]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/BranchRelaxation.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304149, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / BranchRelaxation.cpp
1 //===-- BranchRelaxation.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/CodeGen/Passes.h"
11 #include "llvm/ADT/SmallVector.h"
12 #include "llvm/ADT/Statistic.h"
13 #include "llvm/CodeGen/LivePhysRegs.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/RegisterScavenging.h"
16 #include "llvm/Target/TargetInstrInfo.h"
17 #include "llvm/Target/TargetSubtargetInfo.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/Support/raw_ostream.h"
21
22 using namespace llvm;
23
24 #define DEBUG_TYPE "branch-relaxation"
25
26 STATISTIC(NumSplit, "Number of basic blocks split");
27 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
28 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
29
30 #define BRANCH_RELAX_NAME "Branch relaxation pass"
31
32 namespace {
33 class BranchRelaxation : public MachineFunctionPass {
34   /// BasicBlockInfo - Information about the offset and size of a single
35   /// basic block.
36   struct BasicBlockInfo {
37     /// Offset - Distance from the beginning of the function to the beginning
38     /// of this basic block.
39     ///
40     /// The offset is always aligned as required by the basic block.
41     unsigned Offset;
42
43     /// Size - Size of the basic block in bytes.  If the block contains
44     /// inline assembly, this is a worst case estimate.
45     ///
46     /// The size does not include any alignment padding whether from the
47     /// beginning of the block, or from an aligned jump table at the end.
48     unsigned Size;
49
50     BasicBlockInfo() : Offset(0), Size(0) {}
51
52     /// Compute the offset immediately following this block. \p MBB is the next
53     /// block.
54     unsigned postOffset(const MachineBasicBlock &MBB) const {
55       unsigned PO = Offset + Size;
56       unsigned Align = MBB.getAlignment();
57       if (Align == 0)
58         return PO;
59
60       unsigned AlignAmt = 1 << Align;
61       unsigned ParentAlign = MBB.getParent()->getAlignment();
62       if (Align <= ParentAlign)
63         return PO + OffsetToAlignment(PO, AlignAmt);
64
65       // The alignment of this MBB is larger than the function's alignment, so we
66       // can't tell whether or not it will insert nops. Assume that it will.
67       return PO + AlignAmt + OffsetToAlignment(PO, AlignAmt);
68     }
69   };
70
71   SmallVector<BasicBlockInfo, 16> BlockInfo;
72   std::unique_ptr<RegScavenger> RS;
73   LivePhysRegs LiveRegs;
74
75   MachineFunction *MF;
76   const TargetRegisterInfo *TRI;
77   const TargetInstrInfo *TII;
78
79   bool relaxBranchInstructions();
80   void scanFunction();
81
82   MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
83
84   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
85                                            MachineBasicBlock *DestBB);
86   void adjustBlockOffsets(MachineBasicBlock &MBB);
87   bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
88
89   bool fixupConditionalBranch(MachineInstr &MI);
90   bool fixupUnconditionalBranch(MachineInstr &MI);
91   uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
92   unsigned getInstrOffset(const MachineInstr &MI) const;
93   void dumpBBs();
94   void verify();
95
96 public:
97   static char ID;
98   BranchRelaxation() : MachineFunctionPass(ID) { }
99
100   bool runOnMachineFunction(MachineFunction &MF) override;
101
102   StringRef getPassName() const override {
103     return BRANCH_RELAX_NAME;
104   }
105 };
106
107 }
108
109 char BranchRelaxation::ID = 0;
110 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
111
112 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
113
114 /// verify - check BBOffsets, BBSizes, alignment of islands
115 void BranchRelaxation::verify() {
116 #ifndef NDEBUG
117   unsigned PrevNum = MF->begin()->getNumber();
118   for (MachineBasicBlock &MBB : *MF) {
119     unsigned Align = MBB.getAlignment();
120     unsigned Num = MBB.getNumber();
121     assert(BlockInfo[Num].Offset % (1u << Align) == 0);
122     assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
123     assert(BlockInfo[Num].Size == computeBlockSize(MBB));
124     PrevNum = Num;
125   }
126 #endif
127 }
128
129 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
130 /// print block size and offset information - debugging
131 LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
132   for (auto &MBB : *MF) {
133     const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
134     dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
135            << format("size=%#x\n", BBI.Size);
136   }
137 }
138 #endif
139
140 /// scanFunction - Do the initial scan of the function, building up
141 /// information about each block.
142 void BranchRelaxation::scanFunction() {
143   BlockInfo.clear();
144   BlockInfo.resize(MF->getNumBlockIDs());
145
146   // First thing, compute the size of all basic blocks, and see if the function
147   // has any inline assembly in it. If so, we have to be conservative about
148   // alignment assumptions, as we don't know for sure the size of any
149   // instructions in the inline assembly.
150   for (MachineBasicBlock &MBB : *MF)
151     BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
152
153   // Compute block offsets and known bits.
154   adjustBlockOffsets(*MF->begin());
155 }
156
157 /// computeBlockSize - Compute the size for MBB.
158 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
159   uint64_t Size = 0;
160   for (const MachineInstr &MI : MBB)
161     Size += TII->getInstSizeInBytes(MI);
162   return Size;
163 }
164
165 /// getInstrOffset - Return the current offset of the specified machine
166 /// instruction from the start of the function.  This offset changes as stuff is
167 /// moved around inside the function.
168 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
169   const MachineBasicBlock *MBB = MI.getParent();
170
171   // The offset is composed of two things: the sum of the sizes of all MBB's
172   // before this instruction's block, and the offset from the start of the block
173   // it is in.
174   unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
175
176   // Sum instructions before MI in MBB.
177   for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
178     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
179     Offset += TII->getInstSizeInBytes(*I);
180   }
181
182   return Offset;
183 }
184
185 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
186   unsigned PrevNum = Start.getNumber();
187   for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
188     unsigned Num = MBB.getNumber();
189     if (!Num) // block zero is never changed from offset zero.
190       continue;
191     // Get the offset and known bits at the end of the layout predecessor.
192     // Include the alignment of the current block.
193     BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
194
195     PrevNum = Num;
196   }
197 }
198
199   /// Insert a new empty basic block and insert it after \BB
200 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
201   // Create a new MBB for the code after the OrigBB.
202   MachineBasicBlock *NewBB =
203       MF->CreateMachineBasicBlock(BB.getBasicBlock());
204   MF->insert(++BB.getIterator(), NewBB);
205
206   // Insert an entry into BlockInfo to align it properly with the block numbers.
207   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
208
209   return NewBB;
210 }
211
212 /// Split the basic block containing MI into two blocks, which are joined by
213 /// an unconditional branch.  Update data structures and renumber blocks to
214 /// account for this change and returns the newly created block.
215 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
216                                                            MachineBasicBlock *DestBB) {
217   MachineBasicBlock *OrigBB = MI.getParent();
218
219   // Create a new MBB for the code after the OrigBB.
220   MachineBasicBlock *NewBB =
221       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
222   MF->insert(++OrigBB->getIterator(), NewBB);
223
224   // Splice the instructions starting with MI over to NewBB.
225   NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
226
227   // Add an unconditional branch from OrigBB to NewBB.
228   // Note the new unconditional branch is not being recorded.
229   // There doesn't seem to be meaningful DebugInfo available; this doesn't
230   // correspond to anything in the source.
231   TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
232
233   // Insert an entry into BlockInfo to align it properly with the block numbers.
234   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
235
236
237   NewBB->transferSuccessors(OrigBB);
238   OrigBB->addSuccessor(NewBB);
239   OrigBB->addSuccessor(DestBB);
240
241   // Cleanup potential unconditional branch to successor block.
242   // Note that updateTerminator may change the size of the blocks.
243   NewBB->updateTerminator();
244   OrigBB->updateTerminator();
245
246   // Figure out how large the OrigBB is.  As the first half of the original
247   // block, it cannot contain a tablejump.  The size includes
248   // the new jump we added.  (It should be possible to do this without
249   // recounting everything, but it's very confusing, and this is rarely
250   // executed.)
251   BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
252
253   // Figure out how large the NewMBB is. As the second half of the original
254   // block, it may contain a tablejump.
255   BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
256
257   // All BBOffsets following these blocks must be modified.
258   adjustBlockOffsets(*OrigBB);
259
260   // Need to fix live-in lists if we track liveness.
261   if (TRI->trackLivenessAfterRegAlloc(*MF))
262     computeLiveIns(LiveRegs, MF->getRegInfo(), *NewBB);
263
264   ++NumSplit;
265
266   return NewBB;
267 }
268
269 /// isBlockInRange - Returns true if the distance between specific MI and
270 /// specific BB can fit in MI's displacement field.
271 bool BranchRelaxation::isBlockInRange(
272   const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
273   int64_t BrOffset = getInstrOffset(MI);
274   int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
275
276   if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
277     return true;
278
279   DEBUG(
280     dbgs() << "Out of range branch to destination BB#" << DestBB.getNumber()
281            << " from BB#" << MI.getParent()->getNumber()
282            << " to " << DestOffset
283            << " offset " << DestOffset - BrOffset
284            << '\t' << MI
285   );
286
287   return false;
288 }
289
290 /// fixupConditionalBranch - Fix up a conditional branch whose destination is
291 /// too far away to fit in its displacement field. It is converted to an inverse
292 /// conditional branch + an unconditional branch to the destination.
293 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
294   DebugLoc DL = MI.getDebugLoc();
295   MachineBasicBlock *MBB = MI.getParent();
296   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
297   SmallVector<MachineOperand, 4> Cond;
298
299   bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
300   assert(!Fail && "branches to be relaxed must be analyzable");
301   (void)Fail;
302
303   // Add an unconditional branch to the destination and invert the branch
304   // condition to jump over it:
305   // tbz L1
306   // =>
307   // tbnz L2
308   // b   L1
309   // L2:
310
311   if (FBB && isBlockInRange(MI, *FBB)) {
312     // Last MI in the BB is an unconditional branch. We can simply invert the
313     // condition and swap destinations:
314     // beq L1
315     // b   L2
316     // =>
317     // bne L2
318     // b   L1
319     DEBUG(dbgs() << "  Invert condition and swap "
320                     "its destination with " << MBB->back());
321
322     TII->reverseBranchCondition(Cond);
323     int OldSize = 0, NewSize = 0;
324     TII->removeBranch(*MBB, &OldSize);
325     TII->insertBranch(*MBB, FBB, TBB, Cond, DL, &NewSize);
326
327     BlockInfo[MBB->getNumber()].Size += (NewSize - OldSize);
328     return true;
329   } else if (FBB) {
330     // We need to split the basic block here to obtain two long-range
331     // unconditional branches.
332     auto &NewBB = *MF->CreateMachineBasicBlock(MBB->getBasicBlock());
333     MF->insert(++MBB->getIterator(), &NewBB);
334
335     // Insert an entry into BlockInfo to align it properly with the block
336     // numbers.
337     BlockInfo.insert(BlockInfo.begin() + NewBB.getNumber(), BasicBlockInfo());
338
339     unsigned &NewBBSize = BlockInfo[NewBB.getNumber()].Size;
340     int NewBrSize;
341     TII->insertUnconditionalBranch(NewBB, FBB, DL, &NewBrSize);
342     NewBBSize += NewBrSize;
343
344     // Update the successor lists according to the transformation to follow.
345     // Do it here since if there's no split, no update is needed.
346     MBB->replaceSuccessor(FBB, &NewBB);
347     NewBB.addSuccessor(FBB);
348
349     // Need to fix live-in lists if we track liveness.
350     if (TRI->trackLivenessAfterRegAlloc(*MF))
351       computeLiveIns(LiveRegs, MF->getRegInfo(), NewBB);
352   }
353
354   // We now have an appropriate fall-through block in place (either naturally or
355   // just created), so we can invert the condition.
356   MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
357
358   DEBUG(dbgs() << "  Insert B to BB#" << TBB->getNumber()
359                << ", invert condition and change dest. to BB#"
360                << NextBB.getNumber() << '\n');
361
362   unsigned &MBBSize = BlockInfo[MBB->getNumber()].Size;
363
364   // Insert a new conditional branch and a new unconditional branch.
365   int RemovedSize = 0;
366   TII->reverseBranchCondition(Cond);
367   TII->removeBranch(*MBB, &RemovedSize);
368   MBBSize -= RemovedSize;
369
370   int AddedSize = 0;
371   TII->insertBranch(*MBB, &NextBB, TBB, Cond, DL, &AddedSize);
372   MBBSize += AddedSize;
373
374   // Finally, keep the block offsets up to date.
375   adjustBlockOffsets(*MBB);
376   return true;
377 }
378
379 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
380   MachineBasicBlock *MBB = MI.getParent();
381
382   unsigned OldBrSize = TII->getInstSizeInBytes(MI);
383   MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
384
385   int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
386   int64_t SrcOffset = getInstrOffset(MI);
387
388   assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
389
390   BlockInfo[MBB->getNumber()].Size -= OldBrSize;
391
392   MachineBasicBlock *BranchBB = MBB;
393
394   // If this was an expanded conditional branch, there is already a single
395   // unconditional branch in a block.
396   if (!MBB->empty()) {
397     BranchBB = createNewBlockAfter(*MBB);
398
399     // Add live outs.
400     for (const MachineBasicBlock *Succ : MBB->successors()) {
401       for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
402         BranchBB->addLiveIn(LiveIn);
403     }
404
405     BranchBB->sortUniqueLiveIns();
406     BranchBB->addSuccessor(DestBB);
407     MBB->replaceSuccessor(DestBB, BranchBB);
408   }
409
410   DebugLoc DL = MI.getDebugLoc();
411   MI.eraseFromParent();
412   BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
413     *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
414
415   adjustBlockOffsets(*MBB);
416   return true;
417 }
418
419 bool BranchRelaxation::relaxBranchInstructions() {
420   bool Changed = false;
421
422   // Relaxing branches involves creating new basic blocks, so re-eval
423   // end() for termination.
424   for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
425     MachineBasicBlock &MBB = *I;
426
427     // Empty block?
428     MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
429     if (Last == MBB.end())
430       continue;
431
432     // Expand the unconditional branch first if necessary. If there is a
433     // conditional branch, this will end up changing the branch destination of
434     // it to be over the newly inserted indirect branch block, which may avoid
435     // the need to try expanding the conditional branch first, saving an extra
436     // jump.
437     if (Last->isUnconditionalBranch()) {
438       // Unconditional branch destination might be unanalyzable, assume these
439       // are OK.
440       if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
441         if (!isBlockInRange(*Last, *DestBB)) {
442           fixupUnconditionalBranch(*Last);
443           ++NumUnconditionalRelaxed;
444           Changed = true;
445         }
446       }
447     }
448
449     // Loop over the conditional branches.
450     MachineBasicBlock::iterator Next;
451     for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
452          J != MBB.end(); J = Next) {
453       Next = std::next(J);
454       MachineInstr &MI = *J;
455
456       if (MI.isConditionalBranch()) {
457         MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
458         if (!isBlockInRange(MI, *DestBB)) {
459           if (Next != MBB.end() && Next->isConditionalBranch()) {
460             // If there are multiple conditional branches, this isn't an
461             // analyzable block. Split later terminators into a new block so
462             // each one will be analyzable.
463
464             splitBlockBeforeInstr(*Next, DestBB);
465           } else {
466             fixupConditionalBranch(MI);
467             ++NumConditionalRelaxed;
468           }
469
470           Changed = true;
471
472           // This may have modified all of the terminators, so start over.
473           Next = MBB.getFirstTerminator();
474         }
475       }
476     }
477   }
478
479   return Changed;
480 }
481
482 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
483   MF = &mf;
484
485   DEBUG(dbgs() << "***** BranchRelaxation *****\n");
486
487   const TargetSubtargetInfo &ST = MF->getSubtarget();
488   TII = ST.getInstrInfo();
489
490   TRI = ST.getRegisterInfo();
491   if (TRI->trackLivenessAfterRegAlloc(*MF))
492     RS.reset(new RegScavenger());
493
494   // Renumber all of the machine basic blocks in the function, guaranteeing that
495   // the numbers agree with the position of the block in the function.
496   MF->RenumberBlocks();
497
498   // Do the initial scan of the function, building up information about the
499   // sizes of each block.
500   scanFunction();
501
502   DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););
503
504   bool MadeChange = false;
505   while (relaxBranchInstructions())
506     MadeChange = true;
507
508   // After a while, this might be made debug-only, but it is not expensive.
509   verify();
510
511   DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());
512
513   BlockInfo.clear();
514
515   return MadeChange;
516 }