]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/InlineSpiller.cpp
Merge ^/head r307383 through r307735.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / InlineSpiller.cpp
1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "Spiller.h"
16 #include "SplitKit.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/LiveRangeEdit.h"
24 #include "llvm/CodeGen/LiveStackAnalysis.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "regalloc"
44
45 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
46 STATISTIC(NumSnippets,        "Number of spilled snippets");
47 STATISTIC(NumSpills,          "Number of spills inserted");
48 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
49 STATISTIC(NumReloads,         "Number of reloads inserted");
50 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
51 STATISTIC(NumFolded,          "Number of folded stack accesses");
52 STATISTIC(NumFoldedLoads,     "Number of folded loads");
53 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
54
55 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
56                                      cl::desc("Disable inline spill hoisting"));
57
58 namespace {
59 class HoistSpillHelper : private LiveRangeEdit::Delegate {
60   MachineFunction &MF;
61   LiveIntervals &LIS;
62   LiveStacks &LSS;
63   AliasAnalysis *AA;
64   MachineDominatorTree &MDT;
65   MachineLoopInfo &Loops;
66   VirtRegMap &VRM;
67   MachineFrameInfo &MFI;
68   MachineRegisterInfo &MRI;
69   const TargetInstrInfo &TII;
70   const TargetRegisterInfo &TRI;
71   const MachineBlockFrequencyInfo &MBFI;
72
73   InsertPointAnalysis IPA;
74
75   // Map from StackSlot to its original register.
76   DenseMap<int, unsigned> StackSlotToReg;
77   // Map from pair of (StackSlot and Original VNI) to a set of spills which
78   // have the same stackslot and have equal values defined by Original VNI.
79   // These spills are mergeable and are hoist candiates.
80   typedef MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>
81       MergeableSpillsMap;
82   MergeableSpillsMap MergeableSpills;
83
84   /// This is the map from original register to a set containing all its
85   /// siblings. To hoist a spill to another BB, we need to find out a live
86   /// sibling there and use it as the source of the new spill.
87   DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
88
89   bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB,
90                      unsigned &LiveReg);
91
92   void rmRedundantSpills(
93       SmallPtrSet<MachineInstr *, 16> &Spills,
94       SmallVectorImpl<MachineInstr *> &SpillsToRm,
95       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
96
97   void getVisitOrders(
98       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
99       SmallVectorImpl<MachineDomTreeNode *> &Orders,
100       SmallVectorImpl<MachineInstr *> &SpillsToRm,
101       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
102       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
103
104   void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI,
105                       SmallPtrSet<MachineInstr *, 16> &Spills,
106                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
107                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
108
109 public:
110   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
111                    VirtRegMap &vrm)
112       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
113         LSS(pass.getAnalysis<LiveStacks>()),
114         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
115         MDT(pass.getAnalysis<MachineDominatorTree>()),
116         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
117         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
118         TII(*mf.getSubtarget().getInstrInfo()),
119         TRI(*mf.getSubtarget().getRegisterInfo()),
120         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
121         IPA(LIS, mf.getNumBlockIDs()) {}
122
123   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
124                             unsigned Original);
125   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
126   void hoistAllSpills();
127   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
128 };
129
130 class InlineSpiller : public Spiller {
131   MachineFunction &MF;
132   LiveIntervals &LIS;
133   LiveStacks &LSS;
134   AliasAnalysis *AA;
135   MachineDominatorTree &MDT;
136   MachineLoopInfo &Loops;
137   VirtRegMap &VRM;
138   MachineFrameInfo &MFI;
139   MachineRegisterInfo &MRI;
140   const TargetInstrInfo &TII;
141   const TargetRegisterInfo &TRI;
142   const MachineBlockFrequencyInfo &MBFI;
143
144   // Variables that are valid during spill(), but used by multiple methods.
145   LiveRangeEdit *Edit;
146   LiveInterval *StackInt;
147   int StackSlot;
148   unsigned Original;
149
150   // All registers to spill to StackSlot, including the main register.
151   SmallVector<unsigned, 8> RegsToSpill;
152
153   // All COPY instructions to/from snippets.
154   // They are ignored since both operands refer to the same stack slot.
155   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
156
157   // Values that failed to remat at some point.
158   SmallPtrSet<VNInfo*, 8> UsedValues;
159
160   // Dead defs generated during spilling.
161   SmallVector<MachineInstr*, 8> DeadDefs;
162
163   // Object records spills information and does the hoisting.
164   HoistSpillHelper HSpiller;
165
166   ~InlineSpiller() override {}
167
168 public:
169   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
170       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
171         LSS(pass.getAnalysis<LiveStacks>()),
172         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
173         MDT(pass.getAnalysis<MachineDominatorTree>()),
174         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
175         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
176         TII(*mf.getSubtarget().getInstrInfo()),
177         TRI(*mf.getSubtarget().getRegisterInfo()),
178         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
179         HSpiller(pass, mf, vrm) {}
180
181   void spill(LiveRangeEdit &) override;
182   void postOptimization() override;
183
184 private:
185   bool isSnippet(const LiveInterval &SnipLI);
186   void collectRegsToSpill();
187
188   bool isRegToSpill(unsigned Reg) {
189     return std::find(RegsToSpill.begin(),
190                      RegsToSpill.end(), Reg) != RegsToSpill.end();
191   }
192
193   bool isSibling(unsigned Reg);
194   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
195   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
196
197   void markValueUsed(LiveInterval*, VNInfo*);
198   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
199   void reMaterializeAll();
200
201   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
202   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
203                          MachineInstr *LoadMI = nullptr);
204   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
205   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
206
207   void spillAroundUses(unsigned Reg);
208   void spillAll();
209 };
210 }
211
212 namespace llvm {
213
214 Spiller::~Spiller() { }
215 void Spiller::anchor() { }
216
217 Spiller *createInlineSpiller(MachineFunctionPass &pass,
218                              MachineFunction &mf,
219                              VirtRegMap &vrm) {
220   return new InlineSpiller(pass, mf, vrm);
221 }
222
223 }
224
225 //===----------------------------------------------------------------------===//
226 //                                Snippets
227 //===----------------------------------------------------------------------===//
228
229 // When spilling a virtual register, we also spill any snippets it is connected
230 // to. The snippets are small live ranges that only have a single real use,
231 // leftovers from live range splitting. Spilling them enables memory operand
232 // folding or tightens the live range around the single use.
233 //
234 // This minimizes register pressure and maximizes the store-to-load distance for
235 // spill slots which can be important in tight loops.
236
237 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
238 /// otherwise return 0.
239 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
240   if (!MI.isFullCopy())
241     return 0;
242   if (MI.getOperand(0).getReg() == Reg)
243     return MI.getOperand(1).getReg();
244   if (MI.getOperand(1).getReg() == Reg)
245     return MI.getOperand(0).getReg();
246   return 0;
247 }
248
249 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
250 /// It is assumed that SnipLI is a virtual register with the same original as
251 /// Edit->getReg().
252 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
253   unsigned Reg = Edit->getReg();
254
255   // A snippet is a tiny live range with only a single instruction using it
256   // besides copies to/from Reg or spills/fills. We accept:
257   //
258   //   %snip = COPY %Reg / FILL fi#
259   //   %snip = USE %snip
260   //   %Reg = COPY %snip / SPILL %snip, fi#
261   //
262   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
263     return false;
264
265   MachineInstr *UseMI = nullptr;
266
267   // Check that all uses satisfy our criteria.
268   for (MachineRegisterInfo::reg_instr_nodbg_iterator
269        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
270        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
271     MachineInstr &MI = *RI++;
272
273     // Allow copies to/from Reg.
274     if (isFullCopyOf(MI, Reg))
275       continue;
276
277     // Allow stack slot loads.
278     int FI;
279     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
280       continue;
281
282     // Allow stack slot stores.
283     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
284       continue;
285
286     // Allow a single additional instruction.
287     if (UseMI && &MI != UseMI)
288       return false;
289     UseMI = &MI;
290   }
291   return true;
292 }
293
294 /// collectRegsToSpill - Collect live range snippets that only have a single
295 /// real use.
296 void InlineSpiller::collectRegsToSpill() {
297   unsigned Reg = Edit->getReg();
298
299   // Main register always spills.
300   RegsToSpill.assign(1, Reg);
301   SnippetCopies.clear();
302
303   // Snippets all have the same original, so there can't be any for an original
304   // register.
305   if (Original == Reg)
306     return;
307
308   for (MachineRegisterInfo::reg_instr_iterator
309        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
310     MachineInstr &MI = *RI++;
311     unsigned SnipReg = isFullCopyOf(MI, Reg);
312     if (!isSibling(SnipReg))
313       continue;
314     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
315     if (!isSnippet(SnipLI))
316       continue;
317     SnippetCopies.insert(&MI);
318     if (isRegToSpill(SnipReg))
319       continue;
320     RegsToSpill.push_back(SnipReg);
321     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
322     ++NumSnippets;
323   }
324 }
325
326 bool InlineSpiller::isSibling(unsigned Reg) {
327   return TargetRegisterInfo::isVirtualRegister(Reg) &&
328            VRM.getOriginal(Reg) == Original;
329 }
330
331 /// It is beneficial to spill to earlier place in the same BB in case
332 /// as follows:
333 /// There is an alternative def earlier in the same MBB.
334 /// Hoist the spill as far as possible in SpillMBB. This can ease
335 /// register pressure:
336 ///
337 ///   x = def
338 ///   y = use x
339 ///   s = copy x
340 ///
341 /// Hoisting the spill of s to immediately after the def removes the
342 /// interference between x and y:
343 ///
344 ///   x = def
345 ///   spill x
346 ///   y = use x<kill>
347 ///
348 /// This hoist only helps when the copy kills its source.
349 ///
350 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
351                                        MachineInstr &CopyMI) {
352   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
353 #ifndef NDEBUG
354   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
355   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
356 #endif
357
358   unsigned SrcReg = CopyMI.getOperand(1).getReg();
359   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
360   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
361   LiveQueryResult SrcQ = SrcLI.Query(Idx);
362   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
363   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
364     return false;
365
366   // Conservatively extend the stack slot range to the range of the original
367   // value. We may be able to do better with stack slot coloring by being more
368   // careful here.
369   assert(StackInt && "No stack slot assigned yet.");
370   LiveInterval &OrigLI = LIS.getInterval(Original);
371   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
372   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
373   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
374                << *StackInt << '\n');
375
376   // We are going to spill SrcVNI immediately after its def, so clear out
377   // any later spills of the same value.
378   eliminateRedundantSpills(SrcLI, SrcVNI);
379
380   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
381   MachineBasicBlock::iterator MII;
382   if (SrcVNI->isPHIDef())
383     MII = MBB->SkipPHIsAndLabels(MBB->begin());
384   else {
385     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
386     assert(DefMI && "Defining instruction disappeared");
387     MII = DefMI;
388     ++MII;
389   }
390   // Insert spill without kill flag immediately after def.
391   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
392                           MRI.getRegClass(SrcReg), &TRI);
393   --MII; // Point to store instruction.
394   LIS.InsertMachineInstrInMaps(*MII);
395   DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
396
397   HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
398   ++NumSpills;
399   return true;
400 }
401
402 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
403 /// redundant spills of this value in SLI.reg and sibling copies.
404 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
405   assert(VNI && "Missing value");
406   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
407   WorkList.push_back(std::make_pair(&SLI, VNI));
408   assert(StackInt && "No stack slot assigned yet.");
409
410   do {
411     LiveInterval *LI;
412     std::tie(LI, VNI) = WorkList.pop_back_val();
413     unsigned Reg = LI->reg;
414     DEBUG(dbgs() << "Checking redundant spills for "
415                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
416
417     // Regs to spill are taken care of.
418     if (isRegToSpill(Reg))
419       continue;
420
421     // Add all of VNI's live range to StackInt.
422     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
423     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
424
425     // Find all spills and copies of VNI.
426     for (MachineRegisterInfo::use_instr_nodbg_iterator
427          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
428          UI != E; ) {
429       MachineInstr &MI = *UI++;
430       if (!MI.isCopy() && !MI.mayStore())
431         continue;
432       SlotIndex Idx = LIS.getInstructionIndex(MI);
433       if (LI->getVNInfoAt(Idx) != VNI)
434         continue;
435
436       // Follow sibling copies down the dominator tree.
437       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
438         if (isSibling(DstReg)) {
439            LiveInterval &DstLI = LIS.getInterval(DstReg);
440            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
441            assert(DstVNI && "Missing defined value");
442            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
443            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
444         }
445         continue;
446       }
447
448       // Erase spills.
449       int FI;
450       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
451         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
452         // eliminateDeadDefs won't normally remove stores, so switch opcode.
453         MI.setDesc(TII.get(TargetOpcode::KILL));
454         DeadDefs.push_back(&MI);
455         ++NumSpillsRemoved;
456         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
457           --NumSpills;
458       }
459     }
460   } while (!WorkList.empty());
461 }
462
463
464 //===----------------------------------------------------------------------===//
465 //                            Rematerialization
466 //===----------------------------------------------------------------------===//
467
468 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
469 /// instruction cannot be eliminated. See through snippet copies
470 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
471   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
472   WorkList.push_back(std::make_pair(LI, VNI));
473   do {
474     std::tie(LI, VNI) = WorkList.pop_back_val();
475     if (!UsedValues.insert(VNI).second)
476       continue;
477
478     if (VNI->isPHIDef()) {
479       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
480       for (MachineBasicBlock *P : MBB->predecessors()) {
481         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
482         if (PVNI)
483           WorkList.push_back(std::make_pair(LI, PVNI));
484       }
485       continue;
486     }
487
488     // Follow snippet copies.
489     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
490     if (!SnippetCopies.count(MI))
491       continue;
492     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
493     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
494     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
495     assert(SnipVNI && "Snippet undefined before copy");
496     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
497   } while (!WorkList.empty());
498 }
499
500 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
501 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
502
503   // Analyze instruction
504   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
505   MIBundleOperands::VirtRegInfo RI =
506       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
507
508   if (!RI.Reads)
509     return false;
510
511   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
512   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
513
514   if (!ParentVNI) {
515     DEBUG(dbgs() << "\tadding <undef> flags: ");
516     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
517       MachineOperand &MO = MI.getOperand(i);
518       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
519         MO.setIsUndef();
520     }
521     DEBUG(dbgs() << UseIdx << '\t' << MI);
522     return true;
523   }
524
525   if (SnippetCopies.count(&MI))
526     return false;
527
528   LiveInterval &OrigLI = LIS.getInterval(Original);
529   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
530   LiveRangeEdit::Remat RM(ParentVNI);
531   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
532
533   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
534     markValueUsed(&VirtReg, ParentVNI);
535     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
536     return false;
537   }
538
539   // If the instruction also writes VirtReg.reg, it had better not require the
540   // same register for uses and defs.
541   if (RI.Tied) {
542     markValueUsed(&VirtReg, ParentVNI);
543     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
544     return false;
545   }
546
547   // Before rematerializing into a register for a single instruction, try to
548   // fold a load into the instruction. That avoids allocating a new register.
549   if (RM.OrigMI->canFoldAsLoad() &&
550       foldMemoryOperand(Ops, RM.OrigMI)) {
551     Edit->markRematerialized(RM.ParentVNI);
552     ++NumFoldedLoads;
553     return true;
554   }
555
556   // Alocate a new register for the remat.
557   unsigned NewVReg = Edit->createFrom(Original);
558
559   // Finally we can rematerialize OrigMI before MI.
560   SlotIndex DefIdx =
561       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
562   (void)DefIdx;
563   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
564                << *LIS.getInstructionFromIndex(DefIdx));
565
566   // Replace operands
567   for (const auto &OpPair : Ops) {
568     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
569     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
570       MO.setReg(NewVReg);
571       MO.setIsKill();
572     }
573   }
574   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
575
576   ++NumRemats;
577   return true;
578 }
579
580 /// reMaterializeAll - Try to rematerialize as many uses as possible,
581 /// and trim the live ranges after.
582 void InlineSpiller::reMaterializeAll() {
583   if (!Edit->anyRematerializable(AA))
584     return;
585
586   UsedValues.clear();
587
588   // Try to remat before all uses of snippets.
589   bool anyRemat = false;
590   for (unsigned Reg : RegsToSpill) {
591     LiveInterval &LI = LIS.getInterval(Reg);
592     for (MachineRegisterInfo::reg_bundle_iterator
593            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
594          RegI != E; ) {
595       MachineInstr &MI = *RegI++;
596
597       // Debug values are not allowed to affect codegen.
598       if (MI.isDebugValue())
599         continue;
600
601       anyRemat |= reMaterializeFor(LI, MI);
602     }
603   }
604   if (!anyRemat)
605     return;
606
607   // Remove any values that were completely rematted.
608   for (unsigned Reg : RegsToSpill) {
609     LiveInterval &LI = LIS.getInterval(Reg);
610     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
611          I != E; ++I) {
612       VNInfo *VNI = *I;
613       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
614         continue;
615       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
616       MI->addRegisterDead(Reg, &TRI);
617       if (!MI->allDefsAreDead())
618         continue;
619       DEBUG(dbgs() << "All defs dead: " << *MI);
620       DeadDefs.push_back(MI);
621     }
622   }
623
624   // Eliminate dead code after remat. Note that some snippet copies may be
625   // deleted here.
626   if (DeadDefs.empty())
627     return;
628   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
629   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
630
631   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
632   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
633   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
634   // removed, PHI VNI are still left in the LiveInterval.
635   // So to get rid of unused reg, we need to check whether it has non-dbg
636   // reference instead of whether it has non-empty interval.
637   unsigned ResultPos = 0;
638   for (unsigned Reg : RegsToSpill) {
639     if (MRI.reg_nodbg_empty(Reg)) {
640       Edit->eraseVirtReg(Reg);
641       continue;
642     }
643     assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) &&
644            "Reg with empty interval has reference");
645     RegsToSpill[ResultPos++] = Reg;
646   }
647   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
648   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
649 }
650
651
652 //===----------------------------------------------------------------------===//
653 //                                 Spilling
654 //===----------------------------------------------------------------------===//
655
656 /// If MI is a load or store of StackSlot, it can be removed.
657 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
658   int FI = 0;
659   unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
660   bool IsLoad = InstrReg;
661   if (!IsLoad)
662     InstrReg = TII.isStoreToStackSlot(*MI, FI);
663
664   // We have a stack access. Is it the right register and slot?
665   if (InstrReg != Reg || FI != StackSlot)
666     return false;
667
668   if (!IsLoad)
669     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
670
671   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
672   LIS.RemoveMachineInstrFromMaps(*MI);
673   MI->eraseFromParent();
674
675   if (IsLoad) {
676     ++NumReloadsRemoved;
677     --NumReloads;
678   } else {
679     ++NumSpillsRemoved;
680     --NumSpills;
681   }
682
683   return true;
684 }
685
686 #if !defined(NDEBUG)
687 // Dump the range of instructions from B to E with their slot indexes.
688 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
689                                                MachineBasicBlock::iterator E,
690                                                LiveIntervals const &LIS,
691                                                const char *const header,
692                                                unsigned VReg =0) {
693   char NextLine = '\n';
694   char SlotIndent = '\t';
695
696   if (std::next(B) == E) {
697     NextLine = ' ';
698     SlotIndent = ' ';
699   }
700
701   dbgs() << '\t' << header << ": " << NextLine;
702
703   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
704     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
705
706     // If a register was passed in and this instruction has it as a
707     // destination that is marked as an early clobber, print the
708     // early-clobber slot index.
709     if (VReg) {
710       MachineOperand *MO = I->findRegisterDefOperand(VReg);
711       if (MO && MO->isEarlyClobber())
712         Idx = Idx.getRegSlot(true);
713     }
714
715     dbgs() << SlotIndent << Idx << '\t' << *I;
716   }
717 }
718 #endif
719
720 /// foldMemoryOperand - Try folding stack slot references in Ops into their
721 /// instructions.
722 ///
723 /// @param Ops    Operand indices from analyzeVirtReg().
724 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
725 /// @return       True on success.
726 bool InlineSpiller::
727 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
728                   MachineInstr *LoadMI) {
729   if (Ops.empty())
730     return false;
731   // Don't attempt folding in bundles.
732   MachineInstr *MI = Ops.front().first;
733   if (Ops.back().first != MI || MI->isBundled())
734     return false;
735
736   bool WasCopy = MI->isCopy();
737   unsigned ImpReg = 0;
738
739   bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
740                        MI->getOpcode() == TargetOpcode::PATCHPOINT ||
741                        MI->getOpcode() == TargetOpcode::STACKMAP);
742
743   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
744   // operands.
745   SmallVector<unsigned, 8> FoldOps;
746   for (const auto &OpPair : Ops) {
747     unsigned Idx = OpPair.second;
748     assert(MI == OpPair.first && "Instruction conflict during operand folding");
749     MachineOperand &MO = MI->getOperand(Idx);
750     if (MO.isImplicit()) {
751       ImpReg = MO.getReg();
752       continue;
753     }
754     // FIXME: Teach targets to deal with subregs.
755     if (!SpillSubRegs && MO.getSubReg())
756       return false;
757     // We cannot fold a load instruction into a def.
758     if (LoadMI && MO.isDef())
759       return false;
760     // Tied use operands should not be passed to foldMemoryOperand.
761     if (!MI->isRegTiedToDefOperand(Idx))
762       FoldOps.push_back(Idx);
763   }
764
765   MachineInstrSpan MIS(MI);
766
767   MachineInstr *FoldMI =
768       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
769              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
770   if (!FoldMI)
771     return false;
772
773   // Remove LIS for any dead defs in the original MI not in FoldMI.
774   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
775     if (!MO->isReg())
776       continue;
777     unsigned Reg = MO->getReg();
778     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
779         MRI.isReserved(Reg)) {
780       continue;
781     }
782     // Skip non-Defs, including undef uses and internal reads.
783     if (MO->isUse())
784       continue;
785     MIBundleOperands::PhysRegInfo RI =
786         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
787     if (RI.FullyDefined)
788       continue;
789     // FoldMI does not define this physreg. Remove the LI segment.
790     assert(MO->isDead() && "Cannot fold physreg def");
791     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
792     LIS.removePhysRegDefAt(Reg, Idx);
793   }
794
795   int FI;
796   if (TII.isStoreToStackSlot(*MI, FI) &&
797       HSpiller.rmFromMergeableSpills(*MI, FI))
798     --NumSpills;
799   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
800   MI->eraseFromParent();
801
802   // Insert any new instructions other than FoldMI into the LIS maps.
803   assert(!MIS.empty() && "Unexpected empty span of instructions!");
804   for (MachineInstr &MI : MIS)
805     if (&MI != FoldMI)
806       LIS.InsertMachineInstrInMaps(MI);
807
808   // TII.foldMemoryOperand may have left some implicit operands on the
809   // instruction.  Strip them.
810   if (ImpReg)
811     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
812       MachineOperand &MO = FoldMI->getOperand(i - 1);
813       if (!MO.isReg() || !MO.isImplicit())
814         break;
815       if (MO.getReg() == ImpReg)
816         FoldMI->RemoveOperand(i - 1);
817     }
818
819   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
820                                            "folded"));
821
822   if (!WasCopy)
823     ++NumFolded;
824   else if (Ops.front().second == 0) {
825     ++NumSpills;
826     HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
827   } else
828     ++NumReloads;
829   return true;
830 }
831
832 void InlineSpiller::insertReload(unsigned NewVReg,
833                                  SlotIndex Idx,
834                                  MachineBasicBlock::iterator MI) {
835   MachineBasicBlock &MBB = *MI->getParent();
836
837   MachineInstrSpan MIS(MI);
838   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
839                            MRI.getRegClass(NewVReg), &TRI);
840
841   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
842
843   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
844                                            NewVReg));
845   ++NumReloads;
846 }
847
848 /// insertSpill - Insert a spill of NewVReg after MI.
849 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
850                                  MachineBasicBlock::iterator MI) {
851   MachineBasicBlock &MBB = *MI->getParent();
852
853   MachineInstrSpan MIS(MI);
854   TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
855                           MRI.getRegClass(NewVReg), &TRI);
856
857   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
858
859   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
860                                            "spill"));
861   ++NumSpills;
862   HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
863 }
864
865 /// spillAroundUses - insert spill code around each use of Reg.
866 void InlineSpiller::spillAroundUses(unsigned Reg) {
867   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
868   LiveInterval &OldLI = LIS.getInterval(Reg);
869
870   // Iterate over instructions using Reg.
871   for (MachineRegisterInfo::reg_bundle_iterator
872        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
873        RegI != E; ) {
874     MachineInstr *MI = &*(RegI++);
875
876     // Debug values are not allowed to affect codegen.
877     if (MI->isDebugValue()) {
878       // Modify DBG_VALUE now that the value is in a spill slot.
879       bool IsIndirect = MI->isIndirectDebugValue();
880       uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
881       const MDNode *Var = MI->getDebugVariable();
882       const MDNode *Expr = MI->getDebugExpression();
883       DebugLoc DL = MI->getDebugLoc();
884       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
885       MachineBasicBlock *MBB = MI->getParent();
886       assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
887              "Expected inlined-at fields to agree");
888       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
889           .addFrameIndex(StackSlot)
890           .addImm(Offset)
891           .addMetadata(Var)
892           .addMetadata(Expr);
893       continue;
894     }
895
896     // Ignore copies to/from snippets. We'll delete them.
897     if (SnippetCopies.count(MI))
898       continue;
899
900     // Stack slot accesses may coalesce away.
901     if (coalesceStackAccess(MI, Reg))
902       continue;
903
904     // Analyze instruction.
905     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
906     MIBundleOperands::VirtRegInfo RI =
907         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
908
909     // Find the slot index where this instruction reads and writes OldLI.
910     // This is usually the def slot, except for tied early clobbers.
911     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
912     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
913       if (SlotIndex::isSameInstr(Idx, VNI->def))
914         Idx = VNI->def;
915
916     // Check for a sibling copy.
917     unsigned SibReg = isFullCopyOf(*MI, Reg);
918     if (SibReg && isSibling(SibReg)) {
919       // This may actually be a copy between snippets.
920       if (isRegToSpill(SibReg)) {
921         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
922         SnippetCopies.insert(MI);
923         continue;
924       }
925       if (RI.Writes) {
926         if (hoistSpillInsideBB(OldLI, *MI)) {
927           // This COPY is now dead, the value is already in the stack slot.
928           MI->getOperand(0).setIsDead();
929           DeadDefs.push_back(MI);
930           continue;
931         }
932       } else {
933         // This is a reload for a sib-reg copy. Drop spills downstream.
934         LiveInterval &SibLI = LIS.getInterval(SibReg);
935         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
936         // The COPY will fold to a reload below.
937       }
938     }
939
940     // Attempt to fold memory ops.
941     if (foldMemoryOperand(Ops))
942       continue;
943
944     // Create a new virtual register for spill/fill.
945     // FIXME: Infer regclass from instruction alone.
946     unsigned NewVReg = Edit->createFrom(Reg);
947
948     if (RI.Reads)
949       insertReload(NewVReg, Idx, MI);
950
951     // Rewrite instruction operands.
952     bool hasLiveDef = false;
953     for (const auto &OpPair : Ops) {
954       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
955       MO.setReg(NewVReg);
956       if (MO.isUse()) {
957         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
958           MO.setIsKill();
959       } else {
960         if (!MO.isDead())
961           hasLiveDef = true;
962       }
963     }
964     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
965
966     // FIXME: Use a second vreg if instruction has no tied ops.
967     if (RI.Writes)
968       if (hasLiveDef)
969         insertSpill(NewVReg, true, MI);
970   }
971 }
972
973 /// spillAll - Spill all registers remaining after rematerialization.
974 void InlineSpiller::spillAll() {
975   // Update LiveStacks now that we are committed to spilling.
976   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
977     StackSlot = VRM.assignVirt2StackSlot(Original);
978     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
979     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
980   } else
981     StackInt = &LSS.getInterval(StackSlot);
982
983   if (Original != Edit->getReg())
984     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
985
986   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
987   for (unsigned Reg : RegsToSpill)
988     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
989                                      StackInt->getValNumInfo(0));
990   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
991
992   // Spill around uses of all RegsToSpill.
993   for (unsigned Reg : RegsToSpill)
994     spillAroundUses(Reg);
995
996   // Hoisted spills may cause dead code.
997   if (!DeadDefs.empty()) {
998     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
999     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1000   }
1001
1002   // Finally delete the SnippetCopies.
1003   for (unsigned Reg : RegsToSpill) {
1004     for (MachineRegisterInfo::reg_instr_iterator
1005          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1006          RI != E; ) {
1007       MachineInstr &MI = *(RI++);
1008       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1009       // FIXME: Do this with a LiveRangeEdit callback.
1010       LIS.RemoveMachineInstrFromMaps(MI);
1011       MI.eraseFromParent();
1012     }
1013   }
1014
1015   // Delete all spilled registers.
1016   for (unsigned Reg : RegsToSpill)
1017     Edit->eraseVirtReg(Reg);
1018 }
1019
1020 void InlineSpiller::spill(LiveRangeEdit &edit) {
1021   ++NumSpilledRanges;
1022   Edit = &edit;
1023   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1024          && "Trying to spill a stack slot.");
1025   // Share a stack slot among all descendants of Original.
1026   Original = VRM.getOriginal(edit.getReg());
1027   StackSlot = VRM.getStackSlot(Original);
1028   StackInt = nullptr;
1029
1030   DEBUG(dbgs() << "Inline spilling "
1031                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1032                << ':' << edit.getParent()
1033                << "\nFrom original " << PrintReg(Original) << '\n');
1034   assert(edit.getParent().isSpillable() &&
1035          "Attempting to spill already spilled value.");
1036   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1037
1038   collectRegsToSpill();
1039   reMaterializeAll();
1040
1041   // Remat may handle everything.
1042   if (!RegsToSpill.empty())
1043     spillAll();
1044
1045   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1046 }
1047
1048 /// Optimizations after all the reg selections and spills are done.
1049 ///
1050 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1051
1052 /// When a spill is inserted, add the spill to MergeableSpills map.
1053 ///
1054 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1055                                             unsigned Original) {
1056   StackSlotToReg[StackSlot] = Original;
1057   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1058   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1059   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1060   MergeableSpills[MIdx].insert(&Spill);
1061 }
1062
1063 /// When a spill is removed, remove the spill from MergeableSpills map.
1064 /// Return true if the spill is removed successfully.
1065 ///
1066 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1067                                              int StackSlot) {
1068   int Original = StackSlotToReg[StackSlot];
1069   if (!Original)
1070     return false;
1071   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1072   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1073   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1074   return MergeableSpills[MIdx].erase(&Spill);
1075 }
1076
1077 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1078 /// i.e., there should be a living sibling of OrigReg at the insert point.
1079 ///
1080 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI,
1081                                      MachineBasicBlock &BB, unsigned &LiveReg) {
1082   SlotIndex Idx;
1083   LiveInterval &OrigLI = LIS.getInterval(OrigReg);
1084   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1085   if (MI != BB.end())
1086     Idx = LIS.getInstructionIndex(*MI);
1087   else
1088     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1089   SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1090   assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI &&
1091          "Unexpected VNI");
1092
1093   for (auto const SibReg : Siblings) {
1094     LiveInterval &LI = LIS.getInterval(SibReg);
1095     VNInfo *VNI = LI.getVNInfoAt(Idx);
1096     if (VNI) {
1097       LiveReg = SibReg;
1098       return true;
1099     }
1100   }
1101   return false;
1102 }
1103
1104 /// Remove redundant spills in the same BB. Save those redundant spills in
1105 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1106 ///
1107 void HoistSpillHelper::rmRedundantSpills(
1108     SmallPtrSet<MachineInstr *, 16> &Spills,
1109     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1110     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1111   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1112   // another spill inside. If a BB contains more than one spill, only keep the
1113   // earlier spill with smaller SlotIndex.
1114   for (const auto CurrentSpill : Spills) {
1115     MachineBasicBlock *Block = CurrentSpill->getParent();
1116     MachineDomTreeNode *Node = MDT.DT->getNode(Block);
1117     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1118     if (PrevSpill) {
1119       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1120       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1121       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1122       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1123       SpillsToRm.push_back(SpillToRm);
1124       SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep;
1125     } else {
1126       SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill;
1127     }
1128   }
1129   for (const auto SpillToRm : SpillsToRm)
1130     Spills.erase(SpillToRm);
1131 }
1132
1133 /// Starting from \p Root find a top-down traversal order of the dominator
1134 /// tree to visit all basic blocks containing the elements of \p Spills.
1135 /// Redundant spills will be found and put into \p SpillsToRm at the same
1136 /// time. \p SpillBBToSpill will be populated as part of the process and
1137 /// maps a basic block to the first store occurring in the basic block.
1138 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1139 ///
1140 void HoistSpillHelper::getVisitOrders(
1141     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1142     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1143     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1144     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1145     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1146   // The set contains all the possible BB nodes to which we may hoist
1147   // original spills.
1148   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1149   // Save the BB nodes on the path from the first BB node containing
1150   // non-redundant spill to the Root node.
1151   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1152   // All the spills to be hoisted must originate from a single def instruction
1153   // to the OrigReg. It means the def instruction should dominate all the spills
1154   // to be hoisted. We choose the BB where the def instruction is located as
1155   // the Root.
1156   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1157   // For every node on the dominator tree with spill, walk up on the dominator
1158   // tree towards the Root node until it is reached. If there is other node
1159   // containing spill in the middle of the path, the previous spill saw will
1160   // be redundant and the node containing it will be removed. All the nodes on
1161   // the path starting from the first node with non-redundant spill to the Root
1162   // node will be added to the WorkSet, which will contain all the possible
1163   // locations where spills may be hoisted to after the loop below is done.
1164   for (const auto Spill : Spills) {
1165     MachineBasicBlock *Block = Spill->getParent();
1166     MachineDomTreeNode *Node = MDT[Block];
1167     MachineInstr *SpillToRm = nullptr;
1168     while (Node != RootIDomNode) {
1169       // If Node dominates Block, and it already contains a spill, the spill in
1170       // Block will be redundant.
1171       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1172         SpillToRm = SpillBBToSpill[MDT[Block]];
1173         break;
1174         /// If we see the Node already in WorkSet, the path from the Node to
1175         /// the Root node must already be traversed by another spill.
1176         /// Then no need to repeat.
1177       } else if (WorkSet.count(Node)) {
1178         break;
1179       } else {
1180         NodesOnPath.insert(Node);
1181       }
1182       Node = Node->getIDom();
1183     }
1184     if (SpillToRm) {
1185       SpillsToRm.push_back(SpillToRm);
1186     } else {
1187       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1188       // set the initial status before hoisting start. The value of BBs
1189       // containing original spills is set to 0, in order to descriminate
1190       // with BBs containing hoisted spills which will be inserted to
1191       // SpillsToKeep later during hoisting.
1192       SpillsToKeep[MDT[Block]] = 0;
1193       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1194     }
1195     NodesOnPath.clear();
1196   }
1197
1198   // Sort the nodes in WorkSet in top-down order and save the nodes
1199   // in Orders. Orders will be used for hoisting in runHoistSpills.
1200   unsigned idx = 0;
1201   Orders.push_back(MDT.DT->getNode(Root));
1202   do {
1203     MachineDomTreeNode *Node = Orders[idx++];
1204     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1205     unsigned NumChildren = Children.size();
1206     for (unsigned i = 0; i != NumChildren; ++i) {
1207       MachineDomTreeNode *Child = Children[i];
1208       if (WorkSet.count(Child))
1209         Orders.push_back(Child);
1210     }
1211   } while (idx != Orders.size());
1212   assert(Orders.size() == WorkSet.size() &&
1213          "Orders have different size with WorkSet");
1214
1215 #ifndef NDEBUG
1216   DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1217   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1218   for (; RIt != Orders.rend(); RIt++)
1219     DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1220   DEBUG(dbgs() << "\n");
1221 #endif
1222 }
1223
1224 /// Try to hoist spills according to BB hotness. The spills to removed will
1225 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1226 /// \p SpillsToIns.
1227 ///
1228 void HoistSpillHelper::runHoistSpills(
1229     unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills,
1230     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1231     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1232   // Visit order of dominator tree nodes.
1233   SmallVector<MachineDomTreeNode *, 32> Orders;
1234   // SpillsToKeep contains all the nodes where spills are to be inserted
1235   // during hoisting. If the spill to be inserted is an original spill
1236   // (not a hoisted one), the value of the map entry is 0. If the spill
1237   // is a hoisted spill, the value of the map entry is the VReg to be used
1238   // as the source of the spill.
1239   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1240   // Map from BB to the first spill inside of it.
1241   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1242
1243   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1244
1245   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1246   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1247                  SpillBBToSpill);
1248
1249   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1250   // nodes set and the cost of all the spills inside those nodes.
1251   // The nodes set are the locations where spills are to be inserted
1252   // in the subtree of current node.
1253   typedef std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>
1254       NodesCostPair;
1255   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1256   // Iterate Orders set in reverse order, which will be a bottom-up order
1257   // in the dominator tree. Once we visit a dom tree node, we know its
1258   // children have already been visited and the spill locations in the
1259   // subtrees of all the children have been determined.
1260   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1261   for (; RIt != Orders.rend(); RIt++) {
1262     MachineBasicBlock *Block = (*RIt)->getBlock();
1263
1264     // If Block contains an original spill, simply continue.
1265     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1266       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1267       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1268       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1269       continue;
1270     }
1271
1272     // Collect spills in subtree of current node (*RIt) to
1273     // SpillsInSubTreeMap[*RIt].first.
1274     const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1275     unsigned NumChildren = Children.size();
1276     for (unsigned i = 0; i != NumChildren; ++i) {
1277       MachineDomTreeNode *Child = Children[i];
1278       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1279         continue;
1280       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1281       // should be placed before getting the begin and end iterators of
1282       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1283       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1284       // and the map grows and then the original buckets in the map are moved.
1285       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1286           SpillsInSubTreeMap[*RIt].first;
1287       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1288       SubTreeCost += SpillsInSubTreeMap[Child].second;
1289       auto BI = SpillsInSubTreeMap[Child].first.begin();
1290       auto EI = SpillsInSubTreeMap[Child].first.end();
1291       SpillsInSubTree.insert(BI, EI);
1292       SpillsInSubTreeMap.erase(Child);
1293     }
1294
1295     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1296           SpillsInSubTreeMap[*RIt].first;
1297     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1298     // No spills in subtree, simply continue.
1299     if (SpillsInSubTree.empty())
1300       continue;
1301
1302     // Check whether Block is a possible candidate to insert spill.
1303     unsigned LiveReg = 0;
1304     if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg))
1305       continue;
1306
1307     // If there are multiple spills that could be merged, bias a little
1308     // to hoist the spill.
1309     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1310                                        ? BranchProbability(9, 10)
1311                                        : BranchProbability(1, 1);
1312     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1313       // Hoist: Move spills to current Block.
1314       for (const auto SpillBB : SpillsInSubTree) {
1315         // When SpillBB is a BB contains original spill, insert the spill
1316         // to SpillsToRm.
1317         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1318             !SpillsToKeep[SpillBB]) {
1319           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1320           SpillsToRm.push_back(SpillToRm);
1321         }
1322         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1323         SpillsToKeep.erase(SpillBB);
1324       }
1325       // Current Block is the BB containing the new hoisted spill. Add it to
1326       // SpillsToKeep. LiveReg is the source of the new spill.
1327       SpillsToKeep[*RIt] = LiveReg;
1328       DEBUG({
1329         dbgs() << "spills in BB: ";
1330         for (const auto Rspill : SpillsInSubTree)
1331           dbgs() << Rspill->getBlock()->getNumber() << " ";
1332         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1333                << "\n";
1334       });
1335       SpillsInSubTree.clear();
1336       SpillsInSubTree.insert(*RIt);
1337       SubTreeCost = MBFI.getBlockFreq(Block);
1338     }
1339   }
1340   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1341   // save them to SpillsToIns.
1342   for (const auto Ent : SpillsToKeep) {
1343     if (Ent.second)
1344       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1345   }
1346 }
1347
1348 /// For spills with equal values, remove redundant spills and hoist those left
1349 /// to less hot spots.
1350 ///
1351 /// Spills with equal values will be collected into the same set in
1352 /// MergeableSpills when spill is inserted. These equal spills are originated
1353 /// from the same defining instruction and are dominated by the instruction.
1354 /// Before hoisting all the equal spills, redundant spills inside in the same
1355 /// BB are first marked to be deleted. Then starting from the spills left, walk
1356 /// up on the dominator tree towards the Root node where the define instruction
1357 /// is located, mark the dominated spills to be deleted along the way and
1358 /// collect the BB nodes on the path from non-dominated spills to the define
1359 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1360 /// where we are considering to hoist the spills. We iterate the WorkSet in
1361 /// bottom-up order, and for each node, we will decide whether to hoist spills
1362 /// inside its subtree to that node. In this way, we can get benefit locally
1363 /// even if hoisting all the equal spills to one cold place is impossible.
1364 ///
1365 void HoistSpillHelper::hoistAllSpills() {
1366   SmallVector<unsigned, 4> NewVRegs;
1367   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1368
1369   // Save the mapping between stackslot and its original reg.
1370   DenseMap<int, unsigned> SlotToOrigReg;
1371   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1372     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1373     int Slot = VRM.getStackSlot(Reg);
1374     if (Slot != VirtRegMap::NO_STACK_SLOT)
1375       SlotToOrigReg[Slot] = VRM.getOriginal(Reg);
1376     unsigned Original = VRM.getPreSplitReg(Reg);
1377     if (!MRI.def_empty(Reg))
1378       Virt2SiblingsMap[Original].insert(Reg);
1379   }
1380
1381   // Each entry in MergeableSpills contains a spill set with equal values.
1382   for (auto &Ent : MergeableSpills) {
1383     int Slot = Ent.first.first;
1384     unsigned OrigReg = SlotToOrigReg[Slot];
1385     LiveInterval &OrigLI = LIS.getInterval(OrigReg);
1386     VNInfo *OrigVNI = Ent.first.second;
1387     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1388     if (Ent.second.empty())
1389       continue;
1390
1391     DEBUG({
1392       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1393              << "Equal spills in BB: ";
1394       for (const auto spill : EqValSpills)
1395         dbgs() << spill->getParent()->getNumber() << " ";
1396       dbgs() << "\n";
1397     });
1398
1399     // SpillsToRm is the spill set to be removed from EqValSpills.
1400     SmallVector<MachineInstr *, 16> SpillsToRm;
1401     // SpillsToIns is the spill set to be newly inserted after hoisting.
1402     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1403
1404     runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1405
1406     DEBUG({
1407       dbgs() << "Finally inserted spills in BB: ";
1408       for (const auto Ispill : SpillsToIns)
1409         dbgs() << Ispill.first->getNumber() << " ";
1410       dbgs() << "\nFinally removed spills in BB: ";
1411       for (const auto Rspill : SpillsToRm)
1412         dbgs() << Rspill->getParent()->getNumber() << " ";
1413       dbgs() << "\n";
1414     });
1415
1416     // Stack live range update.
1417     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1418     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1419       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1420                                      StackIntvl.getValNumInfo(0));
1421
1422     // Insert hoisted spills.
1423     for (auto const Insert : SpillsToIns) {
1424       MachineBasicBlock *BB = Insert.first;
1425       unsigned LiveReg = Insert.second;
1426       MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1427       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1428                               MRI.getRegClass(LiveReg), &TRI);
1429       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1430       ++NumSpills;
1431     }
1432
1433     // Remove redundant spills or change them to dead instructions.
1434     NumSpills -= SpillsToRm.size();
1435     for (auto const RMEnt : SpillsToRm) {
1436       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1437       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1438         MachineOperand &MO = RMEnt->getOperand(i - 1);
1439         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1440           RMEnt->RemoveOperand(i - 1);
1441       }
1442     }
1443     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1444   }
1445 }
1446
1447 /// For VirtReg clone, the \p New register should have the same physreg or
1448 /// stackslot as the \p old register.
1449 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1450   if (VRM.hasPhys(Old))
1451     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1452   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1453     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1454   else
1455     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1456 }