]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/MachineCombiner.cpp
MFV r344063:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / MachineCombiner.cpp
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions do not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineTraceMetrics.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "machine-combiner"
34
35 STATISTIC(NumInstCombined, "Number of machineinst combined");
36
37 static cl::opt<unsigned>
38 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
39               cl::desc("Incremental depth computation will be used for basic "
40                        "blocks with more instructions."), cl::init(500));
41
42 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
43                                 cl::desc("Dump all substituted intrs"),
44                                 cl::init(false));
45
46 #ifdef EXPENSIVE_CHECKS
47 static cl::opt<bool> VerifyPatternOrder(
48     "machine-combiner-verify-pattern-order", cl::Hidden,
49     cl::desc(
50         "Verify that the generated patterns are ordered by increasing latency"),
51     cl::init(true));
52 #else
53 static cl::opt<bool> VerifyPatternOrder(
54     "machine-combiner-verify-pattern-order", cl::Hidden,
55     cl::desc(
56         "Verify that the generated patterns are ordered by increasing latency"),
57     cl::init(false));
58 #endif
59
60 namespace {
61 class MachineCombiner : public MachineFunctionPass {
62   const TargetSubtargetInfo *STI;
63   const TargetInstrInfo *TII;
64   const TargetRegisterInfo *TRI;
65   MCSchedModel SchedModel;
66   MachineRegisterInfo *MRI;
67   MachineLoopInfo *MLI; // Current MachineLoopInfo
68   MachineTraceMetrics *Traces;
69   MachineTraceMetrics::Ensemble *MinInstr;
70
71   TargetSchedModel TSchedModel;
72
73   /// True if optimizing for code size.
74   bool OptSize;
75
76 public:
77   static char ID;
78   MachineCombiner() : MachineFunctionPass(ID) {
79     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
80   }
81   void getAnalysisUsage(AnalysisUsage &AU) const override;
82   bool runOnMachineFunction(MachineFunction &MF) override;
83   StringRef getPassName() const override { return "Machine InstCombiner"; }
84
85 private:
86   bool doSubstitute(unsigned NewSize, unsigned OldSize);
87   bool combineInstructions(MachineBasicBlock *);
88   MachineInstr *getOperandDef(const MachineOperand &MO);
89   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
90                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
91                     MachineTraceMetrics::Trace BlockTrace);
92   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
93                       MachineTraceMetrics::Trace BlockTrace);
94   bool
95   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
96                           MachineTraceMetrics::Trace BlockTrace,
97                           SmallVectorImpl<MachineInstr *> &InsInstrs,
98                           SmallVectorImpl<MachineInstr *> &DelInstrs,
99                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
100                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
101   bool preservesResourceLen(MachineBasicBlock *MBB,
102                             MachineTraceMetrics::Trace BlockTrace,
103                             SmallVectorImpl<MachineInstr *> &InsInstrs,
104                             SmallVectorImpl<MachineInstr *> &DelInstrs);
105   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
106                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
107   std::pair<unsigned, unsigned>
108   getLatenciesForInstrSequences(MachineInstr &MI,
109                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
110                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
111                                 MachineTraceMetrics::Trace BlockTrace);
112
113   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
114                           SmallVector<MachineCombinerPattern, 16> &Patterns);
115 };
116 }
117
118 char MachineCombiner::ID = 0;
119 char &llvm::MachineCombinerID = MachineCombiner::ID;
120
121 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
122                       "Machine InstCombiner", false, false)
123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
125 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
126                     false, false)
127
128 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
129   AU.setPreservesCFG();
130   AU.addPreserved<MachineDominatorTree>();
131   AU.addRequired<MachineLoopInfo>();
132   AU.addPreserved<MachineLoopInfo>();
133   AU.addRequired<MachineTraceMetrics>();
134   AU.addPreserved<MachineTraceMetrics>();
135   MachineFunctionPass::getAnalysisUsage(AU);
136 }
137
138 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
139   MachineInstr *DefInstr = nullptr;
140   // We need a virtual register definition.
141   if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
142     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
143   // PHI's have no depth etc.
144   if (DefInstr && DefInstr->isPHI())
145     DefInstr = nullptr;
146   return DefInstr;
147 }
148
149 /// Computes depth of instructions in vector \InsInstr.
150 ///
151 /// \param InsInstrs is a vector of machine instructions
152 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
153 /// of defining machine instruction in \p InsInstrs
154 /// \param BlockTrace is a trace of machine instructions
155 ///
156 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
157 unsigned
158 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
159                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
160                           MachineTraceMetrics::Trace BlockTrace) {
161   SmallVector<unsigned, 16> InstrDepth;
162   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
163          "Missing machine model\n");
164
165   // For each instruction in the new sequence compute the depth based on the
166   // operands. Use the trace information when possible. For new operands which
167   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
168   for (auto *InstrPtr : InsInstrs) { // for each Use
169     unsigned IDepth = 0;
170     for (const MachineOperand &MO : InstrPtr->operands()) {
171       // Check for virtual register operand.
172       if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
173         continue;
174       if (!MO.isUse())
175         continue;
176       unsigned DepthOp = 0;
177       unsigned LatencyOp = 0;
178       DenseMap<unsigned, unsigned>::iterator II =
179           InstrIdxForVirtReg.find(MO.getReg());
180       if (II != InstrIdxForVirtReg.end()) {
181         // Operand is new virtual register not in trace
182         assert(II->second < InstrDepth.size() && "Bad Index");
183         MachineInstr *DefInstr = InsInstrs[II->second];
184         assert(DefInstr &&
185                "There must be a definition for a new virtual register");
186         DepthOp = InstrDepth[II->second];
187         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
188         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
189         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
190                                                       InstrPtr, UseIdx);
191       } else {
192         MachineInstr *DefInstr = getOperandDef(MO);
193         if (DefInstr) {
194           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
195           LatencyOp = TSchedModel.computeOperandLatency(
196               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
197               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
198         }
199       }
200       IDepth = std::max(IDepth, DepthOp + LatencyOp);
201     }
202     InstrDepth.push_back(IDepth);
203   }
204   unsigned NewRootIdx = InsInstrs.size() - 1;
205   return InstrDepth[NewRootIdx];
206 }
207
208 /// Computes instruction latency as max of latency of defined operands.
209 ///
210 /// \param Root is a machine instruction that could be replaced by NewRoot.
211 /// It is used to compute a more accurate latency information for NewRoot in
212 /// case there is a dependent instruction in the same trace (\p BlockTrace)
213 /// \param NewRoot is the instruction for which the latency is computed
214 /// \param BlockTrace is a trace of machine instructions
215 ///
216 /// \returns Latency of \p NewRoot
217 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
218                                      MachineTraceMetrics::Trace BlockTrace) {
219   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
220          "Missing machine model\n");
221
222   // Check each definition in NewRoot and compute the latency
223   unsigned NewRootLatency = 0;
224
225   for (const MachineOperand &MO : NewRoot->operands()) {
226     // Check for virtual register operand.
227     if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
228       continue;
229     if (!MO.isDef())
230       continue;
231     // Get the first instruction that uses MO
232     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
233     RI++;
234     MachineInstr *UseMO = RI->getParent();
235     unsigned LatencyOp = 0;
236     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
237       LatencyOp = TSchedModel.computeOperandLatency(
238           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
239           UseMO->findRegisterUseOperandIdx(MO.getReg()));
240     } else {
241       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
242     }
243     NewRootLatency = std::max(NewRootLatency, LatencyOp);
244   }
245   return NewRootLatency;
246 }
247
248 /// The combiner's goal may differ based on which pattern it is attempting
249 /// to optimize.
250 enum class CombinerObjective {
251   MustReduceDepth, // The data dependency chain must be improved.
252   Default          // The critical path must not be lengthened.
253 };
254
255 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
256   // TODO: If C++ ever gets a real enum class, make this part of the
257   // MachineCombinerPattern class.
258   switch (P) {
259   case MachineCombinerPattern::REASSOC_AX_BY:
260   case MachineCombinerPattern::REASSOC_AX_YB:
261   case MachineCombinerPattern::REASSOC_XA_BY:
262   case MachineCombinerPattern::REASSOC_XA_YB:
263     return CombinerObjective::MustReduceDepth;
264   default:
265     return CombinerObjective::Default;
266   }
267 }
268
269 /// Estimate the latency of the new and original instruction sequence by summing
270 /// up the latencies of the inserted and deleted instructions. This assumes
271 /// that the inserted and deleted instructions are dependent instruction chains,
272 /// which might not hold in all cases.
273 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
274     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
275     SmallVectorImpl<MachineInstr *> &DelInstrs,
276     MachineTraceMetrics::Trace BlockTrace) {
277   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
278   unsigned NewRootLatency = 0;
279   // NewRoot is the last instruction in the \p InsInstrs vector.
280   MachineInstr *NewRoot = InsInstrs.back();
281   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
282     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
283   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
284
285   unsigned RootLatency = 0;
286   for (auto I : DelInstrs)
287     RootLatency += TSchedModel.computeInstrLatency(I);
288
289   return {NewRootLatency, RootLatency};
290 }
291
292 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
293 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
294 /// sequence to replace the old sequence is that it cannot lengthen the critical
295 /// path. The definition of "improve" may be restricted by specifying that the
296 /// new path improves the data dependency chain (MustReduceDepth).
297 bool MachineCombiner::improvesCriticalPathLen(
298     MachineBasicBlock *MBB, MachineInstr *Root,
299     MachineTraceMetrics::Trace BlockTrace,
300     SmallVectorImpl<MachineInstr *> &InsInstrs,
301     SmallVectorImpl<MachineInstr *> &DelInstrs,
302     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
303     MachineCombinerPattern Pattern,
304     bool SlackIsAccurate) {
305   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
306          "Missing machine model\n");
307   // Get depth and latency of NewRoot and Root.
308   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
309   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
310
311   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
312                     << NewRootDepth << "\tRootDepth: " << RootDepth);
313
314   // For a transform such as reassociation, the cost equation is
315   // conservatively calculated so that we must improve the depth (data
316   // dependency cycles) in the critical path to proceed with the transform.
317   // Being conservative also protects against inaccuracies in the underlying
318   // machine trace metrics and CPU models.
319   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
320     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
321     LLVM_DEBUG(NewRootDepth < RootDepth
322                    ? dbgs() << "\t  and it does it\n"
323                    : dbgs() << "\t  but it does NOT do it\n");
324     return NewRootDepth < RootDepth;
325   }
326
327   // A more flexible cost calculation for the critical path includes the slack
328   // of the original code sequence. This may allow the transform to proceed
329   // even if the instruction depths (data dependency cycles) become worse.
330
331   // Account for the latency of the inserted and deleted instructions by
332   unsigned NewRootLatency, RootLatency;
333   std::tie(NewRootLatency, RootLatency) =
334       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
335
336   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
337   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
338   unsigned OldCycleCount =
339       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
340   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
341                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
342                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
343                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
344                     << "\n\tRootDepth + RootLatency + RootSlack = "
345                     << OldCycleCount;);
346   LLVM_DEBUG(NewCycleCount <= OldCycleCount
347                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
348                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
349   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
350                     << ", OldCycleCount = " << OldCycleCount << "\n");
351
352   return NewCycleCount <= OldCycleCount;
353 }
354
355 /// helper routine to convert instructions into SC
356 void MachineCombiner::instr2instrSC(
357     SmallVectorImpl<MachineInstr *> &Instrs,
358     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
359   for (auto *InstrPtr : Instrs) {
360     unsigned Opc = InstrPtr->getOpcode();
361     unsigned Idx = TII->get(Opc).getSchedClass();
362     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
363     InstrsSC.push_back(SC);
364   }
365 }
366
367 /// True when the new instructions do not increase resource length
368 bool MachineCombiner::preservesResourceLen(
369     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
370     SmallVectorImpl<MachineInstr *> &InsInstrs,
371     SmallVectorImpl<MachineInstr *> &DelInstrs) {
372   if (!TSchedModel.hasInstrSchedModel())
373     return true;
374
375   // Compute current resource length
376
377   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
378   SmallVector <const MachineBasicBlock *, 1> MBBarr;
379   MBBarr.push_back(MBB);
380   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
381
382   // Deal with SC rather than Instructions.
383   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
384   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
385
386   instr2instrSC(InsInstrs, InsInstrsSC);
387   instr2instrSC(DelInstrs, DelInstrsSC);
388
389   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
390   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
391
392   // Compute new resource length.
393   unsigned ResLenAfterCombine =
394       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
395
396   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
397                     << ResLenBeforeCombine
398                     << " and after: " << ResLenAfterCombine << "\n";);
399   LLVM_DEBUG(
400       ResLenAfterCombine <= ResLenBeforeCombine
401           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
402           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
403                       "Length\n");
404
405   return ResLenAfterCombine <= ResLenBeforeCombine;
406 }
407
408 /// \returns true when new instruction sequence should be generated
409 /// independent if it lengthens critical path or not
410 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
411   if (OptSize && (NewSize < OldSize))
412     return true;
413   if (!TSchedModel.hasInstrSchedModelOrItineraries())
414     return true;
415   return false;
416 }
417
418 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
419 /// depths if requested.
420 ///
421 /// \param MBB basic block to insert instructions in
422 /// \param MI current machine instruction
423 /// \param InsInstrs new instructions to insert in \p MBB
424 /// \param DelInstrs instruction to delete from \p MBB
425 /// \param MinInstr is a pointer to the machine trace information
426 /// \param RegUnits set of live registers, needed to compute instruction depths
427 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
428 ///                          otherwise invalidate the trace
429 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
430                                      SmallVector<MachineInstr *, 16> InsInstrs,
431                                      SmallVector<MachineInstr *, 16> DelInstrs,
432                                      MachineTraceMetrics::Ensemble *MinInstr,
433                                      SparseSet<LiveRegUnit> &RegUnits,
434                                      bool IncrementalUpdate) {
435   for (auto *InstrPtr : InsInstrs)
436     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
437
438   for (auto *InstrPtr : DelInstrs) {
439     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
440     // Erase all LiveRegs defined by the removed instruction
441     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
442       if (I->MI == InstrPtr)
443         I = RegUnits.erase(I);
444       else
445         I++;
446     }
447   }
448
449   if (IncrementalUpdate)
450     for (auto *InstrPtr : InsInstrs)
451       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
452   else
453     MinInstr->invalidate(MBB);
454
455   NumInstCombined++;
456 }
457
458 // Check that the difference between original and new latency is decreasing for
459 // later patterns. This helps to discover sub-optimal pattern orderings.
460 void MachineCombiner::verifyPatternOrder(
461     MachineBasicBlock *MBB, MachineInstr &Root,
462     SmallVector<MachineCombinerPattern, 16> &Patterns) {
463   long PrevLatencyDiff = std::numeric_limits<long>::max();
464   (void)PrevLatencyDiff; // Variable is used in assert only.
465   for (auto P : Patterns) {
466     SmallVector<MachineInstr *, 16> InsInstrs;
467     SmallVector<MachineInstr *, 16> DelInstrs;
468     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
469     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
470                                     InstrIdxForVirtReg);
471     // Found pattern, but did not generate alternative sequence.
472     // This can happen e.g. when an immediate could not be materialized
473     // in a single instruction.
474     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
475       continue;
476
477     unsigned NewRootLatency, RootLatency;
478     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
479         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
480     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
481     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
482            "Current pattern is better than previous pattern.");
483     PrevLatencyDiff = CurrentLatencyDiff;
484   }
485 }
486
487 /// Substitute a slow code sequence with a faster one by
488 /// evaluating instruction combining pattern.
489 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
490 /// combining based on machine trace metrics. Only combine a sequence of
491 /// instructions  when this neither lengthens the critical path nor increases
492 /// resource pressure. When optimizing for codesize always combine when the new
493 /// sequence is shorter.
494 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
495   bool Changed = false;
496   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
497
498   bool IncrementalUpdate = false;
499   auto BlockIter = MBB->begin();
500   decltype(BlockIter) LastUpdate;
501   // Check if the block is in a loop.
502   const MachineLoop *ML = MLI->getLoopFor(MBB);
503   if (!MinInstr)
504     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
505
506   SparseSet<LiveRegUnit> RegUnits;
507   RegUnits.setUniverse(TRI->getNumRegUnits());
508
509   while (BlockIter != MBB->end()) {
510     auto &MI = *BlockIter++;
511     SmallVector<MachineCombinerPattern, 16> Patterns;
512     // The motivating example is:
513     //
514     //     MUL  Other        MUL_op1 MUL_op2  Other
515     //      \    /               \      |    /
516     //      ADD/SUB      =>        MADD/MSUB
517     //      (=Root)                (=NewRoot)
518
519     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
520     // usually beneficial for code size it unfortunately can hurt performance
521     // when the ADD is on the critical path, but the MUL is not. With the
522     // substitution the MUL becomes part of the critical path (in form of the
523     // MADD) and can lengthen it on architectures where the MADD latency is
524     // longer than the ADD latency.
525     //
526     // For each instruction we check if it can be the root of a combiner
527     // pattern. Then for each pattern the new code sequence in form of MI is
528     // generated and evaluated. When the efficiency criteria (don't lengthen
529     // critical path, don't use more resources) is met the new sequence gets
530     // hooked up into the basic block before the old sequence is removed.
531     //
532     // The algorithm does not try to evaluate all patterns and pick the best.
533     // This is only an artificial restriction though. In practice there is
534     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
535     // based on an internal cost heuristic. If
536     // machine-combiner-verify-pattern-order is enabled, all patterns are
537     // checked to ensure later patterns do not provide better latency savings.
538
539     if (!TII->getMachineCombinerPatterns(MI, Patterns))
540       continue;
541
542     if (VerifyPatternOrder)
543       verifyPatternOrder(MBB, MI, Patterns);
544
545     for (auto P : Patterns) {
546       SmallVector<MachineInstr *, 16> InsInstrs;
547       SmallVector<MachineInstr *, 16> DelInstrs;
548       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
549       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
550                                       InstrIdxForVirtReg);
551       unsigned NewInstCount = InsInstrs.size();
552       unsigned OldInstCount = DelInstrs.size();
553       // Found pattern, but did not generate alternative sequence.
554       // This can happen e.g. when an immediate could not be materialized
555       // in a single instruction.
556       if (!NewInstCount)
557         continue;
558
559       LLVM_DEBUG(if (dump_intrs) {
560         dbgs() << "\tFor the Pattern (" << (int)P << ") these instructions could be removed\n";
561         for (auto const *InstrPtr : DelInstrs) {
562           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
563           InstrPtr->print(dbgs(), false, false, false, TII);
564         }
565         dbgs() << "\tThese instructions could replace the removed ones\n";
566         for (auto const *InstrPtr : InsInstrs) {
567           dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
568           InstrPtr->print(dbgs(), false, false, false, TII);
569         }
570       });
571
572       bool SubstituteAlways = false;
573       if (ML && TII->isThroughputPattern(P))
574         SubstituteAlways = true;
575
576       if (IncrementalUpdate) {
577         // Update depths since the last incremental update.
578         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
579         LastUpdate = BlockIter;
580       }
581
582       // Substitute when we optimize for codesize and the new sequence has
583       // fewer instructions OR
584       // the new sequence neither lengthens the critical path nor increases
585       // resource pressure.
586       if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
587         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
588                                  RegUnits, IncrementalUpdate);
589         // Eagerly stop after the first pattern fires.
590         Changed = true;
591         break;
592       } else {
593         // For big basic blocks, we only compute the full trace the first time
594         // we hit this. We do not invalidate the trace, but instead update the
595         // instruction depths incrementally.
596         // NOTE: Only the instruction depths up to MI are accurate. All other
597         // trace information is not updated.
598         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
599         Traces->verifyAnalysis();
600         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
601                                     InstrIdxForVirtReg, P,
602                                     !IncrementalUpdate) &&
603             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
604           if (MBB->size() > inc_threshold) {
605             // Use incremental depth updates for basic blocks above treshold
606             IncrementalUpdate = true;
607             LastUpdate = BlockIter;
608           }
609
610           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
611                                    RegUnits, IncrementalUpdate);
612
613           // Eagerly stop after the first pattern fires.
614           Changed = true;
615           break;
616         }
617         // Cleanup instructions of the alternative code sequence. There is no
618         // use for them.
619         MachineFunction *MF = MBB->getParent();
620         for (auto *InstrPtr : InsInstrs)
621           MF->DeleteMachineInstr(InstrPtr);
622       }
623       InstrIdxForVirtReg.clear();
624     }
625   }
626
627   if (Changed && IncrementalUpdate)
628     Traces->invalidate(MBB);
629   return Changed;
630 }
631
632 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
633   STI = &MF.getSubtarget();
634   TII = STI->getInstrInfo();
635   TRI = STI->getRegisterInfo();
636   SchedModel = STI->getSchedModel();
637   TSchedModel.init(STI);
638   MRI = &MF.getRegInfo();
639   MLI = &getAnalysis<MachineLoopInfo>();
640   Traces = &getAnalysis<MachineTraceMetrics>();
641   MinInstr = nullptr;
642   OptSize = MF.getFunction().optForSize();
643
644   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
645   if (!TII->useMachineCombiner()) {
646     LLVM_DEBUG(
647         dbgs()
648         << "  Skipping pass: Target does not support machine combiner\n");
649     return false;
650   }
651
652   bool Changed = false;
653
654   // Try to combine instructions.
655   for (auto &MBB : MF)
656     Changed |= combineInstructions(&MBB);
657
658   return Changed;
659 }