]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/MachineOutliner.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / MachineOutliner.cpp
1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Replaces repeated sequences of instructions with function calls.
12 ///
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
17 ///
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
22 ///
23 /// * Create an outlined function
24 /// * Call that outlined function
25 ///
26 /// Targets must implement
27 ///   * getOutliningCandidateInfo
28 ///   * buildOutlinedFrame
29 ///   * insertOutlinedCall
30 ///   * isFunctionSafeToOutlineFrom
31 ///
32 /// in order to make use of the MachineOutliner.
33 ///
34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
36 /// how this pass works, the talk is available on YouTube at
37 ///
38 /// https://www.youtube.com/watch?v=yorld-WSOeU
39 ///
40 /// The slides for the talk are available at
41 ///
42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
43 ///
44 /// The talk provides an overview of how the outliner finds candidates and
45 /// ultimately outlines them. It describes how the main data structure for this
46 /// pass, the suffix tree, is queried and purged for candidates. It also gives
47 /// a simplified suffix tree construction algorithm for suffix trees based off
48 /// of the algorithm actually used here, Ukkonen's algorithm.
49 ///
50 /// For the original RFC for this pass, please see
51 ///
52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
53 ///
54 /// For more information on the suffix tree data structure, please see
55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
56 ///
57 //===----------------------------------------------------------------------===//
58 #include "llvm/CodeGen/MachineOutliner.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <map>
78 #include <sstream>
79 #include <tuple>
80 #include <vector>
81
82 #define DEBUG_TYPE "machine-outliner"
83
84 using namespace llvm;
85 using namespace ore;
86 using namespace outliner;
87
88 STATISTIC(NumOutlined, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated, "Number of functions created");
90
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
95 // LTO.
96 static cl::opt<bool> EnableLinkOnceODROutlining(
97     "enable-linkonceodr-outlining",
98     cl::Hidden,
99     cl::desc("Enable the machine outliner on linkonceodr functions"),
100     cl::init(false));
101
102 namespace {
103
104 /// Represents an undefined index in the suffix tree.
105 const unsigned EmptyIdx = -1;
106
107 /// A node in a suffix tree which represents a substring or suffix.
108 ///
109 /// Each node has either no children or at least two children, with the root
110 /// being a exception in the empty tree.
111 ///
112 /// Children are represented as a map between unsigned integers and nodes. If
113 /// a node N has a child M on unsigned integer k, then the mapping represented
114 /// by N is a proper prefix of the mapping represented by M. Note that this,
115 /// although similar to a trie is somewhat different: each node stores a full
116 /// substring of the full mapping rather than a single character state.
117 ///
118 /// Each internal node contains a pointer to the internal node representing
119 /// the same string, but with the first character chopped off. This is stored
120 /// in \p Link. Each leaf node stores the start index of its respective
121 /// suffix in \p SuffixIdx.
122 struct SuffixTreeNode {
123
124   /// The children of this node.
125   ///
126   /// A child existing on an unsigned integer implies that from the mapping
127   /// represented by the current node, there is a way to reach another
128   /// mapping by tacking that character on the end of the current string.
129   DenseMap<unsigned, SuffixTreeNode *> Children;
130
131   /// A flag set to false if the node has been pruned from the tree.
132   bool IsInTree = true;
133
134   /// The start index of this node's substring in the main string.
135   unsigned StartIdx = EmptyIdx;
136
137   /// The end index of this node's substring in the main string.
138   ///
139   /// Every leaf node must have its \p EndIdx incremented at the end of every
140   /// step in the construction algorithm. To avoid having to update O(N)
141   /// nodes individually at the end of every step, the end index is stored
142   /// as a pointer.
143   unsigned *EndIdx = nullptr;
144
145   /// For leaves, the start index of the suffix represented by this node.
146   ///
147   /// For all other nodes, this is ignored.
148   unsigned SuffixIdx = EmptyIdx;
149
150   /// For internal nodes, a pointer to the internal node representing
151   /// the same sequence with the first character chopped off.
152   ///
153   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
154   /// Ukkonen's algorithm does to achieve linear-time construction is
155   /// keep track of which node the next insert should be at. This makes each
156   /// insert O(1), and there are a total of O(N) inserts. The suffix link
157   /// helps with inserting children of internal nodes.
158   ///
159   /// Say we add a child to an internal node with associated mapping S. The
160   /// next insertion must be at the node representing S - its first character.
161   /// This is given by the way that we iteratively build the tree in Ukkonen's
162   /// algorithm. The main idea is to look at the suffixes of each prefix in the
163   /// string, starting with the longest suffix of the prefix, and ending with
164   /// the shortest. Therefore, if we keep pointers between such nodes, we can
165   /// move to the next insertion point in O(1) time. If we don't, then we'd
166   /// have to query from the root, which takes O(N) time. This would make the
167   /// construction algorithm O(N^2) rather than O(N).
168   SuffixTreeNode *Link = nullptr;
169
170   /// The parent of this node. Every node except for the root has a parent.
171   SuffixTreeNode *Parent = nullptr;
172
173   /// The number of times this node's string appears in the tree.
174   ///
175   /// This is equal to the number of leaf children of the string. It represents
176   /// the number of suffixes that the node's string is a prefix of.
177   unsigned OccurrenceCount = 0;
178
179   /// The length of the string formed by concatenating the edge labels from the
180   /// root to this node.
181   unsigned ConcatLen = 0;
182
183   /// Returns true if this node is a leaf.
184   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
185
186   /// Returns true if this node is the root of its owning \p SuffixTree.
187   bool isRoot() const { return StartIdx == EmptyIdx; }
188
189   /// Return the number of elements in the substring associated with this node.
190   size_t size() const {
191
192     // Is it the root? If so, it's the empty string so return 0.
193     if (isRoot())
194       return 0;
195
196     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
197
198     // Size = the number of elements in the string.
199     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
200     return *EndIdx - StartIdx + 1;
201   }
202
203   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link,
204                  SuffixTreeNode *Parent)
205       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
206
207   SuffixTreeNode() {}
208 };
209
210 /// A data structure for fast substring queries.
211 ///
212 /// Suffix trees represent the suffixes of their input strings in their leaves.
213 /// A suffix tree is a type of compressed trie structure where each node
214 /// represents an entire substring rather than a single character. Each leaf
215 /// of the tree is a suffix.
216 ///
217 /// A suffix tree can be seen as a type of state machine where each state is a
218 /// substring of the full string. The tree is structured so that, for a string
219 /// of length N, there are exactly N leaves in the tree. This structure allows
220 /// us to quickly find repeated substrings of the input string.
221 ///
222 /// In this implementation, a "string" is a vector of unsigned integers.
223 /// These integers may result from hashing some data type. A suffix tree can
224 /// contain 1 or many strings, which can then be queried as one large string.
225 ///
226 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
227 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
228 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
229 /// paper is available at
230 ///
231 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
232 class SuffixTree {
233 public:
234   /// Stores each leaf node in the tree.
235   ///
236   /// This is used for finding outlining candidates.
237   std::vector<SuffixTreeNode *> LeafVector;
238
239   /// Each element is an integer representing an instruction in the module.
240   ArrayRef<unsigned> Str;
241
242 private:
243   /// Maintains each node in the tree.
244   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
245
246   /// The root of the suffix tree.
247   ///
248   /// The root represents the empty string. It is maintained by the
249   /// \p NodeAllocator like every other node in the tree.
250   SuffixTreeNode *Root = nullptr;
251
252   /// Maintains the end indices of the internal nodes in the tree.
253   ///
254   /// Each internal node is guaranteed to never have its end index change
255   /// during the construction algorithm; however, leaves must be updated at
256   /// every step. Therefore, we need to store leaf end indices by reference
257   /// to avoid updating O(N) leaves at every step of construction. Thus,
258   /// every internal node must be allocated its own end index.
259   BumpPtrAllocator InternalEndIdxAllocator;
260
261   /// The end index of each leaf in the tree.
262   unsigned LeafEndIdx = -1;
263
264   /// Helper struct which keeps track of the next insertion point in
265   /// Ukkonen's algorithm.
266   struct ActiveState {
267     /// The next node to insert at.
268     SuffixTreeNode *Node;
269
270     /// The index of the first character in the substring currently being added.
271     unsigned Idx = EmptyIdx;
272
273     /// The length of the substring we have to add at the current step.
274     unsigned Len = 0;
275   };
276
277   /// The point the next insertion will take place at in the
278   /// construction algorithm.
279   ActiveState Active;
280
281   /// Allocate a leaf node and add it to the tree.
282   ///
283   /// \param Parent The parent of this node.
284   /// \param StartIdx The start index of this node's associated string.
285   /// \param Edge The label on the edge leaving \p Parent to this node.
286   ///
287   /// \returns A pointer to the allocated leaf node.
288   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
289                              unsigned Edge) {
290
291     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
292
293     SuffixTreeNode *N = new (NodeAllocator.Allocate())
294         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent);
295     Parent.Children[Edge] = N;
296
297     return N;
298   }
299
300   /// Allocate an internal node and add it to the tree.
301   ///
302   /// \param Parent The parent of this node. Only null when allocating the root.
303   /// \param StartIdx The start index of this node's associated string.
304   /// \param EndIdx The end index of this node's associated string.
305   /// \param Edge The label on the edge leaving \p Parent to this node.
306   ///
307   /// \returns A pointer to the allocated internal node.
308   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
309                                      unsigned EndIdx, unsigned Edge) {
310
311     assert(StartIdx <= EndIdx && "String can't start after it ends!");
312     assert(!(!Parent && StartIdx != EmptyIdx) &&
313            "Non-root internal nodes must have parents!");
314
315     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
316     SuffixTreeNode *N = new (NodeAllocator.Allocate())
317         SuffixTreeNode(StartIdx, E, Root, Parent);
318     if (Parent)
319       Parent->Children[Edge] = N;
320
321     return N;
322   }
323
324   /// Set the suffix indices of the leaves to the start indices of their
325   /// respective suffixes. Also stores each leaf in \p LeafVector at its
326   /// respective suffix index.
327   ///
328   /// \param[in] CurrNode The node currently being visited.
329   /// \param CurrIdx The current index of the string being visited.
330   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) {
331
332     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
333
334     // Store the length of the concatenation of all strings from the root to
335     // this node.
336     if (!CurrNode.isRoot()) {
337       if (CurrNode.ConcatLen == 0)
338         CurrNode.ConcatLen = CurrNode.size();
339
340       if (CurrNode.Parent)
341         CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
342     }
343
344     // Traverse the tree depth-first.
345     for (auto &ChildPair : CurrNode.Children) {
346       assert(ChildPair.second && "Node had a null child!");
347       setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size());
348     }
349
350     // Is this node a leaf?
351     if (IsLeaf) {
352       // If yes, give it a suffix index and bump its parent's occurrence count.
353       CurrNode.SuffixIdx = Str.size() - CurrIdx;
354       assert(CurrNode.Parent && "CurrNode had no parent!");
355       CurrNode.Parent->OccurrenceCount++;
356
357       // Store the leaf in the leaf vector for pruning later.
358       LeafVector[CurrNode.SuffixIdx] = &CurrNode;
359     }
360   }
361
362   /// Construct the suffix tree for the prefix of the input ending at
363   /// \p EndIdx.
364   ///
365   /// Used to construct the full suffix tree iteratively. At the end of each
366   /// step, the constructed suffix tree is either a valid suffix tree, or a
367   /// suffix tree with implicit suffixes. At the end of the final step, the
368   /// suffix tree is a valid tree.
369   ///
370   /// \param EndIdx The end index of the current prefix in the main string.
371   /// \param SuffixesToAdd The number of suffixes that must be added
372   /// to complete the suffix tree at the current phase.
373   ///
374   /// \returns The number of suffixes that have not been added at the end of
375   /// this step.
376   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
377     SuffixTreeNode *NeedsLink = nullptr;
378
379     while (SuffixesToAdd > 0) {
380
381       // Are we waiting to add anything other than just the last character?
382       if (Active.Len == 0) {
383         // If not, then say the active index is the end index.
384         Active.Idx = EndIdx;
385       }
386
387       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
388
389       // The first character in the current substring we're looking at.
390       unsigned FirstChar = Str[Active.Idx];
391
392       // Have we inserted anything starting with FirstChar at the current node?
393       if (Active.Node->Children.count(FirstChar) == 0) {
394         // If not, then we can just insert a leaf and move too the next step.
395         insertLeaf(*Active.Node, EndIdx, FirstChar);
396
397         // The active node is an internal node, and we visited it, so it must
398         // need a link if it doesn't have one.
399         if (NeedsLink) {
400           NeedsLink->Link = Active.Node;
401           NeedsLink = nullptr;
402         }
403       } else {
404         // There's a match with FirstChar, so look for the point in the tree to
405         // insert a new node.
406         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
407
408         unsigned SubstringLen = NextNode->size();
409
410         // Is the current suffix we're trying to insert longer than the size of
411         // the child we want to move to?
412         if (Active.Len >= SubstringLen) {
413           // If yes, then consume the characters we've seen and move to the next
414           // node.
415           Active.Idx += SubstringLen;
416           Active.Len -= SubstringLen;
417           Active.Node = NextNode;
418           continue;
419         }
420
421         // Otherwise, the suffix we're trying to insert must be contained in the
422         // next node we want to move to.
423         unsigned LastChar = Str[EndIdx];
424
425         // Is the string we're trying to insert a substring of the next node?
426         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
427           // If yes, then we're done for this step. Remember our insertion point
428           // and move to the next end index. At this point, we have an implicit
429           // suffix tree.
430           if (NeedsLink && !Active.Node->isRoot()) {
431             NeedsLink->Link = Active.Node;
432             NeedsLink = nullptr;
433           }
434
435           Active.Len++;
436           break;
437         }
438
439         // The string we're trying to insert isn't a substring of the next node,
440         // but matches up to a point. Split the node.
441         //
442         // For example, say we ended our search at a node n and we're trying to
443         // insert ABD. Then we'll create a new node s for AB, reduce n to just
444         // representing C, and insert a new leaf node l to represent d. This
445         // allows us to ensure that if n was a leaf, it remains a leaf.
446         //
447         //   | ABC  ---split--->  | AB
448         //   n                    s
449         //                     C / \ D
450         //                      n   l
451
452         // The node s from the diagram
453         SuffixTreeNode *SplitNode =
454             insertInternalNode(Active.Node, NextNode->StartIdx,
455                                NextNode->StartIdx + Active.Len - 1, FirstChar);
456
457         // Insert the new node representing the new substring into the tree as
458         // a child of the split node. This is the node l from the diagram.
459         insertLeaf(*SplitNode, EndIdx, LastChar);
460
461         // Make the old node a child of the split node and update its start
462         // index. This is the node n from the diagram.
463         NextNode->StartIdx += Active.Len;
464         NextNode->Parent = SplitNode;
465         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
466
467         // SplitNode is an internal node, update the suffix link.
468         if (NeedsLink)
469           NeedsLink->Link = SplitNode;
470
471         NeedsLink = SplitNode;
472       }
473
474       // We've added something new to the tree, so there's one less suffix to
475       // add.
476       SuffixesToAdd--;
477
478       if (Active.Node->isRoot()) {
479         if (Active.Len > 0) {
480           Active.Len--;
481           Active.Idx = EndIdx - SuffixesToAdd + 1;
482         }
483       } else {
484         // Start the next phase at the next smallest suffix.
485         Active.Node = Active.Node->Link;
486       }
487     }
488
489     return SuffixesToAdd;
490   }
491
492 public:
493   /// Construct a suffix tree from a sequence of unsigned integers.
494   ///
495   /// \param Str The string to construct the suffix tree for.
496   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
497     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
498     Root->IsInTree = true;
499     Active.Node = Root;
500     LeafVector = std::vector<SuffixTreeNode *>(Str.size());
501
502     // Keep track of the number of suffixes we have to add of the current
503     // prefix.
504     unsigned SuffixesToAdd = 0;
505     Active.Node = Root;
506
507     // Construct the suffix tree iteratively on each prefix of the string.
508     // PfxEndIdx is the end index of the current prefix.
509     // End is one past the last element in the string.
510     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
511          PfxEndIdx++) {
512       SuffixesToAdd++;
513       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
514       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
515     }
516
517     // Set the suffix indices of each leaf.
518     assert(Root && "Root node can't be nullptr!");
519     setSuffixIndices(*Root, 0);
520   }
521 };
522
523 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
524 struct InstructionMapper {
525
526   /// The next available integer to assign to a \p MachineInstr that
527   /// cannot be outlined.
528   ///
529   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
530   unsigned IllegalInstrNumber = -3;
531
532   /// The next available integer to assign to a \p MachineInstr that can
533   /// be outlined.
534   unsigned LegalInstrNumber = 0;
535
536   /// Correspondence from \p MachineInstrs to unsigned integers.
537   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
538       InstructionIntegerMap;
539
540   /// Corresponcence from unsigned integers to \p MachineInstrs.
541   /// Inverse of \p InstructionIntegerMap.
542   DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
543
544   /// The vector of unsigned integers that the module is mapped to.
545   std::vector<unsigned> UnsignedVec;
546
547   /// Stores the location of the instruction associated with the integer
548   /// at index i in \p UnsignedVec for each index i.
549   std::vector<MachineBasicBlock::iterator> InstrList;
550
551   /// Maps \p *It to a legal integer.
552   ///
553   /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
554   /// \p IntegerInstructionMap, and \p LegalInstrNumber.
555   ///
556   /// \returns The integer that \p *It was mapped to.
557   unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
558
559     // Get the integer for this instruction or give it the current
560     // LegalInstrNumber.
561     InstrList.push_back(It);
562     MachineInstr &MI = *It;
563     bool WasInserted;
564     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
565         ResultIt;
566     std::tie(ResultIt, WasInserted) =
567         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
568     unsigned MINumber = ResultIt->second;
569
570     // There was an insertion.
571     if (WasInserted) {
572       LegalInstrNumber++;
573       IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
574     }
575
576     UnsignedVec.push_back(MINumber);
577
578     // Make sure we don't overflow or use any integers reserved by the DenseMap.
579     if (LegalInstrNumber >= IllegalInstrNumber)
580       report_fatal_error("Instruction mapping overflow!");
581
582     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
583            "Tried to assign DenseMap tombstone or empty key to instruction.");
584     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
585            "Tried to assign DenseMap tombstone or empty key to instruction.");
586
587     return MINumber;
588   }
589
590   /// Maps \p *It to an illegal integer.
591   ///
592   /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
593   ///
594   /// \returns The integer that \p *It was mapped to.
595   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
596     unsigned MINumber = IllegalInstrNumber;
597
598     InstrList.push_back(It);
599     UnsignedVec.push_back(IllegalInstrNumber);
600     IllegalInstrNumber--;
601
602     assert(LegalInstrNumber < IllegalInstrNumber &&
603            "Instruction mapping overflow!");
604
605     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
606            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
607
608     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
609            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
610
611     return MINumber;
612   }
613
614   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
615   /// and appends it to \p UnsignedVec and \p InstrList.
616   ///
617   /// Two instructions are assigned the same integer if they are identical.
618   /// If an instruction is deemed unsafe to outline, then it will be assigned an
619   /// unique integer. The resulting mapping is placed into a suffix tree and
620   /// queried for candidates.
621   ///
622   /// \param MBB The \p MachineBasicBlock to be translated into integers.
623   /// \param TII \p TargetInstrInfo for the function.
624   void convertToUnsignedVec(MachineBasicBlock &MBB,
625                             const TargetInstrInfo &TII) {
626     unsigned Flags = TII.getMachineOutlinerMBBFlags(MBB);
627
628     for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
629          It++) {
630
631       // Keep track of where this instruction is in the module.
632       switch (TII.getOutliningType(It, Flags)) {
633       case InstrType::Illegal:
634         mapToIllegalUnsigned(It);
635         break;
636
637       case InstrType::Legal:
638         mapToLegalUnsigned(It);
639         break;
640
641       case InstrType::LegalTerminator:
642         mapToLegalUnsigned(It);
643         InstrList.push_back(It);
644         UnsignedVec.push_back(IllegalInstrNumber);
645         IllegalInstrNumber--;
646         break;
647
648       case InstrType::Invisible:
649         break;
650       }
651     }
652
653     // After we're done every insertion, uniquely terminate this part of the
654     // "string". This makes sure we won't match across basic block or function
655     // boundaries since the "end" is encoded uniquely and thus appears in no
656     // repeated substring.
657     InstrList.push_back(MBB.end());
658     UnsignedVec.push_back(IllegalInstrNumber);
659     IllegalInstrNumber--;
660   }
661
662   InstructionMapper() {
663     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
664     // changed.
665     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
666            "DenseMapInfo<unsigned>'s empty key isn't -1!");
667     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
668            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
669   }
670 };
671
672 /// An interprocedural pass which finds repeated sequences of
673 /// instructions and replaces them with calls to functions.
674 ///
675 /// Each instruction is mapped to an unsigned integer and placed in a string.
676 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
677 /// is then repeatedly queried for repeated sequences of instructions. Each
678 /// non-overlapping repeated sequence is then placed in its own
679 /// \p MachineFunction and each instance is then replaced with a call to that
680 /// function.
681 struct MachineOutliner : public ModulePass {
682
683   static char ID;
684
685   /// Set to true if the outliner should consider functions with
686   /// linkonceodr linkage.
687   bool OutlineFromLinkOnceODRs = false;
688
689   /// Set to true if the outliner should run on all functions in the module
690   /// considered safe for outlining.
691   /// Set to true by default for compatibility with llc's -run-pass option.
692   /// Set when the pass is constructed in TargetPassConfig.
693   bool RunOnAllFunctions = true;
694
695   // Collection of IR functions created by the outliner.
696   std::vector<Function *> CreatedIRFunctions;
697
698   StringRef getPassName() const override { return "Machine Outliner"; }
699
700   void getAnalysisUsage(AnalysisUsage &AU) const override {
701     AU.addRequired<MachineModuleInfo>();
702     AU.addPreserved<MachineModuleInfo>();
703     AU.setPreservesAll();
704     ModulePass::getAnalysisUsage(AU);
705   }
706
707   MachineOutliner() : ModulePass(ID) {
708     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
709   }
710
711   /// Remark output explaining that not outlining a set of candidates would be
712   /// better than outlining that set.
713   void emitNotOutliningCheaperRemark(
714       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
715       OutlinedFunction &OF);
716
717   /// Remark output explaining that a function was outlined.
718   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
719
720   /// Find all repeated substrings that satisfy the outlining cost model.
721   ///
722   /// If a substring appears at least twice, then it must be represented by
723   /// an internal node which appears in at least two suffixes. Each suffix
724   /// is represented by a leaf node. To do this, we visit each internal node
725   /// in the tree, using the leaf children of each internal node. If an
726   /// internal node represents a beneficial substring, then we use each of
727   /// its leaf children to find the locations of its substring.
728   ///
729   /// \param ST A suffix tree to query.
730   /// \param Mapper Contains outlining mapping information.
731   /// \param[out] CandidateList Filled with candidates representing each
732   /// beneficial substring.
733   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
734   /// each type of candidate.
735   ///
736   /// \returns The length of the longest candidate found.
737   unsigned
738   findCandidates(SuffixTree &ST,
739                  InstructionMapper &Mapper,
740                  std::vector<std::shared_ptr<Candidate>> &CandidateList,
741                  std::vector<OutlinedFunction> &FunctionList);
742
743   /// Replace the sequences of instructions represented by the
744   /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
745   /// described in \p FunctionList.
746   ///
747   /// \param M The module we are outlining from.
748   /// \param CandidateList A list of candidates to be outlined.
749   /// \param FunctionList A list of functions to be inserted into the module.
750   /// \param Mapper Contains the instruction mappings for the module.
751   bool outline(Module &M,
752                const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
753                std::vector<OutlinedFunction> &FunctionList,
754                InstructionMapper &Mapper);
755
756   /// Creates a function for \p OF and inserts it into the module.
757   MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
758                                           InstructionMapper &Mapper);
759
760   /// Find potential outlining candidates and store them in \p CandidateList.
761   ///
762   /// For each type of potential candidate, also build an \p OutlinedFunction
763   /// struct containing the information to build the function for that
764   /// candidate.
765   ///
766   /// \param[out] CandidateList Filled with outlining candidates for the module.
767   /// \param[out] FunctionList Filled with functions corresponding to each type
768   /// of \p Candidate.
769   /// \param ST The suffix tree for the module.
770   ///
771   /// \returns The length of the longest candidate found. 0 if there are none.
772   unsigned
773   buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList,
774                      std::vector<OutlinedFunction> &FunctionList,
775                      SuffixTree &ST, InstructionMapper &Mapper);
776
777   /// Helper function for pruneOverlaps.
778   /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
779   void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList);
780
781   /// Remove any overlapping candidates that weren't handled by the
782   /// suffix tree's pruning method.
783   ///
784   /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
785   /// If a short candidate is chosen for outlining, then a longer candidate
786   /// which has that short candidate as a suffix is chosen, the tree's pruning
787   /// method will not find it. Thus, we need to prune before outlining as well.
788   ///
789   /// \param[in,out] CandidateList A list of outlining candidates.
790   /// \param[in,out] FunctionList A list of functions to be outlined.
791   /// \param Mapper Contains instruction mapping info for outlining.
792   /// \param MaxCandidateLen The length of the longest candidate.
793   void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList,
794                      std::vector<OutlinedFunction> &FunctionList,
795                      InstructionMapper &Mapper, unsigned MaxCandidateLen);
796
797   /// Construct a suffix tree on the instructions in \p M and outline repeated
798   /// strings from that tree.
799   bool runOnModule(Module &M) override;
800
801   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
802   /// function for remark emission.
803   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
804     DISubprogram *SP;
805     for (const std::shared_ptr<Candidate> &C : OF.Candidates)
806       if (C && C->getMF() && (SP = C->getMF()->getFunction().getSubprogram()))
807         return SP;
808     return nullptr;
809   }
810 };
811
812 } // Anonymous namespace.
813
814 char MachineOutliner::ID = 0;
815
816 namespace llvm {
817 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
818   MachineOutliner *OL = new MachineOutliner();
819   OL->RunOnAllFunctions = RunOnAllFunctions;
820   return OL;
821 }
822
823 } // namespace llvm
824
825 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
826                 false)
827
828 void MachineOutliner::emitNotOutliningCheaperRemark(
829     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
830     OutlinedFunction &OF) {
831   Candidate &C = CandidatesForRepeatedSeq.front();
832   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
833   MORE.emit([&]() {
834     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
835                                       C.front()->getDebugLoc(), C.getMBB());
836     R << "Did not outline " << NV("Length", StringLen) << " instructions"
837       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
838       << " locations."
839       << " Bytes from outlining all occurrences ("
840       << NV("OutliningCost", OF.getOutliningCost()) << ")"
841       << " >= Unoutlined instruction bytes ("
842       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
843       << " (Also found at: ";
844
845     // Tell the user the other places the candidate was found.
846     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
847       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
848               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
849       if (i != e - 1)
850         R << ", ";
851     }
852
853     R << ")";
854     return R;
855   });
856 }
857
858 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
859   MachineBasicBlock *MBB = &*OF.MF->begin();
860   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
861   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
862                               MBB->findDebugLoc(MBB->begin()), MBB);
863   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
864     << "outlining " << NV("Length", OF.Sequence.size()) << " instructions "
865     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
866     << " locations. "
867     << "(Found at: ";
868
869   // Tell the user the other places the candidate was found.
870   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
871
872     // Skip over things that were pruned.
873     if (!OF.Candidates[i]->InCandidateList)
874       continue;
875
876     R << NV((Twine("StartLoc") + Twine(i)).str(),
877             OF.Candidates[i]->front()->getDebugLoc());
878     if (i != e - 1)
879       R << ", ";
880   }
881
882   R << ")";
883
884   MORE.emit(R);
885 }
886
887 unsigned MachineOutliner::findCandidates(
888     SuffixTree &ST, InstructionMapper &Mapper,
889     std::vector<std::shared_ptr<Candidate>> &CandidateList,
890     std::vector<OutlinedFunction> &FunctionList) {
891   CandidateList.clear();
892   FunctionList.clear();
893   unsigned MaxLen = 0;
894
895   // FIXME: Visit internal nodes instead of leaves.
896   for (SuffixTreeNode *Leaf : ST.LeafVector) {
897     assert(Leaf && "Leaves in LeafVector cannot be null!");
898     if (!Leaf->IsInTree)
899       continue;
900
901     assert(Leaf->Parent && "All leaves must have parents!");
902     SuffixTreeNode &Parent = *(Leaf->Parent);
903
904     // If it doesn't appear enough, or we already outlined from it, skip it.
905     if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
906       continue;
907
908     // Figure out if this candidate is beneficial.
909     unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size();
910
911     // Too short to be beneficial; skip it.
912     // FIXME: This isn't necessarily true for, say, X86. If we factor in
913     // instruction lengths we need more information than this.
914     if (StringLen < 2)
915       continue;
916
917     // If this is a beneficial class of candidate, then every one is stored in
918     // this vector.
919     std::vector<Candidate> CandidatesForRepeatedSeq;
920
921     // Figure out the call overhead for each instance of the sequence.
922     for (auto &ChildPair : Parent.Children) {
923       SuffixTreeNode *M = ChildPair.second;
924
925       if (M && M->IsInTree && M->isLeaf()) {
926         // Never visit this leaf again.
927         M->IsInTree = false;
928         unsigned StartIdx = M->SuffixIdx;
929         unsigned EndIdx = StartIdx + StringLen - 1;
930
931         // Trick: Discard some candidates that would be incompatible with the
932         // ones we've already found for this sequence. This will save us some
933         // work in candidate selection.
934         //
935         // If two candidates overlap, then we can't outline them both. This
936         // happens when we have candidates that look like, say
937         //
938         // AA (where each "A" is an instruction).
939         //
940         // We might have some portion of the module that looks like this:
941         // AAAAAA (6 A's)
942         //
943         // In this case, there are 5 different copies of "AA" in this range, but
944         // at most 3 can be outlined. If only outlining 3 of these is going to
945         // be unbeneficial, then we ought to not bother.
946         //
947         // Note that two things DON'T overlap when they look like this:
948         // start1...end1 .... start2...end2
949         // That is, one must either
950         // * End before the other starts
951         // * Start after the other ends
952         if (std::all_of(CandidatesForRepeatedSeq.begin(),
953                         CandidatesForRepeatedSeq.end(),
954                         [&StartIdx, &EndIdx](const Candidate &C) {
955                           return (EndIdx < C.getStartIdx() ||
956                                   StartIdx > C.getEndIdx());
957                         })) {
958           // It doesn't overlap with anything, so we can outline it.
959           // Each sequence is over [StartIt, EndIt].
960           // Save the candidate and its location.
961
962           MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
963           MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
964
965           CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
966                                                 EndIt, StartIt->getParent(),
967                                                 FunctionList.size());
968         }
969       }
970     }
971
972     // We've found something we might want to outline.
973     // Create an OutlinedFunction to store it and check if it'd be beneficial
974     // to outline.
975     if (CandidatesForRepeatedSeq.empty())
976       continue;
977
978     // Arbitrarily choose a TII from the first candidate.
979     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
980     const TargetInstrInfo *TII =
981         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
982
983     OutlinedFunction OF =
984         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
985
986     // If we deleted every candidate, then there's nothing to outline.
987     if (OF.Candidates.empty())
988       continue;
989
990     std::vector<unsigned> Seq;
991     for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
992       Seq.push_back(ST.Str[i]);
993     OF.Sequence = Seq;
994     OF.Name = FunctionList.size();
995
996     // Is it better to outline this candidate than not?
997     if (OF.getBenefit() < 1) {
998       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
999       continue;
1000     }
1001
1002     if (StringLen > MaxLen)
1003       MaxLen = StringLen;
1004
1005     // The function is beneficial. Save its candidates to the candidate list
1006     // for pruning.
1007     for (std::shared_ptr<Candidate> &C : OF.Candidates)
1008       CandidateList.push_back(C);
1009     FunctionList.push_back(OF);
1010
1011     // Move to the next function.
1012     Parent.IsInTree = false;
1013   }
1014
1015   return MaxLen;
1016 }
1017
1018 // Remove C from the candidate space, and update its OutlinedFunction.
1019 void MachineOutliner::prune(Candidate &C,
1020                             std::vector<OutlinedFunction> &FunctionList) {
1021   // Get the OutlinedFunction associated with this Candidate.
1022   OutlinedFunction &F = FunctionList[C.FunctionIdx];
1023
1024   // Update C's associated function's occurrence count.
1025   F.decrement();
1026
1027   // Remove C from the CandidateList.
1028   C.InCandidateList = false;
1029
1030   LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1031              dbgs() << "--- Num fns left for candidate: "
1032                     << F.getOccurrenceCount() << "\n";
1033              dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit()
1034                     << "\n";);
1035 }
1036
1037 void MachineOutliner::pruneOverlaps(
1038     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1039     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper,
1040     unsigned MaxCandidateLen) {
1041
1042   // Return true if this candidate became unbeneficial for outlining in a
1043   // previous step.
1044   auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) {
1045
1046     // Check if the candidate was removed in a previous step.
1047     if (!C.InCandidateList)
1048       return true;
1049
1050     // C must be alive. Check if we should remove it.
1051     if (FunctionList[C.FunctionIdx].getBenefit() < 1) {
1052       prune(C, FunctionList);
1053       return true;
1054     }
1055
1056     // C is in the list, and F is still beneficial.
1057     return false;
1058   };
1059
1060   // TODO: Experiment with interval trees or other interval-checking structures
1061   // to lower the time complexity of this function.
1062   // TODO: Can we do better than the simple greedy choice?
1063   // Check for overlaps in the range.
1064   // This is O(MaxCandidateLen * CandidateList.size()).
1065   for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
1066        It++) {
1067     Candidate &C1 = **It;
1068
1069     // If C1 was already pruned, or its function is no longer beneficial for
1070     // outlining, move to the next candidate.
1071     if (ShouldSkipCandidate(C1))
1072       continue;
1073
1074     // The minimum start index of any candidate that could overlap with this
1075     // one.
1076     unsigned FarthestPossibleIdx = 0;
1077
1078     // Either the index is 0, or it's at most MaxCandidateLen indices away.
1079     if (C1.getStartIdx() > MaxCandidateLen)
1080       FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen;
1081
1082     // Compare against the candidates in the list that start at most
1083     // FarthestPossibleIdx indices away from C1. There are at most
1084     // MaxCandidateLen of these.
1085     for (auto Sit = It + 1; Sit != Et; Sit++) {
1086       Candidate &C2 = **Sit;
1087
1088       // Is this candidate too far away to overlap?
1089       if (C2.getStartIdx() < FarthestPossibleIdx)
1090         break;
1091
1092       // If C2 was already pruned, or its function is no longer beneficial for
1093       // outlining, move to the next candidate.
1094       if (ShouldSkipCandidate(C2))
1095         continue;
1096
1097       // Do C1 and C2 overlap?
1098       //
1099       // Not overlapping:
1100       // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1101       //
1102       // We sorted our candidate list so C2Start <= C1Start. We know that
1103       // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1104       // have to check is C2End < C2Start to see if we overlap.
1105       if (C2.getEndIdx() < C1.getStartIdx())
1106         continue;
1107
1108       // C1 and C2 overlap.
1109       // We need to choose the better of the two.
1110       //
1111       // Approximate this by picking the one which would have saved us the
1112       // most instructions before any pruning.
1113
1114       // Is C2 a better candidate?
1115       if (C2.Benefit > C1.Benefit) {
1116         // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1117         // against anything anymore, so break.
1118         prune(C1, FunctionList);
1119         break;
1120       }
1121
1122       // Prune C2 and move on to the next candidate.
1123       prune(C2, FunctionList);
1124     }
1125   }
1126 }
1127
1128 unsigned MachineOutliner::buildCandidateList(
1129     std::vector<std::shared_ptr<Candidate>> &CandidateList,
1130     std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST,
1131     InstructionMapper &Mapper) {
1132
1133   std::vector<unsigned> CandidateSequence; // Current outlining candidate.
1134   unsigned MaxCandidateLen = 0;            // Length of the longest candidate.
1135
1136   MaxCandidateLen =
1137       findCandidates(ST, Mapper, CandidateList, FunctionList);
1138
1139   // Sort the candidates in decending order. This will simplify the outlining
1140   // process when we have to remove the candidates from the mapping by
1141   // allowing us to cut them out without keeping track of an offset.
1142   std::stable_sort(
1143       CandidateList.begin(), CandidateList.end(),
1144       [](const std::shared_ptr<Candidate> &LHS,
1145          const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; });
1146
1147   return MaxCandidateLen;
1148 }
1149
1150 MachineFunction *
1151 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
1152                                         InstructionMapper &Mapper) {
1153
1154   // Create the function name. This should be unique. For now, just hash the
1155   // module name and include it in the function name plus the number of this
1156   // function.
1157   std::ostringstream NameStream;
1158   NameStream << "OUTLINED_FUNCTION_" << OF.Name;
1159
1160   // Create the function using an IR-level function.
1161   LLVMContext &C = M.getContext();
1162   Function *F = dyn_cast<Function>(
1163       M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
1164   assert(F && "Function was null!");
1165
1166   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1167   // which gives us better results when we outline from linkonceodr functions.
1168   F->setLinkage(GlobalValue::InternalLinkage);
1169   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1170
1171   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1172   // necessary.
1173
1174   // Set optsize/minsize, so we don't insert padding between outlined
1175   // functions.
1176   F->addFnAttr(Attribute::OptimizeForSize);
1177   F->addFnAttr(Attribute::MinSize);
1178
1179   // Save F so that we can add debug info later if we need to.
1180   CreatedIRFunctions.push_back(F);
1181
1182   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1183   IRBuilder<> Builder(EntryBB);
1184   Builder.CreateRetVoid();
1185
1186   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1187   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1188   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1189   const TargetSubtargetInfo &STI = MF.getSubtarget();
1190   const TargetInstrInfo &TII = *STI.getInstrInfo();
1191
1192   // Insert the new function into the module.
1193   MF.insert(MF.begin(), &MBB);
1194
1195   // Copy over the instructions for the function using the integer mappings in
1196   // its sequence.
1197   for (unsigned Str : OF.Sequence) {
1198     MachineInstr *NewMI =
1199         MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
1200     NewMI->dropMemRefs();
1201
1202     // Don't keep debug information for outlined instructions.
1203     NewMI->setDebugLoc(DebugLoc());
1204     MBB.insert(MBB.end(), NewMI);
1205   }
1206
1207   TII.buildOutlinedFrame(MBB, MF, OF);
1208
1209   // If there's a DISubprogram associated with this outlined function, then
1210   // emit debug info for the outlined function.
1211   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1212     // We have a DISubprogram. Get its DICompileUnit.
1213     DICompileUnit *CU = SP->getUnit();
1214     DIBuilder DB(M, true, CU);
1215     DIFile *Unit = SP->getFile();
1216     Mangler Mg;
1217
1218     // Walk over each IR function we created in the outliner and create
1219     // DISubprograms for each function.
1220     for (Function *F : CreatedIRFunctions) {
1221       // Get the mangled name of the function for the linkage name.
1222       std::string Dummy;
1223       llvm::raw_string_ostream MangledNameStream(Dummy);
1224       Mg.getNameWithPrefix(MangledNameStream, F, false);
1225
1226       DISubprogram *SP = DB.createFunction(
1227           Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1228           Unit /* File */,
1229           0 /* Line 0 is reserved for compiler-generated code. */,
1230           DB.createSubroutineType(
1231               DB.getOrCreateTypeArray(None)), /* void type */
1232           false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1233           DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1234           true /* Outlined code is optimized code by definition. */);
1235
1236       // Don't add any new variables to the subprogram.
1237       DB.finalizeSubprogram(SP);
1238
1239       // Attach subprogram to the function.
1240       F->setSubprogram(SP);
1241     }
1242
1243     // We're done with the DIBuilder.
1244     DB.finalize();
1245   }
1246
1247   // Outlined functions shouldn't preserve liveness.
1248   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1249   MF.getRegInfo().freezeReservedRegs(MF);
1250   return &MF;
1251 }
1252
1253 bool MachineOutliner::outline(
1254     Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList,
1255     std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) {
1256
1257   bool OutlinedSomething = false;
1258   // Replace the candidates with calls to their respective outlined functions.
1259   for (const std::shared_ptr<Candidate> &Cptr : CandidateList) {
1260     Candidate &C = *Cptr;
1261     // Was the candidate removed during pruneOverlaps?
1262     if (!C.InCandidateList)
1263       continue;
1264
1265     // If not, then look at its OutlinedFunction.
1266     OutlinedFunction &OF = FunctionList[C.FunctionIdx];
1267
1268     // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1269     if (OF.getBenefit() < 1)
1270       continue;
1271
1272     // Does this candidate have a function yet?
1273     if (!OF.MF) {
1274       OF.MF = createOutlinedFunction(M, OF, Mapper);
1275       emitOutlinedFunctionRemark(OF);
1276       FunctionsCreated++;
1277     }
1278
1279     MachineFunction *MF = OF.MF;
1280     MachineBasicBlock &MBB = *C.getMBB();
1281     MachineBasicBlock::iterator StartIt = C.front();
1282     MachineBasicBlock::iterator EndIt = C.back();
1283     assert(StartIt != C.getMBB()->end() && "StartIt out of bounds!");
1284     assert(EndIt != C.getMBB()->end() && "EndIt out of bounds!");
1285
1286     const TargetSubtargetInfo &STI = MF->getSubtarget();
1287     const TargetInstrInfo &TII = *STI.getInstrInfo();
1288
1289     // Insert a call to the new function and erase the old sequence.
1290     auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *OF.MF, C);
1291
1292     // If the caller tracks liveness, then we need to make sure that anything
1293     // we outline doesn't break liveness assumptions.
1294     // The outlined functions themselves currently don't track liveness, but
1295     // we should make sure that the ranges we yank things out of aren't
1296     // wrong.
1297     if (MBB.getParent()->getProperties().hasProperty(
1298             MachineFunctionProperties::Property::TracksLiveness)) {
1299       // Helper lambda for adding implicit def operands to the call instruction.
1300       auto CopyDefs = [&CallInst](MachineInstr &MI) {
1301         for (MachineOperand &MOP : MI.operands()) {
1302           // Skip over anything that isn't a register.
1303           if (!MOP.isReg())
1304             continue;
1305
1306           // If it's a def, add it to the call instruction.
1307           if (MOP.isDef())
1308             CallInst->addOperand(
1309                 MachineOperand::CreateReg(MOP.getReg(), true, /* isDef = true */
1310                                           true /* isImp = true */));
1311         }
1312       };
1313
1314       // Copy over the defs in the outlined range.
1315       // First inst in outlined range <-- Anything that's defined in this
1316       // ...                           .. range has to be added as an implicit
1317       // Last inst in outlined range  <-- def to the call instruction.
1318       std::for_each(CallInst, std::next(EndIt), CopyDefs);
1319     }
1320
1321     // Erase from the point after where the call was inserted up to, and
1322     // including, the final instruction in the sequence.
1323     // Erase needs one past the end, so we need std::next there too.
1324     MBB.erase(std::next(StartIt), std::next(EndIt));
1325     OutlinedSomething = true;
1326
1327     // Statistics.
1328     NumOutlined++;
1329   }
1330
1331   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1332
1333   return OutlinedSomething;
1334 }
1335
1336 bool MachineOutliner::runOnModule(Module &M) {
1337   // Check if there's anything in the module. If it's empty, then there's
1338   // nothing to outline.
1339   if (M.empty())
1340     return false;
1341
1342   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
1343
1344   // If the user passed -enable-machine-outliner=always or
1345   // -enable-machine-outliner, the pass will run on all functions in the module.
1346   // Otherwise, if the target supports default outlining, it will run on all
1347   // functions deemed by the target to be worth outlining from by default. Tell
1348   // the user how the outliner is running.
1349   LLVM_DEBUG(
1350     dbgs() << "Machine Outliner: Running on ";
1351     if (RunOnAllFunctions)
1352       dbgs() << "all functions";
1353     else
1354       dbgs() << "target-default functions";
1355     dbgs() << "\n"
1356   );
1357
1358   // If the user specifies that they want to outline from linkonceodrs, set
1359   // it here.
1360   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1361
1362   InstructionMapper Mapper;
1363
1364   // Build instruction mappings for each function in the module. Start by
1365   // iterating over each Function in M.
1366   for (Function &F : M) {
1367
1368     // If there's nothing in F, then there's no reason to try and outline from
1369     // it.
1370     if (F.empty())
1371       continue;
1372
1373     // There's something in F. Check if it has a MachineFunction associated with
1374     // it.
1375     MachineFunction *MF = MMI.getMachineFunction(F);
1376
1377     // If it doesn't, then there's nothing to outline from. Move to the next
1378     // Function.
1379     if (!MF)
1380       continue;
1381
1382     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1383
1384     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1385       continue;
1386
1387     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1388     // If it isn't, then move on to the next Function in the module.
1389     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1390       continue;
1391
1392     // We have a function suitable for outlining. Iterate over every
1393     // MachineBasicBlock in MF and try to map its instructions to a list of
1394     // unsigned integers.
1395     for (MachineBasicBlock &MBB : *MF) {
1396       // If there isn't anything in MBB, then there's no point in outlining from
1397       // it.
1398       if (MBB.empty())
1399         continue;
1400
1401       // Check if MBB could be the target of an indirect branch. If it is, then
1402       // we don't want to outline from it.
1403       if (MBB.hasAddressTaken())
1404         continue;
1405
1406       // MBB is suitable for outlining. Map it to a list of unsigneds.
1407       Mapper.convertToUnsignedVec(MBB, *TII);
1408     }
1409   }
1410
1411   // Construct a suffix tree, use it to find candidates, and then outline them.
1412   SuffixTree ST(Mapper.UnsignedVec);
1413   std::vector<std::shared_ptr<Candidate>> CandidateList;
1414   std::vector<OutlinedFunction> FunctionList;
1415
1416   // Find all of the outlining candidates.
1417   unsigned MaxCandidateLen =
1418       buildCandidateList(CandidateList, FunctionList, ST, Mapper);
1419
1420   // Remove candidates that overlap with other candidates.
1421   pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen);
1422
1423   // Outline each of the candidates and return true if something was outlined.
1424   bool OutlinedSomething = outline(M, CandidateList, FunctionList, Mapper);
1425
1426   return OutlinedSomething;
1427 }