]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/MachineCombiner.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / MachineCombiner.cpp
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions do not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineTraceMetrics.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "machine-combiner"
34
35 STATISTIC(NumInstCombined, "Number of machineinst combined");
36
37 static cl::opt<unsigned>
38 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
39               cl::desc("Incremental depth computation will be used for basic "
40                        "blocks with more instructions."), cl::init(500));
41
42 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
43                                 cl::desc("Dump all substituted intrs"),
44                                 cl::init(false));
45
46 #ifdef EXPENSIVE_CHECKS
47 static cl::opt<bool> VerifyPatternOrder(
48     "machine-combiner-verify-pattern-order", cl::Hidden,
49     cl::desc(
50         "Verify that the generated patterns are ordered by increasing latency"),
51     cl::init(true));
52 #else
53 static cl::opt<bool> VerifyPatternOrder(
54     "machine-combiner-verify-pattern-order", cl::Hidden,
55     cl::desc(
56         "Verify that the generated patterns are ordered by increasing latency"),
57     cl::init(false));
58 #endif
59
60 namespace {
61 class MachineCombiner : public MachineFunctionPass {
62   const TargetSubtargetInfo *STI;
63   const TargetInstrInfo *TII;
64   const TargetRegisterInfo *TRI;
65   MCSchedModel SchedModel;
66   MachineRegisterInfo *MRI;
67   MachineLoopInfo *MLI; // Current MachineLoopInfo
68   MachineTraceMetrics *Traces;
69   MachineTraceMetrics::Ensemble *MinInstr;
70
71   TargetSchedModel TSchedModel;
72
73   /// True if optimizing for code size.
74   bool OptSize;
75
76 public:
77   static char ID;
78   MachineCombiner() : MachineFunctionPass(ID) {
79     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
80   }
81   void getAnalysisUsage(AnalysisUsage &AU) const override;
82   bool runOnMachineFunction(MachineFunction &MF) override;
83   StringRef getPassName() const override { return "Machine InstCombiner"; }
84
85 private:
86   bool doSubstitute(unsigned NewSize, unsigned OldSize);
87   bool combineInstructions(MachineBasicBlock *);
88   MachineInstr *getOperandDef(const MachineOperand &MO);
89   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
90                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
91                     MachineTraceMetrics::Trace BlockTrace);
92   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
93                       MachineTraceMetrics::Trace BlockTrace);
94   bool
95   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
96                           MachineTraceMetrics::Trace BlockTrace,
97                           SmallVectorImpl<MachineInstr *> &InsInstrs,
98                           SmallVectorImpl<MachineInstr *> &DelInstrs,
99                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
100                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
101   bool preservesResourceLen(MachineBasicBlock *MBB,
102                             MachineTraceMetrics::Trace BlockTrace,
103                             SmallVectorImpl<MachineInstr *> &InsInstrs,
104                             SmallVectorImpl<MachineInstr *> &DelInstrs);
105   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
106                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
107   std::pair<unsigned, unsigned>
108   getLatenciesForInstrSequences(MachineInstr &MI,
109                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
110                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
111                                 MachineTraceMetrics::Trace BlockTrace);
112
113   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
114                           SmallVector<MachineCombinerPattern, 16> &Patterns);
115 };
116 }
117
118 char MachineCombiner::ID = 0;
119 char &llvm::MachineCombinerID = MachineCombiner::ID;
120
121 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
122                       "Machine InstCombiner", false, false)
123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
125 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
126                     false, false)
127
128 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
129   AU.setPreservesCFG();
130   AU.addPreserved<MachineDominatorTree>();
131   AU.addRequired<MachineLoopInfo>();
132   AU.addPreserved<MachineLoopInfo>();
133   AU.addRequired<MachineTraceMetrics>();
134   AU.addPreserved<MachineTraceMetrics>();
135   MachineFunctionPass::getAnalysisUsage(AU);
136 }
137
138 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
139   MachineInstr *DefInstr = nullptr;
140   // We need a virtual register definition.
141   if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
142     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
143   // PHI's have no depth etc.
144   if (DefInstr && DefInstr->isPHI())
145     DefInstr = nullptr;
146   return DefInstr;
147 }
148
149 /// Computes depth of instructions in vector \InsInstr.
150 ///
151 /// \param InsInstrs is a vector of machine instructions
152 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
153 /// of defining machine instruction in \p InsInstrs
154 /// \param BlockTrace is a trace of machine instructions
155 ///
156 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
157 unsigned
158 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
159                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
160                           MachineTraceMetrics::Trace BlockTrace) {
161   SmallVector<unsigned, 16> InstrDepth;
162   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
163          "Missing machine model\n");
164
165   // For each instruction in the new sequence compute the depth based on the
166   // operands. Use the trace information when possible. For new operands which
167   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
168   for (auto *InstrPtr : InsInstrs) { // for each Use
169     unsigned IDepth = 0;
170     for (const MachineOperand &MO : InstrPtr->operands()) {
171       // Check for virtual register operand.
172       if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
173         continue;
174       if (!MO.isUse())
175         continue;
176       unsigned DepthOp = 0;
177       unsigned LatencyOp = 0;
178       DenseMap<unsigned, unsigned>::iterator II =
179           InstrIdxForVirtReg.find(MO.getReg());
180       if (II != InstrIdxForVirtReg.end()) {
181         // Operand is new virtual register not in trace
182         assert(II->second < InstrDepth.size() && "Bad Index");
183         MachineInstr *DefInstr = InsInstrs[II->second];
184         assert(DefInstr &&
185                "There must be a definition for a new virtual register");
186         DepthOp = InstrDepth[II->second];
187         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
188         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
189         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
190                                                       InstrPtr, UseIdx);
191       } else {
192         MachineInstr *DefInstr = getOperandDef(MO);
193         if (DefInstr) {
194           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
195           LatencyOp = TSchedModel.computeOperandLatency(
196               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
197               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
198         }
199       }
200       IDepth = std::max(IDepth, DepthOp + LatencyOp);
201     }
202     InstrDepth.push_back(IDepth);
203   }
204   unsigned NewRootIdx = InsInstrs.size() - 1;
205   return InstrDepth[NewRootIdx];
206 }
207
208 /// Computes instruction latency as max of latency of defined operands.
209 ///
210 /// \param Root is a machine instruction that could be replaced by NewRoot.
211 /// It is used to compute a more accurate latency information for NewRoot in
212 /// case there is a dependent instruction in the same trace (\p BlockTrace)
213 /// \param NewRoot is the instruction for which the latency is computed
214 /// \param BlockTrace is a trace of machine instructions
215 ///
216 /// \returns Latency of \p NewRoot
217 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
218                                      MachineTraceMetrics::Trace BlockTrace) {
219   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
220          "Missing machine model\n");
221
222   // Check each definition in NewRoot and compute the latency
223   unsigned NewRootLatency = 0;
224
225   for (const MachineOperand &MO : NewRoot->operands()) {
226     // Check for virtual register operand.
227     if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
228       continue;
229     if (!MO.isDef())
230       continue;
231     // Get the first instruction that uses MO
232     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
233     RI++;
234     if (RI == MRI->reg_end())
235       continue;
236     MachineInstr *UseMO = RI->getParent();
237     unsigned LatencyOp = 0;
238     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
239       LatencyOp = TSchedModel.computeOperandLatency(
240           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
241           UseMO->findRegisterUseOperandIdx(MO.getReg()));
242     } else {
243       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
244     }
245     NewRootLatency = std::max(NewRootLatency, LatencyOp);
246   }
247   return NewRootLatency;
248 }
249
250 /// The combiner's goal may differ based on which pattern it is attempting
251 /// to optimize.
252 enum class CombinerObjective {
253   MustReduceDepth, // The data dependency chain must be improved.
254   Default          // The critical path must not be lengthened.
255 };
256
257 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
258   // TODO: If C++ ever gets a real enum class, make this part of the
259   // MachineCombinerPattern class.
260   switch (P) {
261   case MachineCombinerPattern::REASSOC_AX_BY:
262   case MachineCombinerPattern::REASSOC_AX_YB:
263   case MachineCombinerPattern::REASSOC_XA_BY:
264   case MachineCombinerPattern::REASSOC_XA_YB:
265     return CombinerObjective::MustReduceDepth;
266   default:
267     return CombinerObjective::Default;
268   }
269 }
270
271 /// Estimate the latency of the new and original instruction sequence by summing
272 /// up the latencies of the inserted and deleted instructions. This assumes
273 /// that the inserted and deleted instructions are dependent instruction chains,
274 /// which might not hold in all cases.
275 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
276     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
277     SmallVectorImpl<MachineInstr *> &DelInstrs,
278     MachineTraceMetrics::Trace BlockTrace) {
279   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
280   unsigned NewRootLatency = 0;
281   // NewRoot is the last instruction in the \p InsInstrs vector.
282   MachineInstr *NewRoot = InsInstrs.back();
283   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
284     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
285   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
286
287   unsigned RootLatency = 0;
288   for (auto I : DelInstrs)
289     RootLatency += TSchedModel.computeInstrLatency(I);
290
291   return {NewRootLatency, RootLatency};
292 }
293
294 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
295 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
296 /// sequence to replace the old sequence is that it cannot lengthen the critical
297 /// path. The definition of "improve" may be restricted by specifying that the
298 /// new path improves the data dependency chain (MustReduceDepth).
299 bool MachineCombiner::improvesCriticalPathLen(
300     MachineBasicBlock *MBB, MachineInstr *Root,
301     MachineTraceMetrics::Trace BlockTrace,
302     SmallVectorImpl<MachineInstr *> &InsInstrs,
303     SmallVectorImpl<MachineInstr *> &DelInstrs,
304     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
305     MachineCombinerPattern Pattern,
306     bool SlackIsAccurate) {
307   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
308          "Missing machine model\n");
309   // Get depth and latency of NewRoot and Root.
310   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
311   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
312
313   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
314                     << NewRootDepth << "\tRootDepth: " << RootDepth);
315
316   // For a transform such as reassociation, the cost equation is
317   // conservatively calculated so that we must improve the depth (data
318   // dependency cycles) in the critical path to proceed with the transform.
319   // Being conservative also protects against inaccuracies in the underlying
320   // machine trace metrics and CPU models.
321   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
322     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
323     LLVM_DEBUG(NewRootDepth < RootDepth
324                    ? dbgs() << "\t  and it does it\n"
325                    : dbgs() << "\t  but it does NOT do it\n");
326     return NewRootDepth < RootDepth;
327   }
328
329   // A more flexible cost calculation for the critical path includes the slack
330   // of the original code sequence. This may allow the transform to proceed
331   // even if the instruction depths (data dependency cycles) become worse.
332
333   // Account for the latency of the inserted and deleted instructions by
334   unsigned NewRootLatency, RootLatency;
335   std::tie(NewRootLatency, RootLatency) =
336       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
337
338   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
339   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
340   unsigned OldCycleCount =
341       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
342   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
343                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
344                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
345                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
346                     << "\n\tRootDepth + RootLatency + RootSlack = "
347                     << OldCycleCount;);
348   LLVM_DEBUG(NewCycleCount <= OldCycleCount
349                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
350                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
351   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
352                     << ", OldCycleCount = " << OldCycleCount << "\n");
353
354   return NewCycleCount <= OldCycleCount;
355 }
356
357 /// helper routine to convert instructions into SC
358 void MachineCombiner::instr2instrSC(
359     SmallVectorImpl<MachineInstr *> &Instrs,
360     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
361   for (auto *InstrPtr : Instrs) {
362     unsigned Opc = InstrPtr->getOpcode();
363     unsigned Idx = TII->get(Opc).getSchedClass();
364     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
365     InstrsSC.push_back(SC);
366   }
367 }
368
369 /// True when the new instructions do not increase resource length
370 bool MachineCombiner::preservesResourceLen(
371     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
372     SmallVectorImpl<MachineInstr *> &InsInstrs,
373     SmallVectorImpl<MachineInstr *> &DelInstrs) {
374   if (!TSchedModel.hasInstrSchedModel())
375     return true;
376
377   // Compute current resource length
378
379   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
380   SmallVector <const MachineBasicBlock *, 1> MBBarr;
381   MBBarr.push_back(MBB);
382   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
383
384   // Deal with SC rather than Instructions.
385   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
386   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
387
388   instr2instrSC(InsInstrs, InsInstrsSC);
389   instr2instrSC(DelInstrs, DelInstrsSC);
390
391   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
392   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
393
394   // Compute new resource length.
395   unsigned ResLenAfterCombine =
396       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
397
398   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
399                     << ResLenBeforeCombine
400                     << " and after: " << ResLenAfterCombine << "\n";);
401   LLVM_DEBUG(
402       ResLenAfterCombine <= ResLenBeforeCombine
403           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
404           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
405                       "Length\n");
406
407   return ResLenAfterCombine <= ResLenBeforeCombine;
408 }
409
410 /// \returns true when new instruction sequence should be generated
411 /// independent if it lengthens critical path or not
412 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
413   if (OptSize && (NewSize < OldSize))
414     return true;
415   if (!TSchedModel.hasInstrSchedModelOrItineraries())
416     return true;
417   return false;
418 }
419
420 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
421 /// depths if requested.
422 ///
423 /// \param MBB basic block to insert instructions in
424 /// \param MI current machine instruction
425 /// \param InsInstrs new instructions to insert in \p MBB
426 /// \param DelInstrs instruction to delete from \p MBB
427 /// \param MinInstr is a pointer to the machine trace information
428 /// \param RegUnits set of live registers, needed to compute instruction depths
429 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
430 ///                          otherwise invalidate the trace
431 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
432                                      SmallVector<MachineInstr *, 16> InsInstrs,
433                                      SmallVector<MachineInstr *, 16> DelInstrs,
434                                      MachineTraceMetrics::Ensemble *MinInstr,
435                                      SparseSet<LiveRegUnit> &RegUnits,
436                                      bool IncrementalUpdate) {
437   for (auto *InstrPtr : InsInstrs)
438     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
439
440   for (auto *InstrPtr : DelInstrs) {
441     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
442     // Erase all LiveRegs defined by the removed instruction
443     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
444       if (I->MI == InstrPtr)
445         I = RegUnits.erase(I);
446       else
447         I++;
448     }
449   }
450
451   if (IncrementalUpdate)
452     for (auto *InstrPtr : InsInstrs)
453       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
454   else
455     MinInstr->invalidate(MBB);
456
457   NumInstCombined++;
458 }
459
460 // Check that the difference between original and new latency is decreasing for
461 // later patterns. This helps to discover sub-optimal pattern orderings.
462 void MachineCombiner::verifyPatternOrder(
463     MachineBasicBlock *MBB, MachineInstr &Root,
464     SmallVector<MachineCombinerPattern, 16> &Patterns) {
465   long PrevLatencyDiff = std::numeric_limits<long>::max();
466   (void)PrevLatencyDiff; // Variable is used in assert only.
467   for (auto P : Patterns) {
468     SmallVector<MachineInstr *, 16> InsInstrs;
469     SmallVector<MachineInstr *, 16> DelInstrs;
470     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
471     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
472                                     InstrIdxForVirtReg);
473     // Found pattern, but did not generate alternative sequence.
474     // This can happen e.g. when an immediate could not be materialized
475     // in a single instruction.
476     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
477       continue;
478
479     unsigned NewRootLatency, RootLatency;
480     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
481         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
482     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
483     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
484            "Current pattern is better than previous pattern.");
485     PrevLatencyDiff = CurrentLatencyDiff;
486   }
487 }
488
489 /// Substitute a slow code sequence with a faster one by
490 /// evaluating instruction combining pattern.
491 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
492 /// combining based on machine trace metrics. Only combine a sequence of
493 /// instructions  when this neither lengthens the critical path nor increases
494 /// resource pressure. When optimizing for codesize always combine when the new
495 /// sequence is shorter.
496 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
497   bool Changed = false;
498   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
499
500   bool IncrementalUpdate = false;
501   auto BlockIter = MBB->begin();
502   decltype(BlockIter) LastUpdate;
503   // Check if the block is in a loop.
504   const MachineLoop *ML = MLI->getLoopFor(MBB);
505   if (!MinInstr)
506     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
507
508   SparseSet<LiveRegUnit> RegUnits;
509   RegUnits.setUniverse(TRI->getNumRegUnits());
510
511   while (BlockIter != MBB->end()) {
512     auto &MI = *BlockIter++;
513     SmallVector<MachineCombinerPattern, 16> Patterns;
514     // The motivating example is:
515     //
516     //     MUL  Other        MUL_op1 MUL_op2  Other
517     //      \    /               \      |    /
518     //      ADD/SUB      =>        MADD/MSUB
519     //      (=Root)                (=NewRoot)
520
521     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
522     // usually beneficial for code size it unfortunately can hurt performance
523     // when the ADD is on the critical path, but the MUL is not. With the
524     // substitution the MUL becomes part of the critical path (in form of the
525     // MADD) and can lengthen it on architectures where the MADD latency is
526     // longer than the ADD latency.
527     //
528     // For each instruction we check if it can be the root of a combiner
529     // pattern. Then for each pattern the new code sequence in form of MI is
530     // generated and evaluated. When the efficiency criteria (don't lengthen
531     // critical path, don't use more resources) is met the new sequence gets
532     // hooked up into the basic block before the old sequence is removed.
533     //
534     // The algorithm does not try to evaluate all patterns and pick the best.
535     // This is only an artificial restriction though. In practice there is
536     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
537     // based on an internal cost heuristic. If
538     // machine-combiner-verify-pattern-order is enabled, all patterns are
539     // checked to ensure later patterns do not provide better latency savings.
540
541     if (!TII->getMachineCombinerPatterns(MI, Patterns))
542       continue;
543
544     if (VerifyPatternOrder)
545       verifyPatternOrder(MBB, MI, Patterns);
546
547     for (auto P : Patterns) {
548       SmallVector<MachineInstr *, 16> InsInstrs;
549       SmallVector<MachineInstr *, 16> DelInstrs;
550       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
551       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
552                                       InstrIdxForVirtReg);
553       unsigned NewInstCount = InsInstrs.size();
554       unsigned OldInstCount = DelInstrs.size();
555       // Found pattern, but did not generate alternative sequence.
556       // This can happen e.g. when an immediate could not be materialized
557       // in a single instruction.
558       if (!NewInstCount)
559         continue;
560
561       LLVM_DEBUG(if (dump_intrs) {
562         dbgs() << "\tFor the Pattern (" << (int)P << ") these instructions could be removed\n";
563         for (auto const *InstrPtr : DelInstrs) {
564           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
565           InstrPtr->print(dbgs(), false, false, false, TII);
566         }
567         dbgs() << "\tThese instructions could replace the removed ones\n";
568         for (auto const *InstrPtr : InsInstrs) {
569           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
570           InstrPtr->print(dbgs(), false, false, false, TII);
571         }
572       });
573
574       bool SubstituteAlways = false;
575       if (ML && TII->isThroughputPattern(P))
576         SubstituteAlways = true;
577
578       if (IncrementalUpdate) {
579         // Update depths since the last incremental update.
580         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
581         LastUpdate = BlockIter;
582       }
583
584       // Substitute when we optimize for codesize and the new sequence has
585       // fewer instructions OR
586       // the new sequence neither lengthens the critical path nor increases
587       // resource pressure.
588       if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
589         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
590                                  RegUnits, IncrementalUpdate);
591         // Eagerly stop after the first pattern fires.
592         Changed = true;
593         break;
594       } else {
595         // For big basic blocks, we only compute the full trace the first time
596         // we hit this. We do not invalidate the trace, but instead update the
597         // instruction depths incrementally.
598         // NOTE: Only the instruction depths up to MI are accurate. All other
599         // trace information is not updated.
600         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
601         Traces->verifyAnalysis();
602         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
603                                     InstrIdxForVirtReg, P,
604                                     !IncrementalUpdate) &&
605             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
606           if (MBB->size() > inc_threshold) {
607             // Use incremental depth updates for basic blocks above treshold
608             IncrementalUpdate = true;
609             LastUpdate = BlockIter;
610           }
611
612           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
613                                    RegUnits, IncrementalUpdate);
614
615           // Eagerly stop after the first pattern fires.
616           Changed = true;
617           break;
618         }
619         // Cleanup instructions of the alternative code sequence. There is no
620         // use for them.
621         MachineFunction *MF = MBB->getParent();
622         for (auto *InstrPtr : InsInstrs)
623           MF->DeleteMachineInstr(InstrPtr);
624       }
625       InstrIdxForVirtReg.clear();
626     }
627   }
628
629   if (Changed && IncrementalUpdate)
630     Traces->invalidate(MBB);
631   return Changed;
632 }
633
634 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
635   STI = &MF.getSubtarget();
636   TII = STI->getInstrInfo();
637   TRI = STI->getRegisterInfo();
638   SchedModel = STI->getSchedModel();
639   TSchedModel.init(STI);
640   MRI = &MF.getRegInfo();
641   MLI = &getAnalysis<MachineLoopInfo>();
642   Traces = &getAnalysis<MachineTraceMetrics>();
643   MinInstr = nullptr;
644   OptSize = MF.getFunction().optForSize();
645
646   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
647   if (!TII->useMachineCombiner()) {
648     LLVM_DEBUG(
649         dbgs()
650         << "  Skipping pass: Target does not support machine combiner\n");
651     return false;
652   }
653
654   bool Changed = false;
655
656   // Try to combine instructions.
657   for (auto &MBB : MF)
658     Changed |= combineInstructions(&MBB);
659
660   return Changed;
661 }