]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp
MFC r309362:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / InterleavedAccessPass.cpp
1 //===--------------------- InterleavedAccessPass.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Interleaved Access pass, which identifies
11 // interleaved memory accesses and transforms them into target specific
12 // intrinsics.
13 //
14 // An interleaved load reads data from memory into several vectors, with
15 // DE-interleaving the data on a factor. An interleaved store writes several
16 // vectors to memory with RE-interleaving the data on a factor.
17 //
18 // As interleaved accesses are difficult to identified in CodeGen (mainly
19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
20 // IR), we identify and transform them to intrinsics in this pass so the
21 // intrinsics can be easily matched into target specific instructions later in
22 // CodeGen.
23 //
24 // E.g. An interleaved load (Factor = 2):
25 //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
26 //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
27 //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
28 //
29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
30 // intrinsic in ARM backend.
31 //
32 // E.g. An interleaved store (Factor = 3):
33 //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
34 //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
35 //        store <12 x i32> %i.vec, <12 x i32>* %ptr
36 //
37 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
38 // intrinsic in ARM backend.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/CodeGen/Passes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/InstIterator.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "interleaved-access"
54
55 static cl::opt<bool> LowerInterleavedAccesses(
56     "lower-interleaved-accesses",
57     cl::desc("Enable lowering interleaved accesses to intrinsics"),
58     cl::init(true), cl::Hidden);
59
60 static unsigned MaxFactor; // The maximum supported interleave factor.
61
62 namespace {
63
64 class InterleavedAccess : public FunctionPass {
65
66 public:
67   static char ID;
68   InterleavedAccess(const TargetMachine *TM = nullptr)
69       : FunctionPass(ID), DT(nullptr), TM(TM), TLI(nullptr) {
70     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
71   }
72
73   const char *getPassName() const override { return "Interleaved Access Pass"; }
74
75   bool runOnFunction(Function &F) override;
76
77   void getAnalysisUsage(AnalysisUsage &AU) const override {
78     AU.addRequired<DominatorTreeWrapperPass>();
79     AU.addPreserved<DominatorTreeWrapperPass>();
80   }
81
82 private:
83   DominatorTree *DT;
84   const TargetMachine *TM;
85   const TargetLowering *TLI;
86
87   /// \brief Transform an interleaved load into target specific intrinsics.
88   bool lowerInterleavedLoad(LoadInst *LI,
89                             SmallVector<Instruction *, 32> &DeadInsts);
90
91   /// \brief Transform an interleaved store into target specific intrinsics.
92   bool lowerInterleavedStore(StoreInst *SI,
93                              SmallVector<Instruction *, 32> &DeadInsts);
94
95   /// \brief Returns true if the uses of an interleaved load by the
96   /// extractelement instructions in \p Extracts can be replaced by uses of the
97   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
98   /// replacements are also performed.
99   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
100                           ArrayRef<ShuffleVectorInst *> Shuffles);
101 };
102 } // end anonymous namespace.
103
104 char InterleavedAccess::ID = 0;
105 INITIALIZE_TM_PASS_BEGIN(
106     InterleavedAccess, "interleaved-access",
107     "Lower interleaved memory accesses to target specific intrinsics", false,
108     false)
109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
110 INITIALIZE_TM_PASS_END(
111     InterleavedAccess, "interleaved-access",
112     "Lower interleaved memory accesses to target specific intrinsics", false,
113     false)
114
115 FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
116   return new InterleavedAccess(TM);
117 }
118
119 /// \brief Check if the mask is a DE-interleave mask of the given factor
120 /// \p Factor like:
121 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
122 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
123                                        unsigned &Index) {
124   // Check all potential start indices from 0 to (Factor - 1).
125   for (Index = 0; Index < Factor; Index++) {
126     unsigned i = 0;
127
128     // Check that elements are in ascending order by Factor. Ignore undef
129     // elements.
130     for (; i < Mask.size(); i++)
131       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
132         break;
133
134     if (i == Mask.size())
135       return true;
136   }
137
138   return false;
139 }
140
141 /// \brief Check if the mask is a DE-interleave mask for an interleaved load.
142 ///
143 /// E.g. DE-interleave masks (Factor = 2) could be:
144 ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
145 ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
146 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
147                                unsigned &Index) {
148   if (Mask.size() < 2)
149     return false;
150
151   // Check potential Factors.
152   for (Factor = 2; Factor <= MaxFactor; Factor++)
153     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
154       return true;
155
156   return false;
157 }
158
159 /// \brief Check if the mask is RE-interleave mask for an interleaved store.
160 ///
161 /// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
162 ///
163 /// E.g. The RE-interleave mask (Factor = 2) could be:
164 ///     <0, 4, 1, 5, 2, 6, 3, 7>
165 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
166   unsigned NumElts = Mask.size();
167   if (NumElts < 4)
168     return false;
169
170   // Check potential Factors.
171   for (Factor = 2; Factor <= MaxFactor; Factor++) {
172     if (NumElts % Factor)
173       continue;
174
175     unsigned NumSubElts = NumElts / Factor;
176     if (!isPowerOf2_32(NumSubElts))
177       continue;
178
179     // Check whether each element matchs the RE-interleaved rule. Ignore undef
180     // elements.
181     unsigned i = 0;
182     for (; i < NumElts; i++)
183       if (Mask[i] >= 0 &&
184           static_cast<unsigned>(Mask[i]) !=
185               (i % Factor) * NumSubElts + i / Factor)
186         break;
187
188     // Find a RE-interleaved mask of current factor.
189     if (i == NumElts)
190       return true;
191   }
192
193   return false;
194 }
195
196 bool InterleavedAccess::lowerInterleavedLoad(
197     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
198   if (!LI->isSimple())
199     return false;
200
201   SmallVector<ShuffleVectorInst *, 4> Shuffles;
202   SmallVector<ExtractElementInst *, 4> Extracts;
203
204   // Check if all users of this load are shufflevectors. If we encounter any
205   // users that are extractelement instructions, we save them to later check if
206   // they can be modifed to extract from one of the shufflevectors instead of
207   // the load.
208   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
209     auto *Extract = dyn_cast<ExtractElementInst>(*UI);
210     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
211       Extracts.push_back(Extract);
212       continue;
213     }
214     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
215     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
216       return false;
217
218     Shuffles.push_back(SVI);
219   }
220
221   if (Shuffles.empty())
222     return false;
223
224   unsigned Factor, Index;
225
226   // Check if the first shufflevector is DE-interleave shuffle.
227   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
228     return false;
229
230   // Holds the corresponding index for each DE-interleave shuffle.
231   SmallVector<unsigned, 4> Indices;
232   Indices.push_back(Index);
233
234   Type *VecTy = Shuffles[0]->getType();
235
236   // Check if other shufflevectors are also DE-interleaved of the same type
237   // and factor as the first shufflevector.
238   for (unsigned i = 1; i < Shuffles.size(); i++) {
239     if (Shuffles[i]->getType() != VecTy)
240       return false;
241
242     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
243                                     Index))
244       return false;
245
246     Indices.push_back(Index);
247   }
248
249   // Try and modify users of the load that are extractelement instructions to
250   // use the shufflevector instructions instead of the load.
251   if (!tryReplaceExtracts(Extracts, Shuffles))
252     return false;
253
254   DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
255
256   // Try to create target specific intrinsics to replace the load and shuffles.
257   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
258     return false;
259
260   for (auto SVI : Shuffles)
261     DeadInsts.push_back(SVI);
262
263   DeadInsts.push_back(LI);
264   return true;
265 }
266
267 bool InterleavedAccess::tryReplaceExtracts(
268     ArrayRef<ExtractElementInst *> Extracts,
269     ArrayRef<ShuffleVectorInst *> Shuffles) {
270
271   // If there aren't any extractelement instructions to modify, there's nothing
272   // to do.
273   if (Extracts.empty())
274     return true;
275
276   // Maps extractelement instructions to vector-index pairs. The extractlement
277   // instructions will be modified to use the new vector and index operands.
278   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
279
280   for (auto *Extract : Extracts) {
281
282     // The vector index that is extracted.
283     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
284     auto Index = IndexOperand->getSExtValue();
285
286     // Look for a suitable shufflevector instruction. The goal is to modify the
287     // extractelement instruction (which uses an interleaved load) to use one
288     // of the shufflevector instructions instead of the load.
289     for (auto *Shuffle : Shuffles) {
290
291       // If the shufflevector instruction doesn't dominate the extract, we
292       // can't create a use of it.
293       if (!DT->dominates(Shuffle, Extract))
294         continue;
295
296       // Inspect the indices of the shufflevector instruction. If the shuffle
297       // selects the same index that is extracted, we can modify the
298       // extractelement instruction.
299       SmallVector<int, 4> Indices;
300       Shuffle->getShuffleMask(Indices);
301       for (unsigned I = 0; I < Indices.size(); ++I)
302         if (Indices[I] == Index) {
303           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
304                  "Vector operations do not match");
305           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
306           break;
307         }
308
309       // If we found a suitable shufflevector instruction, stop looking.
310       if (ReplacementMap.count(Extract))
311         break;
312     }
313
314     // If we did not find a suitable shufflevector instruction, the
315     // extractelement instruction cannot be modified, so we must give up.
316     if (!ReplacementMap.count(Extract))
317       return false;
318   }
319
320   // Finally, perform the replacements.
321   IRBuilder<> Builder(Extracts[0]->getContext());
322   for (auto &Replacement : ReplacementMap) {
323     auto *Extract = Replacement.first;
324     auto *Vector = Replacement.second.first;
325     auto Index = Replacement.second.second;
326     Builder.SetInsertPoint(Extract);
327     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
328     Extract->eraseFromParent();
329   }
330
331   return true;
332 }
333
334 bool InterleavedAccess::lowerInterleavedStore(
335     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
336   if (!SI->isSimple())
337     return false;
338
339   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
340   if (!SVI || !SVI->hasOneUse())
341     return false;
342
343   // Check if the shufflevector is RE-interleave shuffle.
344   unsigned Factor;
345   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
346     return false;
347
348   DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
349
350   // Try to create target specific intrinsics to replace the store and shuffle.
351   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
352     return false;
353
354   // Already have a new target specific interleaved store. Erase the old store.
355   DeadInsts.push_back(SI);
356   DeadInsts.push_back(SVI);
357   return true;
358 }
359
360 bool InterleavedAccess::runOnFunction(Function &F) {
361   if (!TM || !LowerInterleavedAccesses)
362     return false;
363
364   DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
365
366   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
367   TLI = TM->getSubtargetImpl(F)->getTargetLowering();
368   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
369
370   // Holds dead instructions that will be erased later.
371   SmallVector<Instruction *, 32> DeadInsts;
372   bool Changed = false;
373
374   for (auto &I : instructions(F)) {
375     if (LoadInst *LI = dyn_cast<LoadInst>(&I))
376       Changed |= lowerInterleavedLoad(LI, DeadInsts);
377
378     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
379       Changed |= lowerInterleavedStore(SI, DeadInsts);
380   }
381
382   for (auto I : DeadInsts)
383     I->eraseFromParent();
384
385   return Changed;
386 }