]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / AsmPrinter / EHStreamer.cpp
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "EHStreamer.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/MC/MCTargetOptions.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/LEB128.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <vector>
37
38 using namespace llvm;
39
40 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
41
42 EHStreamer::~EHStreamer() = default;
43
44 /// How many leading type ids two landing pads have in common.
45 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
46                                    const LandingPadInfo *R) {
47   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
48   unsigned LSize = LIds.size(), RSize = RIds.size();
49   unsigned MinSize = LSize < RSize ? LSize : RSize;
50   unsigned Count = 0;
51
52   for (; Count != MinSize; ++Count)
53     if (LIds[Count] != RIds[Count])
54       return Count;
55
56   return Count;
57 }
58
59 /// Compute the actions table and gather the first action index for each landing
60 /// pad site.
61 void EHStreamer::computeActionsTable(
62     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
63     SmallVectorImpl<ActionEntry> &Actions,
64     SmallVectorImpl<unsigned> &FirstActions) {
65   // The action table follows the call-site table in the LSDA. The individual
66   // records are of two types:
67   //
68   //   * Catch clause
69   //   * Exception specification
70   //
71   // The two record kinds have the same format, with only small differences.
72   // They are distinguished by the "switch value" field: Catch clauses
73   // (TypeInfos) have strictly positive switch values, and exception
74   // specifications (FilterIds) have strictly negative switch values. Value 0
75   // indicates a catch-all clause.
76   //
77   // Negative type IDs index into FilterIds. Positive type IDs index into
78   // TypeInfos.  The value written for a positive type ID is just the type ID
79   // itself.  For a negative type ID, however, the value written is the
80   // (negative) byte offset of the corresponding FilterIds entry.  The byte
81   // offset is usually equal to the type ID (because the FilterIds entries are
82   // written using a variable width encoding, which outputs one byte per entry
83   // as long as the value written is not too large) but can differ.  This kind
84   // of complication does not occur for positive type IDs because type infos are
85   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
86   // offset corresponding to FilterIds[i].
87
88   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
89   SmallVector<int, 16> FilterOffsets;
90   FilterOffsets.reserve(FilterIds.size());
91   int Offset = -1;
92
93   for (std::vector<unsigned>::const_iterator
94          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
95     FilterOffsets.push_back(Offset);
96     Offset -= getULEB128Size(*I);
97   }
98
99   FirstActions.reserve(LandingPads.size());
100
101   int FirstAction = 0;
102   unsigned SizeActions = 0;
103   const LandingPadInfo *PrevLPI = nullptr;
104
105   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
106          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
107     const LandingPadInfo *LPI = *I;
108     const std::vector<int> &TypeIds = LPI->TypeIds;
109     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
110     unsigned SizeSiteActions = 0;
111
112     if (NumShared < TypeIds.size()) {
113       unsigned SizeAction = 0;
114       unsigned PrevAction = (unsigned)-1;
115
116       if (NumShared) {
117         unsigned SizePrevIds = PrevLPI->TypeIds.size();
118         assert(Actions.size());
119         PrevAction = Actions.size() - 1;
120         SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
121                      getSLEB128Size(Actions[PrevAction].ValueForTypeID);
122
123         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125           SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126           SizeAction += -Actions[PrevAction].NextAction;
127           PrevAction = Actions[PrevAction].Previous;
128         }
129       }
130
131       // Compute the actions.
132       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133         int TypeID = TypeIds[J];
134         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135         int ValueForTypeID =
136             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
138
139         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
140         SizeAction = SizeTypeID + getSLEB128Size(NextAction);
141         SizeSiteActions += SizeAction;
142
143         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144         Actions.push_back(Action);
145         PrevAction = Actions.size() - 1;
146       }
147
148       // Record the first action of the landing pad site.
149       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
150     } // else identical - re-use previous FirstAction
151
152     // Information used when creating the call-site table. The action record
153     // field of the call site record is the offset of the first associated
154     // action record, relative to the start of the actions table. This value is
155     // biased by 1 (1 indicating the start of the actions table), and 0
156     // indicates that there are no actions.
157     FirstActions.push_back(FirstAction);
158
159     // Compute this sites contribution to size.
160     SizeActions += SizeSiteActions;
161
162     PrevLPI = LPI;
163   }
164 }
165
166 /// Return `true' if this is a call to a function marked `nounwind'. Return
167 /// `false' otherwise.
168 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
169   assert(MI->isCall() && "This should be a call instruction!");
170
171   bool MarkedNoUnwind = false;
172   bool SawFunc = false;
173
174   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
175     const MachineOperand &MO = MI->getOperand(I);
176
177     if (!MO.isGlobal()) continue;
178
179     const Function *F = dyn_cast<Function>(MO.getGlobal());
180     if (!F) continue;
181
182     if (SawFunc) {
183       // Be conservative. If we have more than one function operand for this
184       // call, then we can't make the assumption that it's the callee and
185       // not a parameter to the call.
186       //
187       // FIXME: Determine if there's a way to say that `F' is the callee or
188       // parameter.
189       MarkedNoUnwind = false;
190       break;
191     }
192
193     MarkedNoUnwind = F->doesNotThrow();
194     SawFunc = true;
195   }
196
197   return MarkedNoUnwind;
198 }
199
200 void EHStreamer::computePadMap(
201     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
202     RangeMapType &PadMap) {
203   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
204   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
205   // try-ranges for them need be deduced so we can put them in the LSDA.
206   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
207     const LandingPadInfo *LandingPad = LandingPads[i];
208     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
209       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
210       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
211       PadRange P = { i, j };
212       PadMap[BeginLabel] = P;
213     }
214   }
215 }
216
217 /// Compute the call-site table.  The entry for an invoke has a try-range
218 /// containing the call, a non-zero landing pad, and an appropriate action.  The
219 /// entry for an ordinary call has a try-range containing the call and zero for
220 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
221 /// must not be contained in the try-range of any entry - they form gaps in the
222 /// table.  Entries must be ordered by try-range address.
223 void EHStreamer::
224 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
225                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
226                      const SmallVectorImpl<unsigned> &FirstActions) {
227   RangeMapType PadMap;
228   computePadMap(LandingPads, PadMap);
229
230   // The end label of the previous invoke or nounwind try-range.
231   MCSymbol *LastLabel = nullptr;
232
233   // Whether there is a potentially throwing instruction (currently this means
234   // an ordinary call) between the end of the previous try-range and now.
235   bool SawPotentiallyThrowing = false;
236
237   // Whether the last CallSite entry was for an invoke.
238   bool PreviousIsInvoke = false;
239
240   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
241
242   // Visit all instructions in order of address.
243   for (const auto &MBB : *Asm->MF) {
244     for (const auto &MI : MBB) {
245       if (!MI.isEHLabel()) {
246         if (MI.isCall())
247           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
248         continue;
249       }
250
251       // End of the previous try-range?
252       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
253       if (BeginLabel == LastLabel)
254         SawPotentiallyThrowing = false;
255
256       // Beginning of a new try-range?
257       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258       if (L == PadMap.end())
259         // Nope, it was just some random label.
260         continue;
261
262       const PadRange &P = L->second;
263       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265              "Inconsistent landing pad map!");
266
267       // For Dwarf exception handling (SjLj handling doesn't use this). If some
268       // instruction between the previous try-range and this one may throw,
269       // create a call-site entry with no landing pad for the region between the
270       // try-ranges.
271       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
272         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
273         CallSites.push_back(Site);
274         PreviousIsInvoke = false;
275       }
276
277       LastLabel = LandingPad->EndLabels[P.RangeIndex];
278       assert(BeginLabel && LastLabel && "Invalid landing pad!");
279
280       if (!LandingPad->LandingPadLabel) {
281         // Create a gap.
282         PreviousIsInvoke = false;
283       } else {
284         // This try-range is for an invoke.
285         CallSiteEntry Site = {
286           BeginLabel,
287           LastLabel,
288           LandingPad,
289           FirstActions[P.PadIndex]
290         };
291
292         // Try to merge with the previous call-site. SJLJ doesn't do this
293         if (PreviousIsInvoke && !IsSJLJ) {
294           CallSiteEntry &Prev = CallSites.back();
295           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
296             // Extend the range of the previous entry.
297             Prev.EndLabel = Site.EndLabel;
298             continue;
299           }
300         }
301
302         // Otherwise, create a new call-site.
303         if (!IsSJLJ)
304           CallSites.push_back(Site);
305         else {
306           // SjLj EH must maintain the call sites in the order assigned
307           // to them by the SjLjPrepare pass.
308           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
309           if (CallSites.size() < SiteNo)
310             CallSites.resize(SiteNo);
311           CallSites[SiteNo - 1] = Site;
312         }
313         PreviousIsInvoke = true;
314       }
315     }
316   }
317
318   // If some instruction between the previous try-range and the end of the
319   // function may throw, create a call-site entry with no landing pad for the
320   // region following the try-range.
321   if (SawPotentiallyThrowing && !IsSJLJ) {
322     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
323     CallSites.push_back(Site);
324   }
325 }
326
327 /// Emit landing pads and actions.
328 ///
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy.  First there is a header which describes the location and organization
331 /// of the three components that follow.
332 ///
333 ///  1. The landing pad site information describes the range of code covered by
334 ///     the try.  In our case it's an accumulation of the ranges covered by the
335 ///     invokes in the try.  There is also a reference to the landing pad that
336 ///     handles the exception once processed.  Finally an index into the actions
337 ///     table.
338 ///  2. The action table, in our case, is composed of pairs of type IDs and next
339 ///     action offset.  Starting with the action index from the landing pad
340 ///     site, each type ID is checked for a match to the current exception.  If
341 ///     it matches then the exception and type id are passed on to the landing
342 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
343 ///     with a next action of zero.  If no type id is found then the frame is
344 ///     unwound and handling continues.
345 ///  3. Type ID table contains references to all the C++ typeinfo for all
346 ///     catches in the function.  This tables is reverse indexed base 1.
347 void EHStreamer::emitExceptionTable() {
348   const MachineFunction *MF = Asm->MF;
349   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
350   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
351   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
352
353   // Sort the landing pads in order of their type ids.  This is used to fold
354   // duplicate actions.
355   SmallVector<const LandingPadInfo *, 64> LandingPads;
356   LandingPads.reserve(PadInfos.size());
357
358   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
359     LandingPads.push_back(&PadInfos[i]);
360
361   // Order landing pads lexicographically by type id.
362   llvm::sort(LandingPads.begin(), LandingPads.end(),
363              [](const LandingPadInfo *L,
364                 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
365
366   // Compute the actions table and gather the first action index for each
367   // landing pad site.
368   SmallVector<ActionEntry, 32> Actions;
369   SmallVector<unsigned, 64> FirstActions;
370   computeActionsTable(LandingPads, Actions, FirstActions);
371
372   // Compute the call-site table.
373   SmallVector<CallSiteEntry, 64> CallSites;
374   computeCallSiteTable(CallSites, LandingPads, FirstActions);
375
376   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
377   unsigned CallSiteEncoding =
378       IsSJLJ ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_uleb128;
379   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
380
381   // Type infos.
382   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
383   unsigned TTypeEncoding;
384
385   if (!HaveTTData) {
386     // If there is no TypeInfo, then we just explicitly say that we're omitting
387     // that bit.
388     TTypeEncoding = dwarf::DW_EH_PE_omit;
389   } else {
390     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
391     // pick a type encoding for them.  We're about to emit a list of pointers to
392     // typeinfo objects at the end of the LSDA.  However, unless we're in static
393     // mode, this reference will require a relocation by the dynamic linker.
394     //
395     // Because of this, we have a couple of options:
396     //
397     //   1) If we are in -static mode, we can always use an absolute reference
398     //      from the LSDA, because the static linker will resolve it.
399     //
400     //   2) Otherwise, if the LSDA section is writable, we can output the direct
401     //      reference to the typeinfo and allow the dynamic linker to relocate
402     //      it.  Since it is in a writable section, the dynamic linker won't
403     //      have a problem.
404     //
405     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
406     //      we need to use some form of indirection.  For example, on Darwin,
407     //      we can output a statically-relocatable reference to a dyld stub. The
408     //      offset to the stub is constant, but the contents are in a section
409     //      that is updated by the dynamic linker.  This is easy enough, but we
410     //      need to tell the personality function of the unwinder to indirect
411     //      through the dyld stub.
412     //
413     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
414     // somewhere.  This predicate should be moved to a shared location that is
415     // in target-independent code.
416     //
417     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
418   }
419
420   // Begin the exception table.
421   // Sometimes we want not to emit the data into separate section (e.g. ARM
422   // EHABI). In this case LSDASection will be NULL.
423   if (LSDASection)
424     Asm->OutStreamer->SwitchSection(LSDASection);
425   Asm->EmitAlignment(2);
426
427   // Emit the LSDA.
428   MCSymbol *GCCETSym =
429     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
430                                       Twine(Asm->getFunctionNumber()));
431   Asm->OutStreamer->EmitLabel(GCCETSym);
432   Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
433
434   // Emit the LSDA header.
435   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
436   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
437
438   MCSymbol *TTBaseLabel = nullptr;
439   if (HaveTTData) {
440     // N.B.: There is a dependency loop between the size of the TTBase uleb128
441     // here and the amount of padding before the aligned type table. The
442     // assembler must sometimes pad this uleb128 or insert extra padding before
443     // the type table. See PR35809 or GNU as bug 4029.
444     MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
445     TTBaseLabel = Asm->createTempSymbol("ttbase");
446     Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
447     Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
448   }
449
450   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
451
452   // Emit the landing pad call site table.
453   MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
454   MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
455   Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
456   Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
457   Asm->OutStreamer->EmitLabel(CstBeginLabel);
458
459   // SjLj Exception handling
460   if (IsSJLJ) {
461     unsigned idx = 0;
462     for (SmallVectorImpl<CallSiteEntry>::const_iterator
463          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
464       const CallSiteEntry &S = *I;
465
466       // Index of the call site entry.
467       if (VerboseAsm) {
468         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
469         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
470       }
471       Asm->EmitULEB128(idx);
472
473       // Offset of the first associated action record, relative to the start of
474       // the action table. This value is biased by 1 (1 indicates the start of
475       // the action table), and 0 indicates that there are no actions.
476       if (VerboseAsm) {
477         if (S.Action == 0)
478           Asm->OutStreamer->AddComment("  Action: cleanup");
479         else
480           Asm->OutStreamer->AddComment("  Action: " +
481                                        Twine((S.Action - 1) / 2 + 1));
482       }
483       Asm->EmitULEB128(S.Action);
484     }
485   } else {
486     // Itanium LSDA exception handling
487
488     // The call-site table is a list of all call sites that may throw an
489     // exception (including C++ 'throw' statements) in the procedure
490     // fragment. It immediately follows the LSDA header. Each entry indicates,
491     // for a given call, the first corresponding action record and corresponding
492     // landing pad.
493     //
494     // The table begins with the number of bytes, stored as an LEB128
495     // compressed, unsigned integer. The records immediately follow the record
496     // count. They are sorted in increasing call-site address. Each record
497     // indicates:
498     //
499     //   * The position of the call-site.
500     //   * The position of the landing pad.
501     //   * The first action record for that call site.
502     //
503     // A missing entry in the call-site table indicates that a call is not
504     // supposed to throw.
505
506     unsigned Entry = 0;
507     for (SmallVectorImpl<CallSiteEntry>::const_iterator
508          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
509       const CallSiteEntry &S = *I;
510
511       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
512
513       MCSymbol *BeginLabel = S.BeginLabel;
514       if (!BeginLabel)
515         BeginLabel = EHFuncBeginSym;
516       MCSymbol *EndLabel = S.EndLabel;
517       if (!EndLabel)
518         EndLabel = Asm->getFunctionEnd();
519
520       // Offset of the call site relative to the start of the procedure.
521       if (VerboseAsm)
522         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
523       Asm->EmitLabelDifferenceAsULEB128(BeginLabel, EHFuncBeginSym);
524       if (VerboseAsm)
525         Asm->OutStreamer->AddComment(Twine("  Call between ") +
526                                      BeginLabel->getName() + " and " +
527                                      EndLabel->getName());
528       Asm->EmitLabelDifferenceAsULEB128(EndLabel, BeginLabel);
529
530       // Offset of the landing pad relative to the start of the procedure.
531       if (!S.LPad) {
532         if (VerboseAsm)
533           Asm->OutStreamer->AddComment("    has no landing pad");
534         Asm->EmitULEB128(0);
535       } else {
536         if (VerboseAsm)
537           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
538                                        S.LPad->LandingPadLabel->getName());
539         Asm->EmitLabelDifferenceAsULEB128(S.LPad->LandingPadLabel,
540                                           EHFuncBeginSym);
541       }
542
543       // Offset of the first associated action record, relative to the start of
544       // the action table. This value is biased by 1 (1 indicates the start of
545       // the action table), and 0 indicates that there are no actions.
546       if (VerboseAsm) {
547         if (S.Action == 0)
548           Asm->OutStreamer->AddComment("  On action: cleanup");
549         else
550           Asm->OutStreamer->AddComment("  On action: " +
551                                        Twine((S.Action - 1) / 2 + 1));
552       }
553       Asm->EmitULEB128(S.Action);
554     }
555   }
556   Asm->OutStreamer->EmitLabel(CstEndLabel);
557
558   // Emit the Action Table.
559   int Entry = 0;
560   for (SmallVectorImpl<ActionEntry>::const_iterator
561          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
562     const ActionEntry &Action = *I;
563
564     if (VerboseAsm) {
565       // Emit comments that decode the action table.
566       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
567     }
568
569     // Type Filter
570     //
571     //   Used by the runtime to match the type of the thrown exception to the
572     //   type of the catch clauses or the types in the exception specification.
573     if (VerboseAsm) {
574       if (Action.ValueForTypeID > 0)
575         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
576                                      Twine(Action.ValueForTypeID));
577       else if (Action.ValueForTypeID < 0)
578         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
579                                      Twine(Action.ValueForTypeID));
580       else
581         Asm->OutStreamer->AddComment("  Cleanup");
582     }
583     Asm->EmitSLEB128(Action.ValueForTypeID);
584
585     // Action Record
586     //
587     //   Self-relative signed displacement in bytes of the next action record,
588     //   or 0 if there is no next action record.
589     if (VerboseAsm) {
590       if (Action.NextAction == 0) {
591         Asm->OutStreamer->AddComment("  No further actions");
592       } else {
593         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
594         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
595       }
596     }
597     Asm->EmitSLEB128(Action.NextAction);
598   }
599
600   if (HaveTTData) {
601     Asm->EmitAlignment(2);
602     emitTypeInfos(TTypeEncoding, TTBaseLabel);
603   }
604
605   Asm->EmitAlignment(2);
606 }
607
608 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
609   const MachineFunction *MF = Asm->MF;
610   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
611   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
612
613   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
614
615   int Entry = 0;
616   // Emit the Catch TypeInfos.
617   if (VerboseAsm && !TypeInfos.empty()) {
618     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
619     Asm->OutStreamer->AddBlankLine();
620     Entry = TypeInfos.size();
621   }
622
623   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
624                                           TypeInfos.rend())) {
625     if (VerboseAsm)
626       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
627     Asm->EmitTTypeReference(GV, TTypeEncoding);
628   }
629
630   Asm->OutStreamer->EmitLabel(TTBaseLabel);
631
632   // Emit the Exception Specifications.
633   if (VerboseAsm && !FilterIds.empty()) {
634     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
635     Asm->OutStreamer->AddBlankLine();
636     Entry = 0;
637   }
638   for (std::vector<unsigned>::const_iterator
639          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
640     unsigned TypeID = *I;
641     if (VerboseAsm) {
642       --Entry;
643       if (isFilterEHSelector(TypeID))
644         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
645     }
646
647     Asm->EmitULEB128(TypeID);
648   }
649 }