]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/IfConversion.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / IfConversion.cpp
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level if-conversion pass, which
11 // tries to convert conditional branches into predicated instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "BranchFolding.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <functional>
50 #include <iterator>
51 #include <memory>
52 #include <utility>
53 #include <vector>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "if-converter"
58
59 // Hidden options for help debugging.
60 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
61 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
62 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
63 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
64                                    cl::init(false), cl::Hidden);
65 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
66                                     cl::init(false), cl::Hidden);
67 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
68                                      cl::init(false), cl::Hidden);
69 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
70                                       cl::init(false), cl::Hidden);
71 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
72                                       cl::init(false), cl::Hidden);
73 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
74                                        cl::init(false), cl::Hidden);
75 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
76                                     cl::init(false), cl::Hidden);
77 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
78                                         cl::init(false), cl::Hidden);
79 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
80                                      cl::init(true), cl::Hidden);
81
82 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
83 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
84 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
85 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
86 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
87 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
88 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
89 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
90 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
91 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
92 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
93
94 namespace {
95
96   class IfConverter : public MachineFunctionPass {
97     enum IfcvtKind {
98       ICNotClassfied,  // BB data valid, but not classified.
99       ICSimpleFalse,   // Same as ICSimple, but on the false path.
100       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
101       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
102       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
103       ICTriangleFalse, // Same as ICTriangle, but on the false path.
104       ICTriangle,      // BB is entry of a triangle sub-CFG.
105       ICDiamond,       // BB is entry of a diamond sub-CFG.
106       ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
107                        // common tail that can be shared.
108     };
109
110     /// One per MachineBasicBlock, this is used to cache the result
111     /// if-conversion feasibility analysis. This includes results from
112     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
113     /// classification, and common tail block of its successors (if it's a
114     /// diamond shape), its size, whether it's predicable, and whether any
115     /// instruction can clobber the 'would-be' predicate.
116     ///
117     /// IsDone          - True if BB is not to be considered for ifcvt.
118     /// IsBeingAnalyzed - True if BB is currently being analyzed.
119     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
120     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
121     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
122     /// HasFallThrough  - True if BB may fallthrough to the following BB.
123     /// IsUnpredicable  - True if BB is known to be unpredicable.
124     /// ClobbersPred    - True if BB could modify predicates (e.g. has
125     ///                   cmp, call, etc.)
126     /// NonPredSize     - Number of non-predicated instructions.
127     /// ExtraCost       - Extra cost for multi-cycle instructions.
128     /// ExtraCost2      - Some instructions are slower when predicated
129     /// BB              - Corresponding MachineBasicBlock.
130     /// TrueBB / FalseBB- See analyzeBranch().
131     /// BrCond          - Conditions for end of block conditional branches.
132     /// Predicate       - Predicate used in the BB.
133     struct BBInfo {
134       bool IsDone          : 1;
135       bool IsBeingAnalyzed : 1;
136       bool IsAnalyzed      : 1;
137       bool IsEnqueued      : 1;
138       bool IsBrAnalyzable  : 1;
139       bool IsBrReversible  : 1;
140       bool HasFallThrough  : 1;
141       bool IsUnpredicable  : 1;
142       bool CannotBeCopied  : 1;
143       bool ClobbersPred    : 1;
144       unsigned NonPredSize = 0;
145       unsigned ExtraCost = 0;
146       unsigned ExtraCost2 = 0;
147       MachineBasicBlock *BB = nullptr;
148       MachineBasicBlock *TrueBB = nullptr;
149       MachineBasicBlock *FalseBB = nullptr;
150       SmallVector<MachineOperand, 4> BrCond;
151       SmallVector<MachineOperand, 4> Predicate;
152
153       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
154                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
155                  IsBrReversible(false), HasFallThrough(false),
156                  IsUnpredicable(false), CannotBeCopied(false),
157                  ClobbersPred(false) {}
158     };
159
160     /// Record information about pending if-conversions to attempt:
161     /// BBI             - Corresponding BBInfo.
162     /// Kind            - Type of block. See IfcvtKind.
163     /// NeedSubsumption - True if the to-be-predicated BB has already been
164     ///                   predicated.
165     /// NumDups      - Number of instructions that would be duplicated due
166     ///                   to this if-conversion. (For diamonds, the number of
167     ///                   identical instructions at the beginnings of both
168     ///                   paths).
169     /// NumDups2     - For diamonds, the number of identical instructions
170     ///                   at the ends of both paths.
171     struct IfcvtToken {
172       BBInfo &BBI;
173       IfcvtKind Kind;
174       unsigned NumDups;
175       unsigned NumDups2;
176       bool NeedSubsumption : 1;
177       bool TClobbersPred : 1;
178       bool FClobbersPred : 1;
179
180       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
181                  bool tc = false, bool fc = false)
182         : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
183           TClobbersPred(tc), FClobbersPred(fc) {}
184     };
185
186     /// Results of if-conversion feasibility analysis indexed by basic block
187     /// number.
188     std::vector<BBInfo> BBAnalysis;
189     TargetSchedModel SchedModel;
190
191     const TargetLoweringBase *TLI;
192     const TargetInstrInfo *TII;
193     const TargetRegisterInfo *TRI;
194     const MachineBranchProbabilityInfo *MBPI;
195     MachineRegisterInfo *MRI;
196
197     LivePhysRegs Redefs;
198
199     bool PreRegAlloc;
200     bool MadeChange;
201     int FnNum = -1;
202     std::function<bool(const MachineFunction &)> PredicateFtor;
203
204   public:
205     static char ID;
206
207     IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
208         : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
209       initializeIfConverterPass(*PassRegistry::getPassRegistry());
210     }
211
212     void getAnalysisUsage(AnalysisUsage &AU) const override {
213       AU.addRequired<MachineBlockFrequencyInfo>();
214       AU.addRequired<MachineBranchProbabilityInfo>();
215       MachineFunctionPass::getAnalysisUsage(AU);
216     }
217
218     bool runOnMachineFunction(MachineFunction &MF) override;
219
220     MachineFunctionProperties getRequiredProperties() const override {
221       return MachineFunctionProperties().set(
222           MachineFunctionProperties::Property::NoVRegs);
223     }
224
225   private:
226     bool reverseBranchCondition(BBInfo &BBI) const;
227     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228                      BranchProbability Prediction) const;
229     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230                        bool FalseBranch, unsigned &Dups,
231                        BranchProbability Prediction) const;
232     bool CountDuplicatedInstructions(
233         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235         unsigned &Dups1, unsigned &Dups2,
236         MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237         bool SkipUnconditionalBranches) const;
238     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239                       unsigned &Dups1, unsigned &Dups2,
240                       BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241     bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242                             unsigned &Dups1, unsigned &Dups2,
243                             BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244     void AnalyzeBranches(BBInfo &BBI);
245     void ScanInstructions(BBInfo &BBI,
246                           MachineBasicBlock::iterator &Begin,
247                           MachineBasicBlock::iterator &End,
248                           bool BranchUnpredicable = false) const;
249     bool RescanInstructions(
250         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252         BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253     void AnalyzeBlock(MachineBasicBlock &MBB,
254                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
256                              bool isTriangle = false, bool RevBranch = false,
257                              bool hasCommonTail = false);
258     void AnalyzeBlocks(MachineFunction &MF,
259                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260     void InvalidatePreds(MachineBasicBlock &MBB);
261     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263     bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264                                 unsigned NumDups1, unsigned NumDups2,
265                                 bool TClobbersPred, bool FClobbersPred,
266                                 bool RemoveBranch, bool MergeAddEdges);
267     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268                           unsigned NumDups1, unsigned NumDups2,
269                           bool TClobbers, bool FClobbers);
270     bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271                               unsigned NumDups1, unsigned NumDups2,
272                               bool TClobbers, bool FClobbers);
273     void PredicateBlock(BBInfo &BBI,
274                         MachineBasicBlock::iterator E,
275                         SmallVectorImpl<MachineOperand> &Cond,
276                         SmallSet<unsigned, 4> *LaterRedefs = nullptr);
277     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278                                SmallVectorImpl<MachineOperand> &Cond,
279                                bool IgnoreBr = false);
280     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281
282     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283                             unsigned Cycle, unsigned Extra,
284                             BranchProbability Prediction) const {
285       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286                                                    Prediction);
287     }
288
289     bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
290                             unsigned TCycle, unsigned TExtra,
291                             MachineBasicBlock &FBB,
292                             unsigned FCycle, unsigned FExtra,
293                             BranchProbability Prediction) const {
294       return TCycle > 0 && FCycle > 0 &&
295         TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
296                                  Prediction);
297     }
298
299     /// Returns true if Block ends without a terminator.
300     bool blockAlwaysFallThrough(BBInfo &BBI) const {
301       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
302     }
303
304     /// Used to sort if-conversion candidates.
305     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
306                               const std::unique_ptr<IfcvtToken> &C2) {
307       int Incr1 = (C1->Kind == ICDiamond)
308         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
309       int Incr2 = (C2->Kind == ICDiamond)
310         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
311       if (Incr1 > Incr2)
312         return true;
313       else if (Incr1 == Incr2) {
314         // Favors subsumption.
315         if (!C1->NeedSubsumption && C2->NeedSubsumption)
316           return true;
317         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
318           // Favors diamond over triangle, etc.
319           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
320             return true;
321           else if (C1->Kind == C2->Kind)
322             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
323         }
324       }
325       return false;
326     }
327   };
328
329 } // end anonymous namespace
330
331 char IfConverter::ID = 0;
332
333 char &llvm::IfConverterID = IfConverter::ID;
334
335 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
336 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
337 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
338
339 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
340   if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
341     return false;
342
343   const TargetSubtargetInfo &ST = MF.getSubtarget();
344   TLI = ST.getTargetLowering();
345   TII = ST.getInstrInfo();
346   TRI = ST.getRegisterInfo();
347   BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
348   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
349   MRI = &MF.getRegInfo();
350   SchedModel.init(&ST);
351
352   if (!TII) return false;
353
354   PreRegAlloc = MRI->isSSA();
355
356   bool BFChange = false;
357   if (!PreRegAlloc) {
358     // Tail merge tend to expose more if-conversion opportunities.
359     BranchFolder BF(true, false, MBFI, *MBPI);
360     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
361                                    getAnalysisIfAvailable<MachineModuleInfo>());
362   }
363
364   LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
365                     << MF.getName() << "\'");
366
367   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
368     LLVM_DEBUG(dbgs() << " skipped\n");
369     return false;
370   }
371   LLVM_DEBUG(dbgs() << "\n");
372
373   MF.RenumberBlocks();
374   BBAnalysis.resize(MF.getNumBlockIDs());
375
376   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
377   MadeChange = false;
378   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
379     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
380   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
381     // Do an initial analysis for each basic block and find all the potential
382     // candidates to perform if-conversion.
383     bool Change = false;
384     AnalyzeBlocks(MF, Tokens);
385     while (!Tokens.empty()) {
386       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
387       Tokens.pop_back();
388       BBInfo &BBI = Token->BBI;
389       IfcvtKind Kind = Token->Kind;
390       unsigned NumDups = Token->NumDups;
391       unsigned NumDups2 = Token->NumDups2;
392
393       // If the block has been evicted out of the queue or it has already been
394       // marked dead (due to it being predicated), then skip it.
395       if (BBI.IsDone)
396         BBI.IsEnqueued = false;
397       if (!BBI.IsEnqueued)
398         continue;
399
400       BBI.IsEnqueued = false;
401
402       bool RetVal = false;
403       switch (Kind) {
404       default: llvm_unreachable("Unexpected!");
405       case ICSimple:
406       case ICSimpleFalse: {
407         bool isFalse = Kind == ICSimpleFalse;
408         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
409         LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
410                           << (Kind == ICSimpleFalse ? " false" : "")
411                           << "): " << printMBBReference(*BBI.BB) << " ("
412                           << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
413                                                       : BBI.TrueBB->getNumber())
414                           << ") ");
415         RetVal = IfConvertSimple(BBI, Kind);
416         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
417         if (RetVal) {
418           if (isFalse) ++NumSimpleFalse;
419           else         ++NumSimple;
420         }
421        break;
422       }
423       case ICTriangle:
424       case ICTriangleRev:
425       case ICTriangleFalse:
426       case ICTriangleFRev: {
427         bool isFalse = Kind == ICTriangleFalse;
428         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
429         if (DisableTriangle && !isFalse && !isRev) break;
430         if (DisableTriangleR && !isFalse && isRev) break;
431         if (DisableTriangleF && isFalse && !isRev) break;
432         if (DisableTriangleFR && isFalse && isRev) break;
433         LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
434         if (isFalse)
435           LLVM_DEBUG(dbgs() << " false");
436         if (isRev)
437           LLVM_DEBUG(dbgs() << " rev");
438         LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
439                           << " (T:" << BBI.TrueBB->getNumber()
440                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
441         RetVal = IfConvertTriangle(BBI, Kind);
442         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
443         if (RetVal) {
444           if (isFalse) {
445             if (isRev) ++NumTriangleFRev;
446             else       ++NumTriangleFalse;
447           } else {
448             if (isRev) ++NumTriangleRev;
449             else       ++NumTriangle;
450           }
451         }
452         break;
453       }
454       case ICDiamond:
455         if (DisableDiamond) break;
456         LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
457                           << " (T:" << BBI.TrueBB->getNumber()
458                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
459         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
460                                   Token->TClobbersPred,
461                                   Token->FClobbersPred);
462         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
463         if (RetVal) ++NumDiamonds;
464         break;
465       case ICForkedDiamond:
466         if (DisableForkedDiamond) break;
467         LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
468                           << printMBBReference(*BBI.BB)
469                           << " (T:" << BBI.TrueBB->getNumber()
470                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
471         RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
472                                       Token->TClobbersPred,
473                                       Token->FClobbersPred);
474         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
475         if (RetVal) ++NumForkedDiamonds;
476         break;
477       }
478
479       if (RetVal && MRI->tracksLiveness())
480         recomputeLivenessFlags(*BBI.BB);
481
482       Change |= RetVal;
483
484       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
485         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
486       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
487         break;
488     }
489
490     if (!Change)
491       break;
492     MadeChange |= Change;
493   }
494
495   Tokens.clear();
496   BBAnalysis.clear();
497
498   if (MadeChange && IfCvtBranchFold) {
499     BranchFolder BF(false, false, MBFI, *MBPI);
500     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
501                         getAnalysisIfAvailable<MachineModuleInfo>());
502   }
503
504   MadeChange |= BFChange;
505   return MadeChange;
506 }
507
508 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
509 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
510                                          MachineBasicBlock *TrueBB) {
511   for (MachineBasicBlock *SuccBB : BB->successors()) {
512     if (SuccBB != TrueBB)
513       return SuccBB;
514   }
515   return nullptr;
516 }
517
518 /// Reverse the condition of the end of the block branch. Swap block's 'true'
519 /// and 'false' successors.
520 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
521   DebugLoc dl;  // FIXME: this is nowhere
522   if (!TII->reverseBranchCondition(BBI.BrCond)) {
523     TII->removeBranch(*BBI.BB);
524     TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
525     std::swap(BBI.TrueBB, BBI.FalseBB);
526     return true;
527   }
528   return false;
529 }
530
531 /// Returns the next block in the function blocks ordering. If it is the end,
532 /// returns NULL.
533 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
534   MachineFunction::iterator I = MBB.getIterator();
535   MachineFunction::iterator E = MBB.getParent()->end();
536   if (++I == E)
537     return nullptr;
538   return &*I;
539 }
540
541 /// Returns true if the 'true' block (along with its predecessor) forms a valid
542 /// simple shape for ifcvt. It also returns the number of instructions that the
543 /// ifcvt would need to duplicate if performed in Dups.
544 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
545                               BranchProbability Prediction) const {
546   Dups = 0;
547   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
548     return false;
549
550   if (TrueBBI.IsBrAnalyzable)
551     return false;
552
553   if (TrueBBI.BB->pred_size() > 1) {
554     if (TrueBBI.CannotBeCopied ||
555         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
556                                         Prediction))
557       return false;
558     Dups = TrueBBI.NonPredSize;
559   }
560
561   return true;
562 }
563
564 /// Returns true if the 'true' and 'false' blocks (along with their common
565 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
566 /// true, it checks if 'true' block's false branch branches to the 'false' block
567 /// rather than the other way around. It also returns the number of instructions
568 /// that the ifcvt would need to duplicate if performed in 'Dups'.
569 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
570                                 bool FalseBranch, unsigned &Dups,
571                                 BranchProbability Prediction) const {
572   Dups = 0;
573   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
574     return false;
575
576   if (TrueBBI.BB->pred_size() > 1) {
577     if (TrueBBI.CannotBeCopied)
578       return false;
579
580     unsigned Size = TrueBBI.NonPredSize;
581     if (TrueBBI.IsBrAnalyzable) {
582       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
583         // Ends with an unconditional branch. It will be removed.
584         --Size;
585       else {
586         MachineBasicBlock *FExit = FalseBranch
587           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
588         if (FExit)
589           // Require a conditional branch
590           ++Size;
591       }
592     }
593     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
594       return false;
595     Dups = Size;
596   }
597
598   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
599   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
600     MachineFunction::iterator I = TrueBBI.BB->getIterator();
601     if (++I == TrueBBI.BB->getParent()->end())
602       return false;
603     TExit = &*I;
604   }
605   return TExit && TExit == FalseBBI.BB;
606 }
607
608 /// Count duplicated instructions and move the iterators to show where they
609 /// are.
610 /// @param TIB True Iterator Begin
611 /// @param FIB False Iterator Begin
612 /// These two iterators initially point to the first instruction of the two
613 /// blocks, and finally point to the first non-shared instruction.
614 /// @param TIE True Iterator End
615 /// @param FIE False Iterator End
616 /// These two iterators initially point to End() for the two blocks() and
617 /// finally point to the first shared instruction in the tail.
618 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
619 /// two blocks.
620 /// @param Dups1 count of duplicated instructions at the beginning of the 2
621 /// blocks.
622 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
623 /// @param SkipUnconditionalBranches if true, Don't make sure that
624 /// unconditional branches at the end of the blocks are the same. True is
625 /// passed when the blocks are analyzable to allow for fallthrough to be
626 /// handled.
627 /// @return false if the shared portion prevents if conversion.
628 bool IfConverter::CountDuplicatedInstructions(
629     MachineBasicBlock::iterator &TIB,
630     MachineBasicBlock::iterator &FIB,
631     MachineBasicBlock::iterator &TIE,
632     MachineBasicBlock::iterator &FIE,
633     unsigned &Dups1, unsigned &Dups2,
634     MachineBasicBlock &TBB, MachineBasicBlock &FBB,
635     bool SkipUnconditionalBranches) const {
636   while (TIB != TIE && FIB != FIE) {
637     // Skip dbg_value instructions. These do not count.
638     TIB = skipDebugInstructionsForward(TIB, TIE);
639     FIB = skipDebugInstructionsForward(FIB, FIE);
640     if (TIB == TIE || FIB == FIE)
641       break;
642     if (!TIB->isIdenticalTo(*FIB))
643       break;
644     // A pred-clobbering instruction in the shared portion prevents
645     // if-conversion.
646     std::vector<MachineOperand> PredDefs;
647     if (TII->DefinesPredicate(*TIB, PredDefs))
648       return false;
649     // If we get all the way to the branch instructions, don't count them.
650     if (!TIB->isBranch())
651       ++Dups1;
652     ++TIB;
653     ++FIB;
654   }
655
656   // Check for already containing all of the block.
657   if (TIB == TIE || FIB == FIE)
658     return true;
659   // Now, in preparation for counting duplicate instructions at the ends of the
660   // blocks, switch to reverse_iterators. Note that getReverse() returns an
661   // iterator that points to the same instruction, unlike std::reverse_iterator.
662   // We have to do our own shifting so that we get the same range.
663   MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
664   MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
665   const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
666   const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
667
668   if (!TBB.succ_empty() || !FBB.succ_empty()) {
669     if (SkipUnconditionalBranches) {
670       while (RTIE != RTIB && RTIE->isUnconditionalBranch())
671         ++RTIE;
672       while (RFIE != RFIB && RFIE->isUnconditionalBranch())
673         ++RFIE;
674     }
675   }
676
677   // Count duplicate instructions at the ends of the blocks.
678   while (RTIE != RTIB && RFIE != RFIB) {
679     // Skip dbg_value instructions. These do not count.
680     // Note that these are reverse iterators going forward.
681     RTIE = skipDebugInstructionsForward(RTIE, RTIB);
682     RFIE = skipDebugInstructionsForward(RFIE, RFIB);
683     if (RTIE == RTIB || RFIE == RFIB)
684       break;
685     if (!RTIE->isIdenticalTo(*RFIE))
686       break;
687     // We have to verify that any branch instructions are the same, and then we
688     // don't count them toward the # of duplicate instructions.
689     if (!RTIE->isBranch())
690       ++Dups2;
691     ++RTIE;
692     ++RFIE;
693   }
694   TIE = std::next(RTIE.getReverse());
695   FIE = std::next(RFIE.getReverse());
696   return true;
697 }
698
699 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
700 /// @param TIB - True Iterator Begin, points to first non-shared instruction
701 /// @param FIB - False Iterator Begin, points to first non-shared instruction
702 /// @param TIE - True Iterator End, points past last non-shared instruction
703 /// @param FIE - False Iterator End, points past last non-shared instruction
704 /// @param TrueBBI  - BBInfo to update for the true block.
705 /// @param FalseBBI - BBInfo to update for the false block.
706 /// @returns - false if either block cannot be predicated or if both blocks end
707 ///   with a predicate-clobbering instruction.
708 bool IfConverter::RescanInstructions(
709     MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
710     MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
711     BBInfo &TrueBBI, BBInfo &FalseBBI) const {
712   bool BranchUnpredicable = true;
713   TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
714   ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
715   if (TrueBBI.IsUnpredicable)
716     return false;
717   ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
718   if (FalseBBI.IsUnpredicable)
719     return false;
720   if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
721     return false;
722   return true;
723 }
724
725 #ifndef NDEBUG
726 static void verifySameBranchInstructions(
727     MachineBasicBlock *MBB1,
728     MachineBasicBlock *MBB2) {
729   const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
730   const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
731   MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
732   MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
733   while (E1 != B1 && E2 != B2) {
734     skipDebugInstructionsForward(E1, B1);
735     skipDebugInstructionsForward(E2, B2);
736     if (E1 == B1 && E2 == B2)
737       break;
738
739     if (E1 == B1) {
740       assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
741       break;
742     }
743     if (E2 == B2) {
744       assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
745       break;
746     }
747
748     if (E1->isBranch() || E2->isBranch())
749       assert(E1->isIdenticalTo(*E2) &&
750              "Branch mis-match, branch instructions don't match.");
751     else
752       break;
753     ++E1;
754     ++E2;
755   }
756 }
757 #endif
758
759 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
760 /// with their common predecessor) form a diamond if a common tail block is
761 /// extracted.
762 /// While not strictly a diamond, this pattern would form a diamond if
763 /// tail-merging had merged the shared tails.
764 ///           EBB
765 ///         _/   \_
766 ///         |     |
767 ///        TBB   FBB
768 ///        /  \ /   \
769 ///  FalseBB TrueBB FalseBB
770 /// Currently only handles analyzable branches.
771 /// Specifically excludes actual diamonds to avoid overlap.
772 bool IfConverter::ValidForkedDiamond(
773     BBInfo &TrueBBI, BBInfo &FalseBBI,
774     unsigned &Dups1, unsigned &Dups2,
775     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
776   Dups1 = Dups2 = 0;
777   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
778       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
779     return false;
780
781   if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
782     return false;
783   // Don't IfConvert blocks that can't be folded into their predecessor.
784   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
785     return false;
786
787   // This function is specifically looking for conditional tails, as
788   // unconditional tails are already handled by the standard diamond case.
789   if (TrueBBI.BrCond.size() == 0 ||
790       FalseBBI.BrCond.size() == 0)
791     return false;
792
793   MachineBasicBlock *TT = TrueBBI.TrueBB;
794   MachineBasicBlock *TF = TrueBBI.FalseBB;
795   MachineBasicBlock *FT = FalseBBI.TrueBB;
796   MachineBasicBlock *FF = FalseBBI.FalseBB;
797
798   if (!TT)
799     TT = getNextBlock(*TrueBBI.BB);
800   if (!TF)
801     TF = getNextBlock(*TrueBBI.BB);
802   if (!FT)
803     FT = getNextBlock(*FalseBBI.BB);
804   if (!FF)
805     FF = getNextBlock(*FalseBBI.BB);
806
807   if (!TT || !TF)
808     return false;
809
810   // Check successors. If they don't match, bail.
811   if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
812     return false;
813
814   bool FalseReversed = false;
815   if (TF == FT && TT == FF) {
816     // If the branches are opposing, but we can't reverse, don't do it.
817     if (!FalseBBI.IsBrReversible)
818       return false;
819     FalseReversed = true;
820     reverseBranchCondition(FalseBBI);
821   }
822   auto UnReverseOnExit = make_scope_exit([&]() {
823     if (FalseReversed)
824       reverseBranchCondition(FalseBBI);
825   });
826
827   // Count duplicate instructions at the beginning of the true and false blocks.
828   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
829   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
830   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
831   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
832   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
833                                   *TrueBBI.BB, *FalseBBI.BB,
834                                   /* SkipUnconditionalBranches */ true))
835     return false;
836
837   TrueBBICalc.BB = TrueBBI.BB;
838   FalseBBICalc.BB = FalseBBI.BB;
839   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
840     return false;
841
842   // The size is used to decide whether to if-convert, and the shared portions
843   // are subtracted off. Because of the subtraction, we just use the size that
844   // was calculated by the original ScanInstructions, as it is correct.
845   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
846   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
847   return true;
848 }
849
850 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
851 /// with their common predecessor) forms a valid diamond shape for ifcvt.
852 bool IfConverter::ValidDiamond(
853     BBInfo &TrueBBI, BBInfo &FalseBBI,
854     unsigned &Dups1, unsigned &Dups2,
855     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
856   Dups1 = Dups2 = 0;
857   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
858       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
859     return false;
860
861   MachineBasicBlock *TT = TrueBBI.TrueBB;
862   MachineBasicBlock *FT = FalseBBI.TrueBB;
863
864   if (!TT && blockAlwaysFallThrough(TrueBBI))
865     TT = getNextBlock(*TrueBBI.BB);
866   if (!FT && blockAlwaysFallThrough(FalseBBI))
867     FT = getNextBlock(*FalseBBI.BB);
868   if (TT != FT)
869     return false;
870   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
871     return false;
872   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
873     return false;
874
875   // FIXME: Allow true block to have an early exit?
876   if (TrueBBI.FalseBB || FalseBBI.FalseBB)
877     return false;
878
879   // Count duplicate instructions at the beginning and end of the true and
880   // false blocks.
881   // Skip unconditional branches only if we are considering an analyzable
882   // diamond. Otherwise the branches must be the same.
883   bool SkipUnconditionalBranches =
884       TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
885   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
886   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
887   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
888   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
889   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
890                                   *TrueBBI.BB, *FalseBBI.BB,
891                                   SkipUnconditionalBranches))
892     return false;
893
894   TrueBBICalc.BB = TrueBBI.BB;
895   FalseBBICalc.BB = FalseBBI.BB;
896   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
897     return false;
898   // The size is used to decide whether to if-convert, and the shared portions
899   // are subtracted off. Because of the subtraction, we just use the size that
900   // was calculated by the original ScanInstructions, as it is correct.
901   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
902   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
903   return true;
904 }
905
906 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
907 /// the block is predicable.
908 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
909   if (BBI.IsDone)
910     return;
911
912   BBI.TrueBB = BBI.FalseBB = nullptr;
913   BBI.BrCond.clear();
914   BBI.IsBrAnalyzable =
915       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
916   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
917   BBI.IsBrReversible = (RevCond.size() == 0) ||
918       !TII->reverseBranchCondition(RevCond);
919   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
920
921   if (BBI.BrCond.size()) {
922     // No false branch. This BB must end with a conditional branch and a
923     // fallthrough.
924     if (!BBI.FalseBB)
925       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
926     if (!BBI.FalseBB) {
927       // Malformed bcc? True and false blocks are the same?
928       BBI.IsUnpredicable = true;
929     }
930   }
931 }
932
933 /// ScanInstructions - Scan all the instructions in the block to determine if
934 /// the block is predicable. In most cases, that means all the instructions
935 /// in the block are isPredicable(). Also checks if the block contains any
936 /// instruction which can clobber a predicate (e.g. condition code register).
937 /// If so, the block is not predicable unless it's the last instruction.
938 void IfConverter::ScanInstructions(BBInfo &BBI,
939                                    MachineBasicBlock::iterator &Begin,
940                                    MachineBasicBlock::iterator &End,
941                                    bool BranchUnpredicable) const {
942   if (BBI.IsDone || BBI.IsUnpredicable)
943     return;
944
945   bool AlreadyPredicated = !BBI.Predicate.empty();
946
947   BBI.NonPredSize = 0;
948   BBI.ExtraCost = 0;
949   BBI.ExtraCost2 = 0;
950   BBI.ClobbersPred = false;
951   for (MachineInstr &MI : make_range(Begin, End)) {
952     if (MI.isDebugInstr())
953       continue;
954
955     // It's unsafe to duplicate convergent instructions in this context, so set
956     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
957     // following CFG, which is subject to our "simple" transformation.
958     //
959     //    BB0     // if (c1) goto BB1; else goto BB2;
960     //   /   \
961     //  BB1   |
962     //   |   BB2  // if (c2) goto TBB; else goto FBB;
963     //   |   / |
964     //   |  /  |
965     //   TBB   |
966     //    |    |
967     //    |   FBB
968     //    |
969     //    exit
970     //
971     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
972     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
973     // TBB contains a convergent instruction.  This is safe iff doing so does
974     // not add a control-flow dependency to the convergent instruction -- i.e.,
975     // it's safe iff the set of control flows that leads us to the convergent
976     // instruction does not get smaller after the transformation.
977     //
978     // Originally we executed TBB if c1 || c2.  After the transformation, there
979     // are two copies of TBB's instructions.  We get to the first if c1, and we
980     // get to the second if !c1 && c2.
981     //
982     // There are clearly fewer ways to satisfy the condition "c1" than
983     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
984     // our convergent instruction, the transformation is unsafe.
985     if (MI.isNotDuplicable() || MI.isConvergent())
986       BBI.CannotBeCopied = true;
987
988     bool isPredicated = TII->isPredicated(MI);
989     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
990
991     if (BranchUnpredicable && MI.isBranch()) {
992       BBI.IsUnpredicable = true;
993       return;
994     }
995
996     // A conditional branch is not predicable, but it may be eliminated.
997     if (isCondBr)
998       continue;
999
1000     if (!isPredicated) {
1001       BBI.NonPredSize++;
1002       unsigned ExtraPredCost = TII->getPredicationCost(MI);
1003       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1004       if (NumCycles > 1)
1005         BBI.ExtraCost += NumCycles-1;
1006       BBI.ExtraCost2 += ExtraPredCost;
1007     } else if (!AlreadyPredicated) {
1008       // FIXME: This instruction is already predicated before the
1009       // if-conversion pass. It's probably something like a conditional move.
1010       // Mark this block unpredicable for now.
1011       BBI.IsUnpredicable = true;
1012       return;
1013     }
1014
1015     if (BBI.ClobbersPred && !isPredicated) {
1016       // Predicate modification instruction should end the block (except for
1017       // already predicated instructions and end of block branches).
1018       // Predicate may have been modified, the subsequent (currently)
1019       // unpredicated instructions cannot be correctly predicated.
1020       BBI.IsUnpredicable = true;
1021       return;
1022     }
1023
1024     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1025     // still potentially predicable.
1026     std::vector<MachineOperand> PredDefs;
1027     if (TII->DefinesPredicate(MI, PredDefs))
1028       BBI.ClobbersPred = true;
1029
1030     if (!TII->isPredicable(MI)) {
1031       BBI.IsUnpredicable = true;
1032       return;
1033     }
1034   }
1035 }
1036
1037 /// Determine if the block is a suitable candidate to be predicated by the
1038 /// specified predicate.
1039 /// @param BBI BBInfo for the block to check
1040 /// @param Pred Predicate array for the branch that leads to BBI
1041 /// @param isTriangle true if the Analysis is for a triangle
1042 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1043 ///        case
1044 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1045 ///        contains any instruction that would make the block unpredicable.
1046 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1047                                       SmallVectorImpl<MachineOperand> &Pred,
1048                                       bool isTriangle, bool RevBranch,
1049                                       bool hasCommonTail) {
1050   // If the block is dead or unpredicable, then it cannot be predicated.
1051   // Two blocks may share a common unpredicable tail, but this doesn't prevent
1052   // them from being if-converted. The non-shared portion is assumed to have
1053   // been checked
1054   if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1055     return false;
1056
1057   // If it is already predicated but we couldn't analyze its terminator, the
1058   // latter might fallthrough, but we can't determine where to.
1059   // Conservatively avoid if-converting again.
1060   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1061     return false;
1062
1063   // If it is already predicated, check if the new predicate subsumes
1064   // its predicate.
1065   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1066     return false;
1067
1068   if (!hasCommonTail && BBI.BrCond.size()) {
1069     if (!isTriangle)
1070       return false;
1071
1072     // Test predicate subsumption.
1073     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1074     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1075     if (RevBranch) {
1076       if (TII->reverseBranchCondition(Cond))
1077         return false;
1078     }
1079     if (TII->reverseBranchCondition(RevPred) ||
1080         !TII->SubsumesPredicate(Cond, RevPred))
1081       return false;
1082   }
1083
1084   return true;
1085 }
1086
1087 /// Analyze the structure of the sub-CFG starting from the specified block.
1088 /// Record its successors and whether it looks like an if-conversion candidate.
1089 void IfConverter::AnalyzeBlock(
1090     MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1091   struct BBState {
1092     BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1093     MachineBasicBlock *MBB;
1094
1095     /// This flag is true if MBB's successors have been analyzed.
1096     bool SuccsAnalyzed;
1097   };
1098
1099   // Push MBB to the stack.
1100   SmallVector<BBState, 16> BBStack(1, MBB);
1101
1102   while (!BBStack.empty()) {
1103     BBState &State = BBStack.back();
1104     MachineBasicBlock *BB = State.MBB;
1105     BBInfo &BBI = BBAnalysis[BB->getNumber()];
1106
1107     if (!State.SuccsAnalyzed) {
1108       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1109         BBStack.pop_back();
1110         continue;
1111       }
1112
1113       BBI.BB = BB;
1114       BBI.IsBeingAnalyzed = true;
1115
1116       AnalyzeBranches(BBI);
1117       MachineBasicBlock::iterator Begin = BBI.BB->begin();
1118       MachineBasicBlock::iterator End = BBI.BB->end();
1119       ScanInstructions(BBI, Begin, End);
1120
1121       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1122       // not considered for ifcvt anymore.
1123       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1124         BBI.IsBeingAnalyzed = false;
1125         BBI.IsAnalyzed = true;
1126         BBStack.pop_back();
1127         continue;
1128       }
1129
1130       // Do not ifcvt if either path is a back edge to the entry block.
1131       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1132         BBI.IsBeingAnalyzed = false;
1133         BBI.IsAnalyzed = true;
1134         BBStack.pop_back();
1135         continue;
1136       }
1137
1138       // Do not ifcvt if true and false fallthrough blocks are the same.
1139       if (!BBI.FalseBB) {
1140         BBI.IsBeingAnalyzed = false;
1141         BBI.IsAnalyzed = true;
1142         BBStack.pop_back();
1143         continue;
1144       }
1145
1146       // Push the False and True blocks to the stack.
1147       State.SuccsAnalyzed = true;
1148       BBStack.push_back(*BBI.FalseBB);
1149       BBStack.push_back(*BBI.TrueBB);
1150       continue;
1151     }
1152
1153     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1154     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1155
1156     if (TrueBBI.IsDone && FalseBBI.IsDone) {
1157       BBI.IsBeingAnalyzed = false;
1158       BBI.IsAnalyzed = true;
1159       BBStack.pop_back();
1160       continue;
1161     }
1162
1163     SmallVector<MachineOperand, 4>
1164         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1165     bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1166
1167     unsigned Dups = 0;
1168     unsigned Dups2 = 0;
1169     bool TNeedSub = !TrueBBI.Predicate.empty();
1170     bool FNeedSub = !FalseBBI.Predicate.empty();
1171     bool Enqueued = false;
1172
1173     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1174
1175     if (CanRevCond) {
1176       BBInfo TrueBBICalc, FalseBBICalc;
1177       auto feasibleDiamond = [&]() {
1178         bool MeetsSize = MeetIfcvtSizeLimit(
1179             *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1180                           TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1181             *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1182                            FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1183             Prediction);
1184         bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1185                                                 /* IsTriangle */ false, /* RevCond */ false,
1186                                                 /* hasCommonTail */ true);
1187         bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1188                                                  /* IsTriangle */ false, /* RevCond */ false,
1189                                                  /* hasCommonTail */ true);
1190         return MeetsSize && TrueFeasible && FalseFeasible;
1191       };
1192
1193       if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1194                        TrueBBICalc, FalseBBICalc)) {
1195         if (feasibleDiamond()) {
1196           // Diamond:
1197           //   EBB
1198           //   / \_
1199           //  |   |
1200           // TBB FBB
1201           //   \ /
1202           //  TailBB
1203           // Note TailBB can be empty.
1204           Tokens.push_back(llvm::make_unique<IfcvtToken>(
1205               BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1206               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1207           Enqueued = true;
1208         }
1209       } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1210                                     TrueBBICalc, FalseBBICalc)) {
1211         if (feasibleDiamond()) {
1212           // ForkedDiamond:
1213           // if TBB and FBB have a common tail that includes their conditional
1214           // branch instructions, then we can If Convert this pattern.
1215           //          EBB
1216           //         _/ \_
1217           //         |   |
1218           //        TBB  FBB
1219           //        / \ /   \
1220           //  FalseBB TrueBB FalseBB
1221           //
1222           Tokens.push_back(llvm::make_unique<IfcvtToken>(
1223               BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1224               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1225           Enqueued = true;
1226         }
1227       }
1228     }
1229
1230     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1231         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1232                            TrueBBI.ExtraCost2, Prediction) &&
1233         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1234       // Triangle:
1235       //   EBB
1236       //   | \_
1237       //   |  |
1238       //   | TBB
1239       //   |  /
1240       //   FBB
1241       Tokens.push_back(
1242           llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1243       Enqueued = true;
1244     }
1245
1246     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1247         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1248                            TrueBBI.ExtraCost2, Prediction) &&
1249         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1250       Tokens.push_back(
1251           llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1252       Enqueued = true;
1253     }
1254
1255     if (ValidSimple(TrueBBI, Dups, Prediction) &&
1256         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1257                            TrueBBI.ExtraCost2, Prediction) &&
1258         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1259       // Simple (split, no rejoin):
1260       //   EBB
1261       //   | \_
1262       //   |  |
1263       //   | TBB---> exit
1264       //   |
1265       //   FBB
1266       Tokens.push_back(
1267           llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1268       Enqueued = true;
1269     }
1270
1271     if (CanRevCond) {
1272       // Try the other path...
1273       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1274                         Prediction.getCompl()) &&
1275           MeetIfcvtSizeLimit(*FalseBBI.BB,
1276                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1277                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1278           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1279         Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1280                                                        FNeedSub, Dups));
1281         Enqueued = true;
1282       }
1283
1284       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1285                         Prediction.getCompl()) &&
1286           MeetIfcvtSizeLimit(*FalseBBI.BB,
1287                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1288                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1289         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1290         Tokens.push_back(
1291             llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1292         Enqueued = true;
1293       }
1294
1295       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1296           MeetIfcvtSizeLimit(*FalseBBI.BB,
1297                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1298                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1299           FeasibilityAnalysis(FalseBBI, RevCond)) {
1300         Tokens.push_back(
1301             llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1302         Enqueued = true;
1303       }
1304     }
1305
1306     BBI.IsEnqueued = Enqueued;
1307     BBI.IsBeingAnalyzed = false;
1308     BBI.IsAnalyzed = true;
1309     BBStack.pop_back();
1310   }
1311 }
1312
1313 /// Analyze all blocks and find entries for all if-conversion candidates.
1314 void IfConverter::AnalyzeBlocks(
1315     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1316   for (MachineBasicBlock &MBB : MF)
1317     AnalyzeBlock(MBB, Tokens);
1318
1319   // Sort to favor more complex ifcvt scheme.
1320   std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
1321 }
1322
1323 /// Returns true either if ToMBB is the next block after MBB or that all the
1324 /// intervening blocks are empty (given MBB can fall through to its next block).
1325 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1326   MachineFunction::iterator PI = MBB.getIterator();
1327   MachineFunction::iterator I = std::next(PI);
1328   MachineFunction::iterator TI = ToMBB.getIterator();
1329   MachineFunction::iterator E = MBB.getParent()->end();
1330   while (I != TI) {
1331     // Check isSuccessor to avoid case where the next block is empty, but
1332     // it's not a successor.
1333     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1334       return false;
1335     PI = I++;
1336   }
1337   // Finally see if the last I is indeed a successor to PI.
1338   return PI->isSuccessor(&*I);
1339 }
1340
1341 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1342 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1343 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1344   for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1345     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1346     if (PBBI.IsDone || PBBI.BB == &MBB)
1347       continue;
1348     PBBI.IsAnalyzed = false;
1349     PBBI.IsEnqueued = false;
1350   }
1351 }
1352
1353 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1354 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1355                                const TargetInstrInfo *TII) {
1356   DebugLoc dl;  // FIXME: this is nowhere
1357   SmallVector<MachineOperand, 0> NoCond;
1358   TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1359 }
1360
1361 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1362 /// values defined in MI which are also live/used by MI.
1363 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1364   const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1365
1366   // Before stepping forward past MI, remember which regs were live
1367   // before MI. This is needed to set the Undef flag only when reg is
1368   // dead.
1369   SparseSet<unsigned> LiveBeforeMI;
1370   LiveBeforeMI.setUniverse(TRI->getNumRegs());
1371   for (unsigned Reg : Redefs)
1372     LiveBeforeMI.insert(Reg);
1373
1374   SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1375   Redefs.stepForward(MI, Clobbers);
1376
1377   // Now add the implicit uses for each of the clobbered values.
1378   for (auto Clobber : Clobbers) {
1379     // FIXME: Const cast here is nasty, but better than making StepForward
1380     // take a mutable instruction instead of const.
1381     unsigned Reg = Clobber.first;
1382     MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1383     MachineInstr *OpMI = Op.getParent();
1384     MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1385     if (Op.isRegMask()) {
1386       // First handle regmasks.  They clobber any entries in the mask which
1387       // means that we need a def for those registers.
1388       if (LiveBeforeMI.count(Reg))
1389         MIB.addReg(Reg, RegState::Implicit);
1390
1391       // We also need to add an implicit def of this register for the later
1392       // use to read from.
1393       // For the register allocator to have allocated a register clobbered
1394       // by the call which is used later, it must be the case that
1395       // the call doesn't return.
1396       MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1397       continue;
1398     }
1399     if (LiveBeforeMI.count(Reg))
1400       MIB.addReg(Reg, RegState::Implicit);
1401     else {
1402       bool HasLiveSubReg = false;
1403       for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1404         if (!LiveBeforeMI.count(*S))
1405           continue;
1406         HasLiveSubReg = true;
1407         break;
1408       }
1409       if (HasLiveSubReg)
1410         MIB.addReg(Reg, RegState::Implicit);
1411     }
1412   }
1413 }
1414
1415 /// If convert a simple (split, no rejoin) sub-CFG.
1416 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1417   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1418   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1419   BBInfo *CvtBBI = &TrueBBI;
1420   BBInfo *NextBBI = &FalseBBI;
1421
1422   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1423   if (Kind == ICSimpleFalse)
1424     std::swap(CvtBBI, NextBBI);
1425
1426   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1427   MachineBasicBlock &NextMBB = *NextBBI->BB;
1428   if (CvtBBI->IsDone ||
1429       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1430     // Something has changed. It's no longer safe to predicate this block.
1431     BBI.IsAnalyzed = false;
1432     CvtBBI->IsAnalyzed = false;
1433     return false;
1434   }
1435
1436   if (CvtMBB.hasAddressTaken())
1437     // Conservatively abort if-conversion if BB's address is taken.
1438     return false;
1439
1440   if (Kind == ICSimpleFalse)
1441     if (TII->reverseBranchCondition(Cond))
1442       llvm_unreachable("Unable to reverse branch condition!");
1443
1444   Redefs.init(*TRI);
1445
1446   if (MRI->tracksLiveness()) {
1447     // Initialize liveins to the first BB. These are potentiall redefined by
1448     // predicated instructions.
1449     Redefs.addLiveIns(CvtMBB);
1450     Redefs.addLiveIns(NextMBB);
1451   }
1452
1453   // Remove the branches from the entry so we can add the contents of the true
1454   // block to it.
1455   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1456
1457   if (CvtMBB.pred_size() > 1) {
1458     // Copy instructions in the true block, predicate them, and add them to
1459     // the entry block.
1460     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1461
1462     // Keep the CFG updated.
1463     BBI.BB->removeSuccessor(&CvtMBB, true);
1464   } else {
1465     // Predicate the instructions in the true block.
1466     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1467
1468     // Merge converted block into entry block. The BB to Cvt edge is removed
1469     // by MergeBlocks.
1470     MergeBlocks(BBI, *CvtBBI);
1471   }
1472
1473   bool IterIfcvt = true;
1474   if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1475     InsertUncondBranch(*BBI.BB, NextMBB, TII);
1476     BBI.HasFallThrough = false;
1477     // Now ifcvt'd block will look like this:
1478     // BB:
1479     // ...
1480     // t, f = cmp
1481     // if t op
1482     // b BBf
1483     //
1484     // We cannot further ifcvt this block because the unconditional branch
1485     // will have to be predicated on the new condition, that will not be
1486     // available if cmp executes.
1487     IterIfcvt = false;
1488   }
1489
1490   // Update block info. BB can be iteratively if-converted.
1491   if (!IterIfcvt)
1492     BBI.IsDone = true;
1493   InvalidatePreds(*BBI.BB);
1494   CvtBBI->IsDone = true;
1495
1496   // FIXME: Must maintain LiveIns.
1497   return true;
1498 }
1499
1500 /// If convert a triangle sub-CFG.
1501 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1502   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1503   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1504   BBInfo *CvtBBI = &TrueBBI;
1505   BBInfo *NextBBI = &FalseBBI;
1506   DebugLoc dl;  // FIXME: this is nowhere
1507
1508   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1509   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1510     std::swap(CvtBBI, NextBBI);
1511
1512   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1513   MachineBasicBlock &NextMBB = *NextBBI->BB;
1514   if (CvtBBI->IsDone ||
1515       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1516     // Something has changed. It's no longer safe to predicate this block.
1517     BBI.IsAnalyzed = false;
1518     CvtBBI->IsAnalyzed = false;
1519     return false;
1520   }
1521
1522   if (CvtMBB.hasAddressTaken())
1523     // Conservatively abort if-conversion if BB's address is taken.
1524     return false;
1525
1526   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1527     if (TII->reverseBranchCondition(Cond))
1528       llvm_unreachable("Unable to reverse branch condition!");
1529
1530   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1531     if (reverseBranchCondition(*CvtBBI)) {
1532       // BB has been changed, modify its predecessors (except for this
1533       // one) so they don't get ifcvt'ed based on bad intel.
1534       for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1535         if (PBB == BBI.BB)
1536           continue;
1537         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1538         if (PBBI.IsEnqueued) {
1539           PBBI.IsAnalyzed = false;
1540           PBBI.IsEnqueued = false;
1541         }
1542       }
1543     }
1544   }
1545
1546   // Initialize liveins to the first BB. These are potentially redefined by
1547   // predicated instructions.
1548   Redefs.init(*TRI);
1549   if (MRI->tracksLiveness()) {
1550     Redefs.addLiveIns(CvtMBB);
1551     Redefs.addLiveIns(NextMBB);
1552   }
1553
1554   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1555   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1556
1557   if (HasEarlyExit) {
1558     // Get probabilities before modifying CvtMBB and BBI.BB.
1559     CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1560     CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1561     BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1562     BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1563   }
1564
1565   // Remove the branches from the entry so we can add the contents of the true
1566   // block to it.
1567   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1568
1569   if (CvtMBB.pred_size() > 1) {
1570     // Copy instructions in the true block, predicate them, and add them to
1571     // the entry block.
1572     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1573   } else {
1574     // Predicate the 'true' block after removing its branch.
1575     CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1576     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1577
1578     // Now merge the entry of the triangle with the true block.
1579     MergeBlocks(BBI, *CvtBBI, false);
1580   }
1581
1582   // Keep the CFG updated.
1583   BBI.BB->removeSuccessor(&CvtMBB, true);
1584
1585   // If 'true' block has a 'false' successor, add an exit branch to it.
1586   if (HasEarlyExit) {
1587     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1588                                            CvtBBI->BrCond.end());
1589     if (TII->reverseBranchCondition(RevCond))
1590       llvm_unreachable("Unable to reverse branch condition!");
1591
1592     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1593     // NewNext = New_Prob(BBI.BB, NextMBB) =
1594     //   Prob(BBI.BB, NextMBB) +
1595     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1596     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1597     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1598     auto NewTrueBB = getNextBlock(*BBI.BB);
1599     auto NewNext = BBNext + BBCvt * CvtNext;
1600     auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1601     if (NewTrueBBIter != BBI.BB->succ_end())
1602       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1603
1604     auto NewFalse = BBCvt * CvtFalse;
1605     TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1606     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1607   }
1608
1609   // Merge in the 'false' block if the 'false' block has no other
1610   // predecessors. Otherwise, add an unconditional branch to 'false'.
1611   bool FalseBBDead = false;
1612   bool IterIfcvt = true;
1613   bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1614   if (!isFallThrough) {
1615     // Only merge them if the true block does not fallthrough to the false
1616     // block. By not merging them, we make it possible to iteratively
1617     // ifcvt the blocks.
1618     if (!HasEarlyExit &&
1619         NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1620         !NextMBB.hasAddressTaken()) {
1621       MergeBlocks(BBI, *NextBBI);
1622       FalseBBDead = true;
1623     } else {
1624       InsertUncondBranch(*BBI.BB, NextMBB, TII);
1625       BBI.HasFallThrough = false;
1626     }
1627     // Mixed predicated and unpredicated code. This cannot be iteratively
1628     // predicated.
1629     IterIfcvt = false;
1630   }
1631
1632   // Update block info. BB can be iteratively if-converted.
1633   if (!IterIfcvt)
1634     BBI.IsDone = true;
1635   InvalidatePreds(*BBI.BB);
1636   CvtBBI->IsDone = true;
1637   if (FalseBBDead)
1638     NextBBI->IsDone = true;
1639
1640   // FIXME: Must maintain LiveIns.
1641   return true;
1642 }
1643
1644 /// Common code shared between diamond conversions.
1645 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1646 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1647 ///               and FalseBBI
1648 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1649 ///               and \p FalseBBI
1650 /// \p RemoveBranch - Remove the common branch of the two blocks before
1651 ///                   predicating. Only false for unanalyzable fallthrough
1652 ///                   cases. The caller will replace the branch if necessary.
1653 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1654 ///                    unanalyzable fallthrough
1655 bool IfConverter::IfConvertDiamondCommon(
1656     BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1657     unsigned NumDups1, unsigned NumDups2,
1658     bool TClobbersPred, bool FClobbersPred,
1659     bool RemoveBranch, bool MergeAddEdges) {
1660
1661   if (TrueBBI.IsDone || FalseBBI.IsDone ||
1662       TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1663     // Something has changed. It's no longer safe to predicate these blocks.
1664     BBI.IsAnalyzed = false;
1665     TrueBBI.IsAnalyzed = false;
1666     FalseBBI.IsAnalyzed = false;
1667     return false;
1668   }
1669
1670   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1671     // Conservatively abort if-conversion if either BB has its address taken.
1672     return false;
1673
1674   // Put the predicated instructions from the 'true' block before the
1675   // instructions from the 'false' block, unless the true block would clobber
1676   // the predicate, in which case, do the opposite.
1677   BBInfo *BBI1 = &TrueBBI;
1678   BBInfo *BBI2 = &FalseBBI;
1679   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1680   if (TII->reverseBranchCondition(RevCond))
1681     llvm_unreachable("Unable to reverse branch condition!");
1682   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1683   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1684
1685   // Figure out the more profitable ordering.
1686   bool DoSwap = false;
1687   if (TClobbersPred && !FClobbersPred)
1688     DoSwap = true;
1689   else if (!TClobbersPred && !FClobbersPred) {
1690     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1691       DoSwap = true;
1692   } else if (TClobbersPred && FClobbersPred)
1693     llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1694   if (DoSwap) {
1695     std::swap(BBI1, BBI2);
1696     std::swap(Cond1, Cond2);
1697   }
1698
1699   // Remove the conditional branch from entry to the blocks.
1700   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1701
1702   MachineBasicBlock &MBB1 = *BBI1->BB;
1703   MachineBasicBlock &MBB2 = *BBI2->BB;
1704
1705   // Initialize the Redefs:
1706   // - BB2 live-in regs need implicit uses before being redefined by BB1
1707   //   instructions.
1708   // - BB1 live-out regs need implicit uses before being redefined by BB2
1709   //   instructions. We start with BB1 live-ins so we have the live-out regs
1710   //   after tracking the BB1 instructions.
1711   Redefs.init(*TRI);
1712   if (MRI->tracksLiveness()) {
1713     Redefs.addLiveIns(MBB1);
1714     Redefs.addLiveIns(MBB2);
1715   }
1716
1717   // Remove the duplicated instructions at the beginnings of both paths.
1718   // Skip dbg_value instructions.
1719   MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1720   MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1721   BBI1->NonPredSize -= NumDups1;
1722   BBI2->NonPredSize -= NumDups1;
1723
1724   // Skip past the dups on each side separately since there may be
1725   // differing dbg_value entries. NumDups1 can include a "return"
1726   // instruction, if it's not marked as "branch".
1727   for (unsigned i = 0; i < NumDups1; ++DI1) {
1728     if (DI1 == MBB1.end())
1729       break;
1730     if (!DI1->isDebugInstr())
1731       ++i;
1732   }
1733   while (NumDups1 != 0) {
1734     ++DI2;
1735     if (DI2 == MBB2.end())
1736       break;
1737     if (!DI2->isDebugInstr())
1738       --NumDups1;
1739   }
1740
1741   if (MRI->tracksLiveness()) {
1742     for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1743       SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
1744       Redefs.stepForward(MI, Dummy);
1745     }
1746   }
1747
1748   BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1749   MBB2.erase(MBB2.begin(), DI2);
1750
1751   // The branches have been checked to match, so it is safe to remove the
1752   // branch in BB1 and rely on the copy in BB2. The complication is that
1753   // the blocks may end with a return instruction, which may or may not
1754   // be marked as "branch". If it's not, then it could be included in
1755   // "dups1", leaving the blocks potentially empty after moving the common
1756   // duplicates.
1757 #ifndef NDEBUG
1758   // Unanalyzable branches must match exactly. Check that now.
1759   if (!BBI1->IsBrAnalyzable)
1760     verifySameBranchInstructions(&MBB1, &MBB2);
1761 #endif
1762   BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
1763   // Remove duplicated instructions.
1764   DI1 = MBB1.end();
1765   for (unsigned i = 0; i != NumDups2; ) {
1766     // NumDups2 only counted non-dbg_value instructions, so this won't
1767     // run off the head of the list.
1768     assert(DI1 != MBB1.begin());
1769     --DI1;
1770     // skip dbg_value instructions
1771     if (!DI1->isDebugInstr())
1772       ++i;
1773   }
1774   MBB1.erase(DI1, MBB1.end());
1775
1776   DI2 = BBI2->BB->end();
1777   // The branches have been checked to match. Skip over the branch in the false
1778   // block so that we don't try to predicate it.
1779   if (RemoveBranch)
1780     BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1781   else {
1782     // Make DI2 point to the end of the range where the common "tail"
1783     // instructions could be found.
1784     while (DI2 != MBB2.begin()) {
1785       MachineBasicBlock::iterator Prev = std::prev(DI2);
1786       if (!Prev->isBranch() && !Prev->isDebugInstr())
1787         break;
1788       DI2 = Prev;
1789     }
1790   }
1791   while (NumDups2 != 0) {
1792     // NumDups2 only counted non-dbg_value instructions, so this won't
1793     // run off the head of the list.
1794     assert(DI2 != MBB2.begin());
1795     --DI2;
1796     // skip dbg_value instructions
1797     if (!DI2->isDebugInstr())
1798       --NumDups2;
1799   }
1800
1801   // Remember which registers would later be defined by the false block.
1802   // This allows us not to predicate instructions in the true block that would
1803   // later be re-defined. That is, rather than
1804   //   subeq  r0, r1, #1
1805   //   addne  r0, r1, #1
1806   // generate:
1807   //   sub    r0, r1, #1
1808   //   addne  r0, r1, #1
1809   SmallSet<unsigned, 4> RedefsByFalse;
1810   SmallSet<unsigned, 4> ExtUses;
1811   if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1812     for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1813       if (FI.isDebugInstr())
1814         continue;
1815       SmallVector<unsigned, 4> Defs;
1816       for (const MachineOperand &MO : FI.operands()) {
1817         if (!MO.isReg())
1818           continue;
1819         unsigned Reg = MO.getReg();
1820         if (!Reg)
1821           continue;
1822         if (MO.isDef()) {
1823           Defs.push_back(Reg);
1824         } else if (!RedefsByFalse.count(Reg)) {
1825           // These are defined before ctrl flow reach the 'false' instructions.
1826           // They cannot be modified by the 'true' instructions.
1827           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1828                SubRegs.isValid(); ++SubRegs)
1829             ExtUses.insert(*SubRegs);
1830         }
1831       }
1832
1833       for (unsigned Reg : Defs) {
1834         if (!ExtUses.count(Reg)) {
1835           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1836                SubRegs.isValid(); ++SubRegs)
1837             RedefsByFalse.insert(*SubRegs);
1838         }
1839       }
1840     }
1841   }
1842
1843   // Predicate the 'true' block.
1844   PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1845
1846   // After predicating BBI1, if there is a predicated terminator in BBI1 and
1847   // a non-predicated in BBI2, then we don't want to predicate the one from
1848   // BBI2. The reason is that if we merged these blocks, we would end up with
1849   // two predicated terminators in the same block.
1850   // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1851   // predicate them either. They were checked to be identical, and so the
1852   // same branch would happen regardless of which path was taken.
1853   if (!MBB2.empty() && (DI2 == MBB2.end())) {
1854     MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1855     MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1856     bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1857     bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1858     if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1859       --DI2;
1860   }
1861
1862   // Predicate the 'false' block.
1863   PredicateBlock(*BBI2, DI2, *Cond2);
1864
1865   // Merge the true block into the entry of the diamond.
1866   MergeBlocks(BBI, *BBI1, MergeAddEdges);
1867   MergeBlocks(BBI, *BBI2, MergeAddEdges);
1868   return true;
1869 }
1870
1871 /// If convert an almost-diamond sub-CFG where the true
1872 /// and false blocks share a common tail.
1873 bool IfConverter::IfConvertForkedDiamond(
1874     BBInfo &BBI, IfcvtKind Kind,
1875     unsigned NumDups1, unsigned NumDups2,
1876     bool TClobbersPred, bool FClobbersPred) {
1877   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1878   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1879
1880   // Save the debug location for later.
1881   DebugLoc dl;
1882   MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1883   if (TIE != TrueBBI.BB->end())
1884     dl = TIE->getDebugLoc();
1885   // Removing branches from both blocks is safe, because we have already
1886   // determined that both blocks have the same branch instructions. The branch
1887   // will be added back at the end, unpredicated.
1888   if (!IfConvertDiamondCommon(
1889       BBI, TrueBBI, FalseBBI,
1890       NumDups1, NumDups2,
1891       TClobbersPred, FClobbersPred,
1892       /* RemoveBranch */ true, /* MergeAddEdges */ true))
1893     return false;
1894
1895   // Add back the branch.
1896   // Debug location saved above when removing the branch from BBI2
1897   TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1898                     TrueBBI.BrCond, dl);
1899
1900   // Update block info.
1901   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1902   InvalidatePreds(*BBI.BB);
1903
1904   // FIXME: Must maintain LiveIns.
1905   return true;
1906 }
1907
1908 /// If convert a diamond sub-CFG.
1909 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1910                                    unsigned NumDups1, unsigned NumDups2,
1911                                    bool TClobbersPred, bool FClobbersPred) {
1912   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1913   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1914   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1915
1916   // True block must fall through or end with an unanalyzable terminator.
1917   if (!TailBB) {
1918     if (blockAlwaysFallThrough(TrueBBI))
1919       TailBB = FalseBBI.TrueBB;
1920     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1921   }
1922
1923   if (!IfConvertDiamondCommon(
1924       BBI, TrueBBI, FalseBBI,
1925       NumDups1, NumDups2,
1926       TClobbersPred, FClobbersPred,
1927       /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1928       /* MergeAddEdges */ TailBB == nullptr))
1929     return false;
1930
1931   // If the if-converted block falls through or unconditionally branches into
1932   // the tail block, and the tail block does not have other predecessors, then
1933   // fold the tail block in as well. Otherwise, unless it falls through to the
1934   // tail, add a unconditional branch to it.
1935   if (TailBB) {
1936     // We need to remove the edges to the true and false blocks manually since
1937     // we didn't let IfConvertDiamondCommon update the CFG.
1938     BBI.BB->removeSuccessor(TrueBBI.BB);
1939     BBI.BB->removeSuccessor(FalseBBI.BB, true);
1940
1941     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1942     bool CanMergeTail = !TailBBI.HasFallThrough &&
1943       !TailBBI.BB->hasAddressTaken();
1944     // The if-converted block can still have a predicated terminator
1945     // (e.g. a predicated return). If that is the case, we cannot merge
1946     // it with the tail block.
1947     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1948     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1949       CanMergeTail = false;
1950     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1951     // check if there are any other predecessors besides those.
1952     unsigned NumPreds = TailBB->pred_size();
1953     if (NumPreds > 1)
1954       CanMergeTail = false;
1955     else if (NumPreds == 1 && CanMergeTail) {
1956       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1957       if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1958         CanMergeTail = false;
1959     }
1960     if (CanMergeTail) {
1961       MergeBlocks(BBI, TailBBI);
1962       TailBBI.IsDone = true;
1963     } else {
1964       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1965       InsertUncondBranch(*BBI.BB, *TailBB, TII);
1966       BBI.HasFallThrough = false;
1967     }
1968   }
1969
1970   // Update block info.
1971   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1972   InvalidatePreds(*BBI.BB);
1973
1974   // FIXME: Must maintain LiveIns.
1975   return true;
1976 }
1977
1978 static bool MaySpeculate(const MachineInstr &MI,
1979                          SmallSet<unsigned, 4> &LaterRedefs) {
1980   bool SawStore = true;
1981   if (!MI.isSafeToMove(nullptr, SawStore))
1982     return false;
1983
1984   for (const MachineOperand &MO : MI.operands()) {
1985     if (!MO.isReg())
1986       continue;
1987     unsigned Reg = MO.getReg();
1988     if (!Reg)
1989       continue;
1990     if (MO.isDef() && !LaterRedefs.count(Reg))
1991       return false;
1992   }
1993
1994   return true;
1995 }
1996
1997 /// Predicate instructions from the start of the block to the specified end with
1998 /// the specified condition.
1999 void IfConverter::PredicateBlock(BBInfo &BBI,
2000                                  MachineBasicBlock::iterator E,
2001                                  SmallVectorImpl<MachineOperand> &Cond,
2002                                  SmallSet<unsigned, 4> *LaterRedefs) {
2003   bool AnyUnpred = false;
2004   bool MaySpec = LaterRedefs != nullptr;
2005   for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2006     if (I.isDebugInstr() || TII->isPredicated(I))
2007       continue;
2008     // It may be possible not to predicate an instruction if it's the 'true'
2009     // side of a diamond and the 'false' side may re-define the instruction's
2010     // defs.
2011     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2012       AnyUnpred = true;
2013       continue;
2014     }
2015     // If any instruction is predicated, then every instruction after it must
2016     // be predicated.
2017     MaySpec = false;
2018     if (!TII->PredicateInstruction(I, Cond)) {
2019 #ifndef NDEBUG
2020       dbgs() << "Unable to predicate " << I << "!\n";
2021 #endif
2022       llvm_unreachable(nullptr);
2023     }
2024
2025     // If the predicated instruction now redefines a register as the result of
2026     // if-conversion, add an implicit kill.
2027     UpdatePredRedefs(I, Redefs);
2028   }
2029
2030   BBI.Predicate.append(Cond.begin(), Cond.end());
2031
2032   BBI.IsAnalyzed = false;
2033   BBI.NonPredSize = 0;
2034
2035   ++NumIfConvBBs;
2036   if (AnyUnpred)
2037     ++NumUnpred;
2038 }
2039
2040 /// Copy and predicate instructions from source BB to the destination block.
2041 /// Skip end of block branches if IgnoreBr is true.
2042 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2043                                         SmallVectorImpl<MachineOperand> &Cond,
2044                                         bool IgnoreBr) {
2045   MachineFunction &MF = *ToBBI.BB->getParent();
2046
2047   MachineBasicBlock &FromMBB = *FromBBI.BB;
2048   for (MachineInstr &I : FromMBB) {
2049     // Do not copy the end of the block branches.
2050     if (IgnoreBr && I.isBranch())
2051       break;
2052
2053     MachineInstr *MI = MF.CloneMachineInstr(&I);
2054     ToBBI.BB->insert(ToBBI.BB->end(), MI);
2055     ToBBI.NonPredSize++;
2056     unsigned ExtraPredCost = TII->getPredicationCost(I);
2057     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2058     if (NumCycles > 1)
2059       ToBBI.ExtraCost += NumCycles-1;
2060     ToBBI.ExtraCost2 += ExtraPredCost;
2061
2062     if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2063       if (!TII->PredicateInstruction(*MI, Cond)) {
2064 #ifndef NDEBUG
2065         dbgs() << "Unable to predicate " << I << "!\n";
2066 #endif
2067         llvm_unreachable(nullptr);
2068       }
2069     }
2070
2071     // If the predicated instruction now redefines a register as the result of
2072     // if-conversion, add an implicit kill.
2073     UpdatePredRedefs(*MI, Redefs);
2074   }
2075
2076   if (!IgnoreBr) {
2077     std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2078                                            FromMBB.succ_end());
2079     MachineBasicBlock *NBB = getNextBlock(FromMBB);
2080     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2081
2082     for (MachineBasicBlock *Succ : Succs) {
2083       // Fallthrough edge can't be transferred.
2084       if (Succ == FallThrough)
2085         continue;
2086       ToBBI.BB->addSuccessor(Succ);
2087     }
2088   }
2089
2090   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2091   ToBBI.Predicate.append(Cond.begin(), Cond.end());
2092
2093   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2094   ToBBI.IsAnalyzed = false;
2095
2096   ++NumDupBBs;
2097 }
2098
2099 /// Move all instructions from FromBB to the end of ToBB.  This will leave
2100 /// FromBB as an empty block, so remove all of its successor edges except for
2101 /// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
2102 /// being moved, add those successor edges to ToBBI and remove the old edge
2103 /// from ToBBI to FromBBI.
2104 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2105   MachineBasicBlock &FromMBB = *FromBBI.BB;
2106   assert(!FromMBB.hasAddressTaken() &&
2107          "Removing a BB whose address is taken!");
2108
2109   // In case FromMBB contains terminators (e.g. return instruction),
2110   // first move the non-terminator instructions, then the terminators.
2111   MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2112   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2113   ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2114
2115   // If FromBB has non-predicated terminator we should copy it at the end.
2116   if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2117     ToTI = ToBBI.BB->end();
2118   ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2119
2120   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2121   // unknown probabilities into known ones.
2122   // FIXME: This usage is too tricky and in the future we would like to
2123   // eliminate all unknown probabilities in MBB.
2124   if (ToBBI.IsBrAnalyzable)
2125     ToBBI.BB->normalizeSuccProbs();
2126
2127   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2128                                                 FromMBB.succ_end());
2129   MachineBasicBlock *NBB = getNextBlock(FromMBB);
2130   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2131   // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2132   // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2133   auto To2FromProb = BranchProbability::getZero();
2134   if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2135     // Remove the old edge but remember the edge probability so we can calculate
2136     // the correct weights on the new edges being added further down.
2137     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2138     ToBBI.BB->removeSuccessor(&FromMBB);
2139   }
2140
2141   for (MachineBasicBlock *Succ : FromSuccs) {
2142     // Fallthrough edge can't be transferred.
2143     if (Succ == FallThrough)
2144       continue;
2145
2146     auto NewProb = BranchProbability::getZero();
2147     if (AddEdges) {
2148       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2149       // which is a portion of the edge probability from FromMBB to Succ. The
2150       // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2151       // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
2152       NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2153
2154       // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2155       // only happens when if-converting a diamond CFG and FromMBB is the
2156       // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2157       // could just use the probabilities on FromMBB's out-edges when adding
2158       // new successors.
2159       if (!To2FromProb.isZero())
2160         NewProb *= To2FromProb;
2161     }
2162
2163     FromMBB.removeSuccessor(Succ);
2164
2165     if (AddEdges) {
2166       // If the edge from ToBBI.BB to Succ already exists, update the
2167       // probability of this edge by adding NewProb to it. An example is shown
2168       // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2169       // don't have to set C as A's successor as it already is. We only need to
2170       // update the edge probability on A->C. Note that B will not be
2171       // immediately removed from A's successors. It is possible that B->D is
2172       // not removed either if D is a fallthrough of B. Later the edge A->D
2173       // (generated here) and B->D will be combined into one edge. To maintain
2174       // correct edge probability of this combined edge, we need to set the edge
2175       // probability of A->B to zero, which is already done above. The edge
2176       // probability on A->D is calculated by scaling the original probability
2177       // on A->B by the probability of B->D.
2178       //
2179       // Before ifcvt:      After ifcvt (assume B->D is kept):
2180       //
2181       //       A                A
2182       //      /|               /|\
2183       //     / B              / B|
2184       //    | /|             |  ||
2185       //    |/ |             |  |/
2186       //    C  D             C  D
2187       //
2188       if (ToBBI.BB->isSuccessor(Succ))
2189         ToBBI.BB->setSuccProbability(
2190             find(ToBBI.BB->successors(), Succ),
2191             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2192       else
2193         ToBBI.BB->addSuccessor(Succ, NewProb);
2194     }
2195   }
2196
2197   // Move the now empty FromMBB out of the way to the end of the function so
2198   // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2199   MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2200   if (Last != &FromMBB)
2201     FromMBB.moveAfter(Last);
2202
2203   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2204   // we've done above.
2205   if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2206     ToBBI.BB->normalizeSuccProbs();
2207
2208   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2209   FromBBI.Predicate.clear();
2210
2211   ToBBI.NonPredSize += FromBBI.NonPredSize;
2212   ToBBI.ExtraCost += FromBBI.ExtraCost;
2213   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2214   FromBBI.NonPredSize = 0;
2215   FromBBI.ExtraCost = 0;
2216   FromBBI.ExtraCost2 = 0;
2217
2218   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2219   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2220   ToBBI.IsAnalyzed = false;
2221   FromBBI.IsAnalyzed = false;
2222 }
2223
2224 FunctionPass *
2225 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2226   return new IfConverter(std::move(Ftor));
2227 }