]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/IfConversion.cpp
MFV r310115,310184:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / IfConversion.cpp
1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level if-conversion pass, which
11 // tries to convert conditional branches into predicated instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "BranchFolding.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LivePhysRegs.h"
21 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <algorithm>
37 #include <utility>
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ifcvt"
42
43 // Hidden options for help debugging.
44 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
45 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
46 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
47 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
48                                    cl::init(false), cl::Hidden);
49 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
50                                     cl::init(false), cl::Hidden);
51 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
52                                      cl::init(false), cl::Hidden);
53 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
54                                       cl::init(false), cl::Hidden);
55 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
56                                       cl::init(false), cl::Hidden);
57 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
58                                        cl::init(false), cl::Hidden);
59 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
60                                     cl::init(false), cl::Hidden);
61 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
62                                      cl::init(true), cl::Hidden);
63
64 STATISTIC(NumSimple,       "Number of simple if-conversions performed");
65 STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
66 STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
67 STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
68 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
69 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
70 STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
71 STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
72 STATISTIC(NumDupBBs,       "Number of duplicated blocks");
73 STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
74
75 namespace {
76   class IfConverter : public MachineFunctionPass {
77     enum IfcvtKind {
78       ICNotClassfied,  // BB data valid, but not classified.
79       ICSimpleFalse,   // Same as ICSimple, but on the false path.
80       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
81       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
82       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
83       ICTriangleFalse, // Same as ICTriangle, but on the false path.
84       ICTriangle,      // BB is entry of a triangle sub-CFG.
85       ICDiamond        // BB is entry of a diamond sub-CFG.
86     };
87
88     /// BBInfo - One per MachineBasicBlock, this is used to cache the result
89     /// if-conversion feasibility analysis. This includes results from
90     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
91     /// classification, and common tail block of its successors (if it's a
92     /// diamond shape), its size, whether it's predicable, and whether any
93     /// instruction can clobber the 'would-be' predicate.
94     ///
95     /// IsDone          - True if BB is not to be considered for ifcvt.
96     /// IsBeingAnalyzed - True if BB is currently being analyzed.
97     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
98     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
99     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
100     /// HasFallThrough  - True if BB may fallthrough to the following BB.
101     /// IsUnpredicable  - True if BB is known to be unpredicable.
102     /// ClobbersPred    - True if BB could modify predicates (e.g. has
103     ///                   cmp, call, etc.)
104     /// NonPredSize     - Number of non-predicated instructions.
105     /// ExtraCost       - Extra cost for multi-cycle instructions.
106     /// ExtraCost2      - Some instructions are slower when predicated
107     /// BB              - Corresponding MachineBasicBlock.
108     /// TrueBB / FalseBB- See analyzeBranch().
109     /// BrCond          - Conditions for end of block conditional branches.
110     /// Predicate       - Predicate used in the BB.
111     struct BBInfo {
112       bool IsDone          : 1;
113       bool IsBeingAnalyzed : 1;
114       bool IsAnalyzed      : 1;
115       bool IsEnqueued      : 1;
116       bool IsBrAnalyzable  : 1;
117       bool HasFallThrough  : 1;
118       bool IsUnpredicable  : 1;
119       bool CannotBeCopied  : 1;
120       bool ClobbersPred    : 1;
121       unsigned NonPredSize;
122       unsigned ExtraCost;
123       unsigned ExtraCost2;
124       MachineBasicBlock *BB;
125       MachineBasicBlock *TrueBB;
126       MachineBasicBlock *FalseBB;
127       SmallVector<MachineOperand, 4> BrCond;
128       SmallVector<MachineOperand, 4> Predicate;
129       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
130                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
131                  HasFallThrough(false), IsUnpredicable(false),
132                  CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
133                  ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
134                  FalseBB(nullptr) {}
135     };
136
137     /// IfcvtToken - Record information about pending if-conversions to attempt:
138     /// BBI             - Corresponding BBInfo.
139     /// Kind            - Type of block. See IfcvtKind.
140     /// NeedSubsumption - True if the to-be-predicated BB has already been
141     ///                   predicated.
142     /// NumDups      - Number of instructions that would be duplicated due
143     ///                   to this if-conversion. (For diamonds, the number of
144     ///                   identical instructions at the beginnings of both
145     ///                   paths).
146     /// NumDups2     - For diamonds, the number of identical instructions
147     ///                   at the ends of both paths.
148     struct IfcvtToken {
149       BBInfo &BBI;
150       IfcvtKind Kind;
151       bool NeedSubsumption;
152       unsigned NumDups;
153       unsigned NumDups2;
154       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
155         : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
156     };
157
158     /// BBAnalysis - Results of if-conversion feasibility analysis indexed by
159     /// basic block number.
160     std::vector<BBInfo> BBAnalysis;
161     TargetSchedModel SchedModel;
162
163     const TargetLoweringBase *TLI;
164     const TargetInstrInfo *TII;
165     const TargetRegisterInfo *TRI;
166     const MachineBranchProbabilityInfo *MBPI;
167     MachineRegisterInfo *MRI;
168
169     LivePhysRegs Redefs;
170     LivePhysRegs DontKill;
171
172     bool PreRegAlloc;
173     bool MadeChange;
174     int FnNum;
175     std::function<bool(const Function &)> PredicateFtor;
176
177   public:
178     static char ID;
179     IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
180         : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
181       initializeIfConverterPass(*PassRegistry::getPassRegistry());
182     }
183
184     void getAnalysisUsage(AnalysisUsage &AU) const override {
185       AU.addRequired<MachineBlockFrequencyInfo>();
186       AU.addRequired<MachineBranchProbabilityInfo>();
187       MachineFunctionPass::getAnalysisUsage(AU);
188     }
189
190     bool runOnMachineFunction(MachineFunction &MF) override;
191
192     MachineFunctionProperties getRequiredProperties() const override {
193       return MachineFunctionProperties().set(
194           MachineFunctionProperties::Property::AllVRegsAllocated);
195     }
196
197   private:
198     bool ReverseBranchCondition(BBInfo &BBI);
199     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
200                      BranchProbability Prediction) const;
201     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
202                        bool FalseBranch, unsigned &Dups,
203                        BranchProbability Prediction) const;
204     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
205                       unsigned &Dups1, unsigned &Dups2) const;
206     void ScanInstructions(BBInfo &BBI);
207     void AnalyzeBlock(MachineBasicBlock *MBB,
208                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
209     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
210                              bool isTriangle = false, bool RevBranch = false);
211     void AnalyzeBlocks(MachineFunction &MF,
212                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
213     void InvalidatePreds(MachineBasicBlock *BB);
214     void RemoveExtraEdges(BBInfo &BBI);
215     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
216     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
217     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
218                           unsigned NumDups1, unsigned NumDups2);
219     void PredicateBlock(BBInfo &BBI,
220                         MachineBasicBlock::iterator E,
221                         SmallVectorImpl<MachineOperand> &Cond,
222                         SmallSet<unsigned, 4> *LaterRedefs = nullptr);
223     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
224                                SmallVectorImpl<MachineOperand> &Cond,
225                                bool IgnoreBr = false);
226     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
227
228     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
229                             unsigned Cycle, unsigned Extra,
230                             BranchProbability Prediction) const {
231       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
232                                                    Prediction);
233     }
234
235     bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
236                             unsigned TCycle, unsigned TExtra,
237                             MachineBasicBlock &FBB,
238                             unsigned FCycle, unsigned FExtra,
239                             BranchProbability Prediction) const {
240       return TCycle > 0 && FCycle > 0 &&
241         TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
242                                  Prediction);
243     }
244
245     // blockAlwaysFallThrough - Block ends without a terminator.
246     bool blockAlwaysFallThrough(BBInfo &BBI) const {
247       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
248     }
249
250     // IfcvtTokenCmp - Used to sort if-conversion candidates.
251     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
252                               const std::unique_ptr<IfcvtToken> &C2) {
253       int Incr1 = (C1->Kind == ICDiamond)
254         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
255       int Incr2 = (C2->Kind == ICDiamond)
256         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
257       if (Incr1 > Incr2)
258         return true;
259       else if (Incr1 == Incr2) {
260         // Favors subsumption.
261         if (!C1->NeedSubsumption && C2->NeedSubsumption)
262           return true;
263         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
264           // Favors diamond over triangle, etc.
265           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
266             return true;
267           else if (C1->Kind == C2->Kind)
268             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
269         }
270       }
271       return false;
272     }
273   };
274
275   char IfConverter::ID = 0;
276 }
277
278 char &llvm::IfConverterID = IfConverter::ID;
279
280 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
281 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
282 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
283
284 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
285   if (skipFunction(*MF.getFunction()) ||
286       (PredicateFtor && !PredicateFtor(*MF.getFunction())))
287     return false;
288
289   const TargetSubtargetInfo &ST = MF.getSubtarget();
290   TLI = ST.getTargetLowering();
291   TII = ST.getInstrInfo();
292   TRI = ST.getRegisterInfo();
293   BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
294   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
295   MRI = &MF.getRegInfo();
296   SchedModel.init(ST.getSchedModel(), &ST, TII);
297
298   if (!TII) return false;
299
300   PreRegAlloc = MRI->isSSA();
301
302   bool BFChange = false;
303   if (!PreRegAlloc) {
304     // Tail merge tend to expose more if-conversion opportunities.
305     BranchFolder BF(true, false, MBFI, *MBPI);
306     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
307                                    getAnalysisIfAvailable<MachineModuleInfo>());
308   }
309
310   DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum <<  ") \'"
311                << MF.getName() << "\'");
312
313   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
314     DEBUG(dbgs() << " skipped\n");
315     return false;
316   }
317   DEBUG(dbgs() << "\n");
318
319   MF.RenumberBlocks();
320   BBAnalysis.resize(MF.getNumBlockIDs());
321
322   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
323   MadeChange = false;
324   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
325     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
326   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
327     // Do an initial analysis for each basic block and find all the potential
328     // candidates to perform if-conversion.
329     bool Change = false;
330     AnalyzeBlocks(MF, Tokens);
331     while (!Tokens.empty()) {
332       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
333       Tokens.pop_back();
334       BBInfo &BBI = Token->BBI;
335       IfcvtKind Kind = Token->Kind;
336       unsigned NumDups = Token->NumDups;
337       unsigned NumDups2 = Token->NumDups2;
338
339       // If the block has been evicted out of the queue or it has already been
340       // marked dead (due to it being predicated), then skip it.
341       if (BBI.IsDone)
342         BBI.IsEnqueued = false;
343       if (!BBI.IsEnqueued)
344         continue;
345
346       BBI.IsEnqueued = false;
347
348       bool RetVal = false;
349       switch (Kind) {
350       default: llvm_unreachable("Unexpected!");
351       case ICSimple:
352       case ICSimpleFalse: {
353         bool isFalse = Kind == ICSimpleFalse;
354         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
355         DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
356                                             " false" : "")
357                      << "): BB#" << BBI.BB->getNumber() << " ("
358                      << ((Kind == ICSimpleFalse)
359                          ? BBI.FalseBB->getNumber()
360                          : BBI.TrueBB->getNumber()) << ") ");
361         RetVal = IfConvertSimple(BBI, Kind);
362         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
363         if (RetVal) {
364           if (isFalse) ++NumSimpleFalse;
365           else         ++NumSimple;
366         }
367        break;
368       }
369       case ICTriangle:
370       case ICTriangleRev:
371       case ICTriangleFalse:
372       case ICTriangleFRev: {
373         bool isFalse = Kind == ICTriangleFalse;
374         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
375         if (DisableTriangle && !isFalse && !isRev) break;
376         if (DisableTriangleR && !isFalse && isRev) break;
377         if (DisableTriangleF && isFalse && !isRev) break;
378         if (DisableTriangleFR && isFalse && isRev) break;
379         DEBUG(dbgs() << "Ifcvt (Triangle");
380         if (isFalse)
381           DEBUG(dbgs() << " false");
382         if (isRev)
383           DEBUG(dbgs() << " rev");
384         DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
385                      << BBI.TrueBB->getNumber() << ",F:"
386                      << BBI.FalseBB->getNumber() << ") ");
387         RetVal = IfConvertTriangle(BBI, Kind);
388         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
389         if (RetVal) {
390           if (isFalse) {
391             if (isRev) ++NumTriangleFRev;
392             else       ++NumTriangleFalse;
393           } else {
394             if (isRev) ++NumTriangleRev;
395             else       ++NumTriangle;
396           }
397         }
398         break;
399       }
400       case ICDiamond: {
401         if (DisableDiamond) break;
402         DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
403                      << BBI.TrueBB->getNumber() << ",F:"
404                      << BBI.FalseBB->getNumber() << ") ");
405         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
406         DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
407         if (RetVal) ++NumDiamonds;
408         break;
409       }
410       }
411
412       Change |= RetVal;
413
414       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
415         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
416       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
417         break;
418     }
419
420     if (!Change)
421       break;
422     MadeChange |= Change;
423   }
424
425   Tokens.clear();
426   BBAnalysis.clear();
427
428   if (MadeChange && IfCvtBranchFold) {
429     BranchFolder BF(false, false, MBFI, *MBPI);
430     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
431                         getAnalysisIfAvailable<MachineModuleInfo>());
432   }
433
434   MadeChange |= BFChange;
435   return MadeChange;
436 }
437
438 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
439 /// its 'true' successor.
440 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
441                                          MachineBasicBlock *TrueBB) {
442   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
443          E = BB->succ_end(); SI != E; ++SI) {
444     MachineBasicBlock *SuccBB = *SI;
445     if (SuccBB != TrueBB)
446       return SuccBB;
447   }
448   return nullptr;
449 }
450
451 /// ReverseBranchCondition - Reverse the condition of the end of the block
452 /// branch. Swap block's 'true' and 'false' successors.
453 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
454   DebugLoc dl;  // FIXME: this is nowhere
455   if (!TII->ReverseBranchCondition(BBI.BrCond)) {
456     TII->RemoveBranch(*BBI.BB);
457     TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
458     std::swap(BBI.TrueBB, BBI.FalseBB);
459     return true;
460   }
461   return false;
462 }
463
464 /// getNextBlock - Returns the next block in the function blocks ordering. If
465 /// it is the end, returns NULL.
466 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
467   MachineFunction::iterator I = BB->getIterator();
468   MachineFunction::iterator E = BB->getParent()->end();
469   if (++I == E)
470     return nullptr;
471   return &*I;
472 }
473
474 /// ValidSimple - Returns true if the 'true' block (along with its
475 /// predecessor) forms a valid simple shape for ifcvt. It also returns the
476 /// number of instructions that the ifcvt would need to duplicate if performed
477 /// in Dups.
478 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
479                               BranchProbability Prediction) const {
480   Dups = 0;
481   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
482     return false;
483
484   if (TrueBBI.IsBrAnalyzable)
485     return false;
486
487   if (TrueBBI.BB->pred_size() > 1) {
488     if (TrueBBI.CannotBeCopied ||
489         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
490                                         Prediction))
491       return false;
492     Dups = TrueBBI.NonPredSize;
493   }
494
495   return true;
496 }
497
498 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
499 /// with their common predecessor) forms a valid triangle shape for ifcvt.
500 /// If 'FalseBranch' is true, it checks if 'true' block's false branch
501 /// branches to the 'false' block rather than the other way around. It also
502 /// returns the number of instructions that the ifcvt would need to duplicate
503 /// if performed in 'Dups'.
504 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
505                                 bool FalseBranch, unsigned &Dups,
506                                 BranchProbability Prediction) const {
507   Dups = 0;
508   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
509     return false;
510
511   if (TrueBBI.BB->pred_size() > 1) {
512     if (TrueBBI.CannotBeCopied)
513       return false;
514
515     unsigned Size = TrueBBI.NonPredSize;
516     if (TrueBBI.IsBrAnalyzable) {
517       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
518         // Ends with an unconditional branch. It will be removed.
519         --Size;
520       else {
521         MachineBasicBlock *FExit = FalseBranch
522           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
523         if (FExit)
524           // Require a conditional branch
525           ++Size;
526       }
527     }
528     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
529       return false;
530     Dups = Size;
531   }
532
533   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
534   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
535     MachineFunction::iterator I = TrueBBI.BB->getIterator();
536     if (++I == TrueBBI.BB->getParent()->end())
537       return false;
538     TExit = &*I;
539   }
540   return TExit && TExit == FalseBBI.BB;
541 }
542
543 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
544 /// with their common predecessor) forms a valid diamond shape for ifcvt.
545 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
546                                unsigned &Dups1, unsigned &Dups2) const {
547   Dups1 = Dups2 = 0;
548   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
549       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
550     return false;
551
552   MachineBasicBlock *TT = TrueBBI.TrueBB;
553   MachineBasicBlock *FT = FalseBBI.TrueBB;
554
555   if (!TT && blockAlwaysFallThrough(TrueBBI))
556     TT = getNextBlock(TrueBBI.BB);
557   if (!FT && blockAlwaysFallThrough(FalseBBI))
558     FT = getNextBlock(FalseBBI.BB);
559   if (TT != FT)
560     return false;
561   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
562     return false;
563   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
564     return false;
565
566   // FIXME: Allow true block to have an early exit?
567   if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
568       (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
569     return false;
570
571   // Count duplicate instructions at the beginning of the true and false blocks.
572   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
573   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
574   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
575   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
576   while (TIB != TIE && FIB != FIE) {
577     // Skip dbg_value instructions. These do not count.
578     if (TIB->isDebugValue()) {
579       while (TIB != TIE && TIB->isDebugValue())
580         ++TIB;
581       if (TIB == TIE)
582         break;
583     }
584     if (FIB->isDebugValue()) {
585       while (FIB != FIE && FIB->isDebugValue())
586         ++FIB;
587       if (FIB == FIE)
588         break;
589     }
590     if (!TIB->isIdenticalTo(*FIB))
591       break;
592     ++Dups1;
593     ++TIB;
594     ++FIB;
595   }
596
597   // Now, in preparation for counting duplicate instructions at the ends of the
598   // blocks, move the end iterators up past any branch instructions.
599   // If both blocks are returning don't skip the branches, since they will
600   // likely be both identical return instructions. In such cases the return
601   // can be left unpredicated.
602   // Check for already containing all of the block.
603   if (TIB == TIE || FIB == FIE)
604     return true;
605   --TIE;
606   --FIE;
607   if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) {
608     while (TIE != TIB && TIE->isBranch())
609       --TIE;
610     while (FIE != FIB && FIE->isBranch())
611       --FIE;
612   }
613
614   // If Dups1 includes all of a block, then don't count duplicate
615   // instructions at the end of the blocks.
616   if (TIB == TIE || FIB == FIE)
617     return true;
618
619   // Count duplicate instructions at the ends of the blocks.
620   while (TIE != TIB && FIE != FIB) {
621     // Skip dbg_value instructions. These do not count.
622     if (TIE->isDebugValue()) {
623       while (TIE != TIB && TIE->isDebugValue())
624         --TIE;
625       if (TIE == TIB)
626         break;
627     }
628     if (FIE->isDebugValue()) {
629       while (FIE != FIB && FIE->isDebugValue())
630         --FIE;
631       if (FIE == FIB)
632         break;
633     }
634     if (!TIE->isIdenticalTo(*FIE))
635       break;
636     ++Dups2;
637     --TIE;
638     --FIE;
639   }
640
641   return true;
642 }
643
644 /// ScanInstructions - Scan all the instructions in the block to determine if
645 /// the block is predicable. In most cases, that means all the instructions
646 /// in the block are isPredicable(). Also checks if the block contains any
647 /// instruction which can clobber a predicate (e.g. condition code register).
648 /// If so, the block is not predicable unless it's the last instruction.
649 void IfConverter::ScanInstructions(BBInfo &BBI) {
650   if (BBI.IsDone)
651     return;
652
653   bool AlreadyPredicated = !BBI.Predicate.empty();
654   // First analyze the end of BB branches.
655   BBI.TrueBB = BBI.FalseBB = nullptr;
656   BBI.BrCond.clear();
657   BBI.IsBrAnalyzable =
658       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
659   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
660
661   if (BBI.BrCond.size()) {
662     // No false branch. This BB must end with a conditional branch and a
663     // fallthrough.
664     if (!BBI.FalseBB)
665       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
666     if (!BBI.FalseBB) {
667       // Malformed bcc? True and false blocks are the same?
668       BBI.IsUnpredicable = true;
669       return;
670     }
671   }
672
673   // Then scan all the instructions.
674   BBI.NonPredSize = 0;
675   BBI.ExtraCost = 0;
676   BBI.ExtraCost2 = 0;
677   BBI.ClobbersPred = false;
678   for (auto &MI : *BBI.BB) {
679     if (MI.isDebugValue())
680       continue;
681
682     // It's unsafe to duplicate convergent instructions in this context, so set
683     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
684     // following CFG, which is subject to our "simple" transformation.
685     //
686     //    BB0     // if (c1) goto BB1; else goto BB2;
687     //   /   \
688     //  BB1   |
689     //   |   BB2  // if (c2) goto TBB; else goto FBB;
690     //   |   / |
691     //   |  /  |
692     //   TBB   |
693     //    |    |
694     //    |   FBB
695     //    |
696     //    exit
697     //
698     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
699     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
700     // TBB contains a convergent instruction.  This is safe iff doing so does
701     // not add a control-flow dependency to the convergent instruction -- i.e.,
702     // it's safe iff the set of control flows that leads us to the convergent
703     // instruction does not get smaller after the transformation.
704     //
705     // Originally we executed TBB if c1 || c2.  After the transformation, there
706     // are two copies of TBB's instructions.  We get to the first if c1, and we
707     // get to the second if !c1 && c2.
708     //
709     // There are clearly fewer ways to satisfy the condition "c1" than
710     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
711     // our convergent instruction, the transformation is unsafe.
712     if (MI.isNotDuplicable() || MI.isConvergent())
713       BBI.CannotBeCopied = true;
714
715     bool isPredicated = TII->isPredicated(MI);
716     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
717
718     // A conditional branch is not predicable, but it may be eliminated.
719     if (isCondBr)
720       continue;
721
722     if (!isPredicated) {
723       BBI.NonPredSize++;
724       unsigned ExtraPredCost = TII->getPredicationCost(MI);
725       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
726       if (NumCycles > 1)
727         BBI.ExtraCost += NumCycles-1;
728       BBI.ExtraCost2 += ExtraPredCost;
729     } else if (!AlreadyPredicated) {
730       // FIXME: This instruction is already predicated before the
731       // if-conversion pass. It's probably something like a conditional move.
732       // Mark this block unpredicable for now.
733       BBI.IsUnpredicable = true;
734       return;
735     }
736
737     if (BBI.ClobbersPred && !isPredicated) {
738       // Predicate modification instruction should end the block (except for
739       // already predicated instructions and end of block branches).
740       // Predicate may have been modified, the subsequent (currently)
741       // unpredicated instructions cannot be correctly predicated.
742       BBI.IsUnpredicable = true;
743       return;
744     }
745
746     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
747     // still potentially predicable.
748     std::vector<MachineOperand> PredDefs;
749     if (TII->DefinesPredicate(MI, PredDefs))
750       BBI.ClobbersPred = true;
751
752     if (!TII->isPredicable(MI)) {
753       BBI.IsUnpredicable = true;
754       return;
755     }
756   }
757 }
758
759 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
760 /// predicated by the specified predicate.
761 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
762                                       SmallVectorImpl<MachineOperand> &Pred,
763                                       bool isTriangle, bool RevBranch) {
764   // If the block is dead or unpredicable, then it cannot be predicated.
765   if (BBI.IsDone || BBI.IsUnpredicable)
766     return false;
767
768   // If it is already predicated but we couldn't analyze its terminator, the
769   // latter might fallthrough, but we can't determine where to.
770   // Conservatively avoid if-converting again.
771   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
772     return false;
773
774   // If it is already predicated, check if the new predicate subsumes
775   // its predicate.
776   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
777     return false;
778
779   if (BBI.BrCond.size()) {
780     if (!isTriangle)
781       return false;
782
783     // Test predicate subsumption.
784     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
785     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
786     if (RevBranch) {
787       if (TII->ReverseBranchCondition(Cond))
788         return false;
789     }
790     if (TII->ReverseBranchCondition(RevPred) ||
791         !TII->SubsumesPredicate(Cond, RevPred))
792       return false;
793   }
794
795   return true;
796 }
797
798 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
799 /// the specified block. Record its successors and whether it looks like an
800 /// if-conversion candidate.
801 void IfConverter::AnalyzeBlock(
802     MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
803   struct BBState {
804     BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {}
805     MachineBasicBlock *MBB;
806
807     /// This flag is true if MBB's successors have been analyzed.
808     bool SuccsAnalyzed;
809   };
810
811   // Push MBB to the stack.
812   SmallVector<BBState, 16> BBStack(1, MBB);
813
814   while (!BBStack.empty()) {
815     BBState &State = BBStack.back();
816     MachineBasicBlock *BB = State.MBB;
817     BBInfo &BBI = BBAnalysis[BB->getNumber()];
818
819     if (!State.SuccsAnalyzed) {
820       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
821         BBStack.pop_back();
822         continue;
823       }
824
825       BBI.BB = BB;
826       BBI.IsBeingAnalyzed = true;
827
828       ScanInstructions(BBI);
829
830       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
831       // not considered for ifcvt anymore.
832       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
833         BBI.IsBeingAnalyzed = false;
834         BBI.IsAnalyzed = true;
835         BBStack.pop_back();
836         continue;
837       }
838
839       // Do not ifcvt if either path is a back edge to the entry block.
840       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
841         BBI.IsBeingAnalyzed = false;
842         BBI.IsAnalyzed = true;
843         BBStack.pop_back();
844         continue;
845       }
846
847       // Do not ifcvt if true and false fallthrough blocks are the same.
848       if (!BBI.FalseBB) {
849         BBI.IsBeingAnalyzed = false;
850         BBI.IsAnalyzed = true;
851         BBStack.pop_back();
852         continue;
853       }
854
855       // Push the False and True blocks to the stack.
856       State.SuccsAnalyzed = true;
857       BBStack.push_back(BBI.FalseBB);
858       BBStack.push_back(BBI.TrueBB);
859       continue;
860     }
861
862     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
863     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
864
865     if (TrueBBI.IsDone && FalseBBI.IsDone) {
866       BBI.IsBeingAnalyzed = false;
867       BBI.IsAnalyzed = true;
868       BBStack.pop_back();
869       continue;
870     }
871
872     SmallVector<MachineOperand, 4>
873         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
874     bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
875
876     unsigned Dups = 0;
877     unsigned Dups2 = 0;
878     bool TNeedSub = !TrueBBI.Predicate.empty();
879     bool FNeedSub = !FalseBBI.Predicate.empty();
880     bool Enqueued = false;
881
882     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
883
884     if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
885         MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
886                                          TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
887                            *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
888                                         FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
889                          Prediction) &&
890         FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
891         FeasibilityAnalysis(FalseBBI, RevCond)) {
892       // Diamond:
893       //   EBB
894       //   / \_
895       //  |   |
896       // TBB FBB
897       //   \ /
898       //  TailBB
899       // Note TailBB can be empty.
900       Tokens.push_back(llvm::make_unique<IfcvtToken>(
901           BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2));
902       Enqueued = true;
903     }
904
905     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
906         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
907                            TrueBBI.ExtraCost2, Prediction) &&
908         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
909       // Triangle:
910       //   EBB
911       //   | \_
912       //   |  |
913       //   | TBB
914       //   |  /
915       //   FBB
916       Tokens.push_back(
917           llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
918       Enqueued = true;
919     }
920
921     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
922         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
923                            TrueBBI.ExtraCost2, Prediction) &&
924         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
925       Tokens.push_back(
926           llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
927       Enqueued = true;
928     }
929
930     if (ValidSimple(TrueBBI, Dups, Prediction) &&
931         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
932                            TrueBBI.ExtraCost2, Prediction) &&
933         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
934       // Simple (split, no rejoin):
935       //   EBB
936       //   | \_
937       //   |  |
938       //   | TBB---> exit
939       //   |
940       //   FBB
941       Tokens.push_back(
942           llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
943       Enqueued = true;
944     }
945
946     if (CanRevCond) {
947       // Try the other path...
948       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
949                         Prediction.getCompl()) &&
950           MeetIfcvtSizeLimit(*FalseBBI.BB,
951                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
952                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
953           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
954         Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
955                                                        FNeedSub, Dups));
956         Enqueued = true;
957       }
958
959       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
960                         Prediction.getCompl()) &&
961           MeetIfcvtSizeLimit(*FalseBBI.BB,
962                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
963                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
964         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
965         Tokens.push_back(
966             llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
967         Enqueued = true;
968       }
969
970       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
971           MeetIfcvtSizeLimit(*FalseBBI.BB,
972                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
973                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
974           FeasibilityAnalysis(FalseBBI, RevCond)) {
975         Tokens.push_back(
976             llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
977         Enqueued = true;
978       }
979     }
980
981     BBI.IsEnqueued = Enqueued;
982     BBI.IsBeingAnalyzed = false;
983     BBI.IsAnalyzed = true;
984     BBStack.pop_back();
985   }
986 }
987
988 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
989 /// candidates.
990 void IfConverter::AnalyzeBlocks(
991     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
992   for (auto &BB : MF)
993     AnalyzeBlock(&BB, Tokens);
994
995   // Sort to favor more complex ifcvt scheme.
996   std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
997 }
998
999 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or
1000 /// that all the intervening blocks are empty (given BB can fall through to its
1001 /// next block).
1002 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
1003   MachineFunction::iterator PI = BB->getIterator();
1004   MachineFunction::iterator I = std::next(PI);
1005   MachineFunction::iterator TI = ToBB->getIterator();
1006   MachineFunction::iterator E = BB->getParent()->end();
1007   while (I != TI) {
1008     // Check isSuccessor to avoid case where the next block is empty, but
1009     // it's not a successor.
1010     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1011       return false;
1012     PI = I++;
1013   }
1014   return true;
1015 }
1016
1017 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
1018 /// to determine if it can be if-converted. If predecessor is already enqueued,
1019 /// dequeue it!
1020 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
1021   for (const auto &Predecessor : BB->predecessors()) {
1022     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1023     if (PBBI.IsDone || PBBI.BB == BB)
1024       continue;
1025     PBBI.IsAnalyzed = false;
1026     PBBI.IsEnqueued = false;
1027   }
1028 }
1029
1030 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
1031 ///
1032 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
1033                                const TargetInstrInfo *TII) {
1034   DebugLoc dl;  // FIXME: this is nowhere
1035   SmallVector<MachineOperand, 0> NoCond;
1036   TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl);
1037 }
1038
1039 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer
1040 /// successors.
1041 void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
1042   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1043   SmallVector<MachineOperand, 4> Cond;
1044   if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond))
1045     BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
1046 }
1047
1048 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1049 /// values defined in MI which are not live/used by MI.
1050 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1051   SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1052   Redefs.stepForward(MI, Clobbers);
1053
1054   // Now add the implicit uses for each of the clobbered values.
1055   for (auto Reg : Clobbers) {
1056     // FIXME: Const cast here is nasty, but better than making StepForward
1057     // take a mutable instruction instead of const.
1058     MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second);
1059     MachineInstr *OpMI = Op.getParent();
1060     MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
1061     if (Op.isRegMask()) {
1062       // First handle regmasks.  They clobber any entries in the mask which
1063       // means that we need a def for those registers.
1064       MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1065
1066       // We also need to add an implicit def of this register for the later
1067       // use to read from.
1068       // For the register allocator to have allocated a register clobbered
1069       // by the call which is used later, it must be the case that
1070       // the call doesn't return.
1071       MIB.addReg(Reg.first, RegState::Implicit | RegState::Define);
1072       continue;
1073     }
1074     assert(Op.isReg() && "Register operand required");
1075     if (Op.isDead()) {
1076       // If we found a dead def, but it needs to be live, then remove the dead
1077       // flag.
1078       if (Redefs.contains(Op.getReg()))
1079         Op.setIsDead(false);
1080     }
1081     MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1082   }
1083 }
1084
1085 /**
1086  * Remove kill flags from operands with a registers in the @p DontKill set.
1087  */
1088 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
1089   for (MIBundleOperands O(MI); O.isValid(); ++O) {
1090     if (!O->isReg() || !O->isKill())
1091       continue;
1092     if (DontKill.contains(O->getReg()))
1093       O->setIsKill(false);
1094   }
1095 }
1096
1097 /**
1098  * Walks a range of machine instructions and removes kill flags for registers
1099  * in the @p DontKill set.
1100  */
1101 static void RemoveKills(MachineBasicBlock::iterator I,
1102                         MachineBasicBlock::iterator E,
1103                         const LivePhysRegs &DontKill,
1104                         const MCRegisterInfo &MCRI) {
1105   for ( ; I != E; ++I)
1106     RemoveKills(*I, DontKill);
1107 }
1108
1109 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
1110 ///
1111 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1112   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1113   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1114   BBInfo *CvtBBI = &TrueBBI;
1115   BBInfo *NextBBI = &FalseBBI;
1116
1117   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1118   if (Kind == ICSimpleFalse)
1119     std::swap(CvtBBI, NextBBI);
1120
1121   if (CvtBBI->IsDone ||
1122       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1123     // Something has changed. It's no longer safe to predicate this block.
1124     BBI.IsAnalyzed = false;
1125     CvtBBI->IsAnalyzed = false;
1126     return false;
1127   }
1128
1129   if (CvtBBI->BB->hasAddressTaken())
1130     // Conservatively abort if-conversion if BB's address is taken.
1131     return false;
1132
1133   if (Kind == ICSimpleFalse)
1134     if (TII->ReverseBranchCondition(Cond))
1135       llvm_unreachable("Unable to reverse branch condition!");
1136
1137   // Initialize liveins to the first BB. These are potentiall redefined by
1138   // predicated instructions.
1139   Redefs.init(TRI);
1140   Redefs.addLiveIns(*CvtBBI->BB);
1141   Redefs.addLiveIns(*NextBBI->BB);
1142
1143   // Compute a set of registers which must not be killed by instructions in
1144   // BB1: This is everything live-in to BB2.
1145   DontKill.init(TRI);
1146   DontKill.addLiveIns(*NextBBI->BB);
1147
1148   if (CvtBBI->BB->pred_size() > 1) {
1149     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1150     // Copy instructions in the true block, predicate them, and add them to
1151     // the entry block.
1152     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1153
1154     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1155     // explicitly remove CvtBBI as a successor.
1156     BBI.BB->removeSuccessor(CvtBBI->BB, true);
1157   } else {
1158     RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
1159     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1160
1161     // Merge converted block into entry block.
1162     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1163     MergeBlocks(BBI, *CvtBBI);
1164   }
1165
1166   bool IterIfcvt = true;
1167   if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
1168     InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1169     BBI.HasFallThrough = false;
1170     // Now ifcvt'd block will look like this:
1171     // BB:
1172     // ...
1173     // t, f = cmp
1174     // if t op
1175     // b BBf
1176     //
1177     // We cannot further ifcvt this block because the unconditional branch
1178     // will have to be predicated on the new condition, that will not be
1179     // available if cmp executes.
1180     IterIfcvt = false;
1181   }
1182
1183   RemoveExtraEdges(BBI);
1184
1185   // Update block info. BB can be iteratively if-converted.
1186   if (!IterIfcvt)
1187     BBI.IsDone = true;
1188   InvalidatePreds(BBI.BB);
1189   CvtBBI->IsDone = true;
1190
1191   // FIXME: Must maintain LiveIns.
1192   return true;
1193 }
1194
1195 /// IfConvertTriangle - If convert a triangle sub-CFG.
1196 ///
1197 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1198   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1199   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1200   BBInfo *CvtBBI = &TrueBBI;
1201   BBInfo *NextBBI = &FalseBBI;
1202   DebugLoc dl;  // FIXME: this is nowhere
1203
1204   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1205   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1206     std::swap(CvtBBI, NextBBI);
1207
1208   if (CvtBBI->IsDone ||
1209       (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1210     // Something has changed. It's no longer safe to predicate this block.
1211     BBI.IsAnalyzed = false;
1212     CvtBBI->IsAnalyzed = false;
1213     return false;
1214   }
1215
1216   if (CvtBBI->BB->hasAddressTaken())
1217     // Conservatively abort if-conversion if BB's address is taken.
1218     return false;
1219
1220   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1221     if (TII->ReverseBranchCondition(Cond))
1222       llvm_unreachable("Unable to reverse branch condition!");
1223
1224   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1225     if (ReverseBranchCondition(*CvtBBI)) {
1226       // BB has been changed, modify its predecessors (except for this
1227       // one) so they don't get ifcvt'ed based on bad intel.
1228       for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
1229              E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
1230         MachineBasicBlock *PBB = *PI;
1231         if (PBB == BBI.BB)
1232           continue;
1233         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1234         if (PBBI.IsEnqueued) {
1235           PBBI.IsAnalyzed = false;
1236           PBBI.IsEnqueued = false;
1237         }
1238       }
1239     }
1240   }
1241
1242   // Initialize liveins to the first BB. These are potentially redefined by
1243   // predicated instructions.
1244   Redefs.init(TRI);
1245   Redefs.addLiveIns(*CvtBBI->BB);
1246   Redefs.addLiveIns(*NextBBI->BB);
1247
1248   DontKill.clear();
1249
1250   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1251   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1252
1253   if (HasEarlyExit) {
1254     // Get probabilities before modifying CvtBBI->BB and BBI.BB.
1255     CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB);
1256     CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB);
1257     BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB);
1258     BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB);
1259   }
1260
1261   if (CvtBBI->BB->pred_size() > 1) {
1262     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1263     // Copy instructions in the true block, predicate them, and add them to
1264     // the entry block.
1265     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1266
1267     // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1268     // explicitly remove CvtBBI as a successor.
1269     BBI.BB->removeSuccessor(CvtBBI->BB, true);
1270   } else {
1271     // Predicate the 'true' block after removing its branch.
1272     CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
1273     PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1274
1275     // Now merge the entry of the triangle with the true block.
1276     BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1277     MergeBlocks(BBI, *CvtBBI, false);
1278   }
1279
1280   // If 'true' block has a 'false' successor, add an exit branch to it.
1281   if (HasEarlyExit) {
1282     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1283                                            CvtBBI->BrCond.end());
1284     if (TII->ReverseBranchCondition(RevCond))
1285       llvm_unreachable("Unable to reverse branch condition!");
1286
1287     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1288     // NewNext = New_Prob(BBI.BB, NextBBI->BB) =
1289     //   Prob(BBI.BB, NextBBI->BB) +
1290     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB)
1291     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1292     //   Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB)
1293     auto NewTrueBB = getNextBlock(BBI.BB);
1294     auto NewNext = BBNext + BBCvt * CvtNext;
1295     auto NewTrueBBIter =
1296         std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB);
1297     if (NewTrueBBIter != BBI.BB->succ_end())
1298       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1299
1300     auto NewFalse = BBCvt * CvtFalse;
1301     TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1302     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1303   }
1304
1305   // Merge in the 'false' block if the 'false' block has no other
1306   // predecessors. Otherwise, add an unconditional branch to 'false'.
1307   bool FalseBBDead = false;
1308   bool IterIfcvt = true;
1309   bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
1310   if (!isFallThrough) {
1311     // Only merge them if the true block does not fallthrough to the false
1312     // block. By not merging them, we make it possible to iteratively
1313     // ifcvt the blocks.
1314     if (!HasEarlyExit &&
1315         NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough &&
1316         !NextBBI->BB->hasAddressTaken()) {
1317       MergeBlocks(BBI, *NextBBI);
1318       FalseBBDead = true;
1319     } else {
1320       InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1321       BBI.HasFallThrough = false;
1322     }
1323     // Mixed predicated and unpredicated code. This cannot be iteratively
1324     // predicated.
1325     IterIfcvt = false;
1326   }
1327
1328   RemoveExtraEdges(BBI);
1329
1330   // Update block info. BB can be iteratively if-converted.
1331   if (!IterIfcvt)
1332     BBI.IsDone = true;
1333   InvalidatePreds(BBI.BB);
1334   CvtBBI->IsDone = true;
1335   if (FalseBBDead)
1336     NextBBI->IsDone = true;
1337
1338   // FIXME: Must maintain LiveIns.
1339   return true;
1340 }
1341
1342 /// IfConvertDiamond - If convert a diamond sub-CFG.
1343 ///
1344 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1345                                    unsigned NumDups1, unsigned NumDups2) {
1346   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1347   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1348   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1349   // True block must fall through or end with an unanalyzable terminator.
1350   if (!TailBB) {
1351     if (blockAlwaysFallThrough(TrueBBI))
1352       TailBB = FalseBBI.TrueBB;
1353     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1354   }
1355
1356   if (TrueBBI.IsDone || FalseBBI.IsDone ||
1357       TrueBBI.BB->pred_size() > 1 ||
1358       FalseBBI.BB->pred_size() > 1) {
1359     // Something has changed. It's no longer safe to predicate these blocks.
1360     BBI.IsAnalyzed = false;
1361     TrueBBI.IsAnalyzed = false;
1362     FalseBBI.IsAnalyzed = false;
1363     return false;
1364   }
1365
1366   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1367     // Conservatively abort if-conversion if either BB has its address taken.
1368     return false;
1369
1370   // Put the predicated instructions from the 'true' block before the
1371   // instructions from the 'false' block, unless the true block would clobber
1372   // the predicate, in which case, do the opposite.
1373   BBInfo *BBI1 = &TrueBBI;
1374   BBInfo *BBI2 = &FalseBBI;
1375   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1376   if (TII->ReverseBranchCondition(RevCond))
1377     llvm_unreachable("Unable to reverse branch condition!");
1378   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1379   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1380
1381   // Figure out the more profitable ordering.
1382   bool DoSwap = false;
1383   if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
1384     DoSwap = true;
1385   else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
1386     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1387       DoSwap = true;
1388   }
1389   if (DoSwap) {
1390     std::swap(BBI1, BBI2);
1391     std::swap(Cond1, Cond2);
1392   }
1393
1394   // Remove the conditional branch from entry to the blocks.
1395   BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1396
1397   // Initialize liveins to the first BB. These are potentially redefined by
1398   // predicated instructions.
1399   Redefs.init(TRI);
1400   Redefs.addLiveIns(*BBI1->BB);
1401
1402   // Remove the duplicated instructions at the beginnings of both paths.
1403   // Skip dbg_value instructions
1404   MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr();
1405   MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr();
1406   BBI1->NonPredSize -= NumDups1;
1407   BBI2->NonPredSize -= NumDups1;
1408
1409   // Skip past the dups on each side separately since there may be
1410   // differing dbg_value entries.
1411   for (unsigned i = 0; i < NumDups1; ++DI1) {
1412     if (!DI1->isDebugValue())
1413       ++i;
1414   }
1415   while (NumDups1 != 0) {
1416     ++DI2;
1417     if (!DI2->isDebugValue())
1418       --NumDups1;
1419   }
1420
1421   // Compute a set of registers which must not be killed by instructions in BB1:
1422   // This is everything used+live in BB2 after the duplicated instructions. We
1423   // can compute this set by simulating liveness backwards from the end of BB2.
1424   DontKill.init(TRI);
1425   for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
1426        E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
1427     DontKill.stepBackward(*I);
1428   }
1429
1430   for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
1431        ++I) {
1432     SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
1433     Redefs.stepForward(*I, IgnoredClobbers);
1434   }
1435   BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
1436   BBI2->BB->erase(BBI2->BB->begin(), DI2);
1437
1438   // Remove branch from the 'true' block, unless it was not analyzable.
1439   // Non-analyzable branches need to be preserved, since in such cases,
1440   // the CFG structure is not an actual diamond (the join block may not
1441   // be present).
1442   if (BBI1->IsBrAnalyzable)
1443     BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
1444   // Remove duplicated instructions.
1445   DI1 = BBI1->BB->end();
1446   for (unsigned i = 0; i != NumDups2; ) {
1447     // NumDups2 only counted non-dbg_value instructions, so this won't
1448     // run off the head of the list.
1449     assert (DI1 != BBI1->BB->begin());
1450     --DI1;
1451     // skip dbg_value instructions
1452     if (!DI1->isDebugValue())
1453       ++i;
1454   }
1455   BBI1->BB->erase(DI1, BBI1->BB->end());
1456
1457   // Kill flags in the true block for registers living into the false block
1458   // must be removed.
1459   RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
1460
1461   // Remove 'false' block branch (unless it was not analyzable), and find
1462   // the last instruction to predicate.
1463   if (BBI2->IsBrAnalyzable)
1464     BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
1465   DI2 = BBI2->BB->end();
1466   while (NumDups2 != 0) {
1467     // NumDups2 only counted non-dbg_value instructions, so this won't
1468     // run off the head of the list.
1469     assert (DI2 != BBI2->BB->begin());
1470     --DI2;
1471     // skip dbg_value instructions
1472     if (!DI2->isDebugValue())
1473       --NumDups2;
1474   }
1475
1476   // Remember which registers would later be defined by the false block.
1477   // This allows us not to predicate instructions in the true block that would
1478   // later be re-defined. That is, rather than
1479   //   subeq  r0, r1, #1
1480   //   addne  r0, r1, #1
1481   // generate:
1482   //   sub    r0, r1, #1
1483   //   addne  r0, r1, #1
1484   SmallSet<unsigned, 4> RedefsByFalse;
1485   SmallSet<unsigned, 4> ExtUses;
1486   if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) {
1487     for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) {
1488       if (FI->isDebugValue())
1489         continue;
1490       SmallVector<unsigned, 4> Defs;
1491       for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
1492         const MachineOperand &MO = FI->getOperand(i);
1493         if (!MO.isReg())
1494           continue;
1495         unsigned Reg = MO.getReg();
1496         if (!Reg)
1497           continue;
1498         if (MO.isDef()) {
1499           Defs.push_back(Reg);
1500         } else if (!RedefsByFalse.count(Reg)) {
1501           // These are defined before ctrl flow reach the 'false' instructions.
1502           // They cannot be modified by the 'true' instructions.
1503           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1504                SubRegs.isValid(); ++SubRegs)
1505             ExtUses.insert(*SubRegs);
1506         }
1507       }
1508
1509       for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1510         unsigned Reg = Defs[i];
1511         if (!ExtUses.count(Reg)) {
1512           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1513                SubRegs.isValid(); ++SubRegs)
1514             RedefsByFalse.insert(*SubRegs);
1515         }
1516       }
1517     }
1518   }
1519
1520   // Predicate the 'true' block.
1521   PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
1522
1523   // After predicating BBI1, if there is a predicated terminator in BBI1 and
1524   // a non-predicated in BBI2, then we don't want to predicate the one from
1525   // BBI2. The reason is that if we merged these blocks, we would end up with
1526   // two predicated terminators in the same block.
1527   if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) {
1528     MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator();
1529     MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator();
1530     if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) &&
1531         BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T))
1532       --DI2;
1533   }
1534
1535   // Predicate the 'false' block.
1536   PredicateBlock(*BBI2, DI2, *Cond2);
1537
1538   // Merge the true block into the entry of the diamond.
1539   MergeBlocks(BBI, *BBI1, TailBB == nullptr);
1540   MergeBlocks(BBI, *BBI2, TailBB == nullptr);
1541
1542   // If the if-converted block falls through or unconditionally branches into
1543   // the tail block, and the tail block does not have other predecessors, then
1544   // fold the tail block in as well. Otherwise, unless it falls through to the
1545   // tail, add a unconditional branch to it.
1546   if (TailBB) {
1547     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1548     bool CanMergeTail = !TailBBI.HasFallThrough &&
1549       !TailBBI.BB->hasAddressTaken();
1550     // The if-converted block can still have a predicated terminator
1551     // (e.g. a predicated return). If that is the case, we cannot merge
1552     // it with the tail block.
1553     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1554     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1555       CanMergeTail = false;
1556     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1557     // check if there are any other predecessors besides those.
1558     unsigned NumPreds = TailBB->pred_size();
1559     if (NumPreds > 1)
1560       CanMergeTail = false;
1561     else if (NumPreds == 1 && CanMergeTail) {
1562       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1563       if (*PI != BBI1->BB && *PI != BBI2->BB)
1564         CanMergeTail = false;
1565     }
1566     if (CanMergeTail) {
1567       MergeBlocks(BBI, TailBBI);
1568       TailBBI.IsDone = true;
1569     } else {
1570       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1571       InsertUncondBranch(BBI.BB, TailBB, TII);
1572       BBI.HasFallThrough = false;
1573     }
1574   }
1575
1576   // RemoveExtraEdges won't work if the block has an unanalyzable branch,
1577   // which can happen here if TailBB is unanalyzable and is merged, so
1578   // explicitly remove BBI1 and BBI2 as successors.
1579   BBI.BB->removeSuccessor(BBI1->BB);
1580   BBI.BB->removeSuccessor(BBI2->BB, true);
1581   RemoveExtraEdges(BBI);
1582
1583   // Update block info.
1584   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1585   InvalidatePreds(BBI.BB);
1586
1587   // FIXME: Must maintain LiveIns.
1588   return true;
1589 }
1590
1591 static bool MaySpeculate(const MachineInstr &MI,
1592                          SmallSet<unsigned, 4> &LaterRedefs) {
1593   bool SawStore = true;
1594   if (!MI.isSafeToMove(nullptr, SawStore))
1595     return false;
1596
1597   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1598     const MachineOperand &MO = MI.getOperand(i);
1599     if (!MO.isReg())
1600       continue;
1601     unsigned Reg = MO.getReg();
1602     if (!Reg)
1603       continue;
1604     if (MO.isDef() && !LaterRedefs.count(Reg))
1605       return false;
1606   }
1607
1608   return true;
1609 }
1610
1611 /// PredicateBlock - Predicate instructions from the start of the block to the
1612 /// specified end with the specified condition.
1613 void IfConverter::PredicateBlock(BBInfo &BBI,
1614                                  MachineBasicBlock::iterator E,
1615                                  SmallVectorImpl<MachineOperand> &Cond,
1616                                  SmallSet<unsigned, 4> *LaterRedefs) {
1617   bool AnyUnpred = false;
1618   bool MaySpec = LaterRedefs != nullptr;
1619   for (MachineInstr &I : llvm::make_range(BBI.BB->begin(), E)) {
1620     if (I.isDebugValue() || TII->isPredicated(I))
1621       continue;
1622     // It may be possible not to predicate an instruction if it's the 'true'
1623     // side of a diamond and the 'false' side may re-define the instruction's
1624     // defs.
1625     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
1626       AnyUnpred = true;
1627       continue;
1628     }
1629     // If any instruction is predicated, then every instruction after it must
1630     // be predicated.
1631     MaySpec = false;
1632     if (!TII->PredicateInstruction(I, Cond)) {
1633 #ifndef NDEBUG
1634       dbgs() << "Unable to predicate " << I << "!\n";
1635 #endif
1636       llvm_unreachable(nullptr);
1637     }
1638
1639     // If the predicated instruction now redefines a register as the result of
1640     // if-conversion, add an implicit kill.
1641     UpdatePredRedefs(I, Redefs);
1642   }
1643
1644   BBI.Predicate.append(Cond.begin(), Cond.end());
1645
1646   BBI.IsAnalyzed = false;
1647   BBI.NonPredSize = 0;
1648
1649   ++NumIfConvBBs;
1650   if (AnyUnpred)
1651     ++NumUnpred;
1652 }
1653
1654 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
1655 /// the destination block. Skip end of block branches if IgnoreBr is true.
1656 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
1657                                         SmallVectorImpl<MachineOperand> &Cond,
1658                                         bool IgnoreBr) {
1659   MachineFunction &MF = *ToBBI.BB->getParent();
1660
1661   for (auto &I : *FromBBI.BB) {
1662     // Do not copy the end of the block branches.
1663     if (IgnoreBr && I.isBranch())
1664       break;
1665
1666     MachineInstr *MI = MF.CloneMachineInstr(&I);
1667     ToBBI.BB->insert(ToBBI.BB->end(), MI);
1668     ToBBI.NonPredSize++;
1669     unsigned ExtraPredCost = TII->getPredicationCost(I);
1670     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1671     if (NumCycles > 1)
1672       ToBBI.ExtraCost += NumCycles-1;
1673     ToBBI.ExtraCost2 += ExtraPredCost;
1674
1675     if (!TII->isPredicated(I) && !MI->isDebugValue()) {
1676       if (!TII->PredicateInstruction(*MI, Cond)) {
1677 #ifndef NDEBUG
1678         dbgs() << "Unable to predicate " << I << "!\n";
1679 #endif
1680         llvm_unreachable(nullptr);
1681       }
1682     }
1683
1684     // If the predicated instruction now redefines a register as the result of
1685     // if-conversion, add an implicit kill.
1686     UpdatePredRedefs(*MI, Redefs);
1687
1688     // Some kill flags may not be correct anymore.
1689     if (!DontKill.empty())
1690       RemoveKills(*MI, DontKill);
1691   }
1692
1693   if (!IgnoreBr) {
1694     std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
1695                                            FromBBI.BB->succ_end());
1696     MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1697     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1698
1699     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1700       MachineBasicBlock *Succ = Succs[i];
1701       // Fallthrough edge can't be transferred.
1702       if (Succ == FallThrough)
1703         continue;
1704       ToBBI.BB->addSuccessor(Succ);
1705     }
1706   }
1707
1708   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1709   ToBBI.Predicate.append(Cond.begin(), Cond.end());
1710
1711   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1712   ToBBI.IsAnalyzed = false;
1713
1714   ++NumDupBBs;
1715 }
1716
1717 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
1718 /// This will leave FromBB as an empty block, so remove all of its
1719 /// successor edges except for the fall-through edge.  If AddEdges is true,
1720 /// i.e., when FromBBI's branch is being moved, add those successor edges to
1721 /// ToBBI.
1722 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
1723   assert(!FromBBI.BB->hasAddressTaken() &&
1724          "Removing a BB whose address is taken!");
1725
1726   // In case FromBBI.BB contains terminators (e.g. return instruction),
1727   // first move the non-terminator instructions, then the terminators.
1728   MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator();
1729   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
1730   ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI);
1731
1732   // If FromBB has non-predicated terminator we should copy it at the end.
1733   if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI))
1734     ToTI = ToBBI.BB->end();
1735   ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end());
1736
1737   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
1738   // unknown probabilities into known ones.
1739   // FIXME: This usage is too tricky and in the future we would like to
1740   // eliminate all unknown probabilities in MBB.
1741   ToBBI.BB->normalizeSuccProbs();
1742
1743   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(),
1744                                                 FromBBI.BB->succ_end());
1745   MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1746   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1747   // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when
1748   // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB.
1749   auto To2FromProb = BranchProbability::getZero();
1750   if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) {
1751     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB);
1752     // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the
1753     // edge probability being merged to other edges when this edge is removed
1754     // later.
1755     ToBBI.BB->setSuccProbability(
1756         std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB),
1757         BranchProbability::getZero());
1758   }
1759
1760   for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) {
1761     MachineBasicBlock *Succ = FromSuccs[i];
1762     // Fallthrough edge can't be transferred.
1763     if (Succ == FallThrough)
1764       continue;
1765
1766     auto NewProb = BranchProbability::getZero();
1767     if (AddEdges) {
1768       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
1769       // which is a portion of the edge probability from FromBBI.BB to Succ. The
1770       // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if
1771       // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
1772       NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ);
1773
1774       // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This
1775       // only happens when if-converting a diamond CFG and FromBBI.BB is the
1776       // tail BB.  In this case FromBBI.BB post-dominates ToBBI.BB and hence we
1777       // could just use the probabilities on FromBBI.BB's out-edges when adding
1778       // new successors.
1779       if (!To2FromProb.isZero())
1780         NewProb *= To2FromProb;
1781     }
1782
1783     FromBBI.BB->removeSuccessor(Succ);
1784
1785     if (AddEdges) {
1786       // If the edge from ToBBI.BB to Succ already exists, update the
1787       // probability of this edge by adding NewProb to it. An example is shown
1788       // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we
1789       // don't have to set C as A's successor as it already is. We only need to
1790       // update the edge probability on A->C. Note that B will not be
1791       // immediately removed from A's successors. It is possible that B->D is
1792       // not removed either if D is a fallthrough of B. Later the edge A->D
1793       // (generated here) and B->D will be combined into one edge. To maintain
1794       // correct edge probability of this combined edge, we need to set the edge
1795       // probability of A->B to zero, which is already done above. The edge
1796       // probability on A->D is calculated by scaling the original probability
1797       // on A->B by the probability of B->D.
1798       //
1799       // Before ifcvt:      After ifcvt (assume B->D is kept):
1800       //
1801       //       A                A
1802       //      /|               /|\
1803       //     / B              / B|
1804       //    | /|             |  ||
1805       //    |/ |             |  |/
1806       //    C  D             C  D
1807       //
1808       if (ToBBI.BB->isSuccessor(Succ))
1809         ToBBI.BB->setSuccProbability(
1810             std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ),
1811             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
1812       else
1813         ToBBI.BB->addSuccessor(Succ, NewProb);
1814     }
1815   }
1816
1817   // Now FromBBI always falls through to the next block!
1818   if (NBB && !FromBBI.BB->isSuccessor(NBB))
1819     FromBBI.BB->addSuccessor(NBB);
1820
1821   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
1822   // we've done above.
1823   ToBBI.BB->normalizeSuccProbs();
1824
1825   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1826   FromBBI.Predicate.clear();
1827
1828   ToBBI.NonPredSize += FromBBI.NonPredSize;
1829   ToBBI.ExtraCost += FromBBI.ExtraCost;
1830   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
1831   FromBBI.NonPredSize = 0;
1832   FromBBI.ExtraCost = 0;
1833   FromBBI.ExtraCost2 = 0;
1834
1835   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1836   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
1837   ToBBI.IsAnalyzed = false;
1838   FromBBI.IsAnalyzed = false;
1839 }
1840
1841 FunctionPass *
1842 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
1843   return new IfConverter(std::move(Ftor));
1844 }