]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304659, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / AsmPrinter / DbgValueHistoryCalculator.cpp
1 //===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DbgValueHistoryCalculator.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/MachineFunction.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Target/TargetLowering.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtargetInfo.h"
21 #include <algorithm>
22 #include <map>
23 using namespace llvm;
24
25 #define DEBUG_TYPE "dwarfdebug"
26
27 // \brief If @MI is a DBG_VALUE with debug value described by a
28 // defined register, returns the number of this register.
29 // In the other case, returns 0.
30 static unsigned isDescribedByReg(const MachineInstr &MI) {
31   assert(MI.isDebugValue());
32   assert(MI.getNumOperands() == 4);
33   // If location of variable is described using a register (directly or
34   // indirectly), this register is always a first operand.
35   return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
36 }
37
38 void DbgValueHistoryMap::startInstrRange(InlinedVariable Var,
39                                          const MachineInstr &MI) {
40   // Instruction range should start with a DBG_VALUE instruction for the
41   // variable.
42   assert(MI.isDebugValue() && "not a DBG_VALUE");
43   auto &Ranges = VarInstrRanges[Var];
44   if (!Ranges.empty() && Ranges.back().second == nullptr &&
45       Ranges.back().first->isIdenticalTo(MI)) {
46     DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
47                  << "\t" << Ranges.back().first << "\t" << MI << "\n");
48     return;
49   }
50   Ranges.push_back(std::make_pair(&MI, nullptr));
51 }
52
53 void DbgValueHistoryMap::endInstrRange(InlinedVariable Var,
54                                        const MachineInstr &MI) {
55   auto &Ranges = VarInstrRanges[Var];
56   // Verify that the current instruction range is not yet closed.
57   assert(!Ranges.empty() && Ranges.back().second == nullptr);
58   // For now, instruction ranges are not allowed to cross basic block
59   // boundaries.
60   assert(Ranges.back().first->getParent() == MI.getParent());
61   Ranges.back().second = &MI;
62 }
63
64 unsigned DbgValueHistoryMap::getRegisterForVar(InlinedVariable Var) const {
65   const auto &I = VarInstrRanges.find(Var);
66   if (I == VarInstrRanges.end())
67     return 0;
68   const auto &Ranges = I->second;
69   if (Ranges.empty() || Ranges.back().second != nullptr)
70     return 0;
71   return isDescribedByReg(*Ranges.back().first);
72 }
73
74 namespace {
75 // Maps physreg numbers to the variables they describe.
76 typedef DbgValueHistoryMap::InlinedVariable InlinedVariable;
77 typedef std::map<unsigned, SmallVector<InlinedVariable, 1>> RegDescribedVarsMap;
78 }
79
80 // \brief Claim that @Var is not described by @RegNo anymore.
81 static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
82                                 InlinedVariable Var) {
83   const auto &I = RegVars.find(RegNo);
84   assert(RegNo != 0U && I != RegVars.end());
85   auto &VarSet = I->second;
86   const auto &VarPos = find(VarSet, Var);
87   assert(VarPos != VarSet.end());
88   VarSet.erase(VarPos);
89   // Don't keep empty sets in a map to keep it as small as possible.
90   if (VarSet.empty())
91     RegVars.erase(I);
92 }
93
94 // \brief Claim that @Var is now described by @RegNo.
95 static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
96                                InlinedVariable Var) {
97   assert(RegNo != 0U);
98   auto &VarSet = RegVars[RegNo];
99   assert(!is_contained(VarSet, Var));
100   VarSet.push_back(Var);
101 }
102
103 // \brief Terminate the location range for variables described by register at
104 // @I by inserting @ClobberingInstr to their history.
105 static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
106                                 RegDescribedVarsMap::iterator I,
107                                 DbgValueHistoryMap &HistMap,
108                                 const MachineInstr &ClobberingInstr) {
109   // Iterate over all variables described by this register and add this
110   // instruction to their history, clobbering it.
111   for (const auto &Var : I->second)
112     HistMap.endInstrRange(Var, ClobberingInstr);
113   RegVars.erase(I);
114 }
115
116 // \brief Terminate the location range for variables described by register
117 // @RegNo by inserting @ClobberingInstr to their history.
118 static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
119                                 DbgValueHistoryMap &HistMap,
120                                 const MachineInstr &ClobberingInstr) {
121   const auto &I = RegVars.find(RegNo);
122   if (I == RegVars.end())
123     return;
124   clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
125 }
126
127 // \brief Returns the first instruction in @MBB which corresponds to
128 // the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
129 static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
130   auto LastMI = MBB.getLastNonDebugInstr();
131   if (LastMI == MBB.end() || !LastMI->isReturn())
132     return nullptr;
133   // Assume that epilogue starts with instruction having the same debug location
134   // as the return instruction.
135   DebugLoc LastLoc = LastMI->getDebugLoc();
136   auto Res = LastMI;
137   for (MachineBasicBlock::const_reverse_iterator I = LastMI.getReverse(),
138                                                  E = MBB.rend();
139        I != E; ++I) {
140     if (I->getDebugLoc() != LastLoc)
141       return &*Res;
142     Res = &*I;
143   }
144   // If all instructions have the same debug location, assume whole MBB is
145   // an epilogue.
146   return &*MBB.begin();
147 }
148
149 // \brief Collect registers that are modified in the function body (their
150 // contents is changed outside of the prologue and epilogue).
151 static void collectChangingRegs(const MachineFunction *MF,
152                                 const TargetRegisterInfo *TRI,
153                                 BitVector &Regs) {
154   for (const auto &MBB : *MF) {
155     auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
156
157     for (const auto &MI : MBB) {
158       // Avoid looking at prologue or epilogue instructions.
159       if (&MI == FirstEpilogueInst)
160         break;
161       if (MI.getFlag(MachineInstr::FrameSetup))
162         continue;
163
164       // Look for register defs and register masks. Register masks are
165       // typically on calls and they clobber everything not in the mask.
166       for (const MachineOperand &MO : MI.operands()) {
167         // Skip virtual registers since they are handled by the parent.
168         if (MO.isReg() && MO.isDef() && MO.getReg() &&
169             !TRI->isVirtualRegister(MO.getReg())) {
170           for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
171                ++AI)
172             Regs.set(*AI);
173         } else if (MO.isRegMask()) {
174           Regs.setBitsNotInMask(MO.getRegMask());
175         }
176       }
177     }
178   }
179 }
180
181 void llvm::calculateDbgValueHistory(const MachineFunction *MF,
182                                     const TargetRegisterInfo *TRI,
183                                     DbgValueHistoryMap &Result) {
184   BitVector ChangingRegs(TRI->getNumRegs());
185   collectChangingRegs(MF, TRI, ChangingRegs);
186
187   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
188   unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
189   RegDescribedVarsMap RegVars;
190   for (const auto &MBB : *MF) {
191     for (const auto &MI : MBB) {
192       if (!MI.isDebugValue()) {
193         // Not a DBG_VALUE instruction. It may clobber registers which describe
194         // some variables.
195         for (const MachineOperand &MO : MI.operands()) {
196           if (MO.isReg() && MO.isDef() && MO.getReg()) {
197             // Ignore call instructions that claim to clobber SP. The AArch64
198             // backend does this for aggregate function arguments.
199             if (MI.isCall() && MO.getReg() == SP)
200               continue;
201             // If this is a virtual register, only clobber it since it doesn't
202             // have aliases.
203             if (TRI->isVirtualRegister(MO.getReg()))
204               clobberRegisterUses(RegVars, MO.getReg(), Result, MI);
205             // If this is a register def operand, it may end a debug value
206             // range.
207             else {
208               for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
209                    ++AI)
210                 if (ChangingRegs.test(*AI))
211                   clobberRegisterUses(RegVars, *AI, Result, MI);
212             }
213           } else if (MO.isRegMask()) {
214             // If this is a register mask operand, clobber all debug values in
215             // non-CSRs.
216             for (unsigned I : ChangingRegs.set_bits()) {
217               // Don't consider SP to be clobbered by register masks.
218               if (unsigned(I) != SP && TRI->isPhysicalRegister(I) &&
219                   MO.clobbersPhysReg(I)) {
220                 clobberRegisterUses(RegVars, I, Result, MI);
221               }
222             }
223           }
224         }
225         continue;
226       }
227
228       assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
229       // Use the base variable (without any DW_OP_piece expressions)
230       // as index into History. The full variables including the
231       // piece expressions are attached to the MI.
232       const DILocalVariable *RawVar = MI.getDebugVariable();
233       assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
234              "Expected inlined-at fields to agree");
235       InlinedVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt());
236
237       if (unsigned PrevReg = Result.getRegisterForVar(Var))
238         dropRegDescribedVar(RegVars, PrevReg, Var);
239
240       Result.startInstrRange(Var, MI);
241
242       if (unsigned NewReg = isDescribedByReg(MI))
243         addRegDescribedVar(RegVars, NewReg, Var);
244     }
245
246     // Make sure locations for register-described variables are valid only
247     // until the end of the basic block (unless it's the last basic block, in
248     // which case let their liveness run off to the end of the function).
249     if (!MBB.empty() && &MBB != &MF->back()) {
250       for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
251         auto CurElem = I++; // CurElem can be erased below.
252         if (TRI->isVirtualRegister(CurElem->first) ||
253             ChangingRegs.test(CurElem->first))
254           clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
255       }
256     }
257   }
258 }