]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / AggressiveAntiDepBreaker.cpp
1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AggressiveAntiDepBreaker class, which
11 // implements register anti-dependence breaking during post-RA
12 // scheduling. It attempts to break all anti-dependencies within a
13 // block.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "AggressiveAntiDepBreaker.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/MachineValueType.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <map>
41 #include <set>
42 #include <utility>
43 #include <vector>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "post-RA-sched"
48
49 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
50 static cl::opt<int>
51 DebugDiv("agg-antidep-debugdiv",
52          cl::desc("Debug control for aggressive anti-dep breaker"),
53          cl::init(0), cl::Hidden);
54
55 static cl::opt<int>
56 DebugMod("agg-antidep-debugmod",
57          cl::desc("Debug control for aggressive anti-dep breaker"),
58          cl::init(0), cl::Hidden);
59
60 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
61                                                MachineBasicBlock *BB)
62     : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
63       GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0),
64       DefIndices(TargetRegs, 0) {
65   const unsigned BBSize = BB->size();
66   for (unsigned i = 0; i < NumTargetRegs; ++i) {
67     // Initialize all registers to be in their own group. Initially we
68     // assign the register to the same-indexed GroupNode.
69     GroupNodeIndices[i] = i;
70     // Initialize the indices to indicate that no registers are live.
71     KillIndices[i] = ~0u;
72     DefIndices[i] = BBSize;
73   }
74 }
75
76 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
77   unsigned Node = GroupNodeIndices[Reg];
78   while (GroupNodes[Node] != Node)
79     Node = GroupNodes[Node];
80
81   return Node;
82 }
83
84 void AggressiveAntiDepState::GetGroupRegs(
85   unsigned Group,
86   std::vector<unsigned> &Regs,
87   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
88 {
89   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
90     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
91       Regs.push_back(Reg);
92   }
93 }
94
95 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) {
96   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
97   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
98
99   // find group for each register
100   unsigned Group1 = GetGroup(Reg1);
101   unsigned Group2 = GetGroup(Reg2);
102
103   // if either group is 0, then that must become the parent
104   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
105   unsigned Other = (Parent == Group1) ? Group2 : Group1;
106   GroupNodes.at(Other) = Parent;
107   return Parent;
108 }
109
110 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) {
111   // Create a new GroupNode for Reg. Reg's existing GroupNode must
112   // stay as is because there could be other GroupNodes referring to
113   // it.
114   unsigned idx = GroupNodes.size();
115   GroupNodes.push_back(idx);
116   GroupNodeIndices[Reg] = idx;
117   return idx;
118 }
119
120 bool AggressiveAntiDepState::IsLive(unsigned Reg) {
121   // KillIndex must be defined and DefIndex not defined for a register
122   // to be live.
123   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
124 }
125
126 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
127     MachineFunction &MFi, const RegisterClassInfo &RCI,
128     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
129     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
130       TII(MF.getSubtarget().getInstrInfo()),
131       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) {
132   /* Collect a bitset of all registers that are only broken if they
133      are on the critical path. */
134   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
135     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
136     if (CriticalPathSet.none())
137       CriticalPathSet = CPSet;
138     else
139       CriticalPathSet |= CPSet;
140    }
141
142    LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
143    LLVM_DEBUG(for (unsigned r
144                    : CriticalPathSet.set_bits()) dbgs()
145               << " " << printReg(r, TRI));
146    LLVM_DEBUG(dbgs() << '\n');
147 }
148
149 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
150   delete State;
151 }
152
153 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
154   assert(!State);
155   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
156
157   bool IsReturnBlock = BB->isReturnBlock();
158   std::vector<unsigned> &KillIndices = State->GetKillIndices();
159   std::vector<unsigned> &DefIndices = State->GetDefIndices();
160
161   // Examine the live-in regs of all successors.
162   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
163          SE = BB->succ_end(); SI != SE; ++SI)
164     for (const auto &LI : (*SI)->liveins()) {
165       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
166         unsigned Reg = *AI;
167         State->UnionGroups(Reg, 0);
168         KillIndices[Reg] = BB->size();
169         DefIndices[Reg] = ~0u;
170       }
171     }
172
173   // Mark live-out callee-saved registers. In a return block this is
174   // all callee-saved registers. In non-return this is any
175   // callee-saved register that is not saved in the prolog.
176   const MachineFrameInfo &MFI = MF.getFrameInfo();
177   BitVector Pristine = MFI.getPristineRegs(MF);
178   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
179        ++I) {
180     unsigned Reg = *I;
181     if (!IsReturnBlock && !Pristine.test(Reg))
182       continue;
183     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
184       unsigned AliasReg = *AI;
185       State->UnionGroups(AliasReg, 0);
186       KillIndices[AliasReg] = BB->size();
187       DefIndices[AliasReg] = ~0u;
188     }
189   }
190 }
191
192 void AggressiveAntiDepBreaker::FinishBlock() {
193   delete State;
194   State = nullptr;
195 }
196
197 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
198                                        unsigned InsertPosIndex) {
199   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
200
201   std::set<unsigned> PassthruRegs;
202   GetPassthruRegs(MI, PassthruRegs);
203   PrescanInstruction(MI, Count, PassthruRegs);
204   ScanInstruction(MI, Count);
205
206   LLVM_DEBUG(dbgs() << "Observe: ");
207   LLVM_DEBUG(MI.dump());
208   LLVM_DEBUG(dbgs() << "\tRegs:");
209
210   std::vector<unsigned> &DefIndices = State->GetDefIndices();
211   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
212     // If Reg is current live, then mark that it can't be renamed as
213     // we don't know the extent of its live-range anymore (now that it
214     // has been scheduled). If it is not live but was defined in the
215     // previous schedule region, then set its def index to the most
216     // conservative location (i.e. the beginning of the previous
217     // schedule region).
218     if (State->IsLive(Reg)) {
219       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs()
220                  << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)
221                  << "->g0(region live-out)");
222       State->UnionGroups(Reg, 0);
223     } else if ((DefIndices[Reg] < InsertPosIndex)
224                && (DefIndices[Reg] >= Count)) {
225       DefIndices[Reg] = Count;
226     }
227   }
228   LLVM_DEBUG(dbgs() << '\n');
229 }
230
231 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
232                                                 MachineOperand &MO) {
233   if (!MO.isReg() || !MO.isImplicit())
234     return false;
235
236   unsigned Reg = MO.getReg();
237   if (Reg == 0)
238     return false;
239
240   MachineOperand *Op = nullptr;
241   if (MO.isDef())
242     Op = MI.findRegisterUseOperand(Reg, true);
243   else
244     Op = MI.findRegisterDefOperand(Reg);
245
246   return(Op && Op->isImplicit());
247 }
248
249 void AggressiveAntiDepBreaker::GetPassthruRegs(
250     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
251   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
252     MachineOperand &MO = MI.getOperand(i);
253     if (!MO.isReg()) continue;
254     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
255         IsImplicitDefUse(MI, MO)) {
256       const unsigned Reg = MO.getReg();
257       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
258            SubRegs.isValid(); ++SubRegs)
259         PassthruRegs.insert(*SubRegs);
260     }
261   }
262 }
263
264 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
265 /// in SU that we want to consider for breaking.
266 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) {
267   SmallSet<unsigned, 4> RegSet;
268   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
269        P != PE; ++P) {
270     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
271       if (RegSet.insert(P->getReg()).second)
272         Edges.push_back(&*P);
273     }
274   }
275 }
276
277 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
278 /// critical path.
279 static const SUnit *CriticalPathStep(const SUnit *SU) {
280   const SDep *Next = nullptr;
281   unsigned NextDepth = 0;
282   // Find the predecessor edge with the greatest depth.
283   if (SU) {
284     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
285          P != PE; ++P) {
286       const SUnit *PredSU = P->getSUnit();
287       unsigned PredLatency = P->getLatency();
288       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
289       // In the case of a latency tie, prefer an anti-dependency edge over
290       // other types of edges.
291       if (NextDepth < PredTotalLatency ||
292           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
293         NextDepth = PredTotalLatency;
294         Next = &*P;
295       }
296     }
297   }
298
299   return (Next) ? Next->getSUnit() : nullptr;
300 }
301
302 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
303                                              const char *tag,
304                                              const char *header,
305                                              const char *footer) {
306   std::vector<unsigned> &KillIndices = State->GetKillIndices();
307   std::vector<unsigned> &DefIndices = State->GetDefIndices();
308   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
309     RegRefs = State->GetRegRefs();
310
311   // FIXME: We must leave subregisters of live super registers as live, so that
312   // we don't clear out the register tracking information for subregisters of
313   // super registers we're still tracking (and with which we're unioning
314   // subregister definitions).
315   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
316     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
317       LLVM_DEBUG(if (!header && footer) dbgs() << footer);
318       return;
319     }
320
321   if (!State->IsLive(Reg)) {
322     KillIndices[Reg] = KillIdx;
323     DefIndices[Reg] = ~0u;
324     RegRefs.erase(Reg);
325     State->LeaveGroup(Reg);
326     LLVM_DEBUG(if (header) {
327       dbgs() << header << printReg(Reg, TRI);
328       header = nullptr;
329     });
330     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
331     // Repeat for subregisters. Note that we only do this if the superregister
332     // was not live because otherwise, regardless whether we have an explicit
333     // use of the subregister, the subregister's contents are needed for the
334     // uses of the superregister.
335     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
336       unsigned SubregReg = *SubRegs;
337       if (!State->IsLive(SubregReg)) {
338         KillIndices[SubregReg] = KillIdx;
339         DefIndices[SubregReg] = ~0u;
340         RegRefs.erase(SubregReg);
341         State->LeaveGroup(SubregReg);
342         LLVM_DEBUG(if (header) {
343           dbgs() << header << printReg(Reg, TRI);
344           header = nullptr;
345         });
346         LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g"
347                           << State->GetGroup(SubregReg) << tag);
348       }
349     }
350   }
351
352   LLVM_DEBUG(if (!header && footer) dbgs() << footer);
353 }
354
355 void AggressiveAntiDepBreaker::PrescanInstruction(
356     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
357   std::vector<unsigned> &DefIndices = State->GetDefIndices();
358   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
359     RegRefs = State->GetRegRefs();
360
361   // Handle dead defs by simulating a last-use of the register just
362   // after the def. A dead def can occur because the def is truly
363   // dead, or because only a subregister is live at the def. If we
364   // don't do this the dead def will be incorrectly merged into the
365   // previous def.
366   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
367     MachineOperand &MO = MI.getOperand(i);
368     if (!MO.isReg() || !MO.isDef()) continue;
369     unsigned Reg = MO.getReg();
370     if (Reg == 0) continue;
371
372     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
373   }
374
375   LLVM_DEBUG(dbgs() << "\tDef Groups:");
376   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
377     MachineOperand &MO = MI.getOperand(i);
378     if (!MO.isReg() || !MO.isDef()) continue;
379     unsigned Reg = MO.getReg();
380     if (Reg == 0) continue;
381
382     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
383                       << State->GetGroup(Reg));
384
385     // If MI's defs have a special allocation requirement, don't allow
386     // any def registers to be changed. Also assume all registers
387     // defined in a call must not be changed (ABI). Inline assembly may
388     // reference either system calls or the register directly. Skip it until we
389     // can tell user specified registers from compiler-specified.
390     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
391         MI.isInlineAsm()) {
392       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
393       State->UnionGroups(Reg, 0);
394     }
395
396     // Any aliased that are live at this point are completely or
397     // partially defined here, so group those aliases with Reg.
398     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
399       unsigned AliasReg = *AI;
400       if (State->IsLive(AliasReg)) {
401         State->UnionGroups(Reg, AliasReg);
402         LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via "
403                           << printReg(AliasReg, TRI) << ")");
404       }
405     }
406
407     // Note register reference...
408     const TargetRegisterClass *RC = nullptr;
409     if (i < MI.getDesc().getNumOperands())
410       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
411     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
412     RegRefs.insert(std::make_pair(Reg, RR));
413   }
414
415   LLVM_DEBUG(dbgs() << '\n');
416
417   // Scan the register defs for this instruction and update
418   // live-ranges.
419   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
420     MachineOperand &MO = MI.getOperand(i);
421     if (!MO.isReg() || !MO.isDef()) continue;
422     unsigned Reg = MO.getReg();
423     if (Reg == 0) continue;
424     // Ignore KILLs and passthru registers for liveness...
425     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
426       continue;
427
428     // Update def for Reg and aliases.
429     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
430       // We need to be careful here not to define already-live super registers.
431       // If the super register is already live, then this definition is not
432       // a definition of the whole super register (just a partial insertion
433       // into it). Earlier subregister definitions (which we've not yet visited
434       // because we're iterating bottom-up) need to be linked to the same group
435       // as this definition.
436       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
437         continue;
438
439       DefIndices[*AI] = Count;
440     }
441   }
442 }
443
444 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
445                                                unsigned Count) {
446   LLVM_DEBUG(dbgs() << "\tUse Groups:");
447   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
448     RegRefs = State->GetRegRefs();
449
450   // If MI's uses have special allocation requirement, don't allow
451   // any use registers to be changed. Also assume all registers
452   // used in a call must not be changed (ABI).
453   // Inline Assembly register uses also cannot be safely changed.
454   // FIXME: The issue with predicated instruction is more complex. We are being
455   // conservatively here because the kill markers cannot be trusted after
456   // if-conversion:
457   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
458   // ...
459   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
460   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
461   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
462   //
463   // The first R6 kill is not really a kill since it's killed by a predicated
464   // instruction which may not be executed. The second R6 def may or may not
465   // re-define R6 so it's not safe to change it since the last R6 use cannot be
466   // changed.
467   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
468                  TII->isPredicated(MI) || MI.isInlineAsm();
469
470   // Scan the register uses for this instruction and update
471   // live-ranges, groups and RegRefs.
472   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
473     MachineOperand &MO = MI.getOperand(i);
474     if (!MO.isReg() || !MO.isUse()) continue;
475     unsigned Reg = MO.getReg();
476     if (Reg == 0) continue;
477
478     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
479                       << State->GetGroup(Reg));
480
481     // It wasn't previously live but now it is, this is a kill. Forget
482     // the previous live-range information and start a new live-range
483     // for the register.
484     HandleLastUse(Reg, Count, "(last-use)");
485
486     if (Special) {
487       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
488       State->UnionGroups(Reg, 0);
489     }
490
491     // Note register reference...
492     const TargetRegisterClass *RC = nullptr;
493     if (i < MI.getDesc().getNumOperands())
494       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
495     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
496     RegRefs.insert(std::make_pair(Reg, RR));
497   }
498
499   LLVM_DEBUG(dbgs() << '\n');
500
501   // Form a group of all defs and uses of a KILL instruction to ensure
502   // that all registers are renamed as a group.
503   if (MI.isKill()) {
504     LLVM_DEBUG(dbgs() << "\tKill Group:");
505
506     unsigned FirstReg = 0;
507     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
508       MachineOperand &MO = MI.getOperand(i);
509       if (!MO.isReg()) continue;
510       unsigned Reg = MO.getReg();
511       if (Reg == 0) continue;
512
513       if (FirstReg != 0) {
514         LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI));
515         State->UnionGroups(FirstReg, Reg);
516       } else {
517         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
518         FirstReg = Reg;
519       }
520     }
521
522     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
523   }
524 }
525
526 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
527   BitVector BV(TRI->getNumRegs(), false);
528   bool first = true;
529
530   // Check all references that need rewriting for Reg. For each, use
531   // the corresponding register class to narrow the set of registers
532   // that are appropriate for renaming.
533   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
534     const TargetRegisterClass *RC = Q.second.RC;
535     if (!RC) continue;
536
537     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
538     if (first) {
539       BV |= RCBV;
540       first = false;
541     } else {
542       BV &= RCBV;
543     }
544
545     LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
546   }
547
548   return BV;
549 }
550
551 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
552                                 unsigned AntiDepGroupIndex,
553                                 RenameOrderType& RenameOrder,
554                                 std::map<unsigned, unsigned> &RenameMap) {
555   std::vector<unsigned> &KillIndices = State->GetKillIndices();
556   std::vector<unsigned> &DefIndices = State->GetDefIndices();
557   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
558     RegRefs = State->GetRegRefs();
559
560   // Collect all referenced registers in the same group as
561   // AntiDepReg. These all need to be renamed together if we are to
562   // break the anti-dependence.
563   std::vector<unsigned> Regs;
564   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
565   assert(!Regs.empty() && "Empty register group!");
566   if (Regs.empty())
567     return false;
568
569   // Find the "superest" register in the group. At the same time,
570   // collect the BitVector of registers that can be used to rename
571   // each register.
572   LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
573                     << ":\n");
574   std::map<unsigned, BitVector> RenameRegisterMap;
575   unsigned SuperReg = 0;
576   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
577     unsigned Reg = Regs[i];
578     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
579       SuperReg = Reg;
580
581     // If Reg has any references, then collect possible rename regs
582     if (RegRefs.count(Reg) > 0) {
583       LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":");
584
585       BitVector &BV = RenameRegisterMap[Reg];
586       assert(BV.empty());
587       BV = GetRenameRegisters(Reg);
588
589       LLVM_DEBUG({
590         dbgs() << " ::";
591         for (unsigned r : BV.set_bits())
592           dbgs() << " " << printReg(r, TRI);
593         dbgs() << "\n";
594       });
595     }
596   }
597
598   // All group registers should be a subreg of SuperReg.
599   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
600     unsigned Reg = Regs[i];
601     if (Reg == SuperReg) continue;
602     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
603     // FIXME: remove this once PR18663 has been properly fixed. For now,
604     // return a conservative answer:
605     // assert(IsSub && "Expecting group subregister");
606     if (!IsSub)
607       return false;
608   }
609
610 #ifndef NDEBUG
611   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
612   if (DebugDiv > 0) {
613     static int renamecnt = 0;
614     if (renamecnt++ % DebugDiv != DebugMod)
615       return false;
616
617     dbgs() << "*** Performing rename " << printReg(SuperReg, TRI)
618            << " for debug ***\n";
619   }
620 #endif
621
622   // Check each possible rename register for SuperReg in round-robin
623   // order. If that register is available, and the corresponding
624   // registers are available for the other group subregisters, then we
625   // can use those registers to rename.
626
627   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
628   // check every use of the register and find the largest register class
629   // that can be used in all of them.
630   const TargetRegisterClass *SuperRC =
631     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
632
633   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
634   if (Order.empty()) {
635     LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
636     return false;
637   }
638
639   LLVM_DEBUG(dbgs() << "\tFind Registers:");
640
641   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
642
643   unsigned OrigR = RenameOrder[SuperRC];
644   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
645   unsigned R = OrigR;
646   do {
647     if (R == 0) R = Order.size();
648     --R;
649     const unsigned NewSuperReg = Order[R];
650     // Don't consider non-allocatable registers
651     if (!MRI.isAllocatable(NewSuperReg)) continue;
652     // Don't replace a register with itself.
653     if (NewSuperReg == SuperReg) continue;
654
655     LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':');
656     RenameMap.clear();
657
658     // For each referenced group register (which must be a SuperReg or
659     // a subregister of SuperReg), find the corresponding subregister
660     // of NewSuperReg and make sure it is free to be renamed.
661     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
662       unsigned Reg = Regs[i];
663       unsigned NewReg = 0;
664       if (Reg == SuperReg) {
665         NewReg = NewSuperReg;
666       } else {
667         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
668         if (NewSubRegIdx != 0)
669           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
670       }
671
672       LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI));
673
674       // Check if Reg can be renamed to NewReg.
675       if (!RenameRegisterMap[Reg].test(NewReg)) {
676         LLVM_DEBUG(dbgs() << "(no rename)");
677         goto next_super_reg;
678       }
679
680       // If NewReg is dead and NewReg's most recent def is not before
681       // Regs's kill, it's safe to replace Reg with NewReg. We
682       // must also check all aliases of NewReg, because we can't define a
683       // register when any sub or super is already live.
684       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
685         LLVM_DEBUG(dbgs() << "(live)");
686         goto next_super_reg;
687       } else {
688         bool found = false;
689         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
690           unsigned AliasReg = *AI;
691           if (State->IsLive(AliasReg) ||
692               (KillIndices[Reg] > DefIndices[AliasReg])) {
693             LLVM_DEBUG(dbgs()
694                        << "(alias " << printReg(AliasReg, TRI) << " live)");
695             found = true;
696             break;
697           }
698         }
699         if (found)
700           goto next_super_reg;
701       }
702
703       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
704       // defines 'NewReg' via an early-clobber operand.
705       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
706         MachineInstr *UseMI = Q.second.Operand->getParent();
707         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
708         if (Idx == -1)
709           continue;
710
711         if (UseMI->getOperand(Idx).isEarlyClobber()) {
712           LLVM_DEBUG(dbgs() << "(ec)");
713           goto next_super_reg;
714         }
715       }
716
717       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
718       // 'Reg' is an early-clobber define and that instruction also uses
719       // 'NewReg'.
720       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
721         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
722           continue;
723
724         MachineInstr *DefMI = Q.second.Operand->getParent();
725         if (DefMI->readsRegister(NewReg, TRI)) {
726           LLVM_DEBUG(dbgs() << "(ec)");
727           goto next_super_reg;
728         }
729       }
730
731       // Record that 'Reg' can be renamed to 'NewReg'.
732       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
733     }
734
735     // If we fall-out here, then every register in the group can be
736     // renamed, as recorded in RenameMap.
737     RenameOrder.erase(SuperRC);
738     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
739     LLVM_DEBUG(dbgs() << "]\n");
740     return true;
741
742   next_super_reg:
743     LLVM_DEBUG(dbgs() << ']');
744   } while (R != EndR);
745
746   LLVM_DEBUG(dbgs() << '\n');
747
748   // No registers are free and available!
749   return false;
750 }
751
752 /// BreakAntiDependencies - Identifiy anti-dependencies within the
753 /// ScheduleDAG and break them by renaming registers.
754 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
755                               const std::vector<SUnit> &SUnits,
756                               MachineBasicBlock::iterator Begin,
757                               MachineBasicBlock::iterator End,
758                               unsigned InsertPosIndex,
759                               DbgValueVector &DbgValues) {
760   std::vector<unsigned> &KillIndices = State->GetKillIndices();
761   std::vector<unsigned> &DefIndices = State->GetDefIndices();
762   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
763     RegRefs = State->GetRegRefs();
764
765   // The code below assumes that there is at least one instruction,
766   // so just duck out immediately if the block is empty.
767   if (SUnits.empty()) return 0;
768
769   // For each regclass the next register to use for renaming.
770   RenameOrderType RenameOrder;
771
772   // ...need a map from MI to SUnit.
773   std::map<MachineInstr *, const SUnit *> MISUnitMap;
774   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
775     const SUnit *SU = &SUnits[i];
776     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
777                                                                SU));
778   }
779
780   // Track progress along the critical path through the SUnit graph as
781   // we walk the instructions. This is needed for regclasses that only
782   // break critical-path anti-dependencies.
783   const SUnit *CriticalPathSU = nullptr;
784   MachineInstr *CriticalPathMI = nullptr;
785   if (CriticalPathSet.any()) {
786     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
787       const SUnit *SU = &SUnits[i];
788       if (!CriticalPathSU ||
789           ((SU->getDepth() + SU->Latency) >
790            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
791         CriticalPathSU = SU;
792       }
793     }
794
795     CriticalPathMI = CriticalPathSU->getInstr();
796   }
797
798 #ifndef NDEBUG
799   LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
800   LLVM_DEBUG(dbgs() << "Available regs:");
801   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
802     if (!State->IsLive(Reg))
803       LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
804   }
805   LLVM_DEBUG(dbgs() << '\n');
806 #endif
807
808   BitVector RegAliases(TRI->getNumRegs());
809
810   // Attempt to break anti-dependence edges. Walk the instructions
811   // from the bottom up, tracking information about liveness as we go
812   // to help determine which registers are available.
813   unsigned Broken = 0;
814   unsigned Count = InsertPosIndex - 1;
815   for (MachineBasicBlock::iterator I = End, E = Begin;
816        I != E; --Count) {
817     MachineInstr &MI = *--I;
818
819     if (MI.isDebugInstr())
820       continue;
821
822     LLVM_DEBUG(dbgs() << "Anti: ");
823     LLVM_DEBUG(MI.dump());
824
825     std::set<unsigned> PassthruRegs;
826     GetPassthruRegs(MI, PassthruRegs);
827
828     // Process the defs in MI...
829     PrescanInstruction(MI, Count, PassthruRegs);
830
831     // The dependence edges that represent anti- and output-
832     // dependencies that are candidates for breaking.
833     std::vector<const SDep *> Edges;
834     const SUnit *PathSU = MISUnitMap[&MI];
835     AntiDepEdges(PathSU, Edges);
836
837     // If MI is not on the critical path, then we don't rename
838     // registers in the CriticalPathSet.
839     BitVector *ExcludeRegs = nullptr;
840     if (&MI == CriticalPathMI) {
841       CriticalPathSU = CriticalPathStep(CriticalPathSU);
842       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
843     } else if (CriticalPathSet.any()) {
844       ExcludeRegs = &CriticalPathSet;
845     }
846
847     // Ignore KILL instructions (they form a group in ScanInstruction
848     // but don't cause any anti-dependence breaking themselves)
849     if (!MI.isKill()) {
850       // Attempt to break each anti-dependency...
851       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
852         const SDep *Edge = Edges[i];
853         SUnit *NextSU = Edge->getSUnit();
854
855         if ((Edge->getKind() != SDep::Anti) &&
856             (Edge->getKind() != SDep::Output)) continue;
857
858         unsigned AntiDepReg = Edge->getReg();
859         LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI));
860         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
861
862         if (!MRI.isAllocatable(AntiDepReg)) {
863           // Don't break anti-dependencies on non-allocatable registers.
864           LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
865           continue;
866         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
867           // Don't break anti-dependencies for critical path registers
868           // if not on the critical path
869           LLVM_DEBUG(dbgs() << " (not critical-path)\n");
870           continue;
871         } else if (PassthruRegs.count(AntiDepReg) != 0) {
872           // If the anti-dep register liveness "passes-thru", then
873           // don't try to change it. It will be changed along with
874           // the use if required to break an earlier antidep.
875           LLVM_DEBUG(dbgs() << " (passthru)\n");
876           continue;
877         } else {
878           // No anti-dep breaking for implicit deps
879           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
880           assert(AntiDepOp && "Can't find index for defined register operand");
881           if (!AntiDepOp || AntiDepOp->isImplicit()) {
882             LLVM_DEBUG(dbgs() << " (implicit)\n");
883             continue;
884           }
885
886           // If the SUnit has other dependencies on the SUnit that
887           // it anti-depends on, don't bother breaking the
888           // anti-dependency since those edges would prevent such
889           // units from being scheduled past each other
890           // regardless.
891           //
892           // Also, if there are dependencies on other SUnits with the
893           // same register as the anti-dependency, don't attempt to
894           // break it.
895           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
896                  PE = PathSU->Preds.end(); P != PE; ++P) {
897             if (P->getSUnit() == NextSU ?
898                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
899                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
900               AntiDepReg = 0;
901               break;
902             }
903           }
904           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
905                  PE = PathSU->Preds.end(); P != PE; ++P) {
906             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
907                 (P->getKind() != SDep::Output)) {
908               LLVM_DEBUG(dbgs() << " (real dependency)\n");
909               AntiDepReg = 0;
910               break;
911             } else if ((P->getSUnit() != NextSU) &&
912                        (P->getKind() == SDep::Data) &&
913                        (P->getReg() == AntiDepReg)) {
914               LLVM_DEBUG(dbgs() << " (other dependency)\n");
915               AntiDepReg = 0;
916               break;
917             }
918           }
919
920           if (AntiDepReg == 0) continue;
921
922           // If the definition of the anti-dependency register does not start
923           // a new live range, bail out. This can happen if the anti-dep
924           // register is a sub-register of another register whose live range
925           // spans over PathSU. In such case, PathSU defines only a part of
926           // the larger register.
927           RegAliases.reset();
928           for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
929             RegAliases.set(*AI);
930           for (SDep S : PathSU->Succs) {
931             SDep::Kind K = S.getKind();
932             if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
933               continue;
934             unsigned R = S.getReg();
935             if (!RegAliases[R])
936               continue;
937             if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
938               continue;
939             AntiDepReg = 0;
940             break;
941           }
942
943           if (AntiDepReg == 0) continue;
944         }
945
946         assert(AntiDepReg != 0);
947         if (AntiDepReg == 0) continue;
948
949         // Determine AntiDepReg's register group.
950         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
951         if (GroupIndex == 0) {
952           LLVM_DEBUG(dbgs() << " (zero group)\n");
953           continue;
954         }
955
956         LLVM_DEBUG(dbgs() << '\n');
957
958         // Look for a suitable register to use to break the anti-dependence.
959         std::map<unsigned, unsigned> RenameMap;
960         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
961           LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
962                             << printReg(AntiDepReg, TRI) << ":");
963
964           // Handle each group register...
965           for (std::map<unsigned, unsigned>::iterator
966                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
967             unsigned CurrReg = S->first;
968             unsigned NewReg = S->second;
969
970             LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->"
971                               << printReg(NewReg, TRI) << "("
972                               << RegRefs.count(CurrReg) << " refs)");
973
974             // Update the references to the old register CurrReg to
975             // refer to the new register NewReg.
976             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
977               Q.second.Operand->setReg(NewReg);
978               // If the SU for the instruction being updated has debug
979               // information related to the anti-dependency register, make
980               // sure to update that as well.
981               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
982               if (!SU) continue;
983               UpdateDbgValues(DbgValues, Q.second.Operand->getParent(),
984                               AntiDepReg, NewReg);
985             }
986
987             // We just went back in time and modified history; the
988             // liveness information for CurrReg is now inconsistent. Set
989             // the state as if it were dead.
990             State->UnionGroups(NewReg, 0);
991             RegRefs.erase(NewReg);
992             DefIndices[NewReg] = DefIndices[CurrReg];
993             KillIndices[NewReg] = KillIndices[CurrReg];
994
995             State->UnionGroups(CurrReg, 0);
996             RegRefs.erase(CurrReg);
997             DefIndices[CurrReg] = KillIndices[CurrReg];
998             KillIndices[CurrReg] = ~0u;
999             assert(((KillIndices[CurrReg] == ~0u) !=
1000                     (DefIndices[CurrReg] == ~0u)) &&
1001                    "Kill and Def maps aren't consistent for AntiDepReg!");
1002           }
1003
1004           ++Broken;
1005           LLVM_DEBUG(dbgs() << '\n');
1006         }
1007       }
1008     }
1009
1010     ScanInstruction(MI, Count);
1011   }
1012
1013   return Broken;
1014 }