' | 'void' (etc)
2237     Result = Lex.getTyVal();
2238     Lex.Lex();
2239     break;
2240   case lltok::lbrace:
2241     // Type ::= StructType
2242     if (ParseAnonStructType(Result, false))
2243       return true;
2244     break;
2245   case lltok::lsquare:
2246     // Type ::= '[' ... ']'
2247     Lex.Lex(); // eat the lsquare.
2248     if (ParseArrayVectorType(Result, false))
2249       return true;
2250     break;
2251   case lltok::less: // Either vector or packed struct.
2252     // Type ::= '<' ... '>'
2253     Lex.Lex();
2254     if (Lex.getKind() == lltok::lbrace) {
2255       if (ParseAnonStructType(Result, true) ||
2256           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2257         return true;
2258     } else if (ParseArrayVectorType(Result, true))
2259       return true;
2260     break;
2261   case lltok::LocalVar: {
2262     // Type ::= %foo
2263     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2264
2265     // If the type hasn't been defined yet, create a forward definition and
2266     // remember where that forward def'n was seen (in case it never is defined).
2267     if (!Entry.first) {
2268       Entry.first = StructType::create(Context, Lex.getStrVal());
2269       Entry.second = Lex.getLoc();
2270     }
2271     Result = Entry.first;
2272     Lex.Lex();
2273     break;
2274   }
2275
2276   case lltok::LocalVarID: {
2277     // Type ::= %4
2278     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2279
2280     // If the type hasn't been defined yet, create a forward definition and
2281     // remember where that forward def'n was seen (in case it never is defined).
2282     if (!Entry.first) {
2283       Entry.first = StructType::create(Context);
2284       Entry.second = Lex.getLoc();
2285     }
2286     Result = Entry.first;
2287     Lex.Lex();
2288     break;
2289   }
2290   }
2291
2292   // Parse the type suffixes.
2293   while (true) {
2294     switch (Lex.getKind()) {
2295     // End of type.
2296     default:
2297       if (!AllowVoid && Result->isVoidTy())
2298         return Error(TypeLoc, "void type only allowed for function results");
2299       return false;
2300
2301     // Type ::= Type '*'
2302     case lltok::star:
2303       if (Result->isLabelTy())
2304         return TokError("basic block pointers are invalid");
2305       if (Result->isVoidTy())
2306         return TokError("pointers to void are invalid - use i8* instead");
2307       if (!PointerType::isValidElementType(Result))
2308         return TokError("pointer to this type is invalid");
2309       Result = PointerType::getUnqual(Result);
2310       Lex.Lex();
2311       break;
2312
2313     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2314     case lltok::kw_addrspace: {
2315       if (Result->isLabelTy())
2316         return TokError("basic block pointers are invalid");
2317       if (Result->isVoidTy())
2318         return TokError("pointers to void are invalid; use i8* instead");
2319       if (!PointerType::isValidElementType(Result))
2320         return TokError("pointer to this type is invalid");
2321       unsigned AddrSpace;
2322       if (ParseOptionalAddrSpace(AddrSpace) ||
2323           ParseToken(lltok::star, "expected '*' in address space"))
2324         return true;
2325
2326       Result = PointerType::get(Result, AddrSpace);
2327       break;
2328     }
2329
2330     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2331     case lltok::lparen:
2332       if (ParseFunctionType(Result))
2333         return true;
2334       break;
2335     }
2336   }
2337 }
2338
2339 /// ParseParameterList
2340 ///    ::= '(' ')'
2341 ///    ::= '(' Arg (',' Arg)* ')'
2342 ///  Arg
2343 ///    ::= Type OptionalAttributes Value OptionalAttributes
2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2345                                   PerFunctionState &PFS, bool IsMustTailCall,
2346                                   bool InVarArgsFunc) {
2347   if (ParseToken(lltok::lparen, "expected '(' in call"))
2348     return true;
2349
2350   while (Lex.getKind() != lltok::rparen) {
2351     // If this isn't the first argument, we need a comma.
2352     if (!ArgList.empty() &&
2353         ParseToken(lltok::comma, "expected ',' in argument list"))
2354       return true;
2355
2356     // Parse an ellipsis if this is a musttail call in a variadic function.
2357     if (Lex.getKind() == lltok::dotdotdot) {
2358       const char *Msg = "unexpected ellipsis in argument list for ";
2359       if (!IsMustTailCall)
2360         return TokError(Twine(Msg) + "non-musttail call");
2361       if (!InVarArgsFunc)
2362         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2363       Lex.Lex();  // Lex the '...', it is purely for readability.
2364       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2365     }
2366
2367     // Parse the argument.
2368     LocTy ArgLoc;
2369     Type *ArgTy = nullptr;
2370     AttrBuilder ArgAttrs;
2371     Value *V;
2372     if (ParseType(ArgTy, ArgLoc))
2373       return true;
2374
2375     if (ArgTy->isMetadataTy()) {
2376       if (ParseMetadataAsValue(V, PFS))
2377         return true;
2378     } else {
2379       // Otherwise, handle normal operands.
2380       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2381         return true;
2382     }
2383     ArgList.push_back(ParamInfo(
2384         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2385   }
2386
2387   if (IsMustTailCall && InVarArgsFunc)
2388     return TokError("expected '...' at end of argument list for musttail call "
2389                     "in varargs function");
2390
2391   Lex.Lex();  // Lex the ')'.
2392   return false;
2393 }
2394
2395 /// ParseOptionalOperandBundles
2396 ///    ::= /*empty*/
2397 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2398 ///
2399 /// OperandBundle
2400 ///    ::= bundle-tag '(' ')'
2401 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2402 ///
2403 /// bundle-tag ::= String Constant
2404 bool LLParser::ParseOptionalOperandBundles(
2405     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2406   LocTy BeginLoc = Lex.getLoc();
2407   if (!EatIfPresent(lltok::lsquare))
2408     return false;
2409
2410   while (Lex.getKind() != lltok::rsquare) {
2411     // If this isn't the first operand bundle, we need a comma.
2412     if (!BundleList.empty() &&
2413         ParseToken(lltok::comma, "expected ',' in input list"))
2414       return true;
2415
2416     std::string Tag;
2417     if (ParseStringConstant(Tag))
2418       return true;
2419
2420     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2421       return true;
2422
2423     std::vector<Value *> Inputs;
2424     while (Lex.getKind() != lltok::rparen) {
2425       // If this isn't the first input, we need a comma.
2426       if (!Inputs.empty() &&
2427           ParseToken(lltok::comma, "expected ',' in input list"))
2428         return true;
2429
2430       Type *Ty = nullptr;
2431       Value *Input = nullptr;
2432       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2433         return true;
2434       Inputs.push_back(Input);
2435     }
2436
2437     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2438
2439     Lex.Lex(); // Lex the ')'.
2440   }
2441
2442   if (BundleList.empty())
2443     return Error(BeginLoc, "operand bundle set must not be empty");
2444
2445   Lex.Lex(); // Lex the ']'.
2446   return false;
2447 }
2448
2449 /// ParseArgumentList - Parse the argument list for a function type or function
2450 /// prototype.
2451 ///   ::= '(' ArgTypeListI ')'
2452 /// ArgTypeListI
2453 ///   ::= /*empty*/
2454 ///   ::= '...'
2455 ///   ::= ArgTypeList ',' '...'
2456 ///   ::= ArgType (',' ArgType)*
2457 ///
2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2459                                  bool &isVarArg){
2460   isVarArg = false;
2461   assert(Lex.getKind() == lltok::lparen);
2462   Lex.Lex(); // eat the (.
2463
2464   if (Lex.getKind() == lltok::rparen) {
2465     // empty
2466   } else if (Lex.getKind() == lltok::dotdotdot) {
2467     isVarArg = true;
2468     Lex.Lex();
2469   } else {
2470     LocTy TypeLoc = Lex.getLoc();
2471     Type *ArgTy = nullptr;
2472     AttrBuilder Attrs;
2473     std::string Name;
2474
2475     if (ParseType(ArgTy) ||
2476         ParseOptionalParamAttrs(Attrs)) return true;
2477
2478     if (ArgTy->isVoidTy())
2479       return Error(TypeLoc, "argument can not have void type");
2480
2481     if (Lex.getKind() == lltok::LocalVar) {
2482       Name = Lex.getStrVal();
2483       Lex.Lex();
2484     }
2485
2486     if (!FunctionType::isValidArgumentType(ArgTy))
2487       return Error(TypeLoc, "invalid type for function argument");
2488
2489     ArgList.emplace_back(TypeLoc, ArgTy,
2490                          AttributeSet::get(ArgTy->getContext(), Attrs),
2491                          std::move(Name));
2492
2493     while (EatIfPresent(lltok::comma)) {
2494       // Handle ... at end of arg list.
2495       if (EatIfPresent(lltok::dotdotdot)) {
2496         isVarArg = true;
2497         break;
2498       }
2499
2500       // Otherwise must be an argument type.
2501       TypeLoc = Lex.getLoc();
2502       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2503
2504       if (ArgTy->isVoidTy())
2505         return Error(TypeLoc, "argument can not have void type");
2506
2507       if (Lex.getKind() == lltok::LocalVar) {
2508         Name = Lex.getStrVal();
2509         Lex.Lex();
2510       } else {
2511         Name = "";
2512       }
2513
2514       if (!ArgTy->isFirstClassType())
2515         return Error(TypeLoc, "invalid type for function argument");
2516
2517       ArgList.emplace_back(TypeLoc, ArgTy,
2518                            AttributeSet::get(ArgTy->getContext(), Attrs),
2519                            std::move(Name));
2520     }
2521   }
2522
2523   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2524 }
2525
2526 /// ParseFunctionType
2527 ///  ::= Type ArgumentList OptionalAttrs
2528 bool LLParser::ParseFunctionType(Type *&Result) {
2529   assert(Lex.getKind() == lltok::lparen);
2530
2531   if (!FunctionType::isValidReturnType(Result))
2532     return TokError("invalid function return type");
2533
2534   SmallVector<ArgInfo, 8> ArgList;
2535   bool isVarArg;
2536   if (ParseArgumentList(ArgList, isVarArg))
2537     return true;
2538
2539   // Reject names on the arguments lists.
2540   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2541     if (!ArgList[i].Name.empty())
2542       return Error(ArgList[i].Loc, "argument name invalid in function type");
2543     if (ArgList[i].Attrs.hasAttributes())
2544       return Error(ArgList[i].Loc,
2545                    "argument attributes invalid in function type");
2546   }
2547
2548   SmallVector<Type*, 16> ArgListTy;
2549   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2550     ArgListTy.push_back(ArgList[i].Ty);
2551
2552   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2553   return false;
2554 }
2555
2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2557 /// other structs.
2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2559   SmallVector<Type*, 8> Elts;
2560   if (ParseStructBody(Elts)) return true;
2561
2562   Result = StructType::get(Context, Elts, Packed);
2563   return false;
2564 }
2565
2566 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2568                                      std::pair<Type*, LocTy> &Entry,
2569                                      Type *&ResultTy) {
2570   // If the type was already defined, diagnose the redefinition.
2571   if (Entry.first && !Entry.second.isValid())
2572     return Error(TypeLoc, "redefinition of type");
2573
2574   // If we have opaque, just return without filling in the definition for the
2575   // struct.  This counts as a definition as far as the .ll file goes.
2576   if (EatIfPresent(lltok::kw_opaque)) {
2577     // This type is being defined, so clear the location to indicate this.
2578     Entry.second = SMLoc();
2579
2580     // If this type number has never been uttered, create it.
2581     if (!Entry.first)
2582       Entry.first = StructType::create(Context, Name);
2583     ResultTy = Entry.first;
2584     return false;
2585   }
2586
2587   // If the type starts with '<', then it is either a packed struct or a vector.
2588   bool isPacked = EatIfPresent(lltok::less);
2589
2590   // If we don't have a struct, then we have a random type alias, which we
2591   // accept for compatibility with old files.  These types are not allowed to be
2592   // forward referenced and not allowed to be recursive.
2593   if (Lex.getKind() != lltok::lbrace) {
2594     if (Entry.first)
2595       return Error(TypeLoc, "forward references to non-struct type");
2596
2597     ResultTy = nullptr;
2598     if (isPacked)
2599       return ParseArrayVectorType(ResultTy, true);
2600     return ParseType(ResultTy);
2601   }
2602
2603   // This type is being defined, so clear the location to indicate this.
2604   Entry.second = SMLoc();
2605
2606   // If this type number has never been uttered, create it.
2607   if (!Entry.first)
2608     Entry.first = StructType::create(Context, Name);
2609
2610   StructType *STy = cast<StructType>(Entry.first);
2611
2612   SmallVector<Type*, 8> Body;
2613   if (ParseStructBody(Body) ||
2614       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2615     return true;
2616
2617   STy->setBody(Body, isPacked);
2618   ResultTy = STy;
2619   return false;
2620 }
2621
2622 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2623 ///   StructType
2624 ///     ::= '{' '}'
2625 ///     ::= '{' Type (',' Type)* '}'
2626 ///     ::= '<' '{' '}' '>'
2627 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2629   assert(Lex.getKind() == lltok::lbrace);
2630   Lex.Lex(); // Consume the '{'
2631
2632   // Handle the empty struct.
2633   if (EatIfPresent(lltok::rbrace))
2634     return false;
2635
2636   LocTy EltTyLoc = Lex.getLoc();
2637   Type *Ty = nullptr;
2638   if (ParseType(Ty)) return true;
2639   Body.push_back(Ty);
2640
2641   if (!StructType::isValidElementType(Ty))
2642     return Error(EltTyLoc, "invalid element type for struct");
2643
2644   while (EatIfPresent(lltok::comma)) {
2645     EltTyLoc = Lex.getLoc();
2646     if (ParseType(Ty)) return true;
2647
2648     if (!StructType::isValidElementType(Ty))
2649       return Error(EltTyLoc, "invalid element type for struct");
2650
2651     Body.push_back(Ty);
2652   }
2653
2654   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2655 }
2656
2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2658 /// token has already been consumed.
2659 ///   Type
2660 ///     ::= '[' APSINTVAL 'x' Types ']'
2661 ///     ::= '<' APSINTVAL 'x' Types '>'
2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2663   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2664       Lex.getAPSIntVal().getBitWidth() > 64)
2665     return TokError("expected number in address space");
2666
2667   LocTy SizeLoc = Lex.getLoc();
2668   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2669   Lex.Lex();
2670
2671   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2672       return true;
2673
2674   LocTy TypeLoc = Lex.getLoc();
2675   Type *EltTy = nullptr;
2676   if (ParseType(EltTy)) return true;
2677
2678   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2679                  "expected end of sequential type"))
2680     return true;
2681
2682   if (isVector) {
2683     if (Size == 0)
2684       return Error(SizeLoc, "zero element vector is illegal");
2685     if ((unsigned)Size != Size)
2686       return Error(SizeLoc, "size too large for vector");
2687     if (!VectorType::isValidElementType(EltTy))
2688       return Error(TypeLoc, "invalid vector element type");
2689     Result = VectorType::get(EltTy, unsigned(Size));
2690   } else {
2691     if (!ArrayType::isValidElementType(EltTy))
2692       return Error(TypeLoc, "invalid array element type");
2693     Result = ArrayType::get(EltTy, Size);
2694   }
2695   return false;
2696 }
2697
2698 //===----------------------------------------------------------------------===//
2699 // Function Semantic Analysis.
2700 //===----------------------------------------------------------------------===//
2701
2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2703                                              int functionNumber)
2704   : P(p), F(f), FunctionNumber(functionNumber) {
2705
2706   // Insert unnamed arguments into the NumberedVals list.
2707   for (Argument &A : F.args())
2708     if (!A.hasName())
2709       NumberedVals.push_back(&A);
2710 }
2711
2712 LLParser::PerFunctionState::~PerFunctionState() {
2713   // If there were any forward referenced non-basicblock values, delete them.
2714
2715   for (const auto &P : ForwardRefVals) {
2716     if (isa<BasicBlock>(P.second.first))
2717       continue;
2718     P.second.first->replaceAllUsesWith(
2719         UndefValue::get(P.second.first->getType()));
2720     P.second.first->deleteValue();
2721   }
2722
2723   for (const auto &P : ForwardRefValIDs) {
2724     if (isa<BasicBlock>(P.second.first))
2725       continue;
2726     P.second.first->replaceAllUsesWith(
2727         UndefValue::get(P.second.first->getType()));
2728     P.second.first->deleteValue();
2729   }
2730 }
2731
2732 bool LLParser::PerFunctionState::FinishFunction() {
2733   if (!ForwardRefVals.empty())
2734     return P.Error(ForwardRefVals.begin()->second.second,
2735                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2736                    "'");
2737   if (!ForwardRefValIDs.empty())
2738     return P.Error(ForwardRefValIDs.begin()->second.second,
2739                    "use of undefined value '%" +
2740                    Twine(ForwardRefValIDs.begin()->first) + "'");
2741   return false;
2742 }
2743
2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2745   if (Val->getType() == Ty)
2746     return true;
2747   // For calls we also accept variables in the program address space
2748   if (IsCall && isa<PointerType>(Ty)) {
2749     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2750         M->getDataLayout().getProgramAddressSpace());
2751     if (Val->getType() == TyInProgAS)
2752       return true;
2753   }
2754   return false;
2755 }
2756
2757 /// GetVal - Get a value with the specified name or ID, creating a
2758 /// forward reference record if needed.  This can return null if the value
2759 /// exists but does not have the right type.
2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2761                                           LocTy Loc, bool IsCall) {
2762   // Look this name up in the normal function symbol table.
2763   Value *Val = F.getValueSymbolTable()->lookup(Name);
2764
2765   // If this is a forward reference for the value, see if we already created a
2766   // forward ref record.
2767   if (!Val) {
2768     auto I = ForwardRefVals.find(Name);
2769     if (I != ForwardRefVals.end())
2770       Val = I->second.first;
2771   }
2772
2773   // If we have the value in the symbol table or fwd-ref table, return it.
2774   if (Val) {
2775     if (isValidVariableType(P.M, Ty, Val, IsCall))
2776       return Val;
2777     if (Ty->isLabelTy())
2778       P.Error(Loc, "'%" + Name + "' is not a basic block");
2779     else
2780       P.Error(Loc, "'%" + Name + "' defined with type '" +
2781               getTypeString(Val->getType()) + "'");
2782     return nullptr;
2783   }
2784
2785   // Don't make placeholders with invalid type.
2786   if (!Ty->isFirstClassType()) {
2787     P.Error(Loc, "invalid use of a non-first-class type");
2788     return nullptr;
2789   }
2790
2791   // Otherwise, create a new forward reference for this value and remember it.
2792   Value *FwdVal;
2793   if (Ty->isLabelTy()) {
2794     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2795   } else {
2796     FwdVal = new Argument(Ty, Name);
2797   }
2798
2799   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2800   return FwdVal;
2801 }
2802
2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2804                                           bool IsCall) {
2805   // Look this name up in the normal function symbol table.
2806   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2807
2808   // If this is a forward reference for the value, see if we already created a
2809   // forward ref record.
2810   if (!Val) {
2811     auto I = ForwardRefValIDs.find(ID);
2812     if (I != ForwardRefValIDs.end())
2813       Val = I->second.first;
2814   }
2815
2816   // If we have the value in the symbol table or fwd-ref table, return it.
2817   if (Val) {
2818     if (isValidVariableType(P.M, Ty, Val, IsCall))
2819       return Val;
2820     if (Ty->isLabelTy())
2821       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2822     else
2823       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2824               getTypeString(Val->getType()) + "'");
2825     return nullptr;
2826   }
2827
2828   if (!Ty->isFirstClassType()) {
2829     P.Error(Loc, "invalid use of a non-first-class type");
2830     return nullptr;
2831   }
2832
2833   // Otherwise, create a new forward reference for this value and remember it.
2834   Value *FwdVal;
2835   if (Ty->isLabelTy()) {
2836     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2837   } else {
2838     FwdVal = new Argument(Ty);
2839   }
2840
2841   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2842   return FwdVal;
2843 }
2844
2845 /// SetInstName - After an instruction is parsed and inserted into its
2846 /// basic block, this installs its name.
2847 bool LLParser::PerFunctionState::SetInstName(int NameID,
2848                                              const std::string &NameStr,
2849                                              LocTy NameLoc, Instruction *Inst) {
2850   // If this instruction has void type, it cannot have a name or ID specified.
2851   if (Inst->getType()->isVoidTy()) {
2852     if (NameID != -1 || !NameStr.empty())
2853       return P.Error(NameLoc, "instructions returning void cannot have a name");
2854     return false;
2855   }
2856
2857   // If this was a numbered instruction, verify that the instruction is the
2858   // expected value and resolve any forward references.
2859   if (NameStr.empty()) {
2860     // If neither a name nor an ID was specified, just use the next ID.
2861     if (NameID == -1)
2862       NameID = NumberedVals.size();
2863
2864     if (unsigned(NameID) != NumberedVals.size())
2865       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2866                      Twine(NumberedVals.size()) + "'");
2867
2868     auto FI = ForwardRefValIDs.find(NameID);
2869     if (FI != ForwardRefValIDs.end()) {
2870       Value *Sentinel = FI->second.first;
2871       if (Sentinel->getType() != Inst->getType())
2872         return P.Error(NameLoc, "instruction forward referenced with type '" +
2873                        getTypeString(FI->second.first->getType()) + "'");
2874
2875       Sentinel->replaceAllUsesWith(Inst);
2876       Sentinel->deleteValue();
2877       ForwardRefValIDs.erase(FI);
2878     }
2879
2880     NumberedVals.push_back(Inst);
2881     return false;
2882   }
2883
2884   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2885   auto FI = ForwardRefVals.find(NameStr);
2886   if (FI != ForwardRefVals.end()) {
2887     Value *Sentinel = FI->second.first;
2888     if (Sentinel->getType() != Inst->getType())
2889       return P.Error(NameLoc, "instruction forward referenced with type '" +
2890                      getTypeString(FI->second.first->getType()) + "'");
2891
2892     Sentinel->replaceAllUsesWith(Inst);
2893     Sentinel->deleteValue();
2894     ForwardRefVals.erase(FI);
2895   }
2896
2897   // Set the name on the instruction.
2898   Inst->setName(NameStr);
2899
2900   if (Inst->getName() != NameStr)
2901     return P.Error(NameLoc, "multiple definition of local value named '" +
2902                    NameStr + "'");
2903   return false;
2904 }
2905
2906 /// GetBB - Get a basic block with the specified name or ID, creating a
2907 /// forward reference record if needed.
2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2909                                               LocTy Loc) {
2910   return dyn_cast_or_null<BasicBlock>(
2911       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2912 }
2913
2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2915   return dyn_cast_or_null<BasicBlock>(
2916       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2917 }
2918
2919 /// DefineBB - Define the specified basic block, which is either named or
2920 /// unnamed.  If there is an error, this returns null otherwise it returns
2921 /// the block being defined.
2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2923                                                  LocTy Loc) {
2924   BasicBlock *BB;
2925   if (Name.empty())
2926     BB = GetBB(NumberedVals.size(), Loc);
2927   else
2928     BB = GetBB(Name, Loc);
2929   if (!BB) return nullptr; // Already diagnosed error.
2930
2931   // Move the block to the end of the function.  Forward ref'd blocks are
2932   // inserted wherever they happen to be referenced.
2933   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2934
2935   // Remove the block from forward ref sets.
2936   if (Name.empty()) {
2937     ForwardRefValIDs.erase(NumberedVals.size());
2938     NumberedVals.push_back(BB);
2939   } else {
2940     // BB forward references are already in the function symbol table.
2941     ForwardRefVals.erase(Name);
2942   }
2943
2944   return BB;
2945 }
2946
2947 //===----------------------------------------------------------------------===//
2948 // Constants.
2949 //===----------------------------------------------------------------------===//
2950
2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2952 /// type implied.  For example, if we parse "4" we don't know what integer type
2953 /// it has.  The value will later be combined with its type and checked for
2954 /// sanity.  PFS is used to convert function-local operands of metadata (since
2955 /// metadata operands are not just parsed here but also converted to values).
2956 /// PFS can be null when we are not parsing metadata values inside a function.
2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2958   ID.Loc = Lex.getLoc();
2959   switch (Lex.getKind()) {
2960   default: return TokError("expected value token");
2961   case lltok::GlobalID:  // @42
2962     ID.UIntVal = Lex.getUIntVal();
2963     ID.Kind = ValID::t_GlobalID;
2964     break;
2965   case lltok::GlobalVar:  // @foo
2966     ID.StrVal = Lex.getStrVal();
2967     ID.Kind = ValID::t_GlobalName;
2968     break;
2969   case lltok::LocalVarID:  // %42
2970     ID.UIntVal = Lex.getUIntVal();
2971     ID.Kind = ValID::t_LocalID;
2972     break;
2973   case lltok::LocalVar:  // %foo
2974     ID.StrVal = Lex.getStrVal();
2975     ID.Kind = ValID::t_LocalName;
2976     break;
2977   case lltok::APSInt:
2978     ID.APSIntVal = Lex.getAPSIntVal();
2979     ID.Kind = ValID::t_APSInt;
2980     break;
2981   case lltok::APFloat:
2982     ID.APFloatVal = Lex.getAPFloatVal();
2983     ID.Kind = ValID::t_APFloat;
2984     break;
2985   case lltok::kw_true:
2986     ID.ConstantVal = ConstantInt::getTrue(Context);
2987     ID.Kind = ValID::t_Constant;
2988     break;
2989   case lltok::kw_false:
2990     ID.ConstantVal = ConstantInt::getFalse(Context);
2991     ID.Kind = ValID::t_Constant;
2992     break;
2993   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2994   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2995   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2996   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2997
2998   case lltok::lbrace: {
2999     // ValID ::= '{' ConstVector '}'
3000     Lex.Lex();
3001     SmallVector<Constant*, 16> Elts;
3002     if (ParseGlobalValueVector(Elts) ||
3003         ParseToken(lltok::rbrace, "expected end of struct constant"))
3004       return true;
3005
3006     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3007     ID.UIntVal = Elts.size();
3008     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3009            Elts.size() * sizeof(Elts[0]));
3010     ID.Kind = ValID::t_ConstantStruct;
3011     return false;
3012   }
3013   case lltok::less: {
3014     // ValID ::= '<' ConstVector '>'         --> Vector.
3015     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3016     Lex.Lex();
3017     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3018
3019     SmallVector<Constant*, 16> Elts;
3020     LocTy FirstEltLoc = Lex.getLoc();
3021     if (ParseGlobalValueVector(Elts) ||
3022         (isPackedStruct &&
3023          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3024         ParseToken(lltok::greater, "expected end of constant"))
3025       return true;
3026
3027     if (isPackedStruct) {
3028       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3029       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3030              Elts.size() * sizeof(Elts[0]));
3031       ID.UIntVal = Elts.size();
3032       ID.Kind = ValID::t_PackedConstantStruct;
3033       return false;
3034     }
3035
3036     if (Elts.empty())
3037       return Error(ID.Loc, "constant vector must not be empty");
3038
3039     if (!Elts[0]->getType()->isIntegerTy() &&
3040         !Elts[0]->getType()->isFloatingPointTy() &&
3041         !Elts[0]->getType()->isPointerTy())
3042       return Error(FirstEltLoc,
3043             "vector elements must have integer, pointer or floating point type");
3044
3045     // Verify that all the vector elements have the same type.
3046     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3047       if (Elts[i]->getType() != Elts[0]->getType())
3048         return Error(FirstEltLoc,
3049                      "vector element #" + Twine(i) +
3050                     " is not of type '" + getTypeString(Elts[0]->getType()));
3051
3052     ID.ConstantVal = ConstantVector::get(Elts);
3053     ID.Kind = ValID::t_Constant;
3054     return false;
3055   }
3056   case lltok::lsquare: {   // Array Constant
3057     Lex.Lex();
3058     SmallVector<Constant*, 16> Elts;
3059     LocTy FirstEltLoc = Lex.getLoc();
3060     if (ParseGlobalValueVector(Elts) ||
3061         ParseToken(lltok::rsquare, "expected end of array constant"))
3062       return true;
3063
3064     // Handle empty element.
3065     if (Elts.empty()) {
3066       // Use undef instead of an array because it's inconvenient to determine
3067       // the element type at this point, there being no elements to examine.
3068       ID.Kind = ValID::t_EmptyArray;
3069       return false;
3070     }
3071
3072     if (!Elts[0]->getType()->isFirstClassType())
3073       return Error(FirstEltLoc, "invalid array element type: " +
3074                    getTypeString(Elts[0]->getType()));
3075
3076     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3077
3078     // Verify all elements are correct type!
3079     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3080       if (Elts[i]->getType() != Elts[0]->getType())
3081         return Error(FirstEltLoc,
3082                      "array element #" + Twine(i) +
3083                      " is not of type '" + getTypeString(Elts[0]->getType()));
3084     }
3085
3086     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3087     ID.Kind = ValID::t_Constant;
3088     return false;
3089   }
3090   case lltok::kw_c:  // c "foo"
3091     Lex.Lex();
3092     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3093                                                   false);
3094     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3095     ID.Kind = ValID::t_Constant;
3096     return false;
3097
3098   case lltok::kw_asm: {
3099     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3100     //             STRINGCONSTANT
3101     bool HasSideEffect, AlignStack, AsmDialect;
3102     Lex.Lex();
3103     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3104         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3105         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3106         ParseStringConstant(ID.StrVal) ||
3107         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3108         ParseToken(lltok::StringConstant, "expected constraint string"))
3109       return true;
3110     ID.StrVal2 = Lex.getStrVal();
3111     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3112       (unsigned(AsmDialect)<<2);
3113     ID.Kind = ValID::t_InlineAsm;
3114     return false;
3115   }
3116
3117   case lltok::kw_blockaddress: {
3118     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3119     Lex.Lex();
3120
3121     ValID Fn, Label;
3122
3123     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3124         ParseValID(Fn) ||
3125         ParseToken(lltok::comma, "expected comma in block address expression")||
3126         ParseValID(Label) ||
3127         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3128       return true;
3129
3130     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3131       return Error(Fn.Loc, "expected function name in blockaddress");
3132     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3133       return Error(Label.Loc, "expected basic block name in blockaddress");
3134
3135     // Try to find the function (but skip it if it's forward-referenced).
3136     GlobalValue *GV = nullptr;
3137     if (Fn.Kind == ValID::t_GlobalID) {
3138       if (Fn.UIntVal < NumberedVals.size())
3139         GV = NumberedVals[Fn.UIntVal];
3140     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3141       GV = M->getNamedValue(Fn.StrVal);
3142     }
3143     Function *F = nullptr;
3144     if (GV) {
3145       // Confirm that it's actually a function with a definition.
3146       if (!isa<Function>(GV))
3147         return Error(Fn.Loc, "expected function name in blockaddress");
3148       F = cast<Function>(GV);
3149       if (F->isDeclaration())
3150         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3151     }
3152
3153     if (!F) {
3154       // Make a global variable as a placeholder for this reference.
3155       GlobalValue *&FwdRef =
3156           ForwardRefBlockAddresses.insert(std::make_pair(
3157                                               std::move(Fn),
3158                                               std::map<ValID, GlobalValue *>()))
3159               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3160               .first->second;
3161       if (!FwdRef)
3162         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3163                                     GlobalValue::InternalLinkage, nullptr, "");
3164       ID.ConstantVal = FwdRef;
3165       ID.Kind = ValID::t_Constant;
3166       return false;
3167     }
3168
3169     // We found the function; now find the basic block.  Don't use PFS, since we
3170     // might be inside a constant expression.
3171     BasicBlock *BB;
3172     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3173       if (Label.Kind == ValID::t_LocalID)
3174         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3175       else
3176         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3177       if (!BB)
3178         return Error(Label.Loc, "referenced value is not a basic block");
3179     } else {
3180       if (Label.Kind == ValID::t_LocalID)
3181         return Error(Label.Loc, "cannot take address of numeric label after "
3182                                 "the function is defined");
3183       BB = dyn_cast_or_null<BasicBlock>(
3184           F->getValueSymbolTable()->lookup(Label.StrVal));
3185       if (!BB)
3186         return Error(Label.Loc, "referenced value is not a basic block");
3187     }
3188
3189     ID.ConstantVal = BlockAddress::get(F, BB);
3190     ID.Kind = ValID::t_Constant;
3191     return false;
3192   }
3193
3194   case lltok::kw_trunc:
3195   case lltok::kw_zext:
3196   case lltok::kw_sext:
3197   case lltok::kw_fptrunc:
3198   case lltok::kw_fpext:
3199   case lltok::kw_bitcast:
3200   case lltok::kw_addrspacecast:
3201   case lltok::kw_uitofp:
3202   case lltok::kw_sitofp:
3203   case lltok::kw_fptoui:
3204   case lltok::kw_fptosi:
3205   case lltok::kw_inttoptr:
3206   case lltok::kw_ptrtoint: {
3207     unsigned Opc = Lex.getUIntVal();
3208     Type *DestTy = nullptr;
3209     Constant *SrcVal;
3210     Lex.Lex();
3211     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3212         ParseGlobalTypeAndValue(SrcVal) ||
3213         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3214         ParseType(DestTy) ||
3215         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3216       return true;
3217     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3218       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3219                    getTypeString(SrcVal->getType()) + "' to '" +
3220                    getTypeString(DestTy) + "'");
3221     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3222                                                  SrcVal, DestTy);
3223     ID.Kind = ValID::t_Constant;
3224     return false;
3225   }
3226   case lltok::kw_extractvalue: {
3227     Lex.Lex();
3228     Constant *Val;
3229     SmallVector<unsigned, 4> Indices;
3230     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3231         ParseGlobalTypeAndValue(Val) ||
3232         ParseIndexList(Indices) ||
3233         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3234       return true;
3235
3236     if (!Val->getType()->isAggregateType())
3237       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3238     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3239       return Error(ID.Loc, "invalid indices for extractvalue");
3240     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3241     ID.Kind = ValID::t_Constant;
3242     return false;
3243   }
3244   case lltok::kw_insertvalue: {
3245     Lex.Lex();
3246     Constant *Val0, *Val1;
3247     SmallVector<unsigned, 4> Indices;
3248     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3249         ParseGlobalTypeAndValue(Val0) ||
3250         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3251         ParseGlobalTypeAndValue(Val1) ||
3252         ParseIndexList(Indices) ||
3253         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3254       return true;
3255     if (!Val0->getType()->isAggregateType())
3256       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3257     Type *IndexedType =
3258         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3259     if (!IndexedType)
3260       return Error(ID.Loc, "invalid indices for insertvalue");
3261     if (IndexedType != Val1->getType())
3262       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3263                                getTypeString(Val1->getType()) +
3264                                "' instead of '" + getTypeString(IndexedType) +
3265                                "'");
3266     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3267     ID.Kind = ValID::t_Constant;
3268     return false;
3269   }
3270   case lltok::kw_icmp:
3271   case lltok::kw_fcmp: {
3272     unsigned PredVal, Opc = Lex.getUIntVal();
3273     Constant *Val0, *Val1;
3274     Lex.Lex();
3275     if (ParseCmpPredicate(PredVal, Opc) ||
3276         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3277         ParseGlobalTypeAndValue(Val0) ||
3278         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3279         ParseGlobalTypeAndValue(Val1) ||
3280         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3281       return true;
3282
3283     if (Val0->getType() != Val1->getType())
3284       return Error(ID.Loc, "compare operands must have the same type");
3285
3286     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3287
3288     if (Opc == Instruction::FCmp) {
3289       if (!Val0->getType()->isFPOrFPVectorTy())
3290         return Error(ID.Loc, "fcmp requires floating point operands");
3291       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3292     } else {
3293       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3294       if (!Val0->getType()->isIntOrIntVectorTy() &&
3295           !Val0->getType()->isPtrOrPtrVectorTy())
3296         return Error(ID.Loc, "icmp requires pointer or integer operands");
3297       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3298     }
3299     ID.Kind = ValID::t_Constant;
3300     return false;
3301   }
3302
3303   // Binary Operators.
3304   case lltok::kw_add:
3305   case lltok::kw_fadd:
3306   case lltok::kw_sub:
3307   case lltok::kw_fsub:
3308   case lltok::kw_mul:
3309   case lltok::kw_fmul:
3310   case lltok::kw_udiv:
3311   case lltok::kw_sdiv:
3312   case lltok::kw_fdiv:
3313   case lltok::kw_urem:
3314   case lltok::kw_srem:
3315   case lltok::kw_frem:
3316   case lltok::kw_shl:
3317   case lltok::kw_lshr:
3318   case lltok::kw_ashr: {
3319     bool NUW = false;
3320     bool NSW = false;
3321     bool Exact = false;
3322     unsigned Opc = Lex.getUIntVal();
3323     Constant *Val0, *Val1;
3324     Lex.Lex();
3325     LocTy ModifierLoc = Lex.getLoc();
3326     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3327         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3328       if (EatIfPresent(lltok::kw_nuw))
3329         NUW = true;
3330       if (EatIfPresent(lltok::kw_nsw)) {
3331         NSW = true;
3332         if (EatIfPresent(lltok::kw_nuw))
3333           NUW = true;
3334       }
3335     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3336                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3337       if (EatIfPresent(lltok::kw_exact))
3338         Exact = true;
3339     }
3340     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3341         ParseGlobalTypeAndValue(Val0) ||
3342         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3343         ParseGlobalTypeAndValue(Val1) ||
3344         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3345       return true;
3346     if (Val0->getType() != Val1->getType())
3347       return Error(ID.Loc, "operands of constexpr must have same type");
3348     if (!Val0->getType()->isIntOrIntVectorTy()) {
3349       if (NUW)
3350         return Error(ModifierLoc, "nuw only applies to integer operations");
3351       if (NSW)
3352         return Error(ModifierLoc, "nsw only applies to integer operations");
3353     }
3354     // Check that the type is valid for the operator.
3355     switch (Opc) {
3356     case Instruction::Add:
3357     case Instruction::Sub:
3358     case Instruction::Mul:
3359     case Instruction::UDiv:
3360     case Instruction::SDiv:
3361     case Instruction::URem:
3362     case Instruction::SRem:
3363     case Instruction::Shl:
3364     case Instruction::AShr:
3365     case Instruction::LShr:
3366       if (!Val0->getType()->isIntOrIntVectorTy())
3367         return Error(ID.Loc, "constexpr requires integer operands");
3368       break;
3369     case Instruction::FAdd:
3370     case Instruction::FSub:
3371     case Instruction::FMul:
3372     case Instruction::FDiv:
3373     case Instruction::FRem:
3374       if (!Val0->getType()->isFPOrFPVectorTy())
3375         return Error(ID.Loc, "constexpr requires fp operands");
3376       break;
3377     default: llvm_unreachable("Unknown binary operator!");
3378     }
3379     unsigned Flags = 0;
3380     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3381     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3382     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3383     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3384     ID.ConstantVal = C;
3385     ID.Kind = ValID::t_Constant;
3386     return false;
3387   }
3388
3389   // Logical Operations
3390   case lltok::kw_and:
3391   case lltok::kw_or:
3392   case lltok::kw_xor: {
3393     unsigned Opc = Lex.getUIntVal();
3394     Constant *Val0, *Val1;
3395     Lex.Lex();
3396     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3397         ParseGlobalTypeAndValue(Val0) ||
3398         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3399         ParseGlobalTypeAndValue(Val1) ||
3400         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3401       return true;
3402     if (Val0->getType() != Val1->getType())
3403       return Error(ID.Loc, "operands of constexpr must have same type");
3404     if (!Val0->getType()->isIntOrIntVectorTy())
3405       return Error(ID.Loc,
3406                    "constexpr requires integer or integer vector operands");
3407     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3408     ID.Kind = ValID::t_Constant;
3409     return false;
3410   }
3411
3412   case lltok::kw_getelementptr:
3413   case lltok::kw_shufflevector:
3414   case lltok::kw_insertelement:
3415   case lltok::kw_extractelement:
3416   case lltok::kw_select: {
3417     unsigned Opc = Lex.getUIntVal();
3418     SmallVector<Constant*, 16> Elts;
3419     bool InBounds = false;
3420     Type *Ty;
3421     Lex.Lex();
3422
3423     if (Opc == Instruction::GetElementPtr)
3424       InBounds = EatIfPresent(lltok::kw_inbounds);
3425
3426     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3427       return true;
3428
3429     LocTy ExplicitTypeLoc = Lex.getLoc();
3430     if (Opc == Instruction::GetElementPtr) {
3431       if (ParseType(Ty) ||
3432           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3433         return true;
3434     }
3435
3436     Optional<unsigned> InRangeOp;
3437     if (ParseGlobalValueVector(
3438             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3439         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3440       return true;
3441
3442     if (Opc == Instruction::GetElementPtr) {
3443       if (Elts.size() == 0 ||
3444           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3445         return Error(ID.Loc, "base of getelementptr must be a pointer");
3446
3447       Type *BaseType = Elts[0]->getType();
3448       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3449       if (Ty != BasePointerType->getElementType())
3450         return Error(
3451             ExplicitTypeLoc,
3452             "explicit pointee type doesn't match operand's pointee type");
3453
3454       unsigned GEPWidth =
3455           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3456
3457       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3458       for (Constant *Val : Indices) {
3459         Type *ValTy = Val->getType();
3460         if (!ValTy->isIntOrIntVectorTy())
3461           return Error(ID.Loc, "getelementptr index must be an integer");
3462         if (ValTy->isVectorTy()) {
3463           unsigned ValNumEl = ValTy->getVectorNumElements();
3464           if (GEPWidth && (ValNumEl != GEPWidth))
3465             return Error(
3466                 ID.Loc,
3467                 "getelementptr vector index has a wrong number of elements");
3468           // GEPWidth may have been unknown because the base is a scalar,
3469           // but it is known now.
3470           GEPWidth = ValNumEl;
3471         }
3472       }
3473
3474       SmallPtrSet<Type*, 4> Visited;
3475       if (!Indices.empty() && !Ty->isSized(&Visited))
3476         return Error(ID.Loc, "base element of getelementptr must be sized");
3477
3478       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3479         return Error(ID.Loc, "invalid getelementptr indices");
3480
3481       if (InRangeOp) {
3482         if (*InRangeOp == 0)
3483           return Error(ID.Loc,
3484                        "inrange keyword may not appear on pointer operand");
3485         --*InRangeOp;
3486       }
3487
3488       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3489                                                       InBounds, InRangeOp);
3490     } else if (Opc == Instruction::Select) {
3491       if (Elts.size() != 3)
3492         return Error(ID.Loc, "expected three operands to select");
3493       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3494                                                               Elts[2]))
3495         return Error(ID.Loc, Reason);
3496       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3497     } else if (Opc == Instruction::ShuffleVector) {
3498       if (Elts.size() != 3)
3499         return Error(ID.Loc, "expected three operands to shufflevector");
3500       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3501         return Error(ID.Loc, "invalid operands to shufflevector");
3502       ID.ConstantVal =
3503                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3504     } else if (Opc == Instruction::ExtractElement) {
3505       if (Elts.size() != 2)
3506         return Error(ID.Loc, "expected two operands to extractelement");
3507       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3508         return Error(ID.Loc, "invalid extractelement operands");
3509       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3510     } else {
3511       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3512       if (Elts.size() != 3)
3513       return Error(ID.Loc, "expected three operands to insertelement");
3514       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3515         return Error(ID.Loc, "invalid insertelement operands");
3516       ID.ConstantVal =
3517                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3518     }
3519
3520     ID.Kind = ValID::t_Constant;
3521     return false;
3522   }
3523   }
3524
3525   Lex.Lex();
3526   return false;
3527 }
3528
3529 /// ParseGlobalValue - Parse a global value with the specified type.
3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3531   C = nullptr;
3532   ValID ID;
3533   Value *V = nullptr;
3534   bool Parsed = ParseValID(ID) ||
3535                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3536   if (V && !(C = dyn_cast<Constant>(V)))
3537     return Error(ID.Loc, "global values must be constants");
3538   return Parsed;
3539 }
3540
3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3542   Type *Ty = nullptr;
3543   return ParseType(Ty) ||
3544          ParseGlobalValue(Ty, V);
3545 }
3546
3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3548   C = nullptr;
3549
3550   LocTy KwLoc = Lex.getLoc();
3551   if (!EatIfPresent(lltok::kw_comdat))
3552     return false;
3553
3554   if (EatIfPresent(lltok::lparen)) {
3555     if (Lex.getKind() != lltok::ComdatVar)
3556       return TokError("expected comdat variable");
3557     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3558     Lex.Lex();
3559     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3560       return true;
3561   } else {
3562     if (GlobalName.empty())
3563       return TokError("comdat cannot be unnamed");
3564     C = getComdat(GlobalName, KwLoc);
3565   }
3566
3567   return false;
3568 }
3569
3570 /// ParseGlobalValueVector
3571 ///   ::= /*empty*/
3572 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3574                                       Optional<unsigned> *InRangeOp) {
3575   // Empty list.
3576   if (Lex.getKind() == lltok::rbrace ||
3577       Lex.getKind() == lltok::rsquare ||
3578       Lex.getKind() == lltok::greater ||
3579       Lex.getKind() == lltok::rparen)
3580     return false;
3581
3582   do {
3583     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3584       *InRangeOp = Elts.size();
3585
3586     Constant *C;
3587     if (ParseGlobalTypeAndValue(C)) return true;
3588     Elts.push_back(C);
3589   } while (EatIfPresent(lltok::comma));
3590
3591   return false;
3592 }
3593
3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3595   SmallVector<Metadata *, 16> Elts;
3596   if (ParseMDNodeVector(Elts))
3597     return true;
3598
3599   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3600   return false;
3601 }
3602
3603 /// MDNode:
3604 ///  ::= !{ ... }
3605 ///  ::= !7
3606 ///  ::= !DILocation(...)
3607 bool LLParser::ParseMDNode(MDNode *&N) {
3608   if (Lex.getKind() == lltok::MetadataVar)
3609     return ParseSpecializedMDNode(N);
3610
3611   return ParseToken(lltok::exclaim, "expected '!' here") ||
3612          ParseMDNodeTail(N);
3613 }
3614
3615 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3616   // !{ ... }
3617   if (Lex.getKind() == lltok::lbrace)
3618     return ParseMDTuple(N);
3619
3620   // !42
3621   return ParseMDNodeID(N);
3622 }
3623
3624 namespace {
3625
3626 /// Structure to represent an optional metadata field.
3627 template <class FieldTy> struct MDFieldImpl {
3628   typedef MDFieldImpl ImplTy;
3629   FieldTy Val;
3630   bool Seen;
3631
3632   void assign(FieldTy Val) {
3633     Seen = true;
3634     this->Val = std::move(Val);
3635   }
3636
3637   explicit MDFieldImpl(FieldTy Default)
3638       : Val(std::move(Default)), Seen(false) {}
3639 };
3640
3641 /// Structure to represent an optional metadata field that
3642 /// can be of either type (A or B) and encapsulates the
3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3644 /// to reimplement the specifics for representing each Field.
3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3646   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3647   FieldTypeA A;
3648   FieldTypeB B;
3649   bool Seen;
3650
3651   enum {
3652     IsInvalid = 0,
3653     IsTypeA = 1,
3654     IsTypeB = 2
3655   } WhatIs;
3656
3657   void assign(FieldTypeA A) {
3658     Seen = true;
3659     this->A = std::move(A);
3660     WhatIs = IsTypeA;
3661   }
3662
3663   void assign(FieldTypeB B) {
3664     Seen = true;
3665     this->B = std::move(B);
3666     WhatIs = IsTypeB;
3667   }
3668
3669   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3670       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3671         WhatIs(IsInvalid) {}
3672 };
3673
3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3675   uint64_t Max;
3676
3677   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3678       : ImplTy(Default), Max(Max) {}
3679 };
3680
3681 struct LineField : public MDUnsignedField {
3682   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3683 };
3684
3685 struct ColumnField : public MDUnsignedField {
3686   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3687 };
3688
3689 struct DwarfTagField : public MDUnsignedField {
3690   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3691   DwarfTagField(dwarf::Tag DefaultTag)
3692       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3693 };
3694
3695 struct DwarfMacinfoTypeField : public MDUnsignedField {
3696   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3697   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3698     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3699 };
3700
3701 struct DwarfAttEncodingField : public MDUnsignedField {
3702   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3703 };
3704
3705 struct DwarfVirtualityField : public MDUnsignedField {
3706   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3707 };
3708
3709 struct DwarfLangField : public MDUnsignedField {
3710   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3711 };
3712
3713 struct DwarfCCField : public MDUnsignedField {
3714   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3715 };
3716
3717 struct EmissionKindField : public MDUnsignedField {
3718   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3719 };
3720
3721 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3722   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3723 };
3724
3725 struct MDSignedField : public MDFieldImpl<int64_t> {
3726   int64_t Min;
3727   int64_t Max;
3728
3729   MDSignedField(int64_t Default = 0)
3730       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3731   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3732       : ImplTy(Default), Min(Min), Max(Max) {}
3733 };
3734
3735 struct MDBoolField : public MDFieldImpl<bool> {
3736   MDBoolField(bool Default = false) : ImplTy(Default) {}
3737 };
3738
3739 struct MDField : public MDFieldImpl<Metadata *> {
3740   bool AllowNull;
3741
3742   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3743 };
3744
3745 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3746   MDConstant() : ImplTy(nullptr) {}
3747 };
3748
3749 struct MDStringField : public MDFieldImpl<MDString *> {
3750   bool AllowEmpty;
3751   MDStringField(bool AllowEmpty = true)
3752       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3753 };
3754
3755 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3756   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3757 };
3758
3759 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3760   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3761 };
3762
3763 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3764   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3765       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3766
3767   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3768                     bool AllowNull = true)
3769       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3770
3771   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3772   bool isMDField() const { return WhatIs == IsTypeB; }
3773   int64_t getMDSignedValue() const {
3774     assert(isMDSignedField() && "Wrong field type");
3775     return A.Val;
3776   }
3777   Metadata *getMDFieldValue() const {
3778     assert(isMDField() && "Wrong field type");
3779     return B.Val;
3780   }
3781 };
3782
3783 struct MDSignedOrUnsignedField
3784     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3785   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3786
3787   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3788   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3789   int64_t getMDSignedValue() const {
3790     assert(isMDSignedField() && "Wrong field type");
3791     return A.Val;
3792   }
3793   uint64_t getMDUnsignedValue() const {
3794     assert(isMDUnsignedField() && "Wrong field type");
3795     return B.Val;
3796   }
3797 };
3798
3799 } // end anonymous namespace
3800
3801 namespace llvm {
3802
3803 template <>
3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3805                             MDUnsignedField &Result) {
3806   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3807     return TokError("expected unsigned integer");
3808
3809   auto &U = Lex.getAPSIntVal();
3810   if (U.ugt(Result.Max))
3811     return TokError("value for '" + Name + "' too large, limit is " +
3812                     Twine(Result.Max));
3813   Result.assign(U.getZExtValue());
3814   assert(Result.Val <= Result.Max && "Expected value in range");
3815   Lex.Lex();
3816   return false;
3817 }
3818
3819 template <>
3820 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3821   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3822 }
3823 template <>
3824 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3825   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3826 }
3827
3828 template <>
3829 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3830   if (Lex.getKind() == lltok::APSInt)
3831     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3832
3833   if (Lex.getKind() != lltok::DwarfTag)
3834     return TokError("expected DWARF tag");
3835
3836   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3837   if (Tag == dwarf::DW_TAG_invalid)
3838     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3839   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3840
3841   Result.assign(Tag);
3842   Lex.Lex();
3843   return false;
3844 }
3845
3846 template <>
3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3848                             DwarfMacinfoTypeField &Result) {
3849   if (Lex.getKind() == lltok::APSInt)
3850     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3851
3852   if (Lex.getKind() != lltok::DwarfMacinfo)
3853     return TokError("expected DWARF macinfo type");
3854
3855   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3856   if (Macinfo == dwarf::DW_MACINFO_invalid)
3857     return TokError(
3858         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3859   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3860
3861   Result.assign(Macinfo);
3862   Lex.Lex();
3863   return false;
3864 }
3865
3866 template <>
3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3868                             DwarfVirtualityField &Result) {
3869   if (Lex.getKind() == lltok::APSInt)
3870     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3871
3872   if (Lex.getKind() != lltok::DwarfVirtuality)
3873     return TokError("expected DWARF virtuality code");
3874
3875   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3876   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3877     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3878                     Lex.getStrVal() + "'");
3879   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3880   Result.assign(Virtuality);
3881   Lex.Lex();
3882   return false;
3883 }
3884
3885 template <>
3886 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3887   if (Lex.getKind() == lltok::APSInt)
3888     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3889
3890   if (Lex.getKind() != lltok::DwarfLang)
3891     return TokError("expected DWARF language");
3892
3893   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3894   if (!Lang)
3895     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3896                     "'");
3897   assert(Lang <= Result.Max && "Expected valid DWARF language");
3898   Result.assign(Lang);
3899   Lex.Lex();
3900   return false;
3901 }
3902
3903 template <>
3904 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3905   if (Lex.getKind() == lltok::APSInt)
3906     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3907
3908   if (Lex.getKind() != lltok::DwarfCC)
3909     return TokError("expected DWARF calling convention");
3910
3911   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3912   if (!CC)
3913     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3914                     "'");
3915   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3916   Result.assign(CC);
3917   Lex.Lex();
3918   return false;
3919 }
3920
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3923   if (Lex.getKind() == lltok::APSInt)
3924     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3925
3926   if (Lex.getKind() != lltok::EmissionKind)
3927     return TokError("expected emission kind");
3928
3929   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3930   if (!Kind)
3931     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3932                     "'");
3933   assert(*Kind <= Result.Max && "Expected valid emission kind");
3934   Result.assign(*Kind);
3935   Lex.Lex();
3936   return false;
3937 }
3938
3939 template <>
3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3941                             DwarfAttEncodingField &Result) {
3942   if (Lex.getKind() == lltok::APSInt)
3943     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944
3945   if (Lex.getKind() != lltok::DwarfAttEncoding)
3946     return TokError("expected DWARF type attribute encoding");
3947
3948   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3949   if (!Encoding)
3950     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3951                     Lex.getStrVal() + "'");
3952   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3953   Result.assign(Encoding);
3954   Lex.Lex();
3955   return false;
3956 }
3957
3958 /// DIFlagField
3959 ///  ::= uint32
3960 ///  ::= DIFlagVector
3961 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3964
3965   // Parser for a single flag.
3966   auto parseFlag = [&](DINode::DIFlags &Val) {
3967     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3968       uint32_t TempVal = static_cast<uint32_t>(Val);
3969       bool Res = ParseUInt32(TempVal);
3970       Val = static_cast<DINode::DIFlags>(TempVal);
3971       return Res;
3972     }
3973
3974     if (Lex.getKind() != lltok::DIFlag)
3975       return TokError("expected debug info flag");
3976
3977     Val = DINode::getFlag(Lex.getStrVal());
3978     if (!Val)
3979       return TokError(Twine("invalid debug info flag flag '") +
3980                       Lex.getStrVal() + "'");
3981     Lex.Lex();
3982     return false;
3983   };
3984
3985   // Parse the flags and combine them together.
3986   DINode::DIFlags Combined = DINode::FlagZero;
3987   do {
3988     DINode::DIFlags Val;
3989     if (parseFlag(Val))
3990       return true;
3991     Combined |= Val;
3992   } while (EatIfPresent(lltok::bar));
3993
3994   Result.assign(Combined);
3995   return false;
3996 }
3997
3998 template <>
3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4000                             MDSignedField &Result) {
4001   if (Lex.getKind() != lltok::APSInt)
4002     return TokError("expected signed integer");
4003
4004   auto &S = Lex.getAPSIntVal();
4005   if (S < Result.Min)
4006     return TokError("value for '" + Name + "' too small, limit is " +
4007                     Twine(Result.Min));
4008   if (S > Result.Max)
4009     return TokError("value for '" + Name + "' too large, limit is " +
4010                     Twine(Result.Max));
4011   Result.assign(S.getExtValue());
4012   assert(Result.Val >= Result.Min && "Expected value in range");
4013   assert(Result.Val <= Result.Max && "Expected value in range");
4014   Lex.Lex();
4015   return false;
4016 }
4017
4018 template <>
4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4020   switch (Lex.getKind()) {
4021   default:
4022     return TokError("expected 'true' or 'false'");
4023   case lltok::kw_true:
4024     Result.assign(true);
4025     break;
4026   case lltok::kw_false:
4027     Result.assign(false);
4028     break;
4029   }
4030   Lex.Lex();
4031   return false;
4032 }
4033
4034 template <>
4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4036   if (Lex.getKind() == lltok::kw_null) {
4037     if (!Result.AllowNull)
4038       return TokError("'" + Name + "' cannot be null");
4039     Lex.Lex();
4040     Result.assign(nullptr);
4041     return false;
4042   }
4043
4044   Metadata *MD;
4045   if (ParseMetadata(MD, nullptr))
4046     return true;
4047
4048   Result.assign(MD);
4049   return false;
4050 }
4051
4052 template <>
4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4054                             MDSignedOrMDField &Result) {
4055   // Try to parse a signed int.
4056   if (Lex.getKind() == lltok::APSInt) {
4057     MDSignedField Res = Result.A;
4058     if (!ParseMDField(Loc, Name, Res)) {
4059       Result.assign(Res);
4060       return false;
4061     }
4062     return true;
4063   }
4064
4065   // Otherwise, try to parse as an MDField.
4066   MDField Res = Result.B;
4067   if (!ParseMDField(Loc, Name, Res)) {
4068     Result.assign(Res);
4069     return false;
4070   }
4071
4072   return true;
4073 }
4074
4075 template <>
4076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4077                             MDSignedOrUnsignedField &Result) {
4078   if (Lex.getKind() != lltok::APSInt)
4079     return false;
4080
4081   if (Lex.getAPSIntVal().isSigned()) {
4082     MDSignedField Res = Result.A;
4083     if (ParseMDField(Loc, Name, Res))
4084       return true;
4085     Result.assign(Res);
4086     return false;
4087   }
4088
4089   MDUnsignedField Res = Result.B;
4090   if (ParseMDField(Loc, Name, Res))
4091     return true;
4092   Result.assign(Res);
4093   return false;
4094 }
4095
4096 template <>
4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4098   LocTy ValueLoc = Lex.getLoc();
4099   std::string S;
4100   if (ParseStringConstant(S))
4101     return true;
4102
4103   if (!Result.AllowEmpty && S.empty())
4104     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4105
4106   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4107   return false;
4108 }
4109
4110 template <>
4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4112   SmallVector<Metadata *, 4> MDs;
4113   if (ParseMDNodeVector(MDs))
4114     return true;
4115
4116   Result.assign(std::move(MDs));
4117   return false;
4118 }
4119
4120 template <>
4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4122                             ChecksumKindField &Result) {
4123   Optional<DIFile::ChecksumKind> CSKind =
4124       DIFile::getChecksumKind(Lex.getStrVal());
4125
4126   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4127     return TokError(
4128         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4129
4130   Result.assign(*CSKind);
4131   Lex.Lex();
4132   return false;
4133 }
4134
4135 } // end namespace llvm
4136
4137 template <class ParserTy>
4138 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4139   do {
4140     if (Lex.getKind() != lltok::LabelStr)
4141       return TokError("expected field label here");
4142
4143     if (parseField())
4144       return true;
4145   } while (EatIfPresent(lltok::comma));
4146
4147   return false;
4148 }
4149
4150 template <class ParserTy>
4151 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4152   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4153   Lex.Lex();
4154
4155   if (ParseToken(lltok::lparen, "expected '(' here"))
4156     return true;
4157   if (Lex.getKind() != lltok::rparen)
4158     if (ParseMDFieldsImplBody(parseField))
4159       return true;
4160
4161   ClosingLoc = Lex.getLoc();
4162   return ParseToken(lltok::rparen, "expected ')' here");
4163 }
4164
4165 template <class FieldTy>
4166 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4167   if (Result.Seen)
4168     return TokError("field '" + Name + "' cannot be specified more than once");
4169
4170   LocTy Loc = Lex.getLoc();
4171   Lex.Lex();
4172   return ParseMDField(Loc, Name, Result);
4173 }
4174
4175 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4176   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4177
4178 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4179   if (Lex.getStrVal() == #CLASS)                                               \
4180     return Parse##CLASS(N, IsDistinct);
4181 #include "llvm/IR/Metadata.def"
4182
4183   return TokError("expected metadata type");
4184 }
4185
4186 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4187 #define NOP_FIELD(NAME, TYPE, INIT)
4188 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4189   if (!NAME.Seen)                                                              \
4190     return Error(ClosingLoc, "missing required field '" #NAME "'");
4191 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4192   if (Lex.getStrVal() == #NAME)                                                \
4193     return ParseMDField(#NAME, NAME);
4194 #define PARSE_MD_FIELDS()                                                      \
4195   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4196   do {                                                                         \
4197     LocTy ClosingLoc;                                                          \
4198     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4199       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4200       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4201     }, ClosingLoc))                                                            \
4202       return true;                                                             \
4203     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4204   } while (false)
4205 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4206   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4207
4208 /// ParseDILocationFields:
4209 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4210 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4211 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4212   OPTIONAL(line, LineField, );                                                 \
4213   OPTIONAL(column, ColumnField, );                                             \
4214   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4215   OPTIONAL(inlinedAt, MDField, );
4216   PARSE_MD_FIELDS();
4217 #undef VISIT_MD_FIELDS
4218
4219   Result = GET_OR_DISTINCT(
4220       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4221   return false;
4222 }
4223
4224 /// ParseGenericDINode:
4225 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4226 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4228   REQUIRED(tag, DwarfTagField, );                                              \
4229   OPTIONAL(header, MDStringField, );                                           \
4230   OPTIONAL(operands, MDFieldList, );
4231   PARSE_MD_FIELDS();
4232 #undef VISIT_MD_FIELDS
4233
4234   Result = GET_OR_DISTINCT(GenericDINode,
4235                            (Context, tag.Val, header.Val, operands.Val));
4236   return false;
4237 }
4238
4239 /// ParseDISubrange:
4240 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4241 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4242 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4244   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4245   OPTIONAL(lowerBound, MDSignedField, );
4246   PARSE_MD_FIELDS();
4247 #undef VISIT_MD_FIELDS
4248
4249   if (count.isMDSignedField())
4250     Result = GET_OR_DISTINCT(
4251         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4252   else if (count.isMDField())
4253     Result = GET_OR_DISTINCT(
4254         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4255   else
4256     return true;
4257
4258   return false;
4259 }
4260
4261 /// ParseDIEnumerator:
4262 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4263 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4265   REQUIRED(name, MDStringField, );                                             \
4266   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4267   OPTIONAL(isUnsigned, MDBoolField, (false));
4268   PARSE_MD_FIELDS();
4269 #undef VISIT_MD_FIELDS
4270
4271   if (isUnsigned.Val && value.isMDSignedField())
4272     return TokError("unsigned enumerator with negative value");
4273
4274   int64_t Value = value.isMDSignedField()
4275                       ? value.getMDSignedValue()
4276                       : static_cast<int64_t>(value.getMDUnsignedValue());
4277   Result =
4278       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4279
4280   return false;
4281 }
4282
4283 /// ParseDIBasicType:
4284 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4285 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4287   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4288   OPTIONAL(name, MDStringField, );                                             \
4289   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4290   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4291   OPTIONAL(encoding, DwarfAttEncodingField, );
4292   PARSE_MD_FIELDS();
4293 #undef VISIT_MD_FIELDS
4294
4295   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4296                                          align.Val, encoding.Val));
4297   return false;
4298 }
4299
4300 /// ParseDIDerivedType:
4301 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4302 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4303 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4304 ///                      dwarfAddressSpace: 3)
4305 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4307   REQUIRED(tag, DwarfTagField, );                                              \
4308   OPTIONAL(name, MDStringField, );                                             \
4309   OPTIONAL(file, MDField, );                                                   \
4310   OPTIONAL(line, LineField, );                                                 \
4311   OPTIONAL(scope, MDField, );                                                  \
4312   REQUIRED(baseType, MDField, );                                               \
4313   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4314   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4315   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4316   OPTIONAL(flags, DIFlagField, );                                              \
4317   OPTIONAL(extraData, MDField, );                                              \
4318   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4319   PARSE_MD_FIELDS();
4320 #undef VISIT_MD_FIELDS
4321
4322   Optional<unsigned> DWARFAddressSpace;
4323   if (dwarfAddressSpace.Val != UINT32_MAX)
4324     DWARFAddressSpace = dwarfAddressSpace.Val;
4325
4326   Result = GET_OR_DISTINCT(DIDerivedType,
4327                            (Context, tag.Val, name.Val, file.Val, line.Val,
4328                             scope.Val, baseType.Val, size.Val, align.Val,
4329                             offset.Val, DWARFAddressSpace, flags.Val,
4330                             extraData.Val));
4331   return false;
4332 }
4333
4334 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4336   REQUIRED(tag, DwarfTagField, );                                              \
4337   OPTIONAL(name, MDStringField, );                                             \
4338   OPTIONAL(file, MDField, );                                                   \
4339   OPTIONAL(line, LineField, );                                                 \
4340   OPTIONAL(scope, MDField, );                                                  \
4341   OPTIONAL(baseType, MDField, );                                               \
4342   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4343   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4344   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4345   OPTIONAL(flags, DIFlagField, );                                              \
4346   OPTIONAL(elements, MDField, );                                               \
4347   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4348   OPTIONAL(vtableHolder, MDField, );                                           \
4349   OPTIONAL(templateParams, MDField, );                                         \
4350   OPTIONAL(identifier, MDStringField, );                                       \
4351   OPTIONAL(discriminator, MDField, );
4352   PARSE_MD_FIELDS();
4353 #undef VISIT_MD_FIELDS
4354
4355   // If this has an identifier try to build an ODR type.
4356   if (identifier.Val)
4357     if (auto *CT = DICompositeType::buildODRType(
4358             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4359             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4360             elements.Val, runtimeLang.Val, vtableHolder.Val,
4361             templateParams.Val, discriminator.Val)) {
4362       Result = CT;
4363       return false;
4364     }
4365
4366   // Create a new node, and save it in the context if it belongs in the type
4367   // map.
4368   Result = GET_OR_DISTINCT(
4369       DICompositeType,
4370       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4371        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4372        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4373        discriminator.Val));
4374   return false;
4375 }
4376
4377 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4379   OPTIONAL(flags, DIFlagField, );                                              \
4380   OPTIONAL(cc, DwarfCCField, );                                                \
4381   REQUIRED(types, MDField, );
4382   PARSE_MD_FIELDS();
4383 #undef VISIT_MD_FIELDS
4384
4385   Result = GET_OR_DISTINCT(DISubroutineType,
4386                            (Context, flags.Val, cc.Val, types.Val));
4387   return false;
4388 }
4389
4390 /// ParseDIFileType:
4391 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4392 ///                   checksumkind: CSK_MD5,
4393 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4394 ///                   source: "source file contents")
4395 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4396   // The default constructed value for checksumkind is required, but will never
4397   // be used, as the parser checks if the field was actually Seen before using
4398   // the Val.
4399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4400   REQUIRED(filename, MDStringField, );                                         \
4401   REQUIRED(directory, MDStringField, );                                        \
4402   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4403   OPTIONAL(checksum, MDStringField, );                                         \
4404   OPTIONAL(source, MDStringField, );
4405   PARSE_MD_FIELDS();
4406 #undef VISIT_MD_FIELDS
4407
4408   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4409   if (checksumkind.Seen && checksum.Seen)
4410     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4411   else if (checksumkind.Seen || checksum.Seen)
4412     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4413
4414   Optional<MDString *> OptSource;
4415   if (source.Seen)
4416     OptSource = source.Val;
4417   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4418                                     OptChecksum, OptSource));
4419   return false;
4420 }
4421
4422 /// ParseDICompileUnit:
4423 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4424 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4425 ///                      splitDebugFilename: "abc.debug",
4426 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4427 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4428 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4429   if (!IsDistinct)
4430     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4431
4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4433   REQUIRED(language, DwarfLangField, );                                        \
4434   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4435   OPTIONAL(producer, MDStringField, );                                         \
4436   OPTIONAL(isOptimized, MDBoolField, );                                        \
4437   OPTIONAL(flags, MDStringField, );                                            \
4438   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4439   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4440   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4441   OPTIONAL(enums, MDField, );                                                  \
4442   OPTIONAL(retainedTypes, MDField, );                                          \
4443   OPTIONAL(globals, MDField, );                                                \
4444   OPTIONAL(imports, MDField, );                                                \
4445   OPTIONAL(macros, MDField, );                                                 \
4446   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4447   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4448   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4449   OPTIONAL(gnuPubnames, MDBoolField, = false);
4450   PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452
4453   Result = DICompileUnit::getDistinct(
4454       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4455       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4456       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4457       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4458   return false;
4459 }
4460
4461 /// ParseDISubprogram:
4462 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4463 ///                     file: !1, line: 7, type: !2, isLocal: false,
4464 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4465 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4466 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4467 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4468 ///                     retainedNodes: !6, thrownTypes: !7)
4469 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4470   auto Loc = Lex.getLoc();
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4472   OPTIONAL(scope, MDField, );                                                  \
4473   OPTIONAL(name, MDStringField, );                                             \
4474   OPTIONAL(linkageName, MDStringField, );                                      \
4475   OPTIONAL(file, MDField, );                                                   \
4476   OPTIONAL(line, LineField, );                                                 \
4477   OPTIONAL(type, MDField, );                                                   \
4478   OPTIONAL(isLocal, MDBoolField, );                                            \
4479   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4480   OPTIONAL(scopeLine, LineField, );                                            \
4481   OPTIONAL(containingType, MDField, );                                         \
4482   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4483   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4484   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4485   OPTIONAL(flags, DIFlagField, );                                              \
4486   OPTIONAL(isOptimized, MDBoolField, );                                        \
4487   OPTIONAL(unit, MDField, );                                                   \
4488   OPTIONAL(templateParams, MDField, );                                         \
4489   OPTIONAL(declaration, MDField, );                                            \
4490   OPTIONAL(retainedNodes, MDField, );                                              \
4491   OPTIONAL(thrownTypes, MDField, );
4492   PARSE_MD_FIELDS();
4493 #undef VISIT_MD_FIELDS
4494
4495   if (isDefinition.Val && !IsDistinct)
4496     return Lex.Error(
4497         Loc,
4498         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4499
4500   Result = GET_OR_DISTINCT(
4501       DISubprogram,
4502       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4503        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4504        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4505        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4506        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4507   return false;
4508 }
4509
4510 /// ParseDILexicalBlock:
4511 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4512 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4514   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4515   OPTIONAL(file, MDField, );                                                   \
4516   OPTIONAL(line, LineField, );                                                 \
4517   OPTIONAL(column, ColumnField, );
4518   PARSE_MD_FIELDS();
4519 #undef VISIT_MD_FIELDS
4520
4521   Result = GET_OR_DISTINCT(
4522       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4523   return false;
4524 }
4525
4526 /// ParseDILexicalBlockFile:
4527 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4528 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4530   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4531   OPTIONAL(file, MDField, );                                                   \
4532   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4533   PARSE_MD_FIELDS();
4534 #undef VISIT_MD_FIELDS
4535
4536   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4537                            (Context, scope.Val, file.Val, discriminator.Val));
4538   return false;
4539 }
4540
4541 /// ParseDINamespace:
4542 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4543 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4545   REQUIRED(scope, MDField, );                                                  \
4546   OPTIONAL(name, MDStringField, );                                             \
4547   OPTIONAL(exportSymbols, MDBoolField, );
4548   PARSE_MD_FIELDS();
4549 #undef VISIT_MD_FIELDS
4550
4551   Result = GET_OR_DISTINCT(DINamespace,
4552                            (Context, scope.Val, name.Val, exportSymbols.Val));
4553   return false;
4554 }
4555
4556 /// ParseDIMacro:
4557 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4558 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4560   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4561   OPTIONAL(line, LineField, );                                                 \
4562   REQUIRED(name, MDStringField, );                                             \
4563   OPTIONAL(value, MDStringField, );
4564   PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566
4567   Result = GET_OR_DISTINCT(DIMacro,
4568                            (Context, type.Val, line.Val, name.Val, value.Val));
4569   return false;
4570 }
4571
4572 /// ParseDIMacroFile:
4573 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4574 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4576   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4577   OPTIONAL(line, LineField, );                                                 \
4578   REQUIRED(file, MDField, );                                                   \
4579   OPTIONAL(nodes, MDField, );
4580   PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4582
4583   Result = GET_OR_DISTINCT(DIMacroFile,
4584                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4585   return false;
4586 }
4587
4588 /// ParseDIModule:
4589 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4590 ///                 includePath: "/usr/include", isysroot: "/")
4591 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   REQUIRED(scope, MDField, );                                                  \
4594   REQUIRED(name, MDStringField, );                                             \
4595   OPTIONAL(configMacros, MDStringField, );                                     \
4596   OPTIONAL(includePath, MDStringField, );                                      \
4597   OPTIONAL(isysroot, MDStringField, );
4598   PARSE_MD_FIELDS();
4599 #undef VISIT_MD_FIELDS
4600
4601   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4602                            configMacros.Val, includePath.Val, isysroot.Val));
4603   return false;
4604 }
4605
4606 /// ParseDITemplateTypeParameter:
4607 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4608 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4610   OPTIONAL(name, MDStringField, );                                             \
4611   REQUIRED(type, MDField, );
4612   PARSE_MD_FIELDS();
4613 #undef VISIT_MD_FIELDS
4614
4615   Result =
4616       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4617   return false;
4618 }
4619
4620 /// ParseDITemplateValueParameter:
4621 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4622 ///                                 name: "V", type: !1, value: i32 7)
4623 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4624 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4625   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4626   OPTIONAL(name, MDStringField, );                                             \
4627   OPTIONAL(type, MDField, );                                                   \
4628   REQUIRED(value, MDField, );
4629   PARSE_MD_FIELDS();
4630 #undef VISIT_MD_FIELDS
4631
4632   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4633                            (Context, tag.Val, name.Val, type.Val, value.Val));
4634   return false;
4635 }
4636
4637 /// ParseDIGlobalVariable:
4638 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4639 ///                         file: !1, line: 7, type: !2, isLocal: false,
4640 ///                         isDefinition: true, declaration: !3, align: 8)
4641 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4643   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4644   OPTIONAL(scope, MDField, );                                                  \
4645   OPTIONAL(linkageName, MDStringField, );                                      \
4646   OPTIONAL(file, MDField, );                                                   \
4647   OPTIONAL(line, LineField, );                                                 \
4648   OPTIONAL(type, MDField, );                                                   \
4649   OPTIONAL(isLocal, MDBoolField, );                                            \
4650   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4651   OPTIONAL(declaration, MDField, );                                            \
4652   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4653   PARSE_MD_FIELDS();
4654 #undef VISIT_MD_FIELDS
4655
4656   Result = GET_OR_DISTINCT(DIGlobalVariable,
4657                            (Context, scope.Val, name.Val, linkageName.Val,
4658                             file.Val, line.Val, type.Val, isLocal.Val,
4659                             isDefinition.Val, declaration.Val, align.Val));
4660   return false;
4661 }
4662
4663 /// ParseDILocalVariable:
4664 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4665 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4666 ///                        align: 8)
4667 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4668 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4669 ///                        align: 8)
4670 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4673   OPTIONAL(name, MDStringField, );                                             \
4674   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4675   OPTIONAL(file, MDField, );                                                   \
4676   OPTIONAL(line, LineField, );                                                 \
4677   OPTIONAL(type, MDField, );                                                   \
4678   OPTIONAL(flags, DIFlagField, );                                              \
4679   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4680   PARSE_MD_FIELDS();
4681 #undef VISIT_MD_FIELDS
4682
4683   Result = GET_OR_DISTINCT(DILocalVariable,
4684                            (Context, scope.Val, name.Val, file.Val, line.Val,
4685                             type.Val, arg.Val, flags.Val, align.Val));
4686   return false;
4687 }
4688
4689 /// ParseDILabel:
4690 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4691 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4693   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4694   REQUIRED(name, MDStringField, );                                             \
4695   REQUIRED(file, MDField, );                                                   \
4696   REQUIRED(line, LineField, );
4697   PARSE_MD_FIELDS();
4698 #undef VISIT_MD_FIELDS
4699
4700   Result = GET_OR_DISTINCT(DILabel,
4701                            (Context, scope.Val, name.Val, file.Val, line.Val));
4702   return false;
4703 }
4704
4705 /// ParseDIExpression:
4706 ///   ::= !DIExpression(0, 7, -1)
4707 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4708   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4709   Lex.Lex();
4710
4711   if (ParseToken(lltok::lparen, "expected '(' here"))
4712     return true;
4713
4714   SmallVector<uint64_t, 8> Elements;
4715   if (Lex.getKind() != lltok::rparen)
4716     do {
4717       if (Lex.getKind() == lltok::DwarfOp) {
4718         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4719           Lex.Lex();
4720           Elements.push_back(Op);
4721           continue;
4722         }
4723         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4724       }
4725
4726       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4727         return TokError("expected unsigned integer");
4728
4729       auto &U = Lex.getAPSIntVal();
4730       if (U.ugt(UINT64_MAX))
4731         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4732       Elements.push_back(U.getZExtValue());
4733       Lex.Lex();
4734     } while (EatIfPresent(lltok::comma));
4735
4736   if (ParseToken(lltok::rparen, "expected ')' here"))
4737     return true;
4738
4739   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4740   return false;
4741 }
4742
4743 /// ParseDIGlobalVariableExpression:
4744 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4745 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4746                                                bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4748   REQUIRED(var, MDField, );                                                    \
4749   REQUIRED(expr, MDField, );
4750   PARSE_MD_FIELDS();
4751 #undef VISIT_MD_FIELDS
4752
4753   Result =
4754       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4755   return false;
4756 }
4757
4758 /// ParseDIObjCProperty:
4759 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4760 ///                       getter: "getFoo", attributes: 7, type: !2)
4761 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4763   OPTIONAL(name, MDStringField, );                                             \
4764   OPTIONAL(file, MDField, );                                                   \
4765   OPTIONAL(line, LineField, );                                                 \
4766   OPTIONAL(setter, MDStringField, );                                           \
4767   OPTIONAL(getter, MDStringField, );                                           \
4768   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4769   OPTIONAL(type, MDField, );
4770   PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772
4773   Result = GET_OR_DISTINCT(DIObjCProperty,
4774                            (Context, name.Val, file.Val, line.Val, setter.Val,
4775                             getter.Val, attributes.Val, type.Val));
4776   return false;
4777 }
4778
4779 /// ParseDIImportedEntity:
4780 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4781 ///                         line: 7, name: "foo")
4782 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4784   REQUIRED(tag, DwarfTagField, );                                              \
4785   REQUIRED(scope, MDField, );                                                  \
4786   OPTIONAL(entity, MDField, );                                                 \
4787   OPTIONAL(file, MDField, );                                                   \
4788   OPTIONAL(line, LineField, );                                                 \
4789   OPTIONAL(name, MDStringField, );
4790   PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792
4793   Result = GET_OR_DISTINCT(
4794       DIImportedEntity,
4795       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4796   return false;
4797 }
4798
4799 #undef PARSE_MD_FIELD
4800 #undef NOP_FIELD
4801 #undef REQUIRE_FIELD
4802 #undef DECLARE_FIELD
4803
4804 /// ParseMetadataAsValue
4805 ///  ::= metadata i32 %local
4806 ///  ::= metadata i32 @global
4807 ///  ::= metadata i32 7
4808 ///  ::= metadata !0
4809 ///  ::= metadata !{...}
4810 ///  ::= metadata !"string"
4811 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4812   // Note: the type 'metadata' has already been parsed.
4813   Metadata *MD;
4814   if (ParseMetadata(MD, &PFS))
4815     return true;
4816
4817   V = MetadataAsValue::get(Context, MD);
4818   return false;
4819 }
4820
4821 /// ParseValueAsMetadata
4822 ///  ::= i32 %local
4823 ///  ::= i32 @global
4824 ///  ::= i32 7
4825 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4826                                     PerFunctionState *PFS) {
4827   Type *Ty;
4828   LocTy Loc;
4829   if (ParseType(Ty, TypeMsg, Loc))
4830     return true;
4831   if (Ty->isMetadataTy())
4832     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4833
4834   Value *V;
4835   if (ParseValue(Ty, V, PFS))
4836     return true;
4837
4838   MD = ValueAsMetadata::get(V);
4839   return false;
4840 }
4841
4842 /// ParseMetadata
4843 ///  ::= i32 %local
4844 ///  ::= i32 @global
4845 ///  ::= i32 7
4846 ///  ::= !42
4847 ///  ::= !{...}
4848 ///  ::= !"string"
4849 ///  ::= !DILocation(...)
4850 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4851   if (Lex.getKind() == lltok::MetadataVar) {
4852     MDNode *N;
4853     if (ParseSpecializedMDNode(N))
4854       return true;
4855     MD = N;
4856     return false;
4857   }
4858
4859   // ValueAsMetadata:
4860   // <type> <value>
4861   if (Lex.getKind() != lltok::exclaim)
4862     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4863
4864   // '!'.
4865   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4866   Lex.Lex();
4867
4868   // MDString:
4869   //   ::= '!' STRINGCONSTANT
4870   if (Lex.getKind() == lltok::StringConstant) {
4871     MDString *S;
4872     if (ParseMDString(S))
4873       return true;
4874     MD = S;
4875     return false;
4876   }
4877
4878   // MDNode:
4879   // !{ ... }
4880   // !7
4881   MDNode *N;
4882   if (ParseMDNodeTail(N))
4883     return true;
4884   MD = N;
4885   return false;
4886 }
4887
4888 //===----------------------------------------------------------------------===//
4889 // Function Parsing.
4890 //===----------------------------------------------------------------------===//
4891
4892 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4893                                    PerFunctionState *PFS, bool IsCall) {
4894   if (Ty->isFunctionTy())
4895     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4896
4897   switch (ID.Kind) {
4898   case ValID::t_LocalID:
4899     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4900     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4901     return V == nullptr;
4902   case ValID::t_LocalName:
4903     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4904     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4905     return V == nullptr;
4906   case ValID::t_InlineAsm: {
4907     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4908       return Error(ID.Loc, "invalid type for inline asm constraint string");
4909     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4910                        (ID.UIntVal >> 1) & 1,
4911                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4912     return false;
4913   }
4914   case ValID::t_GlobalName:
4915     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4916     return V == nullptr;
4917   case ValID::t_GlobalID:
4918     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4919     return V == nullptr;
4920   case ValID::t_APSInt:
4921     if (!Ty->isIntegerTy())
4922       return Error(ID.Loc, "integer constant must have integer type");
4923     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4924     V = ConstantInt::get(Context, ID.APSIntVal);
4925     return false;
4926   case ValID::t_APFloat:
4927     if (!Ty->isFloatingPointTy() ||
4928         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4929       return Error(ID.Loc, "floating point constant invalid for type");
4930
4931     // The lexer has no type info, so builds all half, float, and double FP
4932     // constants as double.  Fix this here.  Long double does not need this.
4933     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4934       bool Ignored;
4935       if (Ty->isHalfTy())
4936         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4937                               &Ignored);
4938       else if (Ty->isFloatTy())
4939         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4940                               &Ignored);
4941     }
4942     V = ConstantFP::get(Context, ID.APFloatVal);
4943
4944     if (V->getType() != Ty)
4945       return Error(ID.Loc, "floating point constant does not have type '" +
4946                    getTypeString(Ty) + "'");
4947
4948     return false;
4949   case ValID::t_Null:
4950     if (!Ty->isPointerTy())
4951       return Error(ID.Loc, "null must be a pointer type");
4952     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4953     return false;
4954   case ValID::t_Undef:
4955     // FIXME: LabelTy should not be a first-class type.
4956     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4957       return Error(ID.Loc, "invalid type for undef constant");
4958     V = UndefValue::get(Ty);
4959     return false;
4960   case ValID::t_EmptyArray:
4961     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4962       return Error(ID.Loc, "invalid empty array initializer");
4963     V = UndefValue::get(Ty);
4964     return false;
4965   case ValID::t_Zero:
4966     // FIXME: LabelTy should not be a first-class type.
4967     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4968       return Error(ID.Loc, "invalid type for null constant");
4969     V = Constant::getNullValue(Ty);
4970     return false;
4971   case ValID::t_None:
4972     if (!Ty->isTokenTy())
4973       return Error(ID.Loc, "invalid type for none constant");
4974     V = Constant::getNullValue(Ty);
4975     return false;
4976   case ValID::t_Constant:
4977     if (ID.ConstantVal->getType() != Ty)
4978       return Error(ID.Loc, "constant expression type mismatch");
4979
4980     V = ID.ConstantVal;
4981     return false;
4982   case ValID::t_ConstantStruct:
4983   case ValID::t_PackedConstantStruct:
4984     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4985       if (ST->getNumElements() != ID.UIntVal)
4986         return Error(ID.Loc,
4987                      "initializer with struct type has wrong # elements");
4988       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4989         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4990
4991       // Verify that the elements are compatible with the structtype.
4992       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4993         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4994           return Error(ID.Loc, "element " + Twine(i) +
4995                     " of struct initializer doesn't match struct element type");
4996
4997       V = ConstantStruct::get(
4998           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4999     } else
5000       return Error(ID.Loc, "constant expression type mismatch");
5001     return false;
5002   }
5003   llvm_unreachable("Invalid ValID");
5004 }
5005
5006 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5007   C = nullptr;
5008   ValID ID;
5009   auto Loc = Lex.getLoc();
5010   if (ParseValID(ID, /*PFS=*/nullptr))
5011     return true;
5012   switch (ID.Kind) {
5013   case ValID::t_APSInt:
5014   case ValID::t_APFloat:
5015   case ValID::t_Undef:
5016   case ValID::t_Constant:
5017   case ValID::t_ConstantStruct:
5018   case ValID::t_PackedConstantStruct: {
5019     Value *V;
5020     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5021       return true;
5022     assert(isa<Constant>(V) && "Expected a constant value");
5023     C = cast<Constant>(V);
5024     return false;
5025   }
5026   case ValID::t_Null:
5027     C = Constant::getNullValue(Ty);
5028     return false;
5029   default:
5030     return Error(Loc, "expected a constant value");
5031   }
5032 }
5033
5034 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5035   V = nullptr;
5036   ValID ID;
5037   return ParseValID(ID, PFS) ||
5038          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5039 }
5040
5041 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5042   Type *Ty = nullptr;
5043   return ParseType(Ty) ||
5044          ParseValue(Ty, V, PFS);
5045 }
5046
5047 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5048                                       PerFunctionState &PFS) {
5049   Value *V;
5050   Loc = Lex.getLoc();
5051   if (ParseTypeAndValue(V, PFS)) return true;
5052   if (!isa<BasicBlock>(V))
5053     return Error(Loc, "expected a basic block");
5054   BB = cast<BasicBlock>(V);
5055   return false;
5056 }
5057
5058 /// FunctionHeader
5059 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5060 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5061 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
5062 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
5063 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5064   // Parse the linkage.
5065   LocTy LinkageLoc = Lex.getLoc();
5066   unsigned Linkage;
5067   unsigned Visibility;
5068   unsigned DLLStorageClass;
5069   bool DSOLocal;
5070   AttrBuilder RetAttrs;
5071   unsigned CC;
5072   bool HasLinkage;
5073   Type *RetType = nullptr;
5074   LocTy RetTypeLoc = Lex.getLoc();
5075   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5076                            DSOLocal) ||
5077       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5078       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5079     return true;
5080
5081   // Verify that the linkage is ok.
5082   switch ((GlobalValue::LinkageTypes)Linkage) {
5083   case GlobalValue::ExternalLinkage:
5084     break; // always ok.
5085   case GlobalValue::ExternalWeakLinkage:
5086     if (isDefine)
5087       return Error(LinkageLoc, "invalid linkage for function definition");
5088     break;
5089   case GlobalValue::PrivateLinkage:
5090   case GlobalValue::InternalLinkage:
5091   case GlobalValue::AvailableExternallyLinkage:
5092   case GlobalValue::LinkOnceAnyLinkage:
5093   case GlobalValue::LinkOnceODRLinkage:
5094   case GlobalValue::WeakAnyLinkage:
5095   case GlobalValue::WeakODRLinkage:
5096     if (!isDefine)
5097       return Error(LinkageLoc, "invalid linkage for function declaration");
5098     break;
5099   case GlobalValue::AppendingLinkage:
5100   case GlobalValue::CommonLinkage:
5101     return Error(LinkageLoc, "invalid function linkage type");
5102   }
5103
5104   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5105     return Error(LinkageLoc,
5106                  "symbol with local linkage must have default visibility");
5107
5108   if (!FunctionType::isValidReturnType(RetType))
5109     return Error(RetTypeLoc, "invalid function return type");
5110
5111   LocTy NameLoc = Lex.getLoc();
5112
5113   std::string FunctionName;
5114   if (Lex.getKind() == lltok::GlobalVar) {
5115     FunctionName = Lex.getStrVal();
5116   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5117     unsigned NameID = Lex.getUIntVal();
5118
5119     if (NameID != NumberedVals.size())
5120       return TokError("function expected to be numbered '%" +
5121                       Twine(NumberedVals.size()) + "'");
5122   } else {
5123     return TokError("expected function name");
5124   }
5125
5126   Lex.Lex();
5127
5128   if (Lex.getKind() != lltok::lparen)
5129     return TokError("expected '(' in function argument list");
5130
5131   SmallVector<ArgInfo, 8> ArgList;
5132   bool isVarArg;
5133   AttrBuilder FuncAttrs;
5134   std::vector<unsigned> FwdRefAttrGrps;
5135   LocTy BuiltinLoc;
5136   std::string Section;
5137   unsigned Alignment;
5138   std::string GC;
5139   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5140   Constant *Prefix = nullptr;
5141   Constant *Prologue = nullptr;
5142   Constant *PersonalityFn = nullptr;
5143   Comdat *C;
5144
5145   if (ParseArgumentList(ArgList, isVarArg) ||
5146       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5147       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5148                                  BuiltinLoc) ||
5149       (EatIfPresent(lltok::kw_section) &&
5150        ParseStringConstant(Section)) ||
5151       parseOptionalComdat(FunctionName, C) ||
5152       ParseOptionalAlignment(Alignment) ||
5153       (EatIfPresent(lltok::kw_gc) &&
5154        ParseStringConstant(GC)) ||
5155       (EatIfPresent(lltok::kw_prefix) &&
5156        ParseGlobalTypeAndValue(Prefix)) ||
5157       (EatIfPresent(lltok::kw_prologue) &&
5158        ParseGlobalTypeAndValue(Prologue)) ||
5159       (EatIfPresent(lltok::kw_personality) &&
5160        ParseGlobalTypeAndValue(PersonalityFn)))
5161     return true;
5162
5163   if (FuncAttrs.contains(Attribute::Builtin))
5164     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5165
5166   // If the alignment was parsed as an attribute, move to the alignment field.
5167   if (FuncAttrs.hasAlignmentAttr()) {
5168     Alignment = FuncAttrs.getAlignment();
5169     FuncAttrs.removeAttribute(Attribute::Alignment);
5170   }
5171
5172   // Okay, if we got here, the function is syntactically valid.  Convert types
5173   // and do semantic checks.
5174   std::vector<Type*> ParamTypeList;
5175   SmallVector<AttributeSet, 8> Attrs;
5176
5177   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5178     ParamTypeList.push_back(ArgList[i].Ty);
5179     Attrs.push_back(ArgList[i].Attrs);
5180   }
5181
5182   AttributeList PAL =
5183       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5184                          AttributeSet::get(Context, RetAttrs), Attrs);
5185
5186   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5187     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5188
5189   FunctionType *FT =
5190     FunctionType::get(RetType, ParamTypeList, isVarArg);
5191   PointerType *PFT = PointerType::getUnqual(FT);
5192
5193   Fn = nullptr;
5194   if (!FunctionName.empty()) {
5195     // If this was a definition of a forward reference, remove the definition
5196     // from the forward reference table and fill in the forward ref.
5197     auto FRVI = ForwardRefVals.find(FunctionName);
5198     if (FRVI != ForwardRefVals.end()) {
5199       Fn = M->getFunction(FunctionName);
5200       if (!Fn)
5201         return Error(FRVI->second.second, "invalid forward reference to "
5202                      "function as global value!");
5203       if (Fn->getType() != PFT)
5204         return Error(FRVI->second.second, "invalid forward reference to "
5205                      "function '" + FunctionName + "' with wrong type!");
5206
5207       ForwardRefVals.erase(FRVI);
5208     } else if ((Fn = M->getFunction(FunctionName))) {
5209       // Reject redefinitions.
5210       return Error(NameLoc, "invalid redefinition of function '" +
5211                    FunctionName + "'");
5212     } else if (M->getNamedValue(FunctionName)) {
5213       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5214     }
5215
5216   } else {
5217     // If this is a definition of a forward referenced function, make sure the
5218     // types agree.
5219     auto I = ForwardRefValIDs.find(NumberedVals.size());
5220     if (I != ForwardRefValIDs.end()) {
5221       Fn = cast<Function>(I->second.first);
5222       if (Fn->getType() != PFT)
5223         return Error(NameLoc, "type of definition and forward reference of '@" +
5224                      Twine(NumberedVals.size()) + "' disagree");
5225       ForwardRefValIDs.erase(I);
5226     }
5227   }
5228
5229   if (!Fn)
5230     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5231   else // Move the forward-reference to the correct spot in the module.
5232     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5233
5234   if (FunctionName.empty())
5235     NumberedVals.push_back(Fn);
5236
5237   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5238   maybeSetDSOLocal(DSOLocal, *Fn);
5239   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5240   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5241   Fn->setCallingConv(CC);
5242   Fn->setAttributes(PAL);
5243   Fn->setUnnamedAddr(UnnamedAddr);
5244   Fn->setAlignment(Alignment);
5245   Fn->setSection(Section);
5246   Fn->setComdat(C);
5247   Fn->setPersonalityFn(PersonalityFn);
5248   if (!GC.empty()) Fn->setGC(GC);
5249   Fn->setPrefixData(Prefix);
5250   Fn->setPrologueData(Prologue);
5251   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5252
5253   // Add all of the arguments we parsed to the function.
5254   Function::arg_iterator ArgIt = Fn->arg_begin();
5255   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5256     // If the argument has a name, insert it into the argument symbol table.
5257     if (ArgList[i].Name.empty()) continue;
5258
5259     // Set the name, if it conflicted, it will be auto-renamed.
5260     ArgIt->setName(ArgList[i].Name);
5261
5262     if (ArgIt->getName() != ArgList[i].Name)
5263       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5264                    ArgList[i].Name + "'");
5265   }
5266
5267   if (isDefine)
5268     return false;
5269
5270   // Check the declaration has no block address forward references.
5271   ValID ID;
5272   if (FunctionName.empty()) {
5273     ID.Kind = ValID::t_GlobalID;
5274     ID.UIntVal = NumberedVals.size() - 1;
5275   } else {
5276     ID.Kind = ValID::t_GlobalName;
5277     ID.StrVal = FunctionName;
5278   }
5279   auto Blocks = ForwardRefBlockAddresses.find(ID);
5280   if (Blocks != ForwardRefBlockAddresses.end())
5281     return Error(Blocks->first.Loc,
5282                  "cannot take blockaddress inside a declaration");
5283   return false;
5284 }
5285
5286 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5287   ValID ID;
5288   if (FunctionNumber == -1) {
5289     ID.Kind = ValID::t_GlobalName;
5290     ID.StrVal = F.getName();
5291   } else {
5292     ID.Kind = ValID::t_GlobalID;
5293     ID.UIntVal = FunctionNumber;
5294   }
5295
5296   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5297   if (Blocks == P.ForwardRefBlockAddresses.end())
5298     return false;
5299
5300   for (const auto &I : Blocks->second) {
5301     const ValID &BBID = I.first;
5302     GlobalValue *GV = I.second;
5303
5304     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5305            "Expected local id or name");
5306     BasicBlock *BB;
5307     if (BBID.Kind == ValID::t_LocalName)
5308       BB = GetBB(BBID.StrVal, BBID.Loc);
5309     else
5310       BB = GetBB(BBID.UIntVal, BBID.Loc);
5311     if (!BB)
5312       return P.Error(BBID.Loc, "referenced value is not a basic block");
5313
5314     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5315     GV->eraseFromParent();
5316   }
5317
5318   P.ForwardRefBlockAddresses.erase(Blocks);
5319   return false;
5320 }
5321
5322 /// ParseFunctionBody
5323 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5324 bool LLParser::ParseFunctionBody(Function &Fn) {
5325   if (Lex.getKind() != lltok::lbrace)
5326     return TokError("expected '{' in function body");
5327   Lex.Lex();  // eat the {.
5328
5329   int FunctionNumber = -1;
5330   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5331
5332   PerFunctionState PFS(*this, Fn, FunctionNumber);
5333
5334   // Resolve block addresses and allow basic blocks to be forward-declared
5335   // within this function.
5336   if (PFS.resolveForwardRefBlockAddresses())
5337     return true;
5338   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5339
5340   // We need at least one basic block.
5341   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5342     return TokError("function body requires at least one basic block");
5343
5344   while (Lex.getKind() != lltok::rbrace &&
5345          Lex.getKind() != lltok::kw_uselistorder)
5346     if (ParseBasicBlock(PFS)) return true;
5347
5348   while (Lex.getKind() != lltok::rbrace)
5349     if (ParseUseListOrder(&PFS))
5350       return true;
5351
5352   // Eat the }.
5353   Lex.Lex();
5354
5355   // Verify function is ok.
5356   return PFS.FinishFunction();
5357 }
5358
5359 /// ParseBasicBlock
5360 ///   ::= LabelStr? Instruction*
5361 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5362   // If this basic block starts out with a name, remember it.
5363   std::string Name;
5364   LocTy NameLoc = Lex.getLoc();
5365   if (Lex.getKind() == lltok::LabelStr) {
5366     Name = Lex.getStrVal();
5367     Lex.Lex();
5368   }
5369
5370   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5371   if (!BB)
5372     return Error(NameLoc,
5373                  "unable to create block named '" + Name + "'");
5374
5375   std::string NameStr;
5376
5377   // Parse the instructions in this block until we get a terminator.
5378   Instruction *Inst;
5379   do {
5380     // This instruction may have three possibilities for a name: a) none
5381     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5382     LocTy NameLoc = Lex.getLoc();
5383     int NameID = -1;
5384     NameStr = "";
5385
5386     if (Lex.getKind() == lltok::LocalVarID) {
5387       NameID = Lex.getUIntVal();
5388       Lex.Lex();
5389       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5390         return true;
5391     } else if (Lex.getKind() == lltok::LocalVar) {
5392       NameStr = Lex.getStrVal();
5393       Lex.Lex();
5394       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5395         return true;
5396     }
5397
5398     switch (ParseInstruction(Inst, BB, PFS)) {
5399     default: llvm_unreachable("Unknown ParseInstruction result!");
5400     case InstError: return true;
5401     case InstNormal:
5402       BB->getInstList().push_back(Inst);
5403
5404       // With a normal result, we check to see if the instruction is followed by
5405       // a comma and metadata.
5406       if (EatIfPresent(lltok::comma))
5407         if (ParseInstructionMetadata(*Inst))
5408           return true;
5409       break;
5410     case InstExtraComma:
5411       BB->getInstList().push_back(Inst);
5412
5413       // If the instruction parser ate an extra comma at the end of it, it
5414       // *must* be followed by metadata.
5415       if (ParseInstructionMetadata(*Inst))
5416         return true;
5417       break;
5418     }
5419
5420     // Set the name on the instruction.
5421     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5422   } while (!isa<TerminatorInst>(Inst));
5423
5424   return false;
5425 }
5426
5427 //===----------------------------------------------------------------------===//
5428 // Instruction Parsing.
5429 //===----------------------------------------------------------------------===//
5430
5431 /// ParseInstruction - Parse one of the many different instructions.
5432 ///
5433 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5434                                PerFunctionState &PFS) {
5435   lltok::Kind Token = Lex.getKind();
5436   if (Token == lltok::Eof)
5437     return TokError("found end of file when expecting more instructions");
5438   LocTy Loc = Lex.getLoc();
5439   unsigned KeywordVal = Lex.getUIntVal();
5440   Lex.Lex();  // Eat the keyword.
5441
5442   switch (Token) {
5443   default:                    return Error(Loc, "expected instruction opcode");
5444   // Terminator Instructions.
5445   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5446   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5447   case lltok::kw_br:          return ParseBr(Inst, PFS);
5448   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5449   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5450   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5451   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5452   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5453   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5454   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5455   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5456   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5457   // Binary Operators.
5458   case lltok::kw_add:
5459   case lltok::kw_sub:
5460   case lltok::kw_mul:
5461   case lltok::kw_shl: {
5462     bool NUW = EatIfPresent(lltok::kw_nuw);
5463     bool NSW = EatIfPresent(lltok::kw_nsw);
5464     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5465
5466     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5467
5468     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5469     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5470     return false;
5471   }
5472   case lltok::kw_fadd:
5473   case lltok::kw_fsub:
5474   case lltok::kw_fmul:
5475   case lltok::kw_fdiv:
5476   case lltok::kw_frem: {
5477     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5478     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5479     if (Res != 0)
5480       return Res;
5481     if (FMF.any())
5482       Inst->setFastMathFlags(FMF);
5483     return 0;
5484   }
5485
5486   case lltok::kw_sdiv:
5487   case lltok::kw_udiv:
5488   case lltok::kw_lshr:
5489   case lltok::kw_ashr: {
5490     bool Exact = EatIfPresent(lltok::kw_exact);
5491
5492     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5493     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5494     return false;
5495   }
5496
5497   case lltok::kw_urem:
5498   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5499   case lltok::kw_and:
5500   case lltok::kw_or:
5501   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5502   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5503   case lltok::kw_fcmp: {
5504     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5505     int Res = ParseCompare(Inst, PFS, KeywordVal);
5506     if (Res != 0)
5507       return Res;
5508     if (FMF.any())
5509       Inst->setFastMathFlags(FMF);
5510     return 0;
5511   }
5512
5513   // Casts.
5514   case lltok::kw_trunc:
5515   case lltok::kw_zext:
5516   case lltok::kw_sext:
5517   case lltok::kw_fptrunc:
5518   case lltok::kw_fpext:
5519   case lltok::kw_bitcast:
5520   case lltok::kw_addrspacecast:
5521   case lltok::kw_uitofp:
5522   case lltok::kw_sitofp:
5523   case lltok::kw_fptoui:
5524   case lltok::kw_fptosi:
5525   case lltok::kw_inttoptr:
5526   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5527   // Other.
5528   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5529   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5530   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5531   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5532   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5533   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5534   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5535   // Call.
5536   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5537   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5538   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5539   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5540   // Memory.
5541   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5542   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5543   case lltok::kw_store:          return ParseStore(Inst, PFS);
5544   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5545   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5546   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5547   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5548   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5549   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5550   }
5551 }
5552
5553 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5554 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5555   if (Opc == Instruction::FCmp) {
5556     switch (Lex.getKind()) {
5557     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5558     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5559     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5560     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5561     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5562     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5563     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5564     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5565     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5566     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5567     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5568     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5569     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5570     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5571     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5572     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5573     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5574     }
5575   } else {
5576     switch (Lex.getKind()) {
5577     default: return TokError("expected icmp predicate (e.g. 'eq')");
5578     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5579     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5580     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5581     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5582     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5583     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5584     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5585     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5586     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5587     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5588     }
5589   }
5590   Lex.Lex();
5591   return false;
5592 }
5593
5594 //===----------------------------------------------------------------------===//
5595 // Terminator Instructions.
5596 //===----------------------------------------------------------------------===//
5597
5598 /// ParseRet - Parse a return instruction.
5599 ///   ::= 'ret' void (',' !dbg, !1)*
5600 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5601 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5602                         PerFunctionState &PFS) {
5603   SMLoc TypeLoc = Lex.getLoc();
5604   Type *Ty = nullptr;
5605   if (ParseType(Ty, true /*void allowed*/)) return true;
5606
5607   Type *ResType = PFS.getFunction().getReturnType();
5608
5609   if (Ty->isVoidTy()) {
5610     if (!ResType->isVoidTy())
5611       return Error(TypeLoc, "value doesn't match function result type '" +
5612                    getTypeString(ResType) + "'");
5613
5614     Inst = ReturnInst::Create(Context);
5615     return false;
5616   }
5617
5618   Value *RV;
5619   if (ParseValue(Ty, RV, PFS)) return true;
5620
5621   if (ResType != RV->getType())
5622     return Error(TypeLoc, "value doesn't match function result type '" +
5623                  getTypeString(ResType) + "'");
5624
5625   Inst = ReturnInst::Create(Context, RV);
5626   return false;
5627 }
5628
5629 /// ParseBr
5630 ///   ::= 'br' TypeAndValue
5631 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5632 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5633   LocTy Loc, Loc2;
5634   Value *Op0;
5635   BasicBlock *Op1, *Op2;
5636   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5637
5638   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5639     Inst = BranchInst::Create(BB);
5640     return false;
5641   }
5642
5643   if (Op0->getType() != Type::getInt1Ty(Context))
5644     return Error(Loc, "branch condition must have 'i1' type");
5645
5646   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5647       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5648       ParseToken(lltok::comma, "expected ',' after true destination") ||
5649       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5650     return true;
5651
5652   Inst = BranchInst::Create(Op1, Op2, Op0);
5653   return false;
5654 }
5655
5656 /// ParseSwitch
5657 ///  Instruction
5658 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5659 ///  JumpTable
5660 ///    ::= (TypeAndValue ',' TypeAndValue)*
5661 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5662   LocTy CondLoc, BBLoc;
5663   Value *Cond;
5664   BasicBlock *DefaultBB;
5665   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5666       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5667       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5668       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5669     return true;
5670
5671   if (!Cond->getType()->isIntegerTy())
5672     return Error(CondLoc, "switch condition must have integer type");
5673
5674   // Parse the jump table pairs.
5675   SmallPtrSet<Value*, 32> SeenCases;
5676   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5677   while (Lex.getKind() != lltok::rsquare) {
5678     Value *Constant;
5679     BasicBlock *DestBB;
5680
5681     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5682         ParseToken(lltok::comma, "expected ',' after case value") ||
5683         ParseTypeAndBasicBlock(DestBB, PFS))
5684       return true;
5685
5686     if (!SeenCases.insert(Constant).second)
5687       return Error(CondLoc, "duplicate case value in switch");
5688     if (!isa<ConstantInt>(Constant))
5689       return Error(CondLoc, "case value is not a constant integer");
5690
5691     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5692   }
5693
5694   Lex.Lex();  // Eat the ']'.
5695
5696   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5697   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5698     SI->addCase(Table[i].first, Table[i].second);
5699   Inst = SI;
5700   return false;
5701 }
5702
5703 /// ParseIndirectBr
5704 ///  Instruction
5705 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5706 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5707   LocTy AddrLoc;
5708   Value *Address;
5709   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5710       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5711       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5712     return true;
5713
5714   if (!Address->getType()->isPointerTy())
5715     return Error(AddrLoc, "indirectbr address must have pointer type");
5716
5717   // Parse the destination list.
5718   SmallVector<BasicBlock*, 16> DestList;
5719
5720   if (Lex.getKind() != lltok::rsquare) {
5721     BasicBlock *DestBB;
5722     if (ParseTypeAndBasicBlock(DestBB, PFS))
5723       return true;
5724     DestList.push_back(DestBB);
5725
5726     while (EatIfPresent(lltok::comma)) {
5727       if (ParseTypeAndBasicBlock(DestBB, PFS))
5728         return true;
5729       DestList.push_back(DestBB);
5730     }
5731   }
5732
5733   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5734     return true;
5735
5736   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5737   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5738     IBI->addDestination(DestList[i]);
5739   Inst = IBI;
5740   return false;
5741 }
5742
5743 /// ParseInvoke
5744 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5745 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5746 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5747   LocTy CallLoc = Lex.getLoc();
5748   AttrBuilder RetAttrs, FnAttrs;
5749   std::vector<unsigned> FwdRefAttrGrps;
5750   LocTy NoBuiltinLoc;
5751   unsigned CC;
5752   Type *RetType = nullptr;
5753   LocTy RetTypeLoc;
5754   ValID CalleeID;
5755   SmallVector<ParamInfo, 16> ArgList;
5756   SmallVector<OperandBundleDef, 2> BundleList;
5757
5758   BasicBlock *NormalBB, *UnwindBB;
5759   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5760       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5761       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5762       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5763                                  NoBuiltinLoc) ||
5764       ParseOptionalOperandBundles(BundleList, PFS) ||
5765       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5766       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5767       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5768       ParseTypeAndBasicBlock(UnwindBB, PFS))
5769     return true;
5770
5771   // If RetType is a non-function pointer type, then this is the short syntax
5772   // for the call, which means that RetType is just the return type.  Infer the
5773   // rest of the function argument types from the arguments that are present.
5774   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5775   if (!Ty) {
5776     // Pull out the types of all of the arguments...
5777     std::vector<Type*> ParamTypes;
5778     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5779       ParamTypes.push_back(ArgList[i].V->getType());
5780
5781     if (!FunctionType::isValidReturnType(RetType))
5782       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5783
5784     Ty = FunctionType::get(RetType, ParamTypes, false);
5785   }
5786
5787   CalleeID.FTy = Ty;
5788
5789   // Look up the callee.
5790   Value *Callee;
5791   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
5792                           /*IsCall=*/true))
5793     return true;
5794
5795   // Set up the Attribute for the function.
5796   SmallVector<Value *, 8> Args;
5797   SmallVector<AttributeSet, 8> ArgAttrs;
5798
5799   // Loop through FunctionType's arguments and ensure they are specified
5800   // correctly.  Also, gather any parameter attributes.
5801   FunctionType::param_iterator I = Ty->param_begin();
5802   FunctionType::param_iterator E = Ty->param_end();
5803   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5804     Type *ExpectedTy = nullptr;
5805     if (I != E) {
5806       ExpectedTy = *I++;
5807     } else if (!Ty->isVarArg()) {
5808       return Error(ArgList[i].Loc, "too many arguments specified");
5809     }
5810
5811     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5812       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5813                    getTypeString(ExpectedTy) + "'");
5814     Args.push_back(ArgList[i].V);
5815     ArgAttrs.push_back(ArgList[i].Attrs);
5816   }
5817
5818   if (I != E)
5819     return Error(CallLoc, "not enough parameters specified for call");
5820
5821   if (FnAttrs.hasAlignmentAttr())
5822     return Error(CallLoc, "invoke instructions may not have an alignment");
5823
5824   // Finish off the Attribute and check them
5825   AttributeList PAL =
5826       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5827                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5828
5829   InvokeInst *II =
5830       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5831   II->setCallingConv(CC);
5832   II->setAttributes(PAL);
5833   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5834   Inst = II;
5835   return false;
5836 }
5837
5838 /// ParseResume
5839 ///   ::= 'resume' TypeAndValue
5840 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5841   Value *Exn; LocTy ExnLoc;
5842   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5843     return true;
5844
5845   ResumeInst *RI = ResumeInst::Create(Exn);
5846   Inst = RI;
5847   return false;
5848 }
5849
5850 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5851                                   PerFunctionState &PFS) {
5852   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5853     return true;
5854
5855   while (Lex.getKind() != lltok::rsquare) {
5856     // If this isn't the first argument, we need a comma.
5857     if (!Args.empty() &&
5858         ParseToken(lltok::comma, "expected ',' in argument list"))
5859       return true;
5860
5861     // Parse the argument.
5862     LocTy ArgLoc;
5863     Type *ArgTy = nullptr;
5864     if (ParseType(ArgTy, ArgLoc))
5865       return true;
5866
5867     Value *V;
5868     if (ArgTy->isMetadataTy()) {
5869       if (ParseMetadataAsValue(V, PFS))
5870         return true;
5871     } else {
5872       if (ParseValue(ArgTy, V, PFS))
5873         return true;
5874     }
5875     Args.push_back(V);
5876   }
5877
5878   Lex.Lex();  // Lex the ']'.
5879   return false;
5880 }
5881
5882 /// ParseCleanupRet
5883 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5884 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5885   Value *CleanupPad = nullptr;
5886
5887   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5888     return true;
5889
5890   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5891     return true;
5892
5893   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5894     return true;
5895
5896   BasicBlock *UnwindBB = nullptr;
5897   if (Lex.getKind() == lltok::kw_to) {
5898     Lex.Lex();
5899     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5900       return true;
5901   } else {
5902     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5903       return true;
5904     }
5905   }
5906
5907   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5908   return false;
5909 }
5910
5911 /// ParseCatchRet
5912 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5913 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5914   Value *CatchPad = nullptr;
5915
5916   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5917     return true;
5918
5919   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5920     return true;
5921
5922   BasicBlock *BB;
5923   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5924       ParseTypeAndBasicBlock(BB, PFS))
5925       return true;
5926
5927   Inst = CatchReturnInst::Create(CatchPad, BB);
5928   return false;
5929 }
5930
5931 /// ParseCatchSwitch
5932 ///   ::= 'catchswitch' within Parent
5933 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5934   Value *ParentPad;
5935
5936   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5937     return true;
5938
5939   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5940       Lex.getKind() != lltok::LocalVarID)
5941     return TokError("expected scope value for catchswitch");
5942
5943   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5944     return true;
5945
5946   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5947     return true;
5948
5949   SmallVector<BasicBlock *, 32> Table;
5950   do {
5951     BasicBlock *DestBB;
5952     if (ParseTypeAndBasicBlock(DestBB, PFS))
5953       return true;
5954     Table.push_back(DestBB);
5955   } while (EatIfPresent(lltok::comma));
5956
5957   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5958     return true;
5959
5960   if (ParseToken(lltok::kw_unwind,
5961                  "expected 'unwind' after catchswitch scope"))
5962     return true;
5963
5964   BasicBlock *UnwindBB = nullptr;
5965   if (EatIfPresent(lltok::kw_to)) {
5966     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5967       return true;
5968   } else {
5969     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5970       return true;
5971   }
5972
5973   auto *CatchSwitch =
5974       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5975   for (BasicBlock *DestBB : Table)
5976     CatchSwitch->addHandler(DestBB);
5977   Inst = CatchSwitch;
5978   return false;
5979 }
5980
5981 /// ParseCatchPad
5982 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5983 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5984   Value *CatchSwitch = nullptr;
5985
5986   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5987     return true;
5988
5989   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5990     return TokError("expected scope value for catchpad");
5991
5992   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5993     return true;
5994
5995   SmallVector<Value *, 8> Args;
5996   if (ParseExceptionArgs(Args, PFS))
5997     return true;
5998
5999   Inst = CatchPadInst::Create(CatchSwitch, Args);
6000   return false;
6001 }
6002
6003 /// ParseCleanupPad
6004 ///   ::= 'cleanuppad' within Parent ParamList
6005 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6006   Value *ParentPad = nullptr;
6007
6008   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6009     return true;
6010
6011   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6012       Lex.getKind() != lltok::LocalVarID)
6013     return TokError("expected scope value for cleanuppad");
6014
6015   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6016     return true;
6017
6018   SmallVector<Value *, 8> Args;
6019   if (ParseExceptionArgs(Args, PFS))
6020     return true;
6021
6022   Inst = CleanupPadInst::Create(ParentPad, Args);
6023   return false;
6024 }
6025
6026 //===----------------------------------------------------------------------===//
6027 // Binary Operators.
6028 //===----------------------------------------------------------------------===//
6029
6030 /// ParseArithmetic
6031 ///  ::= ArithmeticOps TypeAndValue ',' Value
6032 ///
6033 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6034 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6035 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6036                                unsigned Opc, unsigned OperandType) {
6037   LocTy Loc; Value *LHS, *RHS;
6038   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6039       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6040       ParseValue(LHS->getType(), RHS, PFS))
6041     return true;
6042
6043   bool Valid;
6044   switch (OperandType) {
6045   default: llvm_unreachable("Unknown operand type!");
6046   case 0: // int or FP.
6047     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6048             LHS->getType()->isFPOrFPVectorTy();
6049     break;
6050   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6051   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6052   }
6053
6054   if (!Valid)
6055     return Error(Loc, "invalid operand type for instruction");
6056
6057   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6058   return false;
6059 }
6060
6061 /// ParseLogical
6062 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6063 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6064                             unsigned Opc) {
6065   LocTy Loc; Value *LHS, *RHS;
6066   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6067       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6068       ParseValue(LHS->getType(), RHS, PFS))
6069     return true;
6070
6071   if (!LHS->getType()->isIntOrIntVectorTy())
6072     return Error(Loc,"instruction requires integer or integer vector operands");
6073
6074   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6075   return false;
6076 }
6077
6078 /// ParseCompare
6079 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6080 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6081 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6082                             unsigned Opc) {
6083   // Parse the integer/fp comparison predicate.
6084   LocTy Loc;
6085   unsigned Pred;
6086   Value *LHS, *RHS;
6087   if (ParseCmpPredicate(Pred, Opc) ||
6088       ParseTypeAndValue(LHS, Loc, PFS) ||
6089       ParseToken(lltok::comma, "expected ',' after compare value") ||
6090       ParseValue(LHS->getType(), RHS, PFS))
6091     return true;
6092
6093   if (Opc == Instruction::FCmp) {
6094     if (!LHS->getType()->isFPOrFPVectorTy())
6095       return Error(Loc, "fcmp requires floating point operands");
6096     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6097   } else {
6098     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6099     if (!LHS->getType()->isIntOrIntVectorTy() &&
6100         !LHS->getType()->isPtrOrPtrVectorTy())
6101       return Error(Loc, "icmp requires integer operands");
6102     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6103   }
6104   return false;
6105 }
6106
6107 //===----------------------------------------------------------------------===//
6108 // Other Instructions.
6109 //===----------------------------------------------------------------------===//
6110
6111
6112 /// ParseCast
6113 ///   ::= CastOpc TypeAndValue 'to' Type
6114 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6115                          unsigned Opc) {
6116   LocTy Loc;
6117   Value *Op;
6118   Type *DestTy = nullptr;
6119   if (ParseTypeAndValue(Op, Loc, PFS) ||
6120       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6121       ParseType(DestTy))
6122     return true;
6123
6124   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6125     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6126     return Error(Loc, "invalid cast opcode for cast from '" +
6127                  getTypeString(Op->getType()) + "' to '" +
6128                  getTypeString(DestTy) + "'");
6129   }
6130   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6131   return false;
6132 }
6133
6134 /// ParseSelect
6135 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6136 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6137   LocTy Loc;
6138   Value *Op0, *Op1, *Op2;
6139   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6140       ParseToken(lltok::comma, "expected ',' after select condition") ||
6141       ParseTypeAndValue(Op1, PFS) ||
6142       ParseToken(lltok::comma, "expected ',' after select value") ||
6143       ParseTypeAndValue(Op2, PFS))
6144     return true;
6145
6146   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6147     return Error(Loc, Reason);
6148
6149   Inst = SelectInst::Create(Op0, Op1, Op2);
6150   return false;
6151 }
6152
6153 /// ParseVA_Arg
6154 ///   ::= 'va_arg' TypeAndValue ',' Type
6155 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6156   Value *Op;
6157   Type *EltTy = nullptr;
6158   LocTy TypeLoc;
6159   if (ParseTypeAndValue(Op, PFS) ||
6160       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6161       ParseType(EltTy, TypeLoc))
6162     return true;
6163
6164   if (!EltTy->isFirstClassType())
6165     return Error(TypeLoc, "va_arg requires operand with first class type");
6166
6167   Inst = new VAArgInst(Op, EltTy);
6168   return false;
6169 }
6170
6171 /// ParseExtractElement
6172 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6173 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6174   LocTy Loc;
6175   Value *Op0, *Op1;
6176   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6177       ParseToken(lltok::comma, "expected ',' after extract value") ||
6178       ParseTypeAndValue(Op1, PFS))
6179     return true;
6180
6181   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6182     return Error(Loc, "invalid extractelement operands");
6183
6184   Inst = ExtractElementInst::Create(Op0, Op1);
6185   return false;
6186 }
6187
6188 /// ParseInsertElement
6189 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6190 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6191   LocTy Loc;
6192   Value *Op0, *Op1, *Op2;
6193   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6194       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6195       ParseTypeAndValue(Op1, PFS) ||
6196       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6197       ParseTypeAndValue(Op2, PFS))
6198     return true;
6199
6200   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6201     return Error(Loc, "invalid insertelement operands");
6202
6203   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6204   return false;
6205 }
6206
6207 /// ParseShuffleVector
6208 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6209 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6210   LocTy Loc;
6211   Value *Op0, *Op1, *Op2;
6212   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6213       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6214       ParseTypeAndValue(Op1, PFS) ||
6215       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6216       ParseTypeAndValue(Op2, PFS))
6217     return true;
6218
6219   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6220     return Error(Loc, "invalid shufflevector operands");
6221
6222   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6223   return false;
6224 }
6225
6226 /// ParsePHI
6227 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6228 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6229   Type *Ty = nullptr;  LocTy TypeLoc;
6230   Value *Op0, *Op1;
6231
6232   if (ParseType(Ty, TypeLoc) ||
6233       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6234       ParseValue(Ty, Op0, PFS) ||
6235       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6236       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6237       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6238     return true;
6239
6240   bool AteExtraComma = false;
6241   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6242
6243   while (true) {
6244     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6245
6246     if (!EatIfPresent(lltok::comma))
6247       break;
6248
6249     if (Lex.getKind() == lltok::MetadataVar) {
6250       AteExtraComma = true;
6251       break;
6252     }
6253
6254     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6255         ParseValue(Ty, Op0, PFS) ||
6256         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6257         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6258         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6259       return true;
6260   }
6261
6262   if (!Ty->isFirstClassType())
6263     return Error(TypeLoc, "phi node must have first class type");
6264
6265   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6266   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6267     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6268   Inst = PN;
6269   return AteExtraComma ? InstExtraComma : InstNormal;
6270 }
6271
6272 /// ParseLandingPad
6273 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6274 /// Clause
6275 ///   ::= 'catch' TypeAndValue
6276 ///   ::= 'filter'
6277 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6278 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6279   Type *Ty = nullptr; LocTy TyLoc;
6280
6281   if (ParseType(Ty, TyLoc))
6282     return true;
6283
6284   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6285   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6286
6287   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6288     LandingPadInst::ClauseType CT;
6289     if (EatIfPresent(lltok::kw_catch))
6290       CT = LandingPadInst::Catch;
6291     else if (EatIfPresent(lltok::kw_filter))
6292       CT = LandingPadInst::Filter;
6293     else
6294       return TokError("expected 'catch' or 'filter' clause type");
6295
6296     Value *V;
6297     LocTy VLoc;
6298     if (ParseTypeAndValue(V, VLoc, PFS))
6299       return true;
6300
6301     // A 'catch' type expects a non-array constant. A filter clause expects an
6302     // array constant.
6303     if (CT == LandingPadInst::Catch) {
6304       if (isa<ArrayType>(V->getType()))
6305         Error(VLoc, "'catch' clause has an invalid type");
6306     } else {
6307       if (!isa<ArrayType>(V->getType()))
6308         Error(VLoc, "'filter' clause has an invalid type");
6309     }
6310
6311     Constant *CV = dyn_cast<Constant>(V);
6312     if (!CV)
6313       return Error(VLoc, "clause argument must be a constant");
6314     LP->addClause(CV);
6315   }
6316
6317   Inst = LP.release();
6318   return false;
6319 }
6320
6321 /// ParseCall
6322 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6323 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6324 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6325 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6326 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6327 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6328 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6329 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6330 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6331                          CallInst::TailCallKind TCK) {
6332   AttrBuilder RetAttrs, FnAttrs;
6333   std::vector<unsigned> FwdRefAttrGrps;
6334   LocTy BuiltinLoc;
6335   unsigned CC;
6336   Type *RetType = nullptr;
6337   LocTy RetTypeLoc;
6338   ValID CalleeID;
6339   SmallVector<ParamInfo, 16> ArgList;
6340   SmallVector<OperandBundleDef, 2> BundleList;
6341   LocTy CallLoc = Lex.getLoc();
6342
6343   if (TCK != CallInst::TCK_None &&
6344       ParseToken(lltok::kw_call,
6345                  "expected 'tail call', 'musttail call', or 'notail call'"))
6346     return true;
6347
6348   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6349
6350   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6351       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6352       ParseValID(CalleeID) ||
6353       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6354                          PFS.getFunction().isVarArg()) ||
6355       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6356       ParseOptionalOperandBundles(BundleList, PFS))
6357     return true;
6358
6359   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6360     return Error(CallLoc, "fast-math-flags specified for call without "
6361                           "floating-point scalar or vector return type");
6362
6363   // If RetType is a non-function pointer type, then this is the short syntax
6364   // for the call, which means that RetType is just the return type.  Infer the
6365   // rest of the function argument types from the arguments that are present.
6366   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6367   if (!Ty) {
6368     // Pull out the types of all of the arguments...
6369     std::vector<Type*> ParamTypes;
6370     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6371       ParamTypes.push_back(ArgList[i].V->getType());
6372
6373     if (!FunctionType::isValidReturnType(RetType))
6374       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6375
6376     Ty = FunctionType::get(RetType, ParamTypes, false);
6377   }
6378
6379   CalleeID.FTy = Ty;
6380
6381   // Look up the callee.
6382   Value *Callee;
6383   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6384                           /*IsCall=*/true))
6385     return true;
6386
6387   // Set up the Attribute for the function.
6388   SmallVector<AttributeSet, 8> Attrs;
6389
6390   SmallVector<Value*, 8> Args;
6391
6392   // Loop through FunctionType's arguments and ensure they are specified
6393   // correctly.  Also, gather any parameter attributes.
6394   FunctionType::param_iterator I = Ty->param_begin();
6395   FunctionType::param_iterator E = Ty->param_end();
6396   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6397     Type *ExpectedTy = nullptr;
6398     if (I != E) {
6399       ExpectedTy = *I++;
6400     } else if (!Ty->isVarArg()) {
6401       return Error(ArgList[i].Loc, "too many arguments specified");
6402     }
6403
6404     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6405       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6406                    getTypeString(ExpectedTy) + "'");
6407     Args.push_back(ArgList[i].V);
6408     Attrs.push_back(ArgList[i].Attrs);
6409   }
6410
6411   if (I != E)
6412     return Error(CallLoc, "not enough parameters specified for call");
6413
6414   if (FnAttrs.hasAlignmentAttr())
6415     return Error(CallLoc, "call instructions may not have an alignment");
6416
6417   // Finish off the Attribute and check them
6418   AttributeList PAL =
6419       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6420                          AttributeSet::get(Context, RetAttrs), Attrs);
6421
6422   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6423   CI->setTailCallKind(TCK);
6424   CI->setCallingConv(CC);
6425   if (FMF.any())
6426     CI->setFastMathFlags(FMF);
6427   CI->setAttributes(PAL);
6428   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6429   Inst = CI;
6430   return false;
6431 }
6432
6433 //===----------------------------------------------------------------------===//
6434 // Memory Instructions.
6435 //===----------------------------------------------------------------------===//
6436
6437 /// ParseAlloc
6438 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6439 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6440 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6441   Value *Size = nullptr;
6442   LocTy SizeLoc, TyLoc, ASLoc;
6443   unsigned Alignment = 0;
6444   unsigned AddrSpace = 0;
6445   Type *Ty = nullptr;
6446
6447   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6448   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6449
6450   if (ParseType(Ty, TyLoc)) return true;
6451
6452   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6453     return Error(TyLoc, "invalid type for alloca");
6454
6455   bool AteExtraComma = false;
6456   if (EatIfPresent(lltok::comma)) {
6457     if (Lex.getKind() == lltok::kw_align) {
6458       if (ParseOptionalAlignment(Alignment))
6459         return true;
6460       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6461         return true;
6462     } else if (Lex.getKind() == lltok::kw_addrspace) {
6463       ASLoc = Lex.getLoc();
6464       if (ParseOptionalAddrSpace(AddrSpace))
6465         return true;
6466     } else if (Lex.getKind() == lltok::MetadataVar) {
6467       AteExtraComma = true;
6468     } else {
6469       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6470         return true;
6471       if (EatIfPresent(lltok::comma)) {
6472         if (Lex.getKind() == lltok::kw_align) {
6473           if (ParseOptionalAlignment(Alignment))
6474             return true;
6475           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6476             return true;
6477         } else if (Lex.getKind() == lltok::kw_addrspace) {
6478           ASLoc = Lex.getLoc();
6479           if (ParseOptionalAddrSpace(AddrSpace))
6480             return true;
6481         } else if (Lex.getKind() == lltok::MetadataVar) {
6482           AteExtraComma = true;
6483         }
6484       }
6485     }
6486   }
6487
6488   if (Size && !Size->getType()->isIntegerTy())
6489     return Error(SizeLoc, "element count must have integer type");
6490
6491   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6492   AI->setUsedWithInAlloca(IsInAlloca);
6493   AI->setSwiftError(IsSwiftError);
6494   Inst = AI;
6495   return AteExtraComma ? InstExtraComma : InstNormal;
6496 }
6497
6498 /// ParseLoad
6499 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6500 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6501 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6502 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6503   Value *Val; LocTy Loc;
6504   unsigned Alignment = 0;
6505   bool AteExtraComma = false;
6506   bool isAtomic = false;
6507   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6508   SyncScope::ID SSID = SyncScope::System;
6509
6510   if (Lex.getKind() == lltok::kw_atomic) {
6511     isAtomic = true;
6512     Lex.Lex();
6513   }
6514
6515   bool isVolatile = false;
6516   if (Lex.getKind() == lltok::kw_volatile) {
6517     isVolatile = true;
6518     Lex.Lex();
6519   }
6520
6521   Type *Ty;
6522   LocTy ExplicitTypeLoc = Lex.getLoc();
6523   if (ParseType(Ty) ||
6524       ParseToken(lltok::comma, "expected comma after load's type") ||
6525       ParseTypeAndValue(Val, Loc, PFS) ||
6526       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6527       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6528     return true;
6529
6530   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6531     return Error(Loc, "load operand must be a pointer to a first class type");
6532   if (isAtomic && !Alignment)
6533     return Error(Loc, "atomic load must have explicit non-zero alignment");
6534   if (Ordering == AtomicOrdering::Release ||
6535       Ordering == AtomicOrdering::AcquireRelease)
6536     return Error(Loc, "atomic load cannot use Release ordering");
6537
6538   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6539     return Error(ExplicitTypeLoc,
6540                  "explicit pointee type doesn't match operand's pointee type");
6541
6542   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6543   return AteExtraComma ? InstExtraComma : InstNormal;
6544 }
6545
6546 /// ParseStore
6547
6548 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6549 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6550 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6551 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6552   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6553   unsigned Alignment = 0;
6554   bool AteExtraComma = false;
6555   bool isAtomic = false;
6556   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6557   SyncScope::ID SSID = SyncScope::System;
6558
6559   if (Lex.getKind() == lltok::kw_atomic) {
6560     isAtomic = true;
6561     Lex.Lex();
6562   }
6563
6564   bool isVolatile = false;
6565   if (Lex.getKind() == lltok::kw_volatile) {
6566     isVolatile = true;
6567     Lex.Lex();
6568   }
6569
6570   if (ParseTypeAndValue(Val, Loc, PFS) ||
6571       ParseToken(lltok::comma, "expected ',' after store operand") ||
6572       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6573       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6574       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6575     return true;
6576
6577   if (!Ptr->getType()->isPointerTy())
6578     return Error(PtrLoc, "store operand must be a pointer");
6579   if (!Val->getType()->isFirstClassType())
6580     return Error(Loc, "store operand must be a first class value");
6581   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6582     return Error(Loc, "stored value and pointer type do not match");
6583   if (isAtomic && !Alignment)
6584     return Error(Loc, "atomic store must have explicit non-zero alignment");
6585   if (Ordering == AtomicOrdering::Acquire ||
6586       Ordering == AtomicOrdering::AcquireRelease)
6587     return Error(Loc, "atomic store cannot use Acquire ordering");
6588
6589   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6590   return AteExtraComma ? InstExtraComma : InstNormal;
6591 }
6592
6593 /// ParseCmpXchg
6594 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6595 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6596 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6597   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6598   bool AteExtraComma = false;
6599   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6600   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6601   SyncScope::ID SSID = SyncScope::System;
6602   bool isVolatile = false;
6603   bool isWeak = false;
6604
6605   if (EatIfPresent(lltok::kw_weak))
6606     isWeak = true;
6607
6608   if (EatIfPresent(lltok::kw_volatile))
6609     isVolatile = true;
6610
6611   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6612       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6613       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6614       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6615       ParseTypeAndValue(New, NewLoc, PFS) ||
6616       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6617       ParseOrdering(FailureOrdering))
6618     return true;
6619
6620   if (SuccessOrdering == AtomicOrdering::Unordered ||
6621       FailureOrdering == AtomicOrdering::Unordered)
6622     return TokError("cmpxchg cannot be unordered");
6623   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6624     return TokError("cmpxchg failure argument shall be no stronger than the "
6625                     "success argument");
6626   if (FailureOrdering == AtomicOrdering::Release ||
6627       FailureOrdering == AtomicOrdering::AcquireRelease)
6628     return TokError(
6629         "cmpxchg failure ordering cannot include release semantics");
6630   if (!Ptr->getType()->isPointerTy())
6631     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6632   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6633     return Error(CmpLoc, "compare value and pointer type do not match");
6634   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6635     return Error(NewLoc, "new value and pointer type do not match");
6636   if (!New->getType()->isFirstClassType())
6637     return Error(NewLoc, "cmpxchg operand must be a first class value");
6638   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6639       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6640   CXI->setVolatile(isVolatile);
6641   CXI->setWeak(isWeak);
6642   Inst = CXI;
6643   return AteExtraComma ? InstExtraComma : InstNormal;
6644 }
6645
6646 /// ParseAtomicRMW
6647 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6648 ///       'singlethread'? AtomicOrdering
6649 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6650   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6651   bool AteExtraComma = false;
6652   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6653   SyncScope::ID SSID = SyncScope::System;
6654   bool isVolatile = false;
6655   AtomicRMWInst::BinOp Operation;
6656
6657   if (EatIfPresent(lltok::kw_volatile))
6658     isVolatile = true;
6659
6660   switch (Lex.getKind()) {
6661   default: return TokError("expected binary operation in atomicrmw");
6662   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6663   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6664   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6665   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6666   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6667   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6668   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6669   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6670   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6671   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6672   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6673   }
6674   Lex.Lex();  // Eat the operation.
6675
6676   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6677       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6678       ParseTypeAndValue(Val, ValLoc, PFS) ||
6679       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6680     return true;
6681
6682   if (Ordering == AtomicOrdering::Unordered)
6683     return TokError("atomicrmw cannot be unordered");
6684   if (!Ptr->getType()->isPointerTy())
6685     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6686   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6687     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6688   if (!Val->getType()->isIntegerTy())
6689     return Error(ValLoc, "atomicrmw operand must be an integer");
6690   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6691   if (Size < 8 || (Size & (Size - 1)))
6692     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6693                          " integer");
6694
6695   AtomicRMWInst *RMWI =
6696     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6697   RMWI->setVolatile(isVolatile);
6698   Inst = RMWI;
6699   return AteExtraComma ? InstExtraComma : InstNormal;
6700 }
6701
6702 /// ParseFence
6703 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6704 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6705   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6706   SyncScope::ID SSID = SyncScope::System;
6707   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6708     return true;
6709
6710   if (Ordering == AtomicOrdering::Unordered)
6711     return TokError("fence cannot be unordered");
6712   if (Ordering == AtomicOrdering::Monotonic)
6713     return TokError("fence cannot be monotonic");
6714
6715   Inst = new FenceInst(Context, Ordering, SSID);
6716   return InstNormal;
6717 }
6718
6719 /// ParseGetElementPtr
6720 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6721 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6722   Value *Ptr = nullptr;
6723   Value *Val = nullptr;
6724   LocTy Loc, EltLoc;
6725
6726   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6727
6728   Type *Ty = nullptr;
6729   LocTy ExplicitTypeLoc = Lex.getLoc();
6730   if (ParseType(Ty) ||
6731       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6732       ParseTypeAndValue(Ptr, Loc, PFS))
6733     return true;
6734
6735   Type *BaseType = Ptr->getType();
6736   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6737   if (!BasePointerType)
6738     return Error(Loc, "base of getelementptr must be a pointer");
6739
6740   if (Ty != BasePointerType->getElementType())
6741     return Error(ExplicitTypeLoc,
6742                  "explicit pointee type doesn't match operand's pointee type");
6743
6744   SmallVector<Value*, 16> Indices;
6745   bool AteExtraComma = false;
6746   // GEP returns a vector of pointers if at least one of parameters is a vector.
6747   // All vector parameters should have the same vector width.
6748   unsigned GEPWidth = BaseType->isVectorTy() ?
6749     BaseType->getVectorNumElements() : 0;
6750
6751   while (EatIfPresent(lltok::comma)) {
6752     if (Lex.getKind() == lltok::MetadataVar) {
6753       AteExtraComma = true;
6754       break;
6755     }
6756     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6757     if (!Val->getType()->isIntOrIntVectorTy())
6758       return Error(EltLoc, "getelementptr index must be an integer");
6759
6760     if (Val->getType()->isVectorTy()) {
6761       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6762       if (GEPWidth && GEPWidth != ValNumEl)
6763         return Error(EltLoc,
6764           "getelementptr vector index has a wrong number of elements");
6765       GEPWidth = ValNumEl;
6766     }
6767     Indices.push_back(Val);
6768   }
6769
6770   SmallPtrSet<Type*, 4> Visited;
6771   if (!Indices.empty() && !Ty->isSized(&Visited))
6772     return Error(Loc, "base element of getelementptr must be sized");
6773
6774   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6775     return Error(Loc, "invalid getelementptr indices");
6776   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6777   if (InBounds)
6778     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6779   return AteExtraComma ? InstExtraComma : InstNormal;
6780 }
6781
6782 /// ParseExtractValue
6783 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6784 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6785   Value *Val; LocTy Loc;
6786   SmallVector<unsigned, 4> Indices;
6787   bool AteExtraComma;
6788   if (ParseTypeAndValue(Val, Loc, PFS) ||
6789       ParseIndexList(Indices, AteExtraComma))
6790     return true;
6791
6792   if (!Val->getType()->isAggregateType())
6793     return Error(Loc, "extractvalue operand must be aggregate type");
6794
6795   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6796     return Error(Loc, "invalid indices for extractvalue");
6797   Inst = ExtractValueInst::Create(Val, Indices);
6798   return AteExtraComma ? InstExtraComma : InstNormal;
6799 }
6800
6801 /// ParseInsertValue
6802 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6803 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6804   Value *Val0, *Val1; LocTy Loc0, Loc1;
6805   SmallVector<unsigned, 4> Indices;
6806   bool AteExtraComma;
6807   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6808       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6809       ParseTypeAndValue(Val1, Loc1, PFS) ||
6810       ParseIndexList(Indices, AteExtraComma))
6811     return true;
6812
6813   if (!Val0->getType()->isAggregateType())
6814     return Error(Loc0, "insertvalue operand must be aggregate type");
6815
6816   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6817   if (!IndexedType)
6818     return Error(Loc0, "invalid indices for insertvalue");
6819   if (IndexedType != Val1->getType())
6820     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6821                            getTypeString(Val1->getType()) + "' instead of '" +
6822                            getTypeString(IndexedType) + "'");
6823   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6824   return AteExtraComma ? InstExtraComma : InstNormal;
6825 }
6826
6827 //===----------------------------------------------------------------------===//
6828 // Embedded metadata.
6829 //===----------------------------------------------------------------------===//
6830
6831 /// ParseMDNodeVector
6832 ///   ::= { Element (',' Element)* }
6833 /// Element
6834 ///   ::= 'null' | TypeAndValue
6835 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6836   if (ParseToken(lltok::lbrace, "expected '{' here"))
6837     return true;
6838
6839   // Check for an empty list.
6840   if (EatIfPresent(lltok::rbrace))
6841     return false;
6842
6843   do {
6844     // Null is a special case since it is typeless.
6845     if (EatIfPresent(lltok::kw_null)) {
6846       Elts.push_back(nullptr);
6847       continue;
6848     }
6849
6850     Metadata *MD;
6851     if (ParseMetadata(MD, nullptr))
6852       return true;
6853     Elts.push_back(MD);
6854   } while (EatIfPresent(lltok::comma));
6855
6856   return ParseToken(lltok::rbrace, "expected end of metadata node");
6857 }
6858
6859 //===----------------------------------------------------------------------===//
6860 // Use-list order directives.
6861 //===----------------------------------------------------------------------===//
6862 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6863                                 SMLoc Loc) {
6864   if (V->use_empty())
6865     return Error(Loc, "value has no uses");
6866
6867   unsigned NumUses = 0;
6868   SmallDenseMap<const Use *, unsigned, 16> Order;
6869   for (const Use &U : V->uses()) {
6870     if (++NumUses > Indexes.size())
6871       break;
6872     Order[&U] = Indexes[NumUses - 1];
6873   }
6874   if (NumUses < 2)
6875     return Error(Loc, "value only has one use");
6876   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6877     return Error(Loc,
6878                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
6879
6880   V->sortUseList([&](const Use &L, const Use &R) {
6881     return Order.lookup(&L) < Order.lookup(&R);
6882   });
6883   return false;
6884 }
6885
6886 /// ParseUseListOrderIndexes
6887 ///   ::= '{' uint32 (',' uint32)+ '}'
6888 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6889   SMLoc Loc = Lex.getLoc();
6890   if (ParseToken(lltok::lbrace, "expected '{' here"))
6891     return true;
6892   if (Lex.getKind() == lltok::rbrace)
6893     return Lex.Error("expected non-empty list of uselistorder indexes");
6894
6895   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6896   // indexes should be distinct numbers in the range [0, size-1], and should
6897   // not be in order.
6898   unsigned Offset = 0;
6899   unsigned Max = 0;
6900   bool IsOrdered = true;
6901   assert(Indexes.empty() && "Expected empty order vector");
6902   do {
6903     unsigned Index;
6904     if (ParseUInt32(Index))
6905       return true;
6906
6907     // Update consistency checks.
6908     Offset += Index - Indexes.size();
6909     Max = std::max(Max, Index);
6910     IsOrdered &= Index == Indexes.size();
6911
6912     Indexes.push_back(Index);
6913   } while (EatIfPresent(lltok::comma));
6914
6915   if (ParseToken(lltok::rbrace, "expected '}' here"))
6916     return true;
6917
6918   if (Indexes.size() < 2)
6919     return Error(Loc, "expected >= 2 uselistorder indexes");
6920   if (Offset != 0 || Max >= Indexes.size())
6921     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6922   if (IsOrdered)
6923     return Error(Loc, "expected uselistorder indexes to change the order");
6924
6925   return false;
6926 }
6927
6928 /// ParseUseListOrder
6929 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6930 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6931   SMLoc Loc = Lex.getLoc();
6932   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6933     return true;
6934
6935   Value *V;
6936   SmallVector<unsigned, 16> Indexes;
6937   if (ParseTypeAndValue(V, PFS) ||
6938       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6939       ParseUseListOrderIndexes(Indexes))
6940     return true;
6941
6942   return sortUseListOrder(V, Indexes, Loc);
6943 }
6944
6945 /// ParseUseListOrderBB
6946 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6947 bool LLParser::ParseUseListOrderBB() {
6948   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6949   SMLoc Loc = Lex.getLoc();
6950   Lex.Lex();
6951
6952   ValID Fn, Label;
6953   SmallVector<unsigned, 16> Indexes;
6954   if (ParseValID(Fn) ||
6955       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6956       ParseValID(Label) ||
6957       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6958       ParseUseListOrderIndexes(Indexes))
6959     return true;
6960
6961   // Check the function.
6962   GlobalValue *GV;
6963   if (Fn.Kind == ValID::t_GlobalName)
6964     GV = M->getNamedValue(Fn.StrVal);
6965   else if (Fn.Kind == ValID::t_GlobalID)
6966     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6967   else
6968     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6969   if (!GV)
6970     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6971   auto *F = dyn_cast<Function>(GV);
6972   if (!F)
6973     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6974   if (F->isDeclaration())
6975     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6976
6977   // Check the basic block.
6978   if (Label.Kind == ValID::t_LocalID)
6979     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6980   if (Label.Kind != ValID::t_LocalName)
6981     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6982   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6983   if (!V)
6984     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6985   if (!isa<BasicBlock>(V))
6986     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6987
6988   return sortUseListOrder(V, Indexes, Loc);
6989 }
6990
6991 /// ModuleEntry
6992 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
6993 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
6994 bool LLParser::ParseModuleEntry(unsigned ID) {
6995   assert(Lex.getKind() == lltok::kw_module);
6996   Lex.Lex();
6997
6998   std::string Path;
6999   if (ParseToken(lltok::colon, "expected ':' here") ||
7000       ParseToken(lltok::lparen, "expected '(' here") ||
7001       ParseToken(lltok::kw_path, "expected 'path' here") ||
7002       ParseToken(lltok::colon, "expected ':' here") ||
7003       ParseStringConstant(Path) ||
7004       ParseToken(lltok::comma, "expected ',' here") ||
7005       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7006       ParseToken(lltok::colon, "expected ':' here") ||
7007       ParseToken(lltok::lparen, "expected '(' here"))
7008     return true;
7009
7010   ModuleHash Hash;
7011   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7012       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7013       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7014       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7015       ParseUInt32(Hash[4]))
7016     return true;
7017
7018   if (ParseToken(lltok::rparen, "expected ')' here") ||
7019       ParseToken(lltok::rparen, "expected ')' here"))
7020     return true;
7021
7022   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7023   ModuleIdMap[ID] = ModuleEntry->first();
7024
7025   return false;
7026 }
7027
7028 /// TypeIdEntry
7029 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7030 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7031   assert(Lex.getKind() == lltok::kw_typeid);
7032   Lex.Lex();
7033
7034   std::string Name;
7035   if (ParseToken(lltok::colon, "expected ':' here") ||
7036       ParseToken(lltok::lparen, "expected '(' here") ||
7037       ParseToken(lltok::kw_name, "expected 'name' here") ||
7038       ParseToken(lltok::colon, "expected ':' here") ||
7039       ParseStringConstant(Name))
7040     return true;
7041
7042   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7043   if (ParseToken(lltok::comma, "expected ',' here") ||
7044       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7045     return true;
7046
7047   // Check if this ID was forward referenced, and if so, update the
7048   // corresponding GUIDs.
7049   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7050   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7051     for (auto TIDRef : FwdRefTIDs->second) {
7052       assert(!*TIDRef.first &&
7053              "Forward referenced type id GUID expected to be 0");
7054       *TIDRef.first = GlobalValue::getGUID(Name);
7055     }
7056     ForwardRefTypeIds.erase(FwdRefTIDs);
7057   }
7058
7059   return false;
7060 }
7061
7062 /// TypeIdSummary
7063 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7064 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7065   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7066       ParseToken(lltok::colon, "expected ':' here") ||
7067       ParseToken(lltok::lparen, "expected '(' here") ||
7068       ParseTypeTestResolution(TIS.TTRes))
7069     return true;
7070
7071   if (EatIfPresent(lltok::comma)) {
7072     // Expect optional wpdResolutions field
7073     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7074       return true;
7075   }
7076
7077   if (ParseToken(lltok::rparen, "expected ')' here"))
7078     return true;
7079
7080   return false;
7081 }
7082
7083 /// TypeTestResolution
7084 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7085 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7086 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7087 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7088 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7089 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7090   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7091       ParseToken(lltok::colon, "expected ':' here") ||
7092       ParseToken(lltok::lparen, "expected '(' here") ||
7093       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7094       ParseToken(lltok::colon, "expected ':' here"))
7095     return true;
7096
7097   switch (Lex.getKind()) {
7098   case lltok::kw_unsat:
7099     TTRes.TheKind = TypeTestResolution::Unsat;
7100     break;
7101   case lltok::kw_byteArray:
7102     TTRes.TheKind = TypeTestResolution::ByteArray;
7103     break;
7104   case lltok::kw_inline:
7105     TTRes.TheKind = TypeTestResolution::Inline;
7106     break;
7107   case lltok::kw_single:
7108     TTRes.TheKind = TypeTestResolution::Single;
7109     break;
7110   case lltok::kw_allOnes:
7111     TTRes.TheKind = TypeTestResolution::AllOnes;
7112     break;
7113   default:
7114     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7115   }
7116   Lex.Lex();
7117
7118   if (ParseToken(lltok::comma, "expected ',' here") ||
7119       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7120       ParseToken(lltok::colon, "expected ':' here") ||
7121       ParseUInt32(TTRes.SizeM1BitWidth))
7122     return true;
7123
7124   // Parse optional fields
7125   while (EatIfPresent(lltok::comma)) {
7126     switch (Lex.getKind()) {
7127     case lltok::kw_alignLog2:
7128       Lex.Lex();
7129       if (ParseToken(lltok::colon, "expected ':'") ||
7130           ParseUInt64(TTRes.AlignLog2))
7131         return true;
7132       break;
7133     case lltok::kw_sizeM1:
7134       Lex.Lex();
7135       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7136         return true;
7137       break;
7138     case lltok::kw_bitMask: {
7139       unsigned Val;
7140       Lex.Lex();
7141       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7142         return true;
7143       assert(Val <= 0xff);
7144       TTRes.BitMask = (uint8_t)Val;
7145       break;
7146     }
7147     case lltok::kw_inlineBits:
7148       Lex.Lex();
7149       if (ParseToken(lltok::colon, "expected ':'") ||
7150           ParseUInt64(TTRes.InlineBits))
7151         return true;
7152       break;
7153     default:
7154       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7155     }
7156   }
7157
7158   if (ParseToken(lltok::rparen, "expected ')' here"))
7159     return true;
7160
7161   return false;
7162 }
7163
7164 /// OptionalWpdResolutions
7165 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7166 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7167 bool LLParser::ParseOptionalWpdResolutions(
7168     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7169   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7170       ParseToken(lltok::colon, "expected ':' here") ||
7171       ParseToken(lltok::lparen, "expected '(' here"))
7172     return true;
7173
7174   do {
7175     uint64_t Offset;
7176     WholeProgramDevirtResolution WPDRes;
7177     if (ParseToken(lltok::lparen, "expected '(' here") ||
7178         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7179         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7180         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7181         ParseToken(lltok::rparen, "expected ')' here"))
7182       return true;
7183     WPDResMap[Offset] = WPDRes;
7184   } while (EatIfPresent(lltok::comma));
7185
7186   if (ParseToken(lltok::rparen, "expected ')' here"))
7187     return true;
7188
7189   return false;
7190 }
7191
7192 /// WpdRes
7193 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7194 ///         [',' OptionalResByArg]? ')'
7195 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7196 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7197 ///         [',' OptionalResByArg]? ')'
7198 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7199 ///         [',' OptionalResByArg]? ')'
7200 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7201   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7202       ParseToken(lltok::colon, "expected ':' here") ||
7203       ParseToken(lltok::lparen, "expected '(' here") ||
7204       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7205       ParseToken(lltok::colon, "expected ':' here"))
7206     return true;
7207
7208   switch (Lex.getKind()) {
7209   case lltok::kw_indir:
7210     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7211     break;
7212   case lltok::kw_singleImpl:
7213     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7214     break;
7215   case lltok::kw_branchFunnel:
7216     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7217     break;
7218   default:
7219     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7220   }
7221   Lex.Lex();
7222
7223   // Parse optional fields
7224   while (EatIfPresent(lltok::comma)) {
7225     switch (Lex.getKind()) {
7226     case lltok::kw_singleImplName:
7227       Lex.Lex();
7228       if (ParseToken(lltok::colon, "expected ':' here") ||
7229           ParseStringConstant(WPDRes.SingleImplName))
7230         return true;
7231       break;
7232     case lltok::kw_resByArg:
7233       if (ParseOptionalResByArg(WPDRes.ResByArg))
7234         return true;
7235       break;
7236     default:
7237       return Error(Lex.getLoc(),
7238                    "expected optional WholeProgramDevirtResolution field");
7239     }
7240   }
7241
7242   if (ParseToken(lltok::rparen, "expected ')' here"))
7243     return true;
7244
7245   return false;
7246 }
7247
7248 /// OptionalResByArg
7249 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7250 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7251 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7252 ///                  'virtualConstProp' )
7253 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7254 ///                [',' 'bit' ':' UInt32]? ')'
7255 bool LLParser::ParseOptionalResByArg(
7256     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7257         &ResByArg) {
7258   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7259       ParseToken(lltok::colon, "expected ':' here") ||
7260       ParseToken(lltok::lparen, "expected '(' here"))
7261     return true;
7262
7263   do {
7264     std::vector<uint64_t> Args;
7265     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7266         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7267         ParseToken(lltok::colon, "expected ':' here") ||
7268         ParseToken(lltok::lparen, "expected '(' here") ||
7269         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7270         ParseToken(lltok::colon, "expected ':' here"))
7271       return true;
7272
7273     WholeProgramDevirtResolution::ByArg ByArg;
7274     switch (Lex.getKind()) {
7275     case lltok::kw_indir:
7276       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7277       break;
7278     case lltok::kw_uniformRetVal:
7279       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7280       break;
7281     case lltok::kw_uniqueRetVal:
7282       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7283       break;
7284     case lltok::kw_virtualConstProp:
7285       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7286       break;
7287     default:
7288       return Error(Lex.getLoc(),
7289                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7290     }
7291     Lex.Lex();
7292
7293     // Parse optional fields
7294     while (EatIfPresent(lltok::comma)) {
7295       switch (Lex.getKind()) {
7296       case lltok::kw_info:
7297         Lex.Lex();
7298         if (ParseToken(lltok::colon, "expected ':' here") ||
7299             ParseUInt64(ByArg.Info))
7300           return true;
7301         break;
7302       case lltok::kw_byte:
7303         Lex.Lex();
7304         if (ParseToken(lltok::colon, "expected ':' here") ||
7305             ParseUInt32(ByArg.Byte))
7306           return true;
7307         break;
7308       case lltok::kw_bit:
7309         Lex.Lex();
7310         if (ParseToken(lltok::colon, "expected ':' here") ||
7311             ParseUInt32(ByArg.Bit))
7312           return true;
7313         break;
7314       default:
7315         return Error(Lex.getLoc(),
7316                      "expected optional whole program devirt field");
7317       }
7318     }
7319
7320     if (ParseToken(lltok::rparen, "expected ')' here"))
7321       return true;
7322
7323     ResByArg[Args] = ByArg;
7324   } while (EatIfPresent(lltok::comma));
7325
7326   if (ParseToken(lltok::rparen, "expected ')' here"))
7327     return true;
7328
7329   return false;
7330 }
7331
7332 /// OptionalResByArg
7333 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7334 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7335   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7336       ParseToken(lltok::colon, "expected ':' here") ||
7337       ParseToken(lltok::lparen, "expected '(' here"))
7338     return true;
7339
7340   do {
7341     uint64_t Val;
7342     if (ParseUInt64(Val))
7343       return true;
7344     Args.push_back(Val);
7345   } while (EatIfPresent(lltok::comma));
7346
7347   if (ParseToken(lltok::rparen, "expected ')' here"))
7348     return true;
7349
7350   return false;
7351 }
7352
7353 static ValueInfo EmptyVI =
7354     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7355
7356 /// Stores the given Name/GUID and associated summary into the Index.
7357 /// Also updates any forward references to the associated entry ID.
7358 void LLParser::AddGlobalValueToIndex(
7359     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7360     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7361   // First create the ValueInfo utilizing the Name or GUID.
7362   ValueInfo VI;
7363   if (GUID != 0) {
7364     assert(Name.empty());
7365     VI = Index->getOrInsertValueInfo(GUID);
7366   } else {
7367     assert(!Name.empty());
7368     if (M) {
7369       auto *GV = M->getNamedValue(Name);
7370       assert(GV);
7371       VI = Index->getOrInsertValueInfo(GV);
7372     } else {
7373       assert(
7374           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7375           "Need a source_filename to compute GUID for local");
7376       GUID = GlobalValue::getGUID(
7377           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7378       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7379     }
7380   }
7381
7382   // Add the summary if one was provided.
7383   if (Summary)
7384     Index->addGlobalValueSummary(VI, std::move(Summary));
7385
7386   // Resolve forward references from calls/refs
7387   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7388   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7389     for (auto VIRef : FwdRefVIs->second) {
7390       assert(*VIRef.first == EmptyVI &&
7391              "Forward referenced ValueInfo expected to be empty");
7392       *VIRef.first = VI;
7393     }
7394     ForwardRefValueInfos.erase(FwdRefVIs);
7395   }
7396
7397   // Resolve forward references from aliases
7398   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7399   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7400     for (auto AliaseeRef : FwdRefAliasees->second) {
7401       assert(!AliaseeRef.first->hasAliasee() &&
7402              "Forward referencing alias already has aliasee");
7403       AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7404     }
7405     ForwardRefAliasees.erase(FwdRefAliasees);
7406   }
7407
7408   // Save the associated ValueInfo for use in later references by ID.
7409   if (ID == NumberedValueInfos.size())
7410     NumberedValueInfos.push_back(VI);
7411   else {
7412     // Handle non-continuous numbers (to make test simplification easier).
7413     if (ID > NumberedValueInfos.size())
7414       NumberedValueInfos.resize(ID + 1);
7415     NumberedValueInfos[ID] = VI;
7416   }
7417 }
7418
7419 /// ParseGVEntry
7420 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7421 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7422 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7423 bool LLParser::ParseGVEntry(unsigned ID) {
7424   assert(Lex.getKind() == lltok::kw_gv);
7425   Lex.Lex();
7426
7427   if (ParseToken(lltok::colon, "expected ':' here") ||
7428       ParseToken(lltok::lparen, "expected '(' here"))
7429     return true;
7430
7431   std::string Name;
7432   GlobalValue::GUID GUID = 0;
7433   switch (Lex.getKind()) {
7434   case lltok::kw_name:
7435     Lex.Lex();
7436     if (ParseToken(lltok::colon, "expected ':' here") ||
7437         ParseStringConstant(Name))
7438       return true;
7439     // Can't create GUID/ValueInfo until we have the linkage.
7440     break;
7441   case lltok::kw_guid:
7442     Lex.Lex();
7443     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7444       return true;
7445     break;
7446   default:
7447     return Error(Lex.getLoc(), "expected name or guid tag");
7448   }
7449
7450   if (!EatIfPresent(lltok::comma)) {
7451     // No summaries. Wrap up.
7452     if (ParseToken(lltok::rparen, "expected ')' here"))
7453       return true;
7454     // This was created for a call to an external or indirect target.
7455     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7456     // created for indirect calls with VP. A Name with no GUID came from
7457     // an external definition. We pass ExternalLinkage since that is only
7458     // used when the GUID must be computed from Name, and in that case
7459     // the symbol must have external linkage.
7460     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7461                           nullptr);
7462     return false;
7463   }
7464
7465   // Have a list of summaries
7466   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7467       ParseToken(lltok::colon, "expected ':' here"))
7468     return true;
7469
7470   do {
7471     if (ParseToken(lltok::lparen, "expected '(' here"))
7472       return true;
7473     switch (Lex.getKind()) {
7474     case lltok::kw_function:
7475       if (ParseFunctionSummary(Name, GUID, ID))
7476         return true;
7477       break;
7478     case lltok::kw_variable:
7479       if (ParseVariableSummary(Name, GUID, ID))
7480         return true;
7481       break;
7482     case lltok::kw_alias:
7483       if (ParseAliasSummary(Name, GUID, ID))
7484         return true;
7485       break;
7486     default:
7487       return Error(Lex.getLoc(), "expected summary type");
7488     }
7489     if (ParseToken(lltok::rparen, "expected ')' here"))
7490       return true;
7491   } while (EatIfPresent(lltok::comma));
7492
7493   if (ParseToken(lltok::rparen, "expected ')' here"))
7494     return true;
7495
7496   return false;
7497 }
7498
7499 /// FunctionSummary
7500 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7501 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7502 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7503 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7504                                     unsigned ID) {
7505   assert(Lex.getKind() == lltok::kw_function);
7506   Lex.Lex();
7507
7508   StringRef ModulePath;
7509   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7510       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7511       /*Live=*/false, /*IsLocal=*/false);
7512   unsigned InstCount;
7513   std::vector<FunctionSummary::EdgeTy> Calls;
7514   FunctionSummary::TypeIdInfo TypeIdInfo;
7515   std::vector<ValueInfo> Refs;
7516   // Default is all-zeros (conservative values).
7517   FunctionSummary::FFlags FFlags = {};
7518   if (ParseToken(lltok::colon, "expected ':' here") ||
7519       ParseToken(lltok::lparen, "expected '(' here") ||
7520       ParseModuleReference(ModulePath) ||
7521       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7522       ParseToken(lltok::comma, "expected ',' here") ||
7523       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7524       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7525     return true;
7526
7527   // Parse optional fields
7528   while (EatIfPresent(lltok::comma)) {
7529     switch (Lex.getKind()) {
7530     case lltok::kw_funcFlags:
7531       if (ParseOptionalFFlags(FFlags))
7532         return true;
7533       break;
7534     case lltok::kw_calls:
7535       if (ParseOptionalCalls(Calls))
7536         return true;
7537       break;
7538     case lltok::kw_typeIdInfo:
7539       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7540         return true;
7541       break;
7542     case lltok::kw_refs:
7543       if (ParseOptionalRefs(Refs))
7544         return true;
7545       break;
7546     default:
7547       return Error(Lex.getLoc(), "expected optional function summary field");
7548     }
7549   }
7550
7551   if (ParseToken(lltok::rparen, "expected ')' here"))
7552     return true;
7553
7554   auto FS = llvm::make_unique<FunctionSummary>(
7555       GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls),
7556       std::move(TypeIdInfo.TypeTests),
7557       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7558       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7559       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7560       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7561
7562   FS->setModulePath(ModulePath);
7563
7564   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7565                         ID, std::move(FS));
7566
7567   return false;
7568 }
7569
7570 /// VariableSummary
7571 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7572 ///         [',' OptionalRefs]? ')'
7573 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7574                                     unsigned ID) {
7575   assert(Lex.getKind() == lltok::kw_variable);
7576   Lex.Lex();
7577
7578   StringRef ModulePath;
7579   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7580       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7581       /*Live=*/false, /*IsLocal=*/false);
7582   std::vector<ValueInfo> Refs;
7583   if (ParseToken(lltok::colon, "expected ':' here") ||
7584       ParseToken(lltok::lparen, "expected '(' here") ||
7585       ParseModuleReference(ModulePath) ||
7586       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags))
7587     return true;
7588
7589   // Parse optional refs field
7590   if (EatIfPresent(lltok::comma)) {
7591     if (ParseOptionalRefs(Refs))
7592       return true;
7593   }
7594
7595   if (ParseToken(lltok::rparen, "expected ')' here"))
7596     return true;
7597
7598   auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs));
7599
7600   GS->setModulePath(ModulePath);
7601
7602   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7603                         ID, std::move(GS));
7604
7605   return false;
7606 }
7607
7608 /// AliasSummary
7609 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7610 ///         'aliasee' ':' GVReference ')'
7611 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7612                                  unsigned ID) {
7613   assert(Lex.getKind() == lltok::kw_alias);
7614   LocTy Loc = Lex.getLoc();
7615   Lex.Lex();
7616
7617   StringRef ModulePath;
7618   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7619       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7620       /*Live=*/false, /*IsLocal=*/false);
7621   if (ParseToken(lltok::colon, "expected ':' here") ||
7622       ParseToken(lltok::lparen, "expected '(' here") ||
7623       ParseModuleReference(ModulePath) ||
7624       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7625       ParseToken(lltok::comma, "expected ',' here") ||
7626       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7627       ParseToken(lltok::colon, "expected ':' here"))
7628     return true;
7629
7630   ValueInfo AliaseeVI;
7631   unsigned GVId;
7632   if (ParseGVReference(AliaseeVI, GVId))
7633     return true;
7634
7635   if (ParseToken(lltok::rparen, "expected ')' here"))
7636     return true;
7637
7638   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7639
7640   AS->setModulePath(ModulePath);
7641
7642   // Record forward reference if the aliasee is not parsed yet.
7643   if (AliaseeVI == EmptyVI) {
7644     auto FwdRef = ForwardRefAliasees.insert(
7645         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7646     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7647   } else
7648     AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7649
7650   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7651                         ID, std::move(AS));
7652
7653   return false;
7654 }
7655
7656 /// Flag
7657 ///   ::= [0|1]
7658 bool LLParser::ParseFlag(unsigned &Val) {
7659   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7660     return TokError("expected integer");
7661   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7662   Lex.Lex();
7663   return false;
7664 }
7665
7666 /// OptionalFFlags
7667 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7668 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7669 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
7670 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
7671   assert(Lex.getKind() == lltok::kw_funcFlags);
7672   Lex.Lex();
7673
7674   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
7675       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
7676     return true;
7677
7678   do {
7679     unsigned Val;
7680     switch (Lex.getKind()) {
7681     case lltok::kw_readNone:
7682       Lex.Lex();
7683       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7684         return true;
7685       FFlags.ReadNone = Val;
7686       break;
7687     case lltok::kw_readOnly:
7688       Lex.Lex();
7689       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7690         return true;
7691       FFlags.ReadOnly = Val;
7692       break;
7693     case lltok::kw_noRecurse:
7694       Lex.Lex();
7695       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7696         return true;
7697       FFlags.NoRecurse = Val;
7698       break;
7699     case lltok::kw_returnDoesNotAlias:
7700       Lex.Lex();
7701       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7702         return true;
7703       FFlags.ReturnDoesNotAlias = Val;
7704       break;
7705     default:
7706       return Error(Lex.getLoc(), "expected function flag type");
7707     }
7708   } while (EatIfPresent(lltok::comma));
7709
7710   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
7711     return true;
7712
7713   return false;
7714 }
7715
7716 /// OptionalCalls
7717 ///   := 'calls' ':' '(' Call [',' Call]* ')'
7718 /// Call ::= '(' 'callee' ':' GVReference
7719 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
7720 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
7721   assert(Lex.getKind() == lltok::kw_calls);
7722   Lex.Lex();
7723
7724   if (ParseToken(lltok::colon, "expected ':' in calls") |
7725       ParseToken(lltok::lparen, "expected '(' in calls"))
7726     return true;
7727
7728   IdToIndexMapType IdToIndexMap;
7729   // Parse each call edge
7730   do {
7731     ValueInfo VI;
7732     if (ParseToken(lltok::lparen, "expected '(' in call") ||
7733         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
7734         ParseToken(lltok::colon, "expected ':'"))
7735       return true;
7736
7737     LocTy Loc = Lex.getLoc();
7738     unsigned GVId;
7739     if (ParseGVReference(VI, GVId))
7740       return true;
7741
7742     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7743     unsigned RelBF = 0;
7744     if (EatIfPresent(lltok::comma)) {
7745       // Expect either hotness or relbf
7746       if (EatIfPresent(lltok::kw_hotness)) {
7747         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
7748           return true;
7749       } else {
7750         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
7751             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
7752           return true;
7753       }
7754     }
7755     // Keep track of the Call array index needing a forward reference.
7756     // We will save the location of the ValueInfo needing an update, but
7757     // can only do so once the std::vector is finalized.
7758     if (VI == EmptyVI)
7759       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
7760     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
7761
7762     if (ParseToken(lltok::rparen, "expected ')' in call"))
7763       return true;
7764   } while (EatIfPresent(lltok::comma));
7765
7766   // Now that the Calls vector is finalized, it is safe to save the locations
7767   // of any forward GV references that need updating later.
7768   for (auto I : IdToIndexMap) {
7769     for (auto P : I.second) {
7770       assert(Calls[P.first].first == EmptyVI &&
7771              "Forward referenced ValueInfo expected to be empty");
7772       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7773           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7774       FwdRef.first->second.push_back(
7775           std::make_pair(&Calls[P.first].first, P.second));
7776     }
7777   }
7778
7779   if (ParseToken(lltok::rparen, "expected ')' in calls"))
7780     return true;
7781
7782   return false;
7783 }
7784
7785 /// Hotness
7786 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
7787 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
7788   switch (Lex.getKind()) {
7789   case lltok::kw_unknown:
7790     Hotness = CalleeInfo::HotnessType::Unknown;
7791     break;
7792   case lltok::kw_cold:
7793     Hotness = CalleeInfo::HotnessType::Cold;
7794     break;
7795   case lltok::kw_none:
7796     Hotness = CalleeInfo::HotnessType::None;
7797     break;
7798   case lltok::kw_hot:
7799     Hotness = CalleeInfo::HotnessType::Hot;
7800     break;
7801   case lltok::kw_critical:
7802     Hotness = CalleeInfo::HotnessType::Critical;
7803     break;
7804   default:
7805     return Error(Lex.getLoc(), "invalid call edge hotness");
7806   }
7807   Lex.Lex();
7808   return false;
7809 }
7810
7811 /// OptionalRefs
7812 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
7813 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
7814   assert(Lex.getKind() == lltok::kw_refs);
7815   Lex.Lex();
7816
7817   if (ParseToken(lltok::colon, "expected ':' in refs") |
7818       ParseToken(lltok::lparen, "expected '(' in refs"))
7819     return true;
7820
7821   IdToIndexMapType IdToIndexMap;
7822   // Parse each ref edge
7823   do {
7824     ValueInfo VI;
7825     LocTy Loc = Lex.getLoc();
7826     unsigned GVId;
7827     if (ParseGVReference(VI, GVId))
7828       return true;
7829
7830     // Keep track of the Refs array index needing a forward reference.
7831     // We will save the location of the ValueInfo needing an update, but
7832     // can only do so once the std::vector is finalized.
7833     if (VI == EmptyVI)
7834       IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc));
7835     Refs.push_back(VI);
7836   } while (EatIfPresent(lltok::comma));
7837
7838   // Now that the Refs vector is finalized, it is safe to save the locations
7839   // of any forward GV references that need updating later.
7840   for (auto I : IdToIndexMap) {
7841     for (auto P : I.second) {
7842       assert(Refs[P.first] == EmptyVI &&
7843              "Forward referenced ValueInfo expected to be empty");
7844       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7845           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7846       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
7847     }
7848   }
7849
7850   if (ParseToken(lltok::rparen, "expected ')' in refs"))
7851     return true;
7852
7853   return false;
7854 }
7855
7856 /// OptionalTypeIdInfo
7857 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
7858 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
7859 ///         [',' TypeCheckedLoadConstVCalls]? ')'
7860 bool LLParser::ParseOptionalTypeIdInfo(
7861     FunctionSummary::TypeIdInfo &TypeIdInfo) {
7862   assert(Lex.getKind() == lltok::kw_typeIdInfo);
7863   Lex.Lex();
7864
7865   if (ParseToken(lltok::colon, "expected ':' here") ||
7866       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7867     return true;
7868
7869   do {
7870     switch (Lex.getKind()) {
7871     case lltok::kw_typeTests:
7872       if (ParseTypeTests(TypeIdInfo.TypeTests))
7873         return true;
7874       break;
7875     case lltok::kw_typeTestAssumeVCalls:
7876       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
7877                            TypeIdInfo.TypeTestAssumeVCalls))
7878         return true;
7879       break;
7880     case lltok::kw_typeCheckedLoadVCalls:
7881       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
7882                            TypeIdInfo.TypeCheckedLoadVCalls))
7883         return true;
7884       break;
7885     case lltok::kw_typeTestAssumeConstVCalls:
7886       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
7887                               TypeIdInfo.TypeTestAssumeConstVCalls))
7888         return true;
7889       break;
7890     case lltok::kw_typeCheckedLoadConstVCalls:
7891       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
7892                               TypeIdInfo.TypeCheckedLoadConstVCalls))
7893         return true;
7894       break;
7895     default:
7896       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
7897     }
7898   } while (EatIfPresent(lltok::comma));
7899
7900   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
7901     return true;
7902
7903   return false;
7904 }
7905
7906 /// TypeTests
7907 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
7908 ///         [',' (SummaryID | UInt64)]* ')'
7909 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
7910   assert(Lex.getKind() == lltok::kw_typeTests);
7911   Lex.Lex();
7912
7913   if (ParseToken(lltok::colon, "expected ':' here") ||
7914       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7915     return true;
7916
7917   IdToIndexMapType IdToIndexMap;
7918   do {
7919     GlobalValue::GUID GUID = 0;
7920     if (Lex.getKind() == lltok::SummaryID) {
7921       unsigned ID = Lex.getUIntVal();
7922       LocTy Loc = Lex.getLoc();
7923       // Keep track of the TypeTests array index needing a forward reference.
7924       // We will save the location of the GUID needing an update, but
7925       // can only do so once the std::vector is finalized.
7926       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
7927       Lex.Lex();
7928     } else if (ParseUInt64(GUID))
7929       return true;
7930     TypeTests.push_back(GUID);
7931   } while (EatIfPresent(lltok::comma));
7932
7933   // Now that the TypeTests vector is finalized, it is safe to save the
7934   // locations of any forward GV references that need updating later.
7935   for (auto I : IdToIndexMap) {
7936     for (auto P : I.second) {
7937       assert(TypeTests[P.first] == 0 &&
7938              "Forward referenced type id GUID expected to be 0");
7939       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
7940           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
7941       FwdRef.first->second.push_back(
7942           std::make_pair(&TypeTests[P.first], P.second));
7943     }
7944   }
7945
7946   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
7947     return true;
7948
7949   return false;
7950 }
7951
7952 /// VFuncIdList
7953 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
7954 bool LLParser::ParseVFuncIdList(
7955     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
7956   assert(Lex.getKind() == Kind);
7957   Lex.Lex();
7958
7959   if (ParseToken(lltok::colon, "expected ':' here") ||
7960       ParseToken(lltok::lparen, "expected '(' here"))
7961     return true;
7962
7963   IdToIndexMapType IdToIndexMap;
7964   do {
7965     FunctionSummary::VFuncId VFuncId;
7966     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
7967       return true;
7968     VFuncIdList.push_back(VFuncId);
7969   } while (EatIfPresent(lltok::comma));
7970
7971   if (ParseToken(lltok::rparen, "expected ')' here"))
7972     return true;
7973
7974   // Now that the VFuncIdList vector is finalized, it is safe to save the
7975   // locations of any forward GV references that need updating later.
7976   for (auto I : IdToIndexMap) {
7977     for (auto P : I.second) {
7978       assert(VFuncIdList[P.first].GUID == 0 &&
7979              "Forward referenced type id GUID expected to be 0");
7980       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
7981           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
7982       FwdRef.first->second.push_back(
7983           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
7984     }
7985   }
7986
7987   return false;
7988 }
7989
7990 /// ConstVCallList
7991 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
7992 bool LLParser::ParseConstVCallList(
7993     lltok::Kind Kind,
7994     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
7995   assert(Lex.getKind() == Kind);
7996   Lex.Lex();
7997
7998   if (ParseToken(lltok::colon, "expected ':' here") ||
7999       ParseToken(lltok::lparen, "expected '(' here"))
8000     return true;
8001
8002   IdToIndexMapType IdToIndexMap;
8003   do {
8004     FunctionSummary::ConstVCall ConstVCall;
8005     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8006       return true;
8007     ConstVCallList.push_back(ConstVCall);
8008   } while (EatIfPresent(lltok::comma));
8009
8010   if (ParseToken(lltok::rparen, "expected ')' here"))
8011     return true;
8012
8013   // Now that the ConstVCallList vector is finalized, it is safe to save the
8014   // locations of any forward GV references that need updating later.
8015   for (auto I : IdToIndexMap) {
8016     for (auto P : I.second) {
8017       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8018              "Forward referenced type id GUID expected to be 0");
8019       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8020           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8021       FwdRef.first->second.push_back(
8022           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8023     }
8024   }
8025
8026   return false;
8027 }
8028
8029 /// ConstVCall
8030 ///   ::= VFuncId, Args
8031 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8032                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8033   if (ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index) ||
8034       ParseToken(lltok::comma, "expected ',' here") ||
8035       ParseArgs(ConstVCall.Args))
8036     return true;
8037
8038   return false;
8039 }
8040
8041 /// VFuncId
8042 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8043 ///         'offset' ':' UInt64 ')'
8044 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8045                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8046   assert(Lex.getKind() == lltok::kw_vFuncId);
8047   Lex.Lex();
8048
8049   if (ParseToken(lltok::colon, "expected ':' here") ||
8050       ParseToken(lltok::lparen, "expected '(' here"))
8051     return true;
8052
8053   if (Lex.getKind() == lltok::SummaryID) {
8054     VFuncId.GUID = 0;
8055     unsigned ID = Lex.getUIntVal();
8056     LocTy Loc = Lex.getLoc();
8057     // Keep track of the array index needing a forward reference.
8058     // We will save the location of the GUID needing an update, but
8059     // can only do so once the caller's std::vector is finalized.
8060     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8061     Lex.Lex();
8062   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8063              ParseToken(lltok::colon, "expected ':' here") ||
8064              ParseUInt64(VFuncId.GUID))
8065     return true;
8066
8067   if (ParseToken(lltok::comma, "expected ',' here") ||
8068       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8069       ParseToken(lltok::colon, "expected ':' here") ||
8070       ParseUInt64(VFuncId.Offset) ||
8071       ParseToken(lltok::rparen, "expected ')' here"))
8072     return true;
8073
8074   return false;
8075 }
8076
8077 /// GVFlags
8078 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8079 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8080 ///         'dsoLocal' ':' Flag ')'
8081 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8082   assert(Lex.getKind() == lltok::kw_flags);
8083   Lex.Lex();
8084
8085   bool HasLinkage;
8086   if (ParseToken(lltok::colon, "expected ':' here") ||
8087       ParseToken(lltok::lparen, "expected '(' here") ||
8088       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8089       ParseToken(lltok::colon, "expected ':' here"))
8090     return true;
8091
8092   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8093   assert(HasLinkage && "Linkage not optional in summary entry");
8094   Lex.Lex();
8095
8096   unsigned Flag;
8097   if (ParseToken(lltok::comma, "expected ',' here") ||
8098       ParseToken(lltok::kw_notEligibleToImport,
8099                  "expected 'notEligibleToImport' here") ||
8100       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8101     return true;
8102   GVFlags.NotEligibleToImport = Flag;
8103
8104   if (ParseToken(lltok::comma, "expected ',' here") ||
8105       ParseToken(lltok::kw_live, "expected 'live' here") ||
8106       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8107     return true;
8108   GVFlags.Live = Flag;
8109
8110   if (ParseToken(lltok::comma, "expected ',' here") ||
8111       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8112       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8113     return true;
8114   GVFlags.DSOLocal = Flag;
8115
8116   if (ParseToken(lltok::rparen, "expected ')' here"))
8117     return true;
8118
8119   return false;
8120 }
8121
8122 /// ModuleReference
8123 ///   ::= 'module' ':' UInt
8124 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8125   // Parse module id.
8126   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8127       ParseToken(lltok::colon, "expected ':' here") ||
8128       ParseToken(lltok::SummaryID, "expected module ID"))
8129     return true;
8130
8131   unsigned ModuleID = Lex.getUIntVal();
8132   auto I = ModuleIdMap.find(ModuleID);
8133   // We should have already parsed all module IDs
8134   assert(I != ModuleIdMap.end());
8135   ModulePath = I->second;
8136   return false;
8137 }
8138
8139 /// GVReference
8140 ///   ::= SummaryID
8141 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8142   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8143     return true;
8144
8145   GVId = Lex.getUIntVal();
8146
8147   // Check if we already have a VI for this GV
8148   if (GVId < NumberedValueInfos.size()) {
8149     assert(NumberedValueInfos[GVId] != EmptyVI);
8150     VI = NumberedValueInfos[GVId];
8151   } else
8152     // We will create a forward reference to the stored location.
8153     VI = EmptyVI;
8154
8155   return false;
8156 }