]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
Merge llvm trunk r300422 and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / AsmPrinter / EHStreamer.cpp
1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "EHStreamer.h"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/MC/MCSymbol.h"
23 #include "llvm/Support/LEB128.h"
24 #include "llvm/Target/TargetLoweringObjectFile.h"
25
26 using namespace llvm;
27
28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
29
30 EHStreamer::~EHStreamer() {}
31
32 /// How many leading type ids two landing pads have in common.
33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
34                                    const LandingPadInfo *R) {
35   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
36   unsigned LSize = LIds.size(), RSize = RIds.size();
37   unsigned MinSize = LSize < RSize ? LSize : RSize;
38   unsigned Count = 0;
39
40   for (; Count != MinSize; ++Count)
41     if (LIds[Count] != RIds[Count])
42       return Count;
43
44   return Count;
45 }
46
47 /// Compute the actions table and gather the first action index for each landing
48 /// pad site.
49 unsigned EHStreamer::
50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
51                     SmallVectorImpl<ActionEntry> &Actions,
52                     SmallVectorImpl<unsigned> &FirstActions) {
53
54   // The action table follows the call-site table in the LSDA. The individual
55   // records are of two types:
56   //
57   //   * Catch clause
58   //   * Exception specification
59   //
60   // The two record kinds have the same format, with only small differences.
61   // They are distinguished by the "switch value" field: Catch clauses
62   // (TypeInfos) have strictly positive switch values, and exception
63   // specifications (FilterIds) have strictly negative switch values. Value 0
64   // indicates a catch-all clause.
65   //
66   // Negative type IDs index into FilterIds. Positive type IDs index into
67   // TypeInfos.  The value written for a positive type ID is just the type ID
68   // itself.  For a negative type ID, however, the value written is the
69   // (negative) byte offset of the corresponding FilterIds entry.  The byte
70   // offset is usually equal to the type ID (because the FilterIds entries are
71   // written using a variable width encoding, which outputs one byte per entry
72   // as long as the value written is not too large) but can differ.  This kind
73   // of complication does not occur for positive type IDs because type infos are
74   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
75   // offset corresponding to FilterIds[i].
76
77   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
78   SmallVector<int, 16> FilterOffsets;
79   FilterOffsets.reserve(FilterIds.size());
80   int Offset = -1;
81
82   for (std::vector<unsigned>::const_iterator
83          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
84     FilterOffsets.push_back(Offset);
85     Offset -= getULEB128Size(*I);
86   }
87
88   FirstActions.reserve(LandingPads.size());
89
90   int FirstAction = 0;
91   unsigned SizeActions = 0;
92   const LandingPadInfo *PrevLPI = nullptr;
93
94   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
95          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
96     const LandingPadInfo *LPI = *I;
97     const std::vector<int> &TypeIds = LPI->TypeIds;
98     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
99     unsigned SizeSiteActions = 0;
100
101     if (NumShared < TypeIds.size()) {
102       unsigned SizeAction = 0;
103       unsigned PrevAction = (unsigned)-1;
104
105       if (NumShared) {
106         unsigned SizePrevIds = PrevLPI->TypeIds.size();
107         assert(Actions.size());
108         PrevAction = Actions.size() - 1;
109         SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
110                      getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111
112         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114           SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115           SizeAction += -Actions[PrevAction].NextAction;
116           PrevAction = Actions[PrevAction].Previous;
117         }
118       }
119
120       // Compute the actions.
121       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122         int TypeID = TypeIds[J];
123         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124         int ValueForTypeID =
125             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
126         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
127
128         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
129         SizeAction = SizeTypeID + getSLEB128Size(NextAction);
130         SizeSiteActions += SizeAction;
131
132         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
133         Actions.push_back(Action);
134         PrevAction = Actions.size() - 1;
135       }
136
137       // Record the first action of the landing pad site.
138       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
139     } // else identical - re-use previous FirstAction
140
141     // Information used when created the call-site table. The action record
142     // field of the call site record is the offset of the first associated
143     // action record, relative to the start of the actions table. This value is
144     // biased by 1 (1 indicating the start of the actions table), and 0
145     // indicates that there are no actions.
146     FirstActions.push_back(FirstAction);
147
148     // Compute this sites contribution to size.
149     SizeActions += SizeSiteActions;
150
151     PrevLPI = LPI;
152   }
153
154   return SizeActions;
155 }
156
157 /// Return `true' if this is a call to a function marked `nounwind'. Return
158 /// `false' otherwise.
159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
160   assert(MI->isCall() && "This should be a call instruction!");
161
162   bool MarkedNoUnwind = false;
163   bool SawFunc = false;
164
165   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
166     const MachineOperand &MO = MI->getOperand(I);
167
168     if (!MO.isGlobal()) continue;
169
170     const Function *F = dyn_cast<Function>(MO.getGlobal());
171     if (!F) continue;
172
173     if (SawFunc) {
174       // Be conservative. If we have more than one function operand for this
175       // call, then we can't make the assumption that it's the callee and
176       // not a parameter to the call.
177       //
178       // FIXME: Determine if there's a way to say that `F' is the callee or
179       // parameter.
180       MarkedNoUnwind = false;
181       break;
182     }
183
184     MarkedNoUnwind = F->doesNotThrow();
185     SawFunc = true;
186   }
187
188   return MarkedNoUnwind;
189 }
190
191 void EHStreamer::computePadMap(
192     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
193     RangeMapType &PadMap) {
194   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
195   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
196   // try-ranges for them need be deduced so we can put them in the LSDA.
197   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
198     const LandingPadInfo *LandingPad = LandingPads[i];
199     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
200       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
201       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
202       PadRange P = { i, j };
203       PadMap[BeginLabel] = P;
204     }
205   }
206 }
207
208 /// Compute the call-site table.  The entry for an invoke has a try-range
209 /// containing the call, a non-zero landing pad, and an appropriate action.  The
210 /// entry for an ordinary call has a try-range containing the call and zero for
211 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
212 /// must not be contained in the try-range of any entry - they form gaps in the
213 /// table.  Entries must be ordered by try-range address.
214 void EHStreamer::
215 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
216                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
217                      const SmallVectorImpl<unsigned> &FirstActions) {
218   RangeMapType PadMap;
219   computePadMap(LandingPads, PadMap);
220
221   // The end label of the previous invoke or nounwind try-range.
222   MCSymbol *LastLabel = nullptr;
223
224   // Whether there is a potentially throwing instruction (currently this means
225   // an ordinary call) between the end of the previous try-range and now.
226   bool SawPotentiallyThrowing = false;
227
228   // Whether the last CallSite entry was for an invoke.
229   bool PreviousIsInvoke = false;
230
231   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
232
233   // Visit all instructions in order of address.
234   for (const auto &MBB : *Asm->MF) {
235     for (const auto &MI : MBB) {
236       if (!MI.isEHLabel()) {
237         if (MI.isCall())
238           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
239         continue;
240       }
241
242       // End of the previous try-range?
243       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
244       if (BeginLabel == LastLabel)
245         SawPotentiallyThrowing = false;
246
247       // Beginning of a new try-range?
248       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
249       if (L == PadMap.end())
250         // Nope, it was just some random label.
251         continue;
252
253       const PadRange &P = L->second;
254       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
255       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
256              "Inconsistent landing pad map!");
257
258       // For Dwarf exception handling (SjLj handling doesn't use this). If some
259       // instruction between the previous try-range and this one may throw,
260       // create a call-site entry with no landing pad for the region between the
261       // try-ranges.
262       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
263         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
264         CallSites.push_back(Site);
265         PreviousIsInvoke = false;
266       }
267
268       LastLabel = LandingPad->EndLabels[P.RangeIndex];
269       assert(BeginLabel && LastLabel && "Invalid landing pad!");
270
271       if (!LandingPad->LandingPadLabel) {
272         // Create a gap.
273         PreviousIsInvoke = false;
274       } else {
275         // This try-range is for an invoke.
276         CallSiteEntry Site = {
277           BeginLabel,
278           LastLabel,
279           LandingPad,
280           FirstActions[P.PadIndex]
281         };
282
283         // Try to merge with the previous call-site. SJLJ doesn't do this
284         if (PreviousIsInvoke && !IsSJLJ) {
285           CallSiteEntry &Prev = CallSites.back();
286           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
287             // Extend the range of the previous entry.
288             Prev.EndLabel = Site.EndLabel;
289             continue;
290           }
291         }
292
293         // Otherwise, create a new call-site.
294         if (!IsSJLJ)
295           CallSites.push_back(Site);
296         else {
297           // SjLj EH must maintain the call sites in the order assigned
298           // to them by the SjLjPrepare pass.
299           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
300           if (CallSites.size() < SiteNo)
301             CallSites.resize(SiteNo);
302           CallSites[SiteNo - 1] = Site;
303         }
304         PreviousIsInvoke = true;
305       }
306     }
307   }
308
309   // If some instruction between the previous try-range and the end of the
310   // function may throw, create a call-site entry with no landing pad for the
311   // region following the try-range.
312   if (SawPotentiallyThrowing && !IsSJLJ && LastLabel != nullptr) {
313     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
314     CallSites.push_back(Site);
315   }
316 }
317
318 /// Emit landing pads and actions.
319 ///
320 /// The general organization of the table is complex, but the basic concepts are
321 /// easy.  First there is a header which describes the location and organization
322 /// of the three components that follow.
323 ///
324 ///  1. The landing pad site information describes the range of code covered by
325 ///     the try.  In our case it's an accumulation of the ranges covered by the
326 ///     invokes in the try.  There is also a reference to the landing pad that
327 ///     handles the exception once processed.  Finally an index into the actions
328 ///     table.
329 ///  2. The action table, in our case, is composed of pairs of type IDs and next
330 ///     action offset.  Starting with the action index from the landing pad
331 ///     site, each type ID is checked for a match to the current exception.  If
332 ///     it matches then the exception and type id are passed on to the landing
333 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
334 ///     with a next action of zero.  If no type id is found then the frame is
335 ///     unwound and handling continues.
336 ///  3. Type ID table contains references to all the C++ typeinfo for all
337 ///     catches in the function.  This tables is reverse indexed base 1.
338 void EHStreamer::emitExceptionTable() {
339   const MachineFunction *MF = Asm->MF;
340   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
341   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
342   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
343
344   // Sort the landing pads in order of their type ids.  This is used to fold
345   // duplicate actions.
346   SmallVector<const LandingPadInfo *, 64> LandingPads;
347   LandingPads.reserve(PadInfos.size());
348
349   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
350     LandingPads.push_back(&PadInfos[i]);
351
352   // Order landing pads lexicographically by type id.
353   std::sort(LandingPads.begin(), LandingPads.end(),
354             [](const LandingPadInfo *L,
355                const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
356
357   // Compute the actions table and gather the first action index for each
358   // landing pad site.
359   SmallVector<ActionEntry, 32> Actions;
360   SmallVector<unsigned, 64> FirstActions;
361   unsigned SizeActions =
362     computeActionsTable(LandingPads, Actions, FirstActions);
363
364   // Compute the call-site table.
365   SmallVector<CallSiteEntry, 64> CallSites;
366   computeCallSiteTable(CallSites, LandingPads, FirstActions);
367
368   // Final tallies.
369
370   // Call sites.
371   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
372   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
373
374   unsigned CallSiteTableLength;
375   if (IsSJLJ)
376     CallSiteTableLength = 0;
377   else {
378     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
379     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
380     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
381     CallSiteTableLength =
382       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
383   }
384
385   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
386     CallSiteTableLength += getULEB128Size(CallSites[i].Action);
387     if (IsSJLJ)
388       CallSiteTableLength += getULEB128Size(i);
389   }
390
391   // Type infos.
392   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
393   unsigned TTypeEncoding;
394   unsigned TypeFormatSize;
395
396   if (!HaveTTData) {
397     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
398     // that we're omitting that bit.
399     TTypeEncoding = dwarf::DW_EH_PE_omit;
400     // dwarf::DW_EH_PE_absptr
401     TypeFormatSize = Asm->getDataLayout().getPointerSize();
402   } else {
403     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
404     // pick a type encoding for them.  We're about to emit a list of pointers to
405     // typeinfo objects at the end of the LSDA.  However, unless we're in static
406     // mode, this reference will require a relocation by the dynamic linker.
407     //
408     // Because of this, we have a couple of options:
409     //
410     //   1) If we are in -static mode, we can always use an absolute reference
411     //      from the LSDA, because the static linker will resolve it.
412     //
413     //   2) Otherwise, if the LSDA section is writable, we can output the direct
414     //      reference to the typeinfo and allow the dynamic linker to relocate
415     //      it.  Since it is in a writable section, the dynamic linker won't
416     //      have a problem.
417     //
418     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
419     //      we need to use some form of indirection.  For example, on Darwin,
420     //      we can output a statically-relocatable reference to a dyld stub. The
421     //      offset to the stub is constant, but the contents are in a section
422     //      that is updated by the dynamic linker.  This is easy enough, but we
423     //      need to tell the personality function of the unwinder to indirect
424     //      through the dyld stub.
425     //
426     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
427     // somewhere.  This predicate should be moved to a shared location that is
428     // in target-independent code.
429     //
430     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
431     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
432   }
433
434   // Begin the exception table.
435   // Sometimes we want not to emit the data into separate section (e.g. ARM
436   // EHABI). In this case LSDASection will be NULL.
437   if (LSDASection)
438     Asm->OutStreamer->SwitchSection(LSDASection);
439   Asm->EmitAlignment(2);
440
441   // Emit the LSDA.
442   MCSymbol *GCCETSym =
443     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
444                                       Twine(Asm->getFunctionNumber()));
445   Asm->OutStreamer->EmitLabel(GCCETSym);
446   Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
447
448   // Emit the LSDA header.
449   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
450   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
451
452   // The type infos need to be aligned. GCC does this by inserting padding just
453   // before the type infos. However, this changes the size of the exception
454   // table, so you need to take this into account when you output the exception
455   // table size. However, the size is output using a variable length encoding.
456   // So by increasing the size by inserting padding, you may increase the number
457   // of bytes used for writing the size. If it increases, say by one byte, then
458   // you now need to output one less byte of padding to get the type infos
459   // aligned. However this decreases the size of the exception table. This
460   // changes the value you have to output for the exception table size. Due to
461   // the variable length encoding, the number of bytes used for writing the
462   // length may decrease. If so, you then have to increase the amount of
463   // padding. And so on. If you look carefully at the GCC code you will see that
464   // it indeed does this in a loop, going on and on until the values stabilize.
465   // We chose another solution: don't output padding inside the table like GCC
466   // does, instead output it before the table.
467   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
468   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
469   unsigned TTypeBaseOffset =
470     sizeof(int8_t) +                            // Call site format
471     CallSiteTableLengthSize +                   // Call site table length size
472     CallSiteTableLength +                       // Call site table length
473     SizeActions +                               // Actions size
474     SizeTypes;
475   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
476   unsigned TotalSize =
477     sizeof(int8_t) +                            // LPStart format
478     sizeof(int8_t) +                            // TType format
479     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
480     TTypeBaseOffset;                            // TType base offset
481   unsigned SizeAlign = (4 - TotalSize) & 3;
482
483   if (HaveTTData) {
484     // Account for any extra padding that will be added to the call site table
485     // length.
486     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
487     SizeAlign = 0;
488   }
489
490   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
491
492   // SjLj Exception handling
493   if (IsSJLJ) {
494     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
495
496     // Add extra padding if it wasn't added to the TType base offset.
497     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
498
499     // Emit the landing pad site information.
500     unsigned idx = 0;
501     for (SmallVectorImpl<CallSiteEntry>::const_iterator
502          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
503       const CallSiteEntry &S = *I;
504
505       // Offset of the landing pad, counted in 16-byte bundles relative to the
506       // @LPStart address.
507       if (VerboseAsm) {
508         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
509         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
510       }
511       Asm->EmitULEB128(idx);
512
513       // Offset of the first associated action record, relative to the start of
514       // the action table. This value is biased by 1 (1 indicates the start of
515       // the action table), and 0 indicates that there are no actions.
516       if (VerboseAsm) {
517         if (S.Action == 0)
518           Asm->OutStreamer->AddComment("  Action: cleanup");
519         else
520           Asm->OutStreamer->AddComment("  Action: " +
521                                        Twine((S.Action - 1) / 2 + 1));
522       }
523       Asm->EmitULEB128(S.Action);
524     }
525   } else {
526     // Itanium LSDA exception handling
527
528     // The call-site table is a list of all call sites that may throw an
529     // exception (including C++ 'throw' statements) in the procedure
530     // fragment. It immediately follows the LSDA header. Each entry indicates,
531     // for a given call, the first corresponding action record and corresponding
532     // landing pad.
533     //
534     // The table begins with the number of bytes, stored as an LEB128
535     // compressed, unsigned integer. The records immediately follow the record
536     // count. They are sorted in increasing call-site address. Each record
537     // indicates:
538     //
539     //   * The position of the call-site.
540     //   * The position of the landing pad.
541     //   * The first action record for that call site.
542     //
543     // A missing entry in the call-site table indicates that a call is not
544     // supposed to throw.
545
546     // Emit the landing pad call site table.
547     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
548
549     // Add extra padding if it wasn't added to the TType base offset.
550     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
551
552     unsigned Entry = 0;
553     for (SmallVectorImpl<CallSiteEntry>::const_iterator
554          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
555       const CallSiteEntry &S = *I;
556
557       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
558
559       MCSymbol *BeginLabel = S.BeginLabel;
560       if (!BeginLabel)
561         BeginLabel = EHFuncBeginSym;
562       MCSymbol *EndLabel = S.EndLabel;
563       if (!EndLabel)
564         EndLabel = Asm->getFunctionEnd();
565
566       // Offset of the call site relative to the previous call site, counted in
567       // number of 16-byte bundles. The first call site is counted relative to
568       // the start of the procedure fragment.
569       if (VerboseAsm)
570         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
571       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
572       if (VerboseAsm)
573         Asm->OutStreamer->AddComment(Twine("  Call between ") +
574                                      BeginLabel->getName() + " and " +
575                                      EndLabel->getName());
576       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
577
578       // Offset of the landing pad, counted in 16-byte bundles relative to the
579       // @LPStart address.
580       if (!S.LPad) {
581         if (VerboseAsm)
582           Asm->OutStreamer->AddComment("    has no landing pad");
583         Asm->OutStreamer->EmitIntValue(0, 4/*size*/);
584       } else {
585         if (VerboseAsm)
586           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
587                                        S.LPad->LandingPadLabel->getName());
588         Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
589       }
590
591       // Offset of the first associated action record, relative to the start of
592       // the action table. This value is biased by 1 (1 indicates the start of
593       // the action table), and 0 indicates that there are no actions.
594       if (VerboseAsm) {
595         if (S.Action == 0)
596           Asm->OutStreamer->AddComment("  On action: cleanup");
597         else
598           Asm->OutStreamer->AddComment("  On action: " +
599                                        Twine((S.Action - 1) / 2 + 1));
600       }
601       Asm->EmitULEB128(S.Action);
602     }
603   }
604
605   // Emit the Action Table.
606   int Entry = 0;
607   for (SmallVectorImpl<ActionEntry>::const_iterator
608          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
609     const ActionEntry &Action = *I;
610
611     if (VerboseAsm) {
612       // Emit comments that decode the action table.
613       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
614     }
615
616     // Type Filter
617     //
618     //   Used by the runtime to match the type of the thrown exception to the
619     //   type of the catch clauses or the types in the exception specification.
620     if (VerboseAsm) {
621       if (Action.ValueForTypeID > 0)
622         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
623                                      Twine(Action.ValueForTypeID));
624       else if (Action.ValueForTypeID < 0)
625         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
626                                      Twine(Action.ValueForTypeID));
627       else
628         Asm->OutStreamer->AddComment("  Cleanup");
629     }
630     Asm->EmitSLEB128(Action.ValueForTypeID);
631
632     // Action Record
633     //
634     //   Self-relative signed displacement in bytes of the next action record,
635     //   or 0 if there is no next action record.
636     if (VerboseAsm) {
637       if (Action.NextAction == 0) {
638         Asm->OutStreamer->AddComment("  No further actions");
639       } else {
640         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
641         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
642       }
643     }
644     Asm->EmitSLEB128(Action.NextAction);
645   }
646
647   emitTypeInfos(TTypeEncoding);
648
649   Asm->EmitAlignment(2);
650 }
651
652 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
653   const MachineFunction *MF = Asm->MF;
654   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
655   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
656
657   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
658
659   int Entry = 0;
660   // Emit the Catch TypeInfos.
661   if (VerboseAsm && !TypeInfos.empty()) {
662     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
663     Asm->OutStreamer->AddBlankLine();
664     Entry = TypeInfos.size();
665   }
666
667   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
668                                           TypeInfos.rend())) {
669     if (VerboseAsm)
670       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
671     Asm->EmitTTypeReference(GV, TTypeEncoding);
672   }
673
674   // Emit the Exception Specifications.
675   if (VerboseAsm && !FilterIds.empty()) {
676     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
677     Asm->OutStreamer->AddBlankLine();
678     Entry = 0;
679   }
680   for (std::vector<unsigned>::const_iterator
681          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
682     unsigned TypeID = *I;
683     if (VerboseAsm) {
684       --Entry;
685       if (isFilterEHSelector(TypeID))
686         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
687     }
688
689     Asm->EmitULEB128(TypeID);
690   }
691 }