]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.h
MFV r331400: 8484 Implement aggregate sum and use for arc counters
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Bitcode / Writer / ValueEnumerator.h
1 //===- Bitcode/Writer/ValueEnumerator.h - Number values ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class gives values and types Unique ID's.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
15 #define LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/UniqueVector.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/Metadata.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/IR/UseListOrder.h"
24 #include <cassert>
25 #include <cstdint>
26 #include <utility>
27 #include <vector>
28
29 namespace llvm {
30
31 class BasicBlock;
32 class Comdat;
33 class Function;
34 class Instruction;
35 class LocalAsMetadata;
36 class MDNode;
37 class Metadata;
38 class Module;
39 class NamedMDNode;
40 class raw_ostream;
41 class Type;
42 class Value;
43 class ValueSymbolTable;
44
45 class ValueEnumerator {
46 public:
47   using TypeList = std::vector<Type *>;
48
49   // For each value, we remember its Value* and occurrence frequency.
50   using ValueList = std::vector<std::pair<const Value *, unsigned>>;
51
52   /// Attribute groups as encoded in bitcode are almost AttributeSets, but they
53   /// include the AttributeList index, so we have to track that in our map.
54   using IndexAndAttrSet = std::pair<unsigned, AttributeSet>;
55
56   UseListOrderStack UseListOrders;
57
58 private:
59   using TypeMapType = DenseMap<Type *, unsigned>;
60   TypeMapType TypeMap;
61   TypeList Types;
62
63   using ValueMapType = DenseMap<const Value *, unsigned>;
64   ValueMapType ValueMap;
65   ValueList Values;
66
67   using ComdatSetType = UniqueVector<const Comdat *>;
68   ComdatSetType Comdats;
69
70   std::vector<const Metadata *> MDs;
71   std::vector<const Metadata *> FunctionMDs;
72
73   /// Index of information about a piece of metadata.
74   struct MDIndex {
75     unsigned F = 0;  ///< The ID of the function for this metadata, if any.
76     unsigned ID = 0; ///< The implicit ID of this metadata in bitcode.
77
78     MDIndex() = default;
79     explicit MDIndex(unsigned F) : F(F) {}
80
81     /// Check if this has a function tag, and it's different from NewF.
82     bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; }
83
84     /// Fetch the MD this references out of the given metadata array.
85     const Metadata *get(ArrayRef<const Metadata *> MDs) const {
86       assert(ID && "Expected non-zero ID");
87       assert(ID <= MDs.size() && "Expected valid ID");
88       return MDs[ID - 1];
89     }
90   };
91
92   using MetadataMapType = DenseMap<const Metadata *, MDIndex>;
93   MetadataMapType MetadataMap;
94
95   /// Range of metadata IDs, as a half-open range.
96   struct MDRange {
97     unsigned First = 0;
98     unsigned Last = 0;
99
100     /// Number of strings in the prefix of the metadata range.
101     unsigned NumStrings = 0;
102
103     MDRange() = default;
104     explicit MDRange(unsigned First) : First(First) {}
105   };
106   SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo;
107
108   bool ShouldPreserveUseListOrder;
109
110   using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>;
111   AttributeGroupMapType AttributeGroupMap;
112   std::vector<IndexAndAttrSet> AttributeGroups;
113
114   using AttributeListMapType = DenseMap<AttributeList, unsigned>;
115   AttributeListMapType AttributeListMap;
116   std::vector<AttributeList> AttributeLists;
117
118   /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by
119   /// the "getGlobalBasicBlockID" method.
120   mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs;
121
122   using InstructionMapType = DenseMap<const Instruction *, unsigned>;
123   InstructionMapType InstructionMap;
124   unsigned InstructionCount;
125
126   /// BasicBlocks - This contains all the basic blocks for the currently
127   /// incorporated function.  Their reverse mapping is stored in ValueMap.
128   std::vector<const BasicBlock*> BasicBlocks;
129
130   /// When a function is incorporated, this is the size of the Values list
131   /// before incorporation.
132   unsigned NumModuleValues;
133
134   /// When a function is incorporated, this is the size of the Metadatas list
135   /// before incorporation.
136   unsigned NumModuleMDs = 0;
137   unsigned NumMDStrings = 0;
138
139   unsigned FirstFuncConstantID;
140   unsigned FirstInstID;
141
142 public:
143   ValueEnumerator(const Module &M, bool ShouldPreserveUseListOrder);
144   ValueEnumerator(const ValueEnumerator &) = delete;
145   ValueEnumerator &operator=(const ValueEnumerator &) = delete;
146
147   void dump() const;
148   void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const;
149   void print(raw_ostream &OS, const MetadataMapType &Map,
150              const char *Name) const;
151
152   unsigned getValueID(const Value *V) const;
153
154   unsigned getMetadataID(const Metadata *MD) const {
155     auto ID = getMetadataOrNullID(MD);
156     assert(ID != 0 && "Metadata not in slotcalculator!");
157     return ID - 1;
158   }
159
160   unsigned getMetadataOrNullID(const Metadata *MD) const {
161     return MetadataMap.lookup(MD).ID;
162   }
163
164   unsigned numMDs() const { return MDs.size(); }
165
166   bool shouldPreserveUseListOrder() const { return ShouldPreserveUseListOrder; }
167
168   unsigned getTypeID(Type *T) const {
169     TypeMapType::const_iterator I = TypeMap.find(T);
170     assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
171     return I->second-1;
172   }
173
174   unsigned getInstructionID(const Instruction *I) const;
175   void setInstructionID(const Instruction *I);
176
177   unsigned getAttributeListID(AttributeList PAL) const {
178     if (PAL.isEmpty()) return 0;  // Null maps to zero.
179     AttributeListMapType::const_iterator I = AttributeListMap.find(PAL);
180     assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!");
181     return I->second;
182   }
183
184   unsigned getAttributeGroupID(IndexAndAttrSet Group) const {
185     if (!Group.second.hasAttributes())
186       return 0; // Null maps to zero.
187     AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group);
188     assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!");
189     return I->second;
190   }
191
192   /// getFunctionConstantRange - Return the range of values that corresponds to
193   /// function-local constants.
194   void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
195     Start = FirstFuncConstantID;
196     End = FirstInstID;
197   }
198
199   const ValueList &getValues() const { return Values; }
200
201   /// Check whether the current block has any metadata to emit.
202   bool hasMDs() const { return NumModuleMDs < MDs.size(); }
203
204   /// Get the MDString metadata for this block.
205   ArrayRef<const Metadata *> getMDStrings() const {
206     return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings);
207   }
208
209   /// Get the non-MDString metadata for this block.
210   ArrayRef<const Metadata *> getNonMDStrings() const {
211     return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings);
212   }
213
214   const TypeList &getTypes() const { return Types; }
215
216   const std::vector<const BasicBlock*> &getBasicBlocks() const {
217     return BasicBlocks;
218   }
219
220   const std::vector<AttributeList> &getAttributeLists() const { return AttributeLists; }
221
222   const std::vector<IndexAndAttrSet> &getAttributeGroups() const {
223     return AttributeGroups;
224   }
225
226   const ComdatSetType &getComdats() const { return Comdats; }
227   unsigned getComdatID(const Comdat *C) const;
228
229   /// getGlobalBasicBlockID - This returns the function-specific ID for the
230   /// specified basic block.  This is relatively expensive information, so it
231   /// should only be used by rare constructs such as address-of-label.
232   unsigned getGlobalBasicBlockID(const BasicBlock *BB) const;
233
234   /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
235   /// use these two methods to get its data into the ValueEnumerator!
236   void incorporateFunction(const Function &F);
237
238   void purgeFunction();
239   uint64_t computeBitsRequiredForTypeIndicies() const;
240
241 private:
242   void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
243
244   /// Reorder the reachable metadata.
245   ///
246   /// This is not just an optimization, but is mandatory for emitting MDString
247   /// correctly.
248   void organizeMetadata();
249
250   /// Drop the function tag from the transitive operands of the given node.
251   void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD);
252
253   /// Incorporate the function metadata.
254   ///
255   /// This should be called before enumerating LocalAsMetadata for the
256   /// function.
257   void incorporateFunctionMetadata(const Function &F);
258
259   /// Enumerate a single instance of metadata with the given function tag.
260   ///
261   /// If \c MD has already been enumerated, check that \c F matches its
262   /// function tag.  If not, call \a dropFunctionFromMetadata().
263   ///
264   /// Otherwise, mark \c MD as visited.  Assign it an ID, or just return it if
265   /// it's an \a MDNode.
266   const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD);
267
268   unsigned getMetadataFunctionID(const Function *F) const;
269
270   /// Enumerate reachable metadata in (almost) post-order.
271   ///
272   /// Enumerate all the metadata reachable from MD.  We want to minimize the
273   /// cost of reading bitcode records, and so the primary consideration is that
274   /// operands of uniqued nodes are resolved before the nodes are read.  This
275   /// avoids re-uniquing them on the context and factors away RAUW support.
276   ///
277   /// This algorithm guarantees that subgraphs of uniqued nodes are in
278   /// post-order.  Distinct subgraphs reachable only from a single uniqued node
279   /// will be in post-order.
280   ///
281   /// \note The relative order of a distinct and uniqued node is irrelevant.
282   /// \a organizeMetadata() will later partition distinct nodes ahead of
283   /// uniqued ones.
284   ///{
285   void EnumerateMetadata(const Function *F, const Metadata *MD);
286   void EnumerateMetadata(unsigned F, const Metadata *MD);
287   ///}
288
289   void EnumerateFunctionLocalMetadata(const Function &F,
290                                       const LocalAsMetadata *Local);
291   void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local);
292   void EnumerateNamedMDNode(const NamedMDNode *NMD);
293   void EnumerateValue(const Value *V);
294   void EnumerateType(Type *T);
295   void EnumerateOperandType(const Value *V);
296   void EnumerateAttributes(AttributeList PAL);
297
298   void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
299   void EnumerateNamedMetadata(const Module &M);
300 };
301
302 } // end namespace llvm
303
304 #endif // LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H