]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / MachinePipeliner.cpp
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 //
12 // Software pipelining (SWP) is an instruction scheduling technique for loops
13 // that overlap loop iterations and exploits ILP via a compiler transformation.
14 //
15 // Swing Modulo Scheduling is an implementation of software pipelining
16 // that generates schedules that are near optimal in terms of initiation
17 // interval, register requirements, and stage count. See the papers:
18 //
19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
21 // Conference on Parallel Architectures and Compilation Techiniques.
22 //
23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25 // Transactions on Computers, Vol. 50, No. 3, 2001.
26 //
27 // "An Implementation of Swing Modulo Scheduling With Extensions for
28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29 // Urbana-Chambpain, 2005.
30 //
31 //
32 // The SMS algorithm consists of three main steps after computing the minimal
33 // initiation interval (MII).
34 // 1) Analyze the dependence graph and compute information about each
35 //    instruction in the graph.
36 // 2) Order the nodes (instructions) by priority based upon the heuristics
37 //    described in the algorithm.
38 // 3) Attempt to schedule the nodes in the specified order using the MII.
39 //
40 // This SMS implementation is a target-independent back-end pass. When enabled,
41 // the pass runs just prior to the register allocation pass, while the machine
42 // IR is in SSA form. If software pipelining is successful, then the original
43 // loop is replaced by the optimized loop. The optimized loop contains one or
44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45 // the instructions cannot be scheduled in a given MII, we increase the MII by
46 // one and try again.
47 //
48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49 // represent loop carried dependences in the DAG as order edges to the Phi
50 // nodes. We also perform several passes over the DAG to eliminate unnecessary
51 // edges that inhibit the ability to pipeline. The implementation uses the
52 // DFAPacketizer class to compute the minimum initiation interval and the check
53 // where an instruction may be inserted in the pipelined schedule.
54 //
55 // In order for the SMS pass to work, several target specific hooks need to be
56 // implemented to get information about the loop structure and to rewrite
57 // instructions.
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/ADT/ArrayRef.h"
62 #include "llvm/ADT/BitVector.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/MapVector.h"
65 #include "llvm/ADT/PriorityQueue.h"
66 #include "llvm/ADT/SetVector.h"
67 #include "llvm/ADT/SmallPtrSet.h"
68 #include "llvm/ADT/SmallSet.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/ADT/iterator_range.h"
72 #include "llvm/Analysis/AliasAnalysis.h"
73 #include "llvm/Analysis/MemoryLocation.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/CodeGen/DFAPacketizer.h"
76 #include "llvm/CodeGen/LiveIntervals.h"
77 #include "llvm/CodeGen/MachineBasicBlock.h"
78 #include "llvm/CodeGen/MachineDominators.h"
79 #include "llvm/CodeGen/MachineFunction.h"
80 #include "llvm/CodeGen/MachineFunctionPass.h"
81 #include "llvm/CodeGen/MachineInstr.h"
82 #include "llvm/CodeGen/MachineInstrBuilder.h"
83 #include "llvm/CodeGen/MachineLoopInfo.h"
84 #include "llvm/CodeGen/MachineMemOperand.h"
85 #include "llvm/CodeGen/MachineOperand.h"
86 #include "llvm/CodeGen/MachineRegisterInfo.h"
87 #include "llvm/CodeGen/RegisterClassInfo.h"
88 #include "llvm/CodeGen/RegisterPressure.h"
89 #include "llvm/CodeGen/ScheduleDAG.h"
90 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
91 #include "llvm/CodeGen/ScheduleDAGMutation.h"
92 #include "llvm/CodeGen/TargetInstrInfo.h"
93 #include "llvm/CodeGen/TargetOpcodes.h"
94 #include "llvm/CodeGen/TargetRegisterInfo.h"
95 #include "llvm/CodeGen/TargetSubtargetInfo.h"
96 #include "llvm/Config/llvm-config.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/DebugLoc.h"
99 #include "llvm/IR/Function.h"
100 #include "llvm/MC/LaneBitmask.h"
101 #include "llvm/MC/MCInstrDesc.h"
102 #include "llvm/MC/MCInstrItineraries.h"
103 #include "llvm/MC/MCRegisterInfo.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <climits>
113 #include <cstdint>
114 #include <deque>
115 #include <functional>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122
123 using namespace llvm;
124
125 #define DEBUG_TYPE "pipeliner"
126
127 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
128 STATISTIC(NumPipelined, "Number of loops software pipelined");
129 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
130
131 /// A command line option to turn software pipelining on or off.
132 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
133                                cl::ZeroOrMore,
134                                cl::desc("Enable Software Pipelining"));
135
136 /// A command line option to enable SWP at -Os.
137 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
138                                       cl::desc("Enable SWP at Os."), cl::Hidden,
139                                       cl::init(false));
140
141 /// A command line argument to limit minimum initial interval for pipelining.
142 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
143                               cl::desc("Size limit for the MII."),
144                               cl::Hidden, cl::init(27));
145
146 /// A command line argument to limit the number of stages in the pipeline.
147 static cl::opt<int>
148     SwpMaxStages("pipeliner-max-stages",
149                  cl::desc("Maximum stages allowed in the generated scheduled."),
150                  cl::Hidden, cl::init(3));
151
152 /// A command line option to disable the pruning of chain dependences due to
153 /// an unrelated Phi.
154 static cl::opt<bool>
155     SwpPruneDeps("pipeliner-prune-deps",
156                  cl::desc("Prune dependences between unrelated Phi nodes."),
157                  cl::Hidden, cl::init(true));
158
159 /// A command line option to disable the pruning of loop carried order
160 /// dependences.
161 static cl::opt<bool>
162     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
163                         cl::desc("Prune loop carried order dependences."),
164                         cl::Hidden, cl::init(true));
165
166 #ifndef NDEBUG
167 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
168 #endif
169
170 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
171                                      cl::ReallyHidden, cl::init(false),
172                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
173
174 namespace {
175
176 class NodeSet;
177 class SMSchedule;
178
179 /// The main class in the implementation of the target independent
180 /// software pipeliner pass.
181 class MachinePipeliner : public MachineFunctionPass {
182 public:
183   MachineFunction *MF = nullptr;
184   const MachineLoopInfo *MLI = nullptr;
185   const MachineDominatorTree *MDT = nullptr;
186   const InstrItineraryData *InstrItins;
187   const TargetInstrInfo *TII = nullptr;
188   RegisterClassInfo RegClassInfo;
189
190 #ifndef NDEBUG
191   static int NumTries;
192 #endif
193
194   /// Cache the target analysis information about the loop.
195   struct LoopInfo {
196     MachineBasicBlock *TBB = nullptr;
197     MachineBasicBlock *FBB = nullptr;
198     SmallVector<MachineOperand, 4> BrCond;
199     MachineInstr *LoopInductionVar = nullptr;
200     MachineInstr *LoopCompare = nullptr;
201   };
202   LoopInfo LI;
203
204   static char ID;
205
206   MachinePipeliner() : MachineFunctionPass(ID) {
207     initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
208   }
209
210   bool runOnMachineFunction(MachineFunction &MF) override;
211
212   void getAnalysisUsage(AnalysisUsage &AU) const override {
213     AU.addRequired<AAResultsWrapperPass>();
214     AU.addPreserved<AAResultsWrapperPass>();
215     AU.addRequired<MachineLoopInfo>();
216     AU.addRequired<MachineDominatorTree>();
217     AU.addRequired<LiveIntervals>();
218     MachineFunctionPass::getAnalysisUsage(AU);
219   }
220
221 private:
222   void preprocessPhiNodes(MachineBasicBlock &B);
223   bool canPipelineLoop(MachineLoop &L);
224   bool scheduleLoop(MachineLoop &L);
225   bool swingModuloScheduler(MachineLoop &L);
226 };
227
228 /// This class builds the dependence graph for the instructions in a loop,
229 /// and attempts to schedule the instructions using the SMS algorithm.
230 class SwingSchedulerDAG : public ScheduleDAGInstrs {
231   MachinePipeliner &Pass;
232   /// The minimum initiation interval between iterations for this schedule.
233   unsigned MII = 0;
234   /// Set to true if a valid pipelined schedule is found for the loop.
235   bool Scheduled = false;
236   MachineLoop &Loop;
237   LiveIntervals &LIS;
238   const RegisterClassInfo &RegClassInfo;
239
240   /// A toplogical ordering of the SUnits, which is needed for changing
241   /// dependences and iterating over the SUnits.
242   ScheduleDAGTopologicalSort Topo;
243
244   struct NodeInfo {
245     int ASAP = 0;
246     int ALAP = 0;
247     int ZeroLatencyDepth = 0;
248     int ZeroLatencyHeight = 0;
249
250     NodeInfo() = default;
251   };
252   /// Computed properties for each node in the graph.
253   std::vector<NodeInfo> ScheduleInfo;
254
255   enum OrderKind { BottomUp = 0, TopDown = 1 };
256   /// Computed node ordering for scheduling.
257   SetVector<SUnit *> NodeOrder;
258
259   using NodeSetType = SmallVector<NodeSet, 8>;
260   using ValueMapTy = DenseMap<unsigned, unsigned>;
261   using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
262   using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
263
264   /// Instructions to change when emitting the final schedule.
265   DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
266
267   /// We may create a new instruction, so remember it because it
268   /// must be deleted when the pass is finished.
269   SmallPtrSet<MachineInstr *, 4> NewMIs;
270
271   /// Ordered list of DAG postprocessing steps.
272   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
273
274   /// Helper class to implement Johnson's circuit finding algorithm.
275   class Circuits {
276     std::vector<SUnit> &SUnits;
277     SetVector<SUnit *> Stack;
278     BitVector Blocked;
279     SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
280     SmallVector<SmallVector<int, 4>, 16> AdjK;
281     unsigned NumPaths;
282     static unsigned MaxPaths;
283
284   public:
285     Circuits(std::vector<SUnit> &SUs)
286         : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
287
288     /// Reset the data structures used in the circuit algorithm.
289     void reset() {
290       Stack.clear();
291       Blocked.reset();
292       B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
293       NumPaths = 0;
294     }
295
296     void createAdjacencyStructure(SwingSchedulerDAG *DAG);
297     bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
298     void unblock(int U);
299   };
300
301 public:
302   SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
303                     const RegisterClassInfo &rci)
304       : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
305         RegClassInfo(rci), Topo(SUnits, &ExitSU) {
306     P.MF->getSubtarget().getSMSMutations(Mutations);
307   }
308
309   void schedule() override;
310   void finishBlock() override;
311
312   /// Return true if the loop kernel has been scheduled.
313   bool hasNewSchedule() { return Scheduled; }
314
315   /// Return the earliest time an instruction may be scheduled.
316   int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
317
318   /// Return the latest time an instruction my be scheduled.
319   int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
320
321   /// The mobility function, which the number of slots in which
322   /// an instruction may be scheduled.
323   int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
324
325   /// The depth, in the dependence graph, for a node.
326   unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
327
328   /// The maximum unweighted length of a path from an arbitrary node to the
329   /// given node in which each edge has latency 0
330   int getZeroLatencyDepth(SUnit *Node) {
331     return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
332   }
333
334   /// The height, in the dependence graph, for a node.
335   unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
336
337   /// The maximum unweighted length of a path from the given node to an
338   /// arbitrary node in which each edge has latency 0
339   int getZeroLatencyHeight(SUnit *Node) {
340     return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
341   }
342
343   /// Return true if the dependence is a back-edge in the data dependence graph.
344   /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
345   /// using an anti dependence from a Phi to an instruction.
346   bool isBackedge(SUnit *Source, const SDep &Dep) {
347     if (Dep.getKind() != SDep::Anti)
348       return false;
349     return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
350   }
351
352   bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
353
354   /// The distance function, which indicates that operation V of iteration I
355   /// depends on operations U of iteration I-distance.
356   unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
357     // Instructions that feed a Phi have a distance of 1. Computing larger
358     // values for arrays requires data dependence information.
359     if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
360       return 1;
361     return 0;
362   }
363
364   /// Set the Minimum Initiation Interval for this schedule attempt.
365   void setMII(unsigned mii) { MII = mii; }
366
367   void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
368
369   void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
370
371   /// Return the new base register that was stored away for the changed
372   /// instruction.
373   unsigned getInstrBaseReg(SUnit *SU) {
374     DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
375         InstrChanges.find(SU);
376     if (It != InstrChanges.end())
377       return It->second.first;
378     return 0;
379   }
380
381   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
382     Mutations.push_back(std::move(Mutation));
383   }
384
385 private:
386   void addLoopCarriedDependences(AliasAnalysis *AA);
387   void updatePhiDependences();
388   void changeDependences();
389   unsigned calculateResMII();
390   unsigned calculateRecMII(NodeSetType &RecNodeSets);
391   void findCircuits(NodeSetType &NodeSets);
392   void fuseRecs(NodeSetType &NodeSets);
393   void removeDuplicateNodes(NodeSetType &NodeSets);
394   void computeNodeFunctions(NodeSetType &NodeSets);
395   void registerPressureFilter(NodeSetType &NodeSets);
396   void colocateNodeSets(NodeSetType &NodeSets);
397   void checkNodeSets(NodeSetType &NodeSets);
398   void groupRemainingNodes(NodeSetType &NodeSets);
399   void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
400                          SetVector<SUnit *> &NodesAdded);
401   void computeNodeOrder(NodeSetType &NodeSets);
402   void checkValidNodeOrder(const NodeSetType &Circuits) const;
403   bool schedulePipeline(SMSchedule &Schedule);
404   void generatePipelinedLoop(SMSchedule &Schedule);
405   void generateProlog(SMSchedule &Schedule, unsigned LastStage,
406                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
407                       MBBVectorTy &PrologBBs);
408   void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
409                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
410                       MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
411   void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
412                             MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
413                             SMSchedule &Schedule, ValueMapTy *VRMap,
414                             InstrMapTy &InstrMap, unsigned LastStageNum,
415                             unsigned CurStageNum, bool IsLast);
416   void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
417                     MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
418                     SMSchedule &Schedule, ValueMapTy *VRMap,
419                     InstrMapTy &InstrMap, unsigned LastStageNum,
420                     unsigned CurStageNum, bool IsLast);
421   void removeDeadInstructions(MachineBasicBlock *KernelBB,
422                               MBBVectorTy &EpilogBBs);
423   void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
424                       SMSchedule &Schedule);
425   void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
426                    MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
427                    ValueMapTy *VRMap);
428   bool computeDelta(MachineInstr &MI, unsigned &Delta);
429   void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
430                          unsigned Num);
431   MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
432                            unsigned InstStageNum);
433   MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
434                                     unsigned InstStageNum,
435                                     SMSchedule &Schedule);
436   void updateInstruction(MachineInstr *NewMI, bool LastDef,
437                          unsigned CurStageNum, unsigned InstrStageNum,
438                          SMSchedule &Schedule, ValueMapTy *VRMap);
439   MachineInstr *findDefInLoop(unsigned Reg);
440   unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
441                          unsigned LoopStage, ValueMapTy *VRMap,
442                          MachineBasicBlock *BB);
443   void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
444                         SMSchedule &Schedule, ValueMapTy *VRMap,
445                         InstrMapTy &InstrMap);
446   void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
447                              InstrMapTy &InstrMap, unsigned CurStageNum,
448                              unsigned PhiNum, MachineInstr *Phi,
449                              unsigned OldReg, unsigned NewReg,
450                              unsigned PrevReg = 0);
451   bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
452                              unsigned &OffsetPos, unsigned &NewBase,
453                              int64_t &NewOffset);
454   void postprocessDAG();
455 };
456
457 /// A NodeSet contains a set of SUnit DAG nodes with additional information
458 /// that assigns a priority to the set.
459 class NodeSet {
460   SetVector<SUnit *> Nodes;
461   bool HasRecurrence = false;
462   unsigned RecMII = 0;
463   int MaxMOV = 0;
464   unsigned MaxDepth = 0;
465   unsigned Colocate = 0;
466   SUnit *ExceedPressure = nullptr;
467   unsigned Latency = 0;
468
469 public:
470   using iterator = SetVector<SUnit *>::const_iterator;
471
472   NodeSet() = default;
473   NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
474     Latency = 0;
475     for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
476       for (const SDep &Succ : Nodes[i]->Succs)
477         if (Nodes.count(Succ.getSUnit()))
478           Latency += Succ.getLatency();
479   }
480
481   bool insert(SUnit *SU) { return Nodes.insert(SU); }
482
483   void insert(iterator S, iterator E) { Nodes.insert(S, E); }
484
485   template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
486     return Nodes.remove_if(P);
487   }
488
489   unsigned count(SUnit *SU) const { return Nodes.count(SU); }
490
491   bool hasRecurrence() { return HasRecurrence; };
492
493   unsigned size() const { return Nodes.size(); }
494
495   bool empty() const { return Nodes.empty(); }
496
497   SUnit *getNode(unsigned i) const { return Nodes[i]; };
498
499   void setRecMII(unsigned mii) { RecMII = mii; };
500
501   void setColocate(unsigned c) { Colocate = c; };
502
503   void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
504
505   bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
506
507   int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
508
509   int getRecMII() { return RecMII; }
510
511   /// Summarize node functions for the entire node set.
512   void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
513     for (SUnit *SU : *this) {
514       MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
515       MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
516     }
517   }
518
519   unsigned getLatency() { return Latency; }
520
521   unsigned getMaxDepth() { return MaxDepth; }
522
523   void clear() {
524     Nodes.clear();
525     RecMII = 0;
526     HasRecurrence = false;
527     MaxMOV = 0;
528     MaxDepth = 0;
529     Colocate = 0;
530     ExceedPressure = nullptr;
531   }
532
533   operator SetVector<SUnit *> &() { return Nodes; }
534
535   /// Sort the node sets by importance. First, rank them by recurrence MII,
536   /// then by mobility (least mobile done first), and finally by depth.
537   /// Each node set may contain a colocate value which is used as the first
538   /// tie breaker, if it's set.
539   bool operator>(const NodeSet &RHS) const {
540     if (RecMII == RHS.RecMII) {
541       if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
542         return Colocate < RHS.Colocate;
543       if (MaxMOV == RHS.MaxMOV)
544         return MaxDepth > RHS.MaxDepth;
545       return MaxMOV < RHS.MaxMOV;
546     }
547     return RecMII > RHS.RecMII;
548   }
549
550   bool operator==(const NodeSet &RHS) const {
551     return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
552            MaxDepth == RHS.MaxDepth;
553   }
554
555   bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
556
557   iterator begin() { return Nodes.begin(); }
558   iterator end() { return Nodes.end(); }
559
560   void print(raw_ostream &os) const {
561     os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
562        << " depth " << MaxDepth << " col " << Colocate << "\n";
563     for (const auto &I : Nodes)
564       os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
565     os << "\n";
566   }
567
568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
569   LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
570 #endif
571 };
572
573 /// This class represents the scheduled code.  The main data structure is a
574 /// map from scheduled cycle to instructions.  During scheduling, the
575 /// data structure explicitly represents all stages/iterations.   When
576 /// the algorithm finshes, the schedule is collapsed into a single stage,
577 /// which represents instructions from different loop iterations.
578 ///
579 /// The SMS algorithm allows negative values for cycles, so the first cycle
580 /// in the schedule is the smallest cycle value.
581 class SMSchedule {
582 private:
583   /// Map from execution cycle to instructions.
584   DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
585
586   /// Map from instruction to execution cycle.
587   std::map<SUnit *, int> InstrToCycle;
588
589   /// Map for each register and the max difference between its uses and def.
590   /// The first element in the pair is the max difference in stages. The
591   /// second is true if the register defines a Phi value and loop value is
592   /// scheduled before the Phi.
593   std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
594
595   /// Keep track of the first cycle value in the schedule.  It starts
596   /// as zero, but the algorithm allows negative values.
597   int FirstCycle = 0;
598
599   /// Keep track of the last cycle value in the schedule.
600   int LastCycle = 0;
601
602   /// The initiation interval (II) for the schedule.
603   int InitiationInterval = 0;
604
605   /// Target machine information.
606   const TargetSubtargetInfo &ST;
607
608   /// Virtual register information.
609   MachineRegisterInfo &MRI;
610
611   std::unique_ptr<DFAPacketizer> Resources;
612
613 public:
614   SMSchedule(MachineFunction *mf)
615       : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
616         Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
617
618   void reset() {
619     ScheduledInstrs.clear();
620     InstrToCycle.clear();
621     RegToStageDiff.clear();
622     FirstCycle = 0;
623     LastCycle = 0;
624     InitiationInterval = 0;
625   }
626
627   /// Set the initiation interval for this schedule.
628   void setInitiationInterval(int ii) { InitiationInterval = ii; }
629
630   /// Return the first cycle in the completed schedule.  This
631   /// can be a negative value.
632   int getFirstCycle() const { return FirstCycle; }
633
634   /// Return the last cycle in the finalized schedule.
635   int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
636
637   /// Return the cycle of the earliest scheduled instruction in the dependence
638   /// chain.
639   int earliestCycleInChain(const SDep &Dep);
640
641   /// Return the cycle of the latest scheduled instruction in the dependence
642   /// chain.
643   int latestCycleInChain(const SDep &Dep);
644
645   void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
646                     int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
647   bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
648
649   /// Iterators for the cycle to instruction map.
650   using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
651   using const_sched_iterator =
652       DenseMap<int, std::deque<SUnit *>>::const_iterator;
653
654   /// Return true if the instruction is scheduled at the specified stage.
655   bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
656     return (stageScheduled(SU) == (int)StageNum);
657   }
658
659   /// Return the stage for a scheduled instruction.  Return -1 if
660   /// the instruction has not been scheduled.
661   int stageScheduled(SUnit *SU) const {
662     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
663     if (it == InstrToCycle.end())
664       return -1;
665     return (it->second - FirstCycle) / InitiationInterval;
666   }
667
668   /// Return the cycle for a scheduled instruction. This function normalizes
669   /// the first cycle to be 0.
670   unsigned cycleScheduled(SUnit *SU) const {
671     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
672     assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
673     return (it->second - FirstCycle) % InitiationInterval;
674   }
675
676   /// Return the maximum stage count needed for this schedule.
677   unsigned getMaxStageCount() {
678     return (LastCycle - FirstCycle) / InitiationInterval;
679   }
680
681   /// Return the max. number of stages/iterations that can occur between a
682   /// register definition and its uses.
683   unsigned getStagesForReg(int Reg, unsigned CurStage) {
684     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
685     if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
686       return 1;
687     return Stages.first;
688   }
689
690   /// The number of stages for a Phi is a little different than other
691   /// instructions. The minimum value computed in RegToStageDiff is 1
692   /// because we assume the Phi is needed for at least 1 iteration.
693   /// This is not the case if the loop value is scheduled prior to the
694   /// Phi in the same stage.  This function returns the number of stages
695   /// or iterations needed between the Phi definition and any uses.
696   unsigned getStagesForPhi(int Reg) {
697     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
698     if (Stages.second)
699       return Stages.first;
700     return Stages.first - 1;
701   }
702
703   /// Return the instructions that are scheduled at the specified cycle.
704   std::deque<SUnit *> &getInstructions(int cycle) {
705     return ScheduledInstrs[cycle];
706   }
707
708   bool isValidSchedule(SwingSchedulerDAG *SSD);
709   void finalizeSchedule(SwingSchedulerDAG *SSD);
710   void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
711                        std::deque<SUnit *> &Insts);
712   bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
713   bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
714                              MachineOperand &MO);
715   void print(raw_ostream &os) const;
716   void dump() const;
717 };
718
719 } // end anonymous namespace
720
721 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
722 char MachinePipeliner::ID = 0;
723 #ifndef NDEBUG
724 int MachinePipeliner::NumTries = 0;
725 #endif
726 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
727
728 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
729                       "Modulo Software Pipelining", false, false)
730 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
731 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
732 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
733 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
734 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
735                     "Modulo Software Pipelining", false, false)
736
737 /// The "main" function for implementing Swing Modulo Scheduling.
738 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
739   if (skipFunction(mf.getFunction()))
740     return false;
741
742   if (!EnableSWP)
743     return false;
744
745   if (mf.getFunction().getAttributes().hasAttribute(
746           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
747       !EnableSWPOptSize.getPosition())
748     return false;
749
750   MF = &mf;
751   MLI = &getAnalysis<MachineLoopInfo>();
752   MDT = &getAnalysis<MachineDominatorTree>();
753   TII = MF->getSubtarget().getInstrInfo();
754   RegClassInfo.runOnMachineFunction(*MF);
755
756   for (auto &L : *MLI)
757     scheduleLoop(*L);
758
759   return false;
760 }
761
762 /// Attempt to perform the SMS algorithm on the specified loop. This function is
763 /// the main entry point for the algorithm.  The function identifies candidate
764 /// loops, calculates the minimum initiation interval, and attempts to schedule
765 /// the loop.
766 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
767   bool Changed = false;
768   for (auto &InnerLoop : L)
769     Changed |= scheduleLoop(*InnerLoop);
770
771 #ifndef NDEBUG
772   // Stop trying after reaching the limit (if any).
773   int Limit = SwpLoopLimit;
774   if (Limit >= 0) {
775     if (NumTries >= SwpLoopLimit)
776       return Changed;
777     NumTries++;
778   }
779 #endif
780
781   if (!canPipelineLoop(L))
782     return Changed;
783
784   ++NumTrytoPipeline;
785
786   Changed = swingModuloScheduler(L);
787
788   return Changed;
789 }
790
791 /// Return true if the loop can be software pipelined.  The algorithm is
792 /// restricted to loops with a single basic block.  Make sure that the
793 /// branch in the loop can be analyzed.
794 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
795   if (L.getNumBlocks() != 1)
796     return false;
797
798   // Check if the branch can't be understood because we can't do pipelining
799   // if that's the case.
800   LI.TBB = nullptr;
801   LI.FBB = nullptr;
802   LI.BrCond.clear();
803   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
804     return false;
805
806   LI.LoopInductionVar = nullptr;
807   LI.LoopCompare = nullptr;
808   if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
809     return false;
810
811   if (!L.getLoopPreheader())
812     return false;
813
814   // Remove any subregisters from inputs to phi nodes.
815   preprocessPhiNodes(*L.getHeader());
816   return true;
817 }
818
819 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
820   MachineRegisterInfo &MRI = MF->getRegInfo();
821   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
822
823   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
824     MachineOperand &DefOp = PI.getOperand(0);
825     assert(DefOp.getSubReg() == 0);
826     auto *RC = MRI.getRegClass(DefOp.getReg());
827
828     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
829       MachineOperand &RegOp = PI.getOperand(i);
830       if (RegOp.getSubReg() == 0)
831         continue;
832
833       // If the operand uses a subregister, replace it with a new register
834       // without subregisters, and generate a copy to the new register.
835       unsigned NewReg = MRI.createVirtualRegister(RC);
836       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
837       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
838       const DebugLoc &DL = PredB.findDebugLoc(At);
839       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
840                     .addReg(RegOp.getReg(), getRegState(RegOp),
841                             RegOp.getSubReg());
842       Slots.insertMachineInstrInMaps(*Copy);
843       RegOp.setReg(NewReg);
844       RegOp.setSubReg(0);
845     }
846   }
847 }
848
849 /// The SMS algorithm consists of the following main steps:
850 /// 1. Computation and analysis of the dependence graph.
851 /// 2. Ordering of the nodes (instructions).
852 /// 3. Attempt to Schedule the loop.
853 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
854   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
855
856   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
857
858   MachineBasicBlock *MBB = L.getHeader();
859   // The kernel should not include any terminator instructions.  These
860   // will be added back later.
861   SMS.startBlock(MBB);
862
863   // Compute the number of 'real' instructions in the basic block by
864   // ignoring terminators.
865   unsigned size = MBB->size();
866   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
867                                    E = MBB->instr_end();
868        I != E; ++I, --size)
869     ;
870
871   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
872   SMS.schedule();
873   SMS.exitRegion();
874
875   SMS.finishBlock();
876   return SMS.hasNewSchedule();
877 }
878
879 /// We override the schedule function in ScheduleDAGInstrs to implement the
880 /// scheduling part of the Swing Modulo Scheduling algorithm.
881 void SwingSchedulerDAG::schedule() {
882   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
883   buildSchedGraph(AA);
884   addLoopCarriedDependences(AA);
885   updatePhiDependences();
886   Topo.InitDAGTopologicalSorting();
887   postprocessDAG();
888   changeDependences();
889   LLVM_DEBUG({
890     for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
891       SUnits[su].dumpAll(this);
892   });
893
894   NodeSetType NodeSets;
895   findCircuits(NodeSets);
896   NodeSetType Circuits = NodeSets;
897
898   // Calculate the MII.
899   unsigned ResMII = calculateResMII();
900   unsigned RecMII = calculateRecMII(NodeSets);
901
902   fuseRecs(NodeSets);
903
904   // This flag is used for testing and can cause correctness problems.
905   if (SwpIgnoreRecMII)
906     RecMII = 0;
907
908   MII = std::max(ResMII, RecMII);
909   LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII
910                     << ", res=" << ResMII << ")\n");
911
912   // Can't schedule a loop without a valid MII.
913   if (MII == 0)
914     return;
915
916   // Don't pipeline large loops.
917   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
918     return;
919
920   computeNodeFunctions(NodeSets);
921
922   registerPressureFilter(NodeSets);
923
924   colocateNodeSets(NodeSets);
925
926   checkNodeSets(NodeSets);
927
928   LLVM_DEBUG({
929     for (auto &I : NodeSets) {
930       dbgs() << "  Rec NodeSet ";
931       I.dump();
932     }
933   });
934
935   std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
936
937   groupRemainingNodes(NodeSets);
938
939   removeDuplicateNodes(NodeSets);
940
941   LLVM_DEBUG({
942     for (auto &I : NodeSets) {
943       dbgs() << "  NodeSet ";
944       I.dump();
945     }
946   });
947
948   computeNodeOrder(NodeSets);
949
950   // check for node order issues
951   checkValidNodeOrder(Circuits);
952
953   SMSchedule Schedule(Pass.MF);
954   Scheduled = schedulePipeline(Schedule);
955
956   if (!Scheduled)
957     return;
958
959   unsigned numStages = Schedule.getMaxStageCount();
960   // No need to generate pipeline if there are no overlapped iterations.
961   if (numStages == 0)
962     return;
963
964   // Check that the maximum stage count is less than user-defined limit.
965   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
966     return;
967
968   generatePipelinedLoop(Schedule);
969   ++NumPipelined;
970 }
971
972 /// Clean up after the software pipeliner runs.
973 void SwingSchedulerDAG::finishBlock() {
974   for (MachineInstr *I : NewMIs)
975     MF.DeleteMachineInstr(I);
976   NewMIs.clear();
977
978   // Call the superclass.
979   ScheduleDAGInstrs::finishBlock();
980 }
981
982 /// Return the register values for  the operands of a Phi instruction.
983 /// This function assume the instruction is a Phi.
984 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
985                        unsigned &InitVal, unsigned &LoopVal) {
986   assert(Phi.isPHI() && "Expecting a Phi.");
987
988   InitVal = 0;
989   LoopVal = 0;
990   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
991     if (Phi.getOperand(i + 1).getMBB() != Loop)
992       InitVal = Phi.getOperand(i).getReg();
993     else
994       LoopVal = Phi.getOperand(i).getReg();
995
996   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
997 }
998
999 /// Return the Phi register value that comes from the incoming block.
1000 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1001   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1002     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
1003       return Phi.getOperand(i).getReg();
1004   return 0;
1005 }
1006
1007 /// Return the Phi register value that comes the loop block.
1008 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1009   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1010     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1011       return Phi.getOperand(i).getReg();
1012   return 0;
1013 }
1014
1015 /// Return true if SUb can be reached from SUa following the chain edges.
1016 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1017   SmallPtrSet<SUnit *, 8> Visited;
1018   SmallVector<SUnit *, 8> Worklist;
1019   Worklist.push_back(SUa);
1020   while (!Worklist.empty()) {
1021     const SUnit *SU = Worklist.pop_back_val();
1022     for (auto &SI : SU->Succs) {
1023       SUnit *SuccSU = SI.getSUnit();
1024       if (SI.getKind() == SDep::Order) {
1025         if (Visited.count(SuccSU))
1026           continue;
1027         if (SuccSU == SUb)
1028           return true;
1029         Worklist.push_back(SuccSU);
1030         Visited.insert(SuccSU);
1031       }
1032     }
1033   }
1034   return false;
1035 }
1036
1037 /// Return true if the instruction causes a chain between memory
1038 /// references before and after it.
1039 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1040   return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1041          (MI.hasOrderedMemoryRef() &&
1042           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
1043 }
1044
1045 /// Return the underlying objects for the memory references of an instruction.
1046 /// This function calls the code in ValueTracking, but first checks that the
1047 /// instruction has a memory operand.
1048 static void getUnderlyingObjects(MachineInstr *MI,
1049                                  SmallVectorImpl<Value *> &Objs,
1050                                  const DataLayout &DL) {
1051   if (!MI->hasOneMemOperand())
1052     return;
1053   MachineMemOperand *MM = *MI->memoperands_begin();
1054   if (!MM->getValue())
1055     return;
1056   GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1057   for (Value *V : Objs) {
1058     if (!isIdentifiedObject(V)) {
1059       Objs.clear();
1060       return;
1061     }
1062     Objs.push_back(V);
1063   }
1064 }
1065
1066 /// Add a chain edge between a load and store if the store can be an
1067 /// alias of the load on a subsequent iteration, i.e., a loop carried
1068 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
1069 /// but that code doesn't create loop carried dependences.
1070 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1071   MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1072   Value *UnknownValue =
1073     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
1074   for (auto &SU : SUnits) {
1075     MachineInstr &MI = *SU.getInstr();
1076     if (isDependenceBarrier(MI, AA))
1077       PendingLoads.clear();
1078     else if (MI.mayLoad()) {
1079       SmallVector<Value *, 4> Objs;
1080       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1081       if (Objs.empty())
1082         Objs.push_back(UnknownValue);
1083       for (auto V : Objs) {
1084         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1085         SUs.push_back(&SU);
1086       }
1087     } else if (MI.mayStore()) {
1088       SmallVector<Value *, 4> Objs;
1089       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1090       if (Objs.empty())
1091         Objs.push_back(UnknownValue);
1092       for (auto V : Objs) {
1093         MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1094             PendingLoads.find(V);
1095         if (I == PendingLoads.end())
1096           continue;
1097         for (auto Load : I->second) {
1098           if (isSuccOrder(Load, &SU))
1099             continue;
1100           MachineInstr &LdMI = *Load->getInstr();
1101           // First, perform the cheaper check that compares the base register.
1102           // If they are the same and the load offset is less than the store
1103           // offset, then mark the dependence as loop carried potentially.
1104           unsigned BaseReg1, BaseReg2;
1105           int64_t Offset1, Offset2;
1106           if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) &&
1107               TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1108             if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1109               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1110                      "What happened to the chain edge?");
1111               SDep Dep(Load, SDep::Barrier);
1112               Dep.setLatency(1);
1113               SU.addPred(Dep);
1114               continue;
1115             }
1116           }
1117           // Second, the more expensive check that uses alias analysis on the
1118           // base registers. If they alias, and the load offset is less than
1119           // the store offset, the mark the dependence as loop carried.
1120           if (!AA) {
1121             SDep Dep(Load, SDep::Barrier);
1122             Dep.setLatency(1);
1123             SU.addPred(Dep);
1124             continue;
1125           }
1126           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1127           MachineMemOperand *MMO2 = *MI.memoperands_begin();
1128           if (!MMO1->getValue() || !MMO2->getValue()) {
1129             SDep Dep(Load, SDep::Barrier);
1130             Dep.setLatency(1);
1131             SU.addPred(Dep);
1132             continue;
1133           }
1134           if (MMO1->getValue() == MMO2->getValue() &&
1135               MMO1->getOffset() <= MMO2->getOffset()) {
1136             SDep Dep(Load, SDep::Barrier);
1137             Dep.setLatency(1);
1138             SU.addPred(Dep);
1139             continue;
1140           }
1141           AliasResult AAResult = AA->alias(
1142               MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1143                              MMO1->getAAInfo()),
1144               MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1145                              MMO2->getAAInfo()));
1146
1147           if (AAResult != NoAlias) {
1148             SDep Dep(Load, SDep::Barrier);
1149             Dep.setLatency(1);
1150             SU.addPred(Dep);
1151           }
1152         }
1153       }
1154     }
1155   }
1156 }
1157
1158 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1159 /// processes dependences for PHIs. This function adds true dependences
1160 /// from a PHI to a use, and a loop carried dependence from the use to the
1161 /// PHI. The loop carried dependence is represented as an anti dependence
1162 /// edge. This function also removes chain dependences between unrelated
1163 /// PHIs.
1164 void SwingSchedulerDAG::updatePhiDependences() {
1165   SmallVector<SDep, 4> RemoveDeps;
1166   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1167
1168   // Iterate over each DAG node.
1169   for (SUnit &I : SUnits) {
1170     RemoveDeps.clear();
1171     // Set to true if the instruction has an operand defined by a Phi.
1172     unsigned HasPhiUse = 0;
1173     unsigned HasPhiDef = 0;
1174     MachineInstr *MI = I.getInstr();
1175     // Iterate over each operand, and we process the definitions.
1176     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1177                                     MOE = MI->operands_end();
1178          MOI != MOE; ++MOI) {
1179       if (!MOI->isReg())
1180         continue;
1181       unsigned Reg = MOI->getReg();
1182       if (MOI->isDef()) {
1183         // If the register is used by a Phi, then create an anti dependence.
1184         for (MachineRegisterInfo::use_instr_iterator
1185                  UI = MRI.use_instr_begin(Reg),
1186                  UE = MRI.use_instr_end();
1187              UI != UE; ++UI) {
1188           MachineInstr *UseMI = &*UI;
1189           SUnit *SU = getSUnit(UseMI);
1190           if (SU != nullptr && UseMI->isPHI()) {
1191             if (!MI->isPHI()) {
1192               SDep Dep(SU, SDep::Anti, Reg);
1193               Dep.setLatency(1);
1194               I.addPred(Dep);
1195             } else {
1196               HasPhiDef = Reg;
1197               // Add a chain edge to a dependent Phi that isn't an existing
1198               // predecessor.
1199               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1200                 I.addPred(SDep(SU, SDep::Barrier));
1201             }
1202           }
1203         }
1204       } else if (MOI->isUse()) {
1205         // If the register is defined by a Phi, then create a true dependence.
1206         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
1207         if (DefMI == nullptr)
1208           continue;
1209         SUnit *SU = getSUnit(DefMI);
1210         if (SU != nullptr && DefMI->isPHI()) {
1211           if (!MI->isPHI()) {
1212             SDep Dep(SU, SDep::Data, Reg);
1213             Dep.setLatency(0);
1214             ST.adjustSchedDependency(SU, &I, Dep);
1215             I.addPred(Dep);
1216           } else {
1217             HasPhiUse = Reg;
1218             // Add a chain edge to a dependent Phi that isn't an existing
1219             // predecessor.
1220             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1221               I.addPred(SDep(SU, SDep::Barrier));
1222           }
1223         }
1224       }
1225     }
1226     // Remove order dependences from an unrelated Phi.
1227     if (!SwpPruneDeps)
1228       continue;
1229     for (auto &PI : I.Preds) {
1230       MachineInstr *PMI = PI.getSUnit()->getInstr();
1231       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1232         if (I.getInstr()->isPHI()) {
1233           if (PMI->getOperand(0).getReg() == HasPhiUse)
1234             continue;
1235           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1236             continue;
1237         }
1238         RemoveDeps.push_back(PI);
1239       }
1240     }
1241     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1242       I.removePred(RemoveDeps[i]);
1243   }
1244 }
1245
1246 /// Iterate over each DAG node and see if we can change any dependences
1247 /// in order to reduce the recurrence MII.
1248 void SwingSchedulerDAG::changeDependences() {
1249   // See if an instruction can use a value from the previous iteration.
1250   // If so, we update the base and offset of the instruction and change
1251   // the dependences.
1252   for (SUnit &I : SUnits) {
1253     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1254     int64_t NewOffset = 0;
1255     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1256                                NewOffset))
1257       continue;
1258
1259     // Get the MI and SUnit for the instruction that defines the original base.
1260     unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1261     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1262     if (!DefMI)
1263       continue;
1264     SUnit *DefSU = getSUnit(DefMI);
1265     if (!DefSU)
1266       continue;
1267     // Get the MI and SUnit for the instruction that defins the new base.
1268     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1269     if (!LastMI)
1270       continue;
1271     SUnit *LastSU = getSUnit(LastMI);
1272     if (!LastSU)
1273       continue;
1274
1275     if (Topo.IsReachable(&I, LastSU))
1276       continue;
1277
1278     // Remove the dependence. The value now depends on a prior iteration.
1279     SmallVector<SDep, 4> Deps;
1280     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1281          ++P)
1282       if (P->getSUnit() == DefSU)
1283         Deps.push_back(*P);
1284     for (int i = 0, e = Deps.size(); i != e; i++) {
1285       Topo.RemovePred(&I, Deps[i].getSUnit());
1286       I.removePred(Deps[i]);
1287     }
1288     // Remove the chain dependence between the instructions.
1289     Deps.clear();
1290     for (auto &P : LastSU->Preds)
1291       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1292         Deps.push_back(P);
1293     for (int i = 0, e = Deps.size(); i != e; i++) {
1294       Topo.RemovePred(LastSU, Deps[i].getSUnit());
1295       LastSU->removePred(Deps[i]);
1296     }
1297
1298     // Add a dependence between the new instruction and the instruction
1299     // that defines the new base.
1300     SDep Dep(&I, SDep::Anti, NewBase);
1301     LastSU->addPred(Dep);
1302
1303     // Remember the base and offset information so that we can update the
1304     // instruction during code generation.
1305     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1306   }
1307 }
1308
1309 namespace {
1310
1311 // FuncUnitSorter - Comparison operator used to sort instructions by
1312 // the number of functional unit choices.
1313 struct FuncUnitSorter {
1314   const InstrItineraryData *InstrItins;
1315   DenseMap<unsigned, unsigned> Resources;
1316
1317   FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1318
1319   // Compute the number of functional unit alternatives needed
1320   // at each stage, and take the minimum value. We prioritize the
1321   // instructions by the least number of choices first.
1322   unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1323     unsigned schedClass = Inst->getDesc().getSchedClass();
1324     unsigned min = UINT_MAX;
1325     for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1326                           *IE = InstrItins->endStage(schedClass);
1327          IS != IE; ++IS) {
1328       unsigned funcUnits = IS->getUnits();
1329       unsigned numAlternatives = countPopulation(funcUnits);
1330       if (numAlternatives < min) {
1331         min = numAlternatives;
1332         F = funcUnits;
1333       }
1334     }
1335     return min;
1336   }
1337
1338   // Compute the critical resources needed by the instruction. This
1339   // function records the functional units needed by instructions that
1340   // must use only one functional unit. We use this as a tie breaker
1341   // for computing the resource MII. The instrutions that require
1342   // the same, highly used, functional unit have high priority.
1343   void calcCriticalResources(MachineInstr &MI) {
1344     unsigned SchedClass = MI.getDesc().getSchedClass();
1345     for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1346                           *IE = InstrItins->endStage(SchedClass);
1347          IS != IE; ++IS) {
1348       unsigned FuncUnits = IS->getUnits();
1349       if (countPopulation(FuncUnits) == 1)
1350         Resources[FuncUnits]++;
1351     }
1352   }
1353
1354   /// Return true if IS1 has less priority than IS2.
1355   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1356     unsigned F1 = 0, F2 = 0;
1357     unsigned MFUs1 = minFuncUnits(IS1, F1);
1358     unsigned MFUs2 = minFuncUnits(IS2, F2);
1359     if (MFUs1 == 1 && MFUs2 == 1)
1360       return Resources.lookup(F1) < Resources.lookup(F2);
1361     return MFUs1 > MFUs2;
1362   }
1363 };
1364
1365 } // end anonymous namespace
1366
1367 /// Calculate the resource constrained minimum initiation interval for the
1368 /// specified loop. We use the DFA to model the resources needed for
1369 /// each instruction, and we ignore dependences. A different DFA is created
1370 /// for each cycle that is required. When adding a new instruction, we attempt
1371 /// to add it to each existing DFA, until a legal space is found. If the
1372 /// instruction cannot be reserved in an existing DFA, we create a new one.
1373 unsigned SwingSchedulerDAG::calculateResMII() {
1374   SmallVector<DFAPacketizer *, 8> Resources;
1375   MachineBasicBlock *MBB = Loop.getHeader();
1376   Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1377
1378   // Sort the instructions by the number of available choices for scheduling,
1379   // least to most. Use the number of critical resources as the tie breaker.
1380   FuncUnitSorter FUS =
1381       FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1382   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1383                                    E = MBB->getFirstTerminator();
1384        I != E; ++I)
1385     FUS.calcCriticalResources(*I);
1386   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1387       FuncUnitOrder(FUS);
1388
1389   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1390                                    E = MBB->getFirstTerminator();
1391        I != E; ++I)
1392     FuncUnitOrder.push(&*I);
1393
1394   while (!FuncUnitOrder.empty()) {
1395     MachineInstr *MI = FuncUnitOrder.top();
1396     FuncUnitOrder.pop();
1397     if (TII->isZeroCost(MI->getOpcode()))
1398       continue;
1399     // Attempt to reserve the instruction in an existing DFA. At least one
1400     // DFA is needed for each cycle.
1401     unsigned NumCycles = getSUnit(MI)->Latency;
1402     unsigned ReservedCycles = 0;
1403     SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1404     SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1405     for (unsigned C = 0; C < NumCycles; ++C)
1406       while (RI != RE) {
1407         if ((*RI++)->canReserveResources(*MI)) {
1408           ++ReservedCycles;
1409           break;
1410         }
1411       }
1412     // Start reserving resources using existing DFAs.
1413     for (unsigned C = 0; C < ReservedCycles; ++C) {
1414       --RI;
1415       (*RI)->reserveResources(*MI);
1416     }
1417     // Add new DFAs, if needed, to reserve resources.
1418     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1419       DFAPacketizer *NewResource =
1420           TII->CreateTargetScheduleState(MF.getSubtarget());
1421       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1422       NewResource->reserveResources(*MI);
1423       Resources.push_back(NewResource);
1424     }
1425   }
1426   int Resmii = Resources.size();
1427   // Delete the memory for each of the DFAs that were created earlier.
1428   for (DFAPacketizer *RI : Resources) {
1429     DFAPacketizer *D = RI;
1430     delete D;
1431   }
1432   Resources.clear();
1433   return Resmii;
1434 }
1435
1436 /// Calculate the recurrence-constrainted minimum initiation interval.
1437 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1438 /// for each circuit. The II needs to satisfy the inequality
1439 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1440 /// II that satisfies the inequality, and the RecMII is the maximum
1441 /// of those values.
1442 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1443   unsigned RecMII = 0;
1444
1445   for (NodeSet &Nodes : NodeSets) {
1446     if (Nodes.empty())
1447       continue;
1448
1449     unsigned Delay = Nodes.getLatency();
1450     unsigned Distance = 1;
1451
1452     // ii = ceil(delay / distance)
1453     unsigned CurMII = (Delay + Distance - 1) / Distance;
1454     Nodes.setRecMII(CurMII);
1455     if (CurMII > RecMII)
1456       RecMII = CurMII;
1457   }
1458
1459   return RecMII;
1460 }
1461
1462 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1463 /// but we do this to find the circuits, and then change them back.
1464 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1465   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1466   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1467     SUnit *SU = &SUnits[i];
1468     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1469          IP != EP; ++IP) {
1470       if (IP->getKind() != SDep::Anti)
1471         continue;
1472       DepsAdded.push_back(std::make_pair(SU, *IP));
1473     }
1474   }
1475   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1476                                                           E = DepsAdded.end();
1477        I != E; ++I) {
1478     // Remove this anti dependency and add one in the reverse direction.
1479     SUnit *SU = I->first;
1480     SDep &D = I->second;
1481     SUnit *TargetSU = D.getSUnit();
1482     unsigned Reg = D.getReg();
1483     unsigned Lat = D.getLatency();
1484     SU->removePred(D);
1485     SDep Dep(SU, SDep::Anti, Reg);
1486     Dep.setLatency(Lat);
1487     TargetSU->addPred(Dep);
1488   }
1489 }
1490
1491 /// Create the adjacency structure of the nodes in the graph.
1492 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1493     SwingSchedulerDAG *DAG) {
1494   BitVector Added(SUnits.size());
1495   DenseMap<int, int> OutputDeps;
1496   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1497     Added.reset();
1498     // Add any successor to the adjacency matrix and exclude duplicates.
1499     for (auto &SI : SUnits[i].Succs) {
1500       // Only create a back-edge on the first and last nodes of a dependence
1501       // chain. This records any chains and adds them later.
1502       if (SI.getKind() == SDep::Output) {
1503         int N = SI.getSUnit()->NodeNum;
1504         int BackEdge = i;
1505         auto Dep = OutputDeps.find(BackEdge);
1506         if (Dep != OutputDeps.end()) {
1507           BackEdge = Dep->second;
1508           OutputDeps.erase(Dep);
1509         }
1510         OutputDeps[N] = BackEdge;
1511       }
1512       // Do not process a boundary node and a back-edge is processed only
1513       // if it goes to a Phi.
1514       if (SI.getSUnit()->isBoundaryNode() ||
1515           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1516         continue;
1517       int N = SI.getSUnit()->NodeNum;
1518       if (!Added.test(N)) {
1519         AdjK[i].push_back(N);
1520         Added.set(N);
1521       }
1522     }
1523     // A chain edge between a store and a load is treated as a back-edge in the
1524     // adjacency matrix.
1525     for (auto &PI : SUnits[i].Preds) {
1526       if (!SUnits[i].getInstr()->mayStore() ||
1527           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1528         continue;
1529       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1530         int N = PI.getSUnit()->NodeNum;
1531         if (!Added.test(N)) {
1532           AdjK[i].push_back(N);
1533           Added.set(N);
1534         }
1535       }
1536     }
1537   }
1538   // Add back-eges in the adjacency matrix for the output dependences.
1539   for (auto &OD : OutputDeps)
1540     if (!Added.test(OD.second)) {
1541       AdjK[OD.first].push_back(OD.second);
1542       Added.set(OD.second);
1543     }
1544 }
1545
1546 /// Identify an elementary circuit in the dependence graph starting at the
1547 /// specified node.
1548 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1549                                           bool HasBackedge) {
1550   SUnit *SV = &SUnits[V];
1551   bool F = false;
1552   Stack.insert(SV);
1553   Blocked.set(V);
1554
1555   for (auto W : AdjK[V]) {
1556     if (NumPaths > MaxPaths)
1557       break;
1558     if (W < S)
1559       continue;
1560     if (W == S) {
1561       if (!HasBackedge)
1562         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1563       F = true;
1564       ++NumPaths;
1565       break;
1566     } else if (!Blocked.test(W)) {
1567       if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1568         F = true;
1569     }
1570   }
1571
1572   if (F)
1573     unblock(V);
1574   else {
1575     for (auto W : AdjK[V]) {
1576       if (W < S)
1577         continue;
1578       if (B[W].count(SV) == 0)
1579         B[W].insert(SV);
1580     }
1581   }
1582   Stack.pop_back();
1583   return F;
1584 }
1585
1586 /// Unblock a node in the circuit finding algorithm.
1587 void SwingSchedulerDAG::Circuits::unblock(int U) {
1588   Blocked.reset(U);
1589   SmallPtrSet<SUnit *, 4> &BU = B[U];
1590   while (!BU.empty()) {
1591     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1592     assert(SI != BU.end() && "Invalid B set.");
1593     SUnit *W = *SI;
1594     BU.erase(W);
1595     if (Blocked.test(W->NodeNum))
1596       unblock(W->NodeNum);
1597   }
1598 }
1599
1600 /// Identify all the elementary circuits in the dependence graph using
1601 /// Johnson's circuit algorithm.
1602 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1603   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1604   // but we do this to find the circuits, and then change them back.
1605   swapAntiDependences(SUnits);
1606
1607   Circuits Cir(SUnits);
1608   // Create the adjacency structure.
1609   Cir.createAdjacencyStructure(this);
1610   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1611     Cir.reset();
1612     Cir.circuit(i, i, NodeSets);
1613   }
1614
1615   // Change the dependences back so that we've created a DAG again.
1616   swapAntiDependences(SUnits);
1617 }
1618
1619 /// Return true for DAG nodes that we ignore when computing the cost functions.
1620 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1621 /// in the calculation of the ASAP, ALAP, etc functions.
1622 static bool ignoreDependence(const SDep &D, bool isPred) {
1623   if (D.isArtificial())
1624     return true;
1625   return D.getKind() == SDep::Anti && isPred;
1626 }
1627
1628 /// Compute several functions need to order the nodes for scheduling.
1629 ///  ASAP - Earliest time to schedule a node.
1630 ///  ALAP - Latest time to schedule a node.
1631 ///  MOV - Mobility function, difference between ALAP and ASAP.
1632 ///  D - Depth of each node.
1633 ///  H - Height of each node.
1634 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1635   ScheduleInfo.resize(SUnits.size());
1636
1637   LLVM_DEBUG({
1638     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1639                                                     E = Topo.end();
1640          I != E; ++I) {
1641       SUnit *SU = &SUnits[*I];
1642       SU->dump(this);
1643     }
1644   });
1645
1646   int maxASAP = 0;
1647   // Compute ASAP and ZeroLatencyDepth.
1648   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1649                                                   E = Topo.end();
1650        I != E; ++I) {
1651     int asap = 0;
1652     int zeroLatencyDepth = 0;
1653     SUnit *SU = &SUnits[*I];
1654     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1655                                     EP = SU->Preds.end();
1656          IP != EP; ++IP) {
1657       SUnit *pred = IP->getSUnit();
1658       if (IP->getLatency() == 0)
1659         zeroLatencyDepth =
1660             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1661       if (ignoreDependence(*IP, true))
1662         continue;
1663       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1664                                   getDistance(pred, SU, *IP) * MII));
1665     }
1666     maxASAP = std::max(maxASAP, asap);
1667     ScheduleInfo[*I].ASAP = asap;
1668     ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1669   }
1670
1671   // Compute ALAP, ZeroLatencyHeight, and MOV.
1672   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1673                                                           E = Topo.rend();
1674        I != E; ++I) {
1675     int alap = maxASAP;
1676     int zeroLatencyHeight = 0;
1677     SUnit *SU = &SUnits[*I];
1678     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1679                                     ES = SU->Succs.end();
1680          IS != ES; ++IS) {
1681       SUnit *succ = IS->getSUnit();
1682       if (IS->getLatency() == 0)
1683         zeroLatencyHeight =
1684             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1685       if (ignoreDependence(*IS, true))
1686         continue;
1687       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1688                                   getDistance(SU, succ, *IS) * MII));
1689     }
1690
1691     ScheduleInfo[*I].ALAP = alap;
1692     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1693   }
1694
1695   // After computing the node functions, compute the summary for each node set.
1696   for (NodeSet &I : NodeSets)
1697     I.computeNodeSetInfo(this);
1698
1699   LLVM_DEBUG({
1700     for (unsigned i = 0; i < SUnits.size(); i++) {
1701       dbgs() << "\tNode " << i << ":\n";
1702       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1703       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1704       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1705       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1706       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1707       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1708       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1709     }
1710   });
1711 }
1712
1713 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1714 /// as the predecessors of the elements of NodeOrder that are not also in
1715 /// NodeOrder.
1716 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1717                    SmallSetVector<SUnit *, 8> &Preds,
1718                    const NodeSet *S = nullptr) {
1719   Preds.clear();
1720   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1721        I != E; ++I) {
1722     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1723          PI != PE; ++PI) {
1724       if (S && S->count(PI->getSUnit()) == 0)
1725         continue;
1726       if (ignoreDependence(*PI, true))
1727         continue;
1728       if (NodeOrder.count(PI->getSUnit()) == 0)
1729         Preds.insert(PI->getSUnit());
1730     }
1731     // Back-edges are predecessors with an anti-dependence.
1732     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1733                                     ES = (*I)->Succs.end();
1734          IS != ES; ++IS) {
1735       if (IS->getKind() != SDep::Anti)
1736         continue;
1737       if (S && S->count(IS->getSUnit()) == 0)
1738         continue;
1739       if (NodeOrder.count(IS->getSUnit()) == 0)
1740         Preds.insert(IS->getSUnit());
1741     }
1742   }
1743   return !Preds.empty();
1744 }
1745
1746 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1747 /// as the successors of the elements of NodeOrder that are not also in
1748 /// NodeOrder.
1749 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1750                    SmallSetVector<SUnit *, 8> &Succs,
1751                    const NodeSet *S = nullptr) {
1752   Succs.clear();
1753   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1754        I != E; ++I) {
1755     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1756          SI != SE; ++SI) {
1757       if (S && S->count(SI->getSUnit()) == 0)
1758         continue;
1759       if (ignoreDependence(*SI, false))
1760         continue;
1761       if (NodeOrder.count(SI->getSUnit()) == 0)
1762         Succs.insert(SI->getSUnit());
1763     }
1764     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1765                                     PE = (*I)->Preds.end();
1766          PI != PE; ++PI) {
1767       if (PI->getKind() != SDep::Anti)
1768         continue;
1769       if (S && S->count(PI->getSUnit()) == 0)
1770         continue;
1771       if (NodeOrder.count(PI->getSUnit()) == 0)
1772         Succs.insert(PI->getSUnit());
1773     }
1774   }
1775   return !Succs.empty();
1776 }
1777
1778 /// Return true if there is a path from the specified node to any of the nodes
1779 /// in DestNodes. Keep track and return the nodes in any path.
1780 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1781                         SetVector<SUnit *> &DestNodes,
1782                         SetVector<SUnit *> &Exclude,
1783                         SmallPtrSet<SUnit *, 8> &Visited) {
1784   if (Cur->isBoundaryNode())
1785     return false;
1786   if (Exclude.count(Cur) != 0)
1787     return false;
1788   if (DestNodes.count(Cur) != 0)
1789     return true;
1790   if (!Visited.insert(Cur).second)
1791     return Path.count(Cur) != 0;
1792   bool FoundPath = false;
1793   for (auto &SI : Cur->Succs)
1794     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1795   for (auto &PI : Cur->Preds)
1796     if (PI.getKind() == SDep::Anti)
1797       FoundPath |=
1798           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1799   if (FoundPath)
1800     Path.insert(Cur);
1801   return FoundPath;
1802 }
1803
1804 /// Return true if Set1 is a subset of Set2.
1805 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1806   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1807     if (Set2.count(*I) == 0)
1808       return false;
1809   return true;
1810 }
1811
1812 /// Compute the live-out registers for the instructions in a node-set.
1813 /// The live-out registers are those that are defined in the node-set,
1814 /// but not used. Except for use operands of Phis.
1815 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1816                             NodeSet &NS) {
1817   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1818   MachineRegisterInfo &MRI = MF.getRegInfo();
1819   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1820   SmallSet<unsigned, 4> Uses;
1821   for (SUnit *SU : NS) {
1822     const MachineInstr *MI = SU->getInstr();
1823     if (MI->isPHI())
1824       continue;
1825     for (const MachineOperand &MO : MI->operands())
1826       if (MO.isReg() && MO.isUse()) {
1827         unsigned Reg = MO.getReg();
1828         if (TargetRegisterInfo::isVirtualRegister(Reg))
1829           Uses.insert(Reg);
1830         else if (MRI.isAllocatable(Reg))
1831           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1832             Uses.insert(*Units);
1833       }
1834   }
1835   for (SUnit *SU : NS)
1836     for (const MachineOperand &MO : SU->getInstr()->operands())
1837       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1838         unsigned Reg = MO.getReg();
1839         if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1840           if (!Uses.count(Reg))
1841             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1842                                                    LaneBitmask::getNone()));
1843         } else if (MRI.isAllocatable(Reg)) {
1844           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1845             if (!Uses.count(*Units))
1846               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1847                                                      LaneBitmask::getNone()));
1848         }
1849       }
1850   RPTracker.addLiveRegs(LiveOutRegs);
1851 }
1852
1853 /// A heuristic to filter nodes in recurrent node-sets if the register
1854 /// pressure of a set is too high.
1855 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1856   for (auto &NS : NodeSets) {
1857     // Skip small node-sets since they won't cause register pressure problems.
1858     if (NS.size() <= 2)
1859       continue;
1860     IntervalPressure RecRegPressure;
1861     RegPressureTracker RecRPTracker(RecRegPressure);
1862     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1863     computeLiveOuts(MF, RecRPTracker, NS);
1864     RecRPTracker.closeBottom();
1865
1866     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1867     llvm::sort(SUnits.begin(), SUnits.end(),
1868                [](const SUnit *A, const SUnit *B) {
1869       return A->NodeNum > B->NodeNum;
1870     });
1871
1872     for (auto &SU : SUnits) {
1873       // Since we're computing the register pressure for a subset of the
1874       // instructions in a block, we need to set the tracker for each
1875       // instruction in the node-set. The tracker is set to the instruction
1876       // just after the one we're interested in.
1877       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1878       RecRPTracker.setPos(std::next(CurInstI));
1879
1880       RegPressureDelta RPDelta;
1881       ArrayRef<PressureChange> CriticalPSets;
1882       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1883                                              CriticalPSets,
1884                                              RecRegPressure.MaxSetPressure);
1885       if (RPDelta.Excess.isValid()) {
1886         LLVM_DEBUG(
1887             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1888                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1889                    << ":" << RPDelta.Excess.getUnitInc());
1890         NS.setExceedPressure(SU);
1891         break;
1892       }
1893       RecRPTracker.recede();
1894     }
1895   }
1896 }
1897
1898 /// A heuristic to colocate node sets that have the same set of
1899 /// successors.
1900 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1901   unsigned Colocate = 0;
1902   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1903     NodeSet &N1 = NodeSets[i];
1904     SmallSetVector<SUnit *, 8> S1;
1905     if (N1.empty() || !succ_L(N1, S1))
1906       continue;
1907     for (int j = i + 1; j < e; ++j) {
1908       NodeSet &N2 = NodeSets[j];
1909       if (N1.compareRecMII(N2) != 0)
1910         continue;
1911       SmallSetVector<SUnit *, 8> S2;
1912       if (N2.empty() || !succ_L(N2, S2))
1913         continue;
1914       if (isSubset(S1, S2) && S1.size() == S2.size()) {
1915         N1.setColocate(++Colocate);
1916         N2.setColocate(Colocate);
1917         break;
1918       }
1919     }
1920   }
1921 }
1922
1923 /// Check if the existing node-sets are profitable. If not, then ignore the
1924 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1925 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1926 /// then it's best to try to schedule all instructions together instead of
1927 /// starting with the recurrent node-sets.
1928 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1929   // Look for loops with a large MII.
1930   if (MII < 17)
1931     return;
1932   // Check if the node-set contains only a simple add recurrence.
1933   for (auto &NS : NodeSets) {
1934     if (NS.getRecMII() > 2)
1935       return;
1936     if (NS.getMaxDepth() > MII)
1937       return;
1938   }
1939   NodeSets.clear();
1940   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1941   return;
1942 }
1943
1944 /// Add the nodes that do not belong to a recurrence set into groups
1945 /// based upon connected componenets.
1946 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1947   SetVector<SUnit *> NodesAdded;
1948   SmallPtrSet<SUnit *, 8> Visited;
1949   // Add the nodes that are on a path between the previous node sets and
1950   // the current node set.
1951   for (NodeSet &I : NodeSets) {
1952     SmallSetVector<SUnit *, 8> N;
1953     // Add the nodes from the current node set to the previous node set.
1954     if (succ_L(I, N)) {
1955       SetVector<SUnit *> Path;
1956       for (SUnit *NI : N) {
1957         Visited.clear();
1958         computePath(NI, Path, NodesAdded, I, Visited);
1959       }
1960       if (!Path.empty())
1961         I.insert(Path.begin(), Path.end());
1962     }
1963     // Add the nodes from the previous node set to the current node set.
1964     N.clear();
1965     if (succ_L(NodesAdded, N)) {
1966       SetVector<SUnit *> Path;
1967       for (SUnit *NI : N) {
1968         Visited.clear();
1969         computePath(NI, Path, I, NodesAdded, Visited);
1970       }
1971       if (!Path.empty())
1972         I.insert(Path.begin(), Path.end());
1973     }
1974     NodesAdded.insert(I.begin(), I.end());
1975   }
1976
1977   // Create a new node set with the connected nodes of any successor of a node
1978   // in a recurrent set.
1979   NodeSet NewSet;
1980   SmallSetVector<SUnit *, 8> N;
1981   if (succ_L(NodesAdded, N))
1982     for (SUnit *I : N)
1983       addConnectedNodes(I, NewSet, NodesAdded);
1984   if (!NewSet.empty())
1985     NodeSets.push_back(NewSet);
1986
1987   // Create a new node set with the connected nodes of any predecessor of a node
1988   // in a recurrent set.
1989   NewSet.clear();
1990   if (pred_L(NodesAdded, N))
1991     for (SUnit *I : N)
1992       addConnectedNodes(I, NewSet, NodesAdded);
1993   if (!NewSet.empty())
1994     NodeSets.push_back(NewSet);
1995
1996   // Create new nodes sets with the connected nodes any remaining node that
1997   // has no predecessor.
1998   for (unsigned i = 0; i < SUnits.size(); ++i) {
1999     SUnit *SU = &SUnits[i];
2000     if (NodesAdded.count(SU) == 0) {
2001       NewSet.clear();
2002       addConnectedNodes(SU, NewSet, NodesAdded);
2003       if (!NewSet.empty())
2004         NodeSets.push_back(NewSet);
2005     }
2006   }
2007 }
2008
2009 /// Add the node to the set, and add all is its connected nodes to the set.
2010 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2011                                           SetVector<SUnit *> &NodesAdded) {
2012   NewSet.insert(SU);
2013   NodesAdded.insert(SU);
2014   for (auto &SI : SU->Succs) {
2015     SUnit *Successor = SI.getSUnit();
2016     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2017       addConnectedNodes(Successor, NewSet, NodesAdded);
2018   }
2019   for (auto &PI : SU->Preds) {
2020     SUnit *Predecessor = PI.getSUnit();
2021     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2022       addConnectedNodes(Predecessor, NewSet, NodesAdded);
2023   }
2024 }
2025
2026 /// Return true if Set1 contains elements in Set2. The elements in common
2027 /// are returned in a different container.
2028 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2029                         SmallSetVector<SUnit *, 8> &Result) {
2030   Result.clear();
2031   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2032     SUnit *SU = Set1[i];
2033     if (Set2.count(SU) != 0)
2034       Result.insert(SU);
2035   }
2036   return !Result.empty();
2037 }
2038
2039 /// Merge the recurrence node sets that have the same initial node.
2040 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2041   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2042        ++I) {
2043     NodeSet &NI = *I;
2044     for (NodeSetType::iterator J = I + 1; J != E;) {
2045       NodeSet &NJ = *J;
2046       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2047         if (NJ.compareRecMII(NI) > 0)
2048           NI.setRecMII(NJ.getRecMII());
2049         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2050              ++NII)
2051           I->insert(*NII);
2052         NodeSets.erase(J);
2053         E = NodeSets.end();
2054       } else {
2055         ++J;
2056       }
2057     }
2058   }
2059 }
2060
2061 /// Remove nodes that have been scheduled in previous NodeSets.
2062 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2063   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2064        ++I)
2065     for (NodeSetType::iterator J = I + 1; J != E;) {
2066       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2067
2068       if (J->empty()) {
2069         NodeSets.erase(J);
2070         E = NodeSets.end();
2071       } else {
2072         ++J;
2073       }
2074     }
2075 }
2076
2077 /// Compute an ordered list of the dependence graph nodes, which
2078 /// indicates the order that the nodes will be scheduled.  This is a
2079 /// two-level algorithm. First, a partial order is created, which
2080 /// consists of a list of sets ordered from highest to lowest priority.
2081 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2082   SmallSetVector<SUnit *, 8> R;
2083   NodeOrder.clear();
2084
2085   for (auto &Nodes : NodeSets) {
2086     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2087     OrderKind Order;
2088     SmallSetVector<SUnit *, 8> N;
2089     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2090       R.insert(N.begin(), N.end());
2091       Order = BottomUp;
2092       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
2093     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2094       R.insert(N.begin(), N.end());
2095       Order = TopDown;
2096       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
2097     } else if (isIntersect(N, Nodes, R)) {
2098       // If some of the successors are in the existing node-set, then use the
2099       // top-down ordering.
2100       Order = TopDown;
2101       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
2102     } else if (NodeSets.size() == 1) {
2103       for (auto &N : Nodes)
2104         if (N->Succs.size() == 0)
2105           R.insert(N);
2106       Order = BottomUp;
2107       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
2108     } else {
2109       // Find the node with the highest ASAP.
2110       SUnit *maxASAP = nullptr;
2111       for (SUnit *SU : Nodes) {
2112         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2113             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
2114           maxASAP = SU;
2115       }
2116       R.insert(maxASAP);
2117       Order = BottomUp;
2118       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
2119     }
2120
2121     while (!R.empty()) {
2122       if (Order == TopDown) {
2123         // Choose the node with the maximum height.  If more than one, choose
2124         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
2125         // choose the node with the lowest MOV.
2126         while (!R.empty()) {
2127           SUnit *maxHeight = nullptr;
2128           for (SUnit *I : R) {
2129             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
2130               maxHeight = I;
2131             else if (getHeight(I) == getHeight(maxHeight) &&
2132                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
2133               maxHeight = I;
2134             else if (getHeight(I) == getHeight(maxHeight) &&
2135                      getZeroLatencyHeight(I) ==
2136                          getZeroLatencyHeight(maxHeight) &&
2137                      getMOV(I) < getMOV(maxHeight))
2138               maxHeight = I;
2139           }
2140           NodeOrder.insert(maxHeight);
2141           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
2142           R.remove(maxHeight);
2143           for (const auto &I : maxHeight->Succs) {
2144             if (Nodes.count(I.getSUnit()) == 0)
2145               continue;
2146             if (NodeOrder.count(I.getSUnit()) != 0)
2147               continue;
2148             if (ignoreDependence(I, false))
2149               continue;
2150             R.insert(I.getSUnit());
2151           }
2152           // Back-edges are predecessors with an anti-dependence.
2153           for (const auto &I : maxHeight->Preds) {
2154             if (I.getKind() != SDep::Anti)
2155               continue;
2156             if (Nodes.count(I.getSUnit()) == 0)
2157               continue;
2158             if (NodeOrder.count(I.getSUnit()) != 0)
2159               continue;
2160             R.insert(I.getSUnit());
2161           }
2162         }
2163         Order = BottomUp;
2164         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
2165         SmallSetVector<SUnit *, 8> N;
2166         if (pred_L(NodeOrder, N, &Nodes))
2167           R.insert(N.begin(), N.end());
2168       } else {
2169         // Choose the node with the maximum depth.  If more than one, choose
2170         // the node with the maximum ZeroLatencyDepth. If still more than one,
2171         // choose the node with the lowest MOV.
2172         while (!R.empty()) {
2173           SUnit *maxDepth = nullptr;
2174           for (SUnit *I : R) {
2175             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
2176               maxDepth = I;
2177             else if (getDepth(I) == getDepth(maxDepth) &&
2178                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
2179               maxDepth = I;
2180             else if (getDepth(I) == getDepth(maxDepth) &&
2181                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2182                      getMOV(I) < getMOV(maxDepth))
2183               maxDepth = I;
2184           }
2185           NodeOrder.insert(maxDepth);
2186           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2187           R.remove(maxDepth);
2188           if (Nodes.isExceedSU(maxDepth)) {
2189             Order = TopDown;
2190             R.clear();
2191             R.insert(Nodes.getNode(0));
2192             break;
2193           }
2194           for (const auto &I : maxDepth->Preds) {
2195             if (Nodes.count(I.getSUnit()) == 0)
2196               continue;
2197             if (NodeOrder.count(I.getSUnit()) != 0)
2198               continue;
2199             R.insert(I.getSUnit());
2200           }
2201           // Back-edges are predecessors with an anti-dependence.
2202           for (const auto &I : maxDepth->Succs) {
2203             if (I.getKind() != SDep::Anti)
2204               continue;
2205             if (Nodes.count(I.getSUnit()) == 0)
2206               continue;
2207             if (NodeOrder.count(I.getSUnit()) != 0)
2208               continue;
2209             R.insert(I.getSUnit());
2210           }
2211         }
2212         Order = TopDown;
2213         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2214         SmallSetVector<SUnit *, 8> N;
2215         if (succ_L(NodeOrder, N, &Nodes))
2216           R.insert(N.begin(), N.end());
2217       }
2218     }
2219     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2220   }
2221
2222   LLVM_DEBUG({
2223     dbgs() << "Node order: ";
2224     for (SUnit *I : NodeOrder)
2225       dbgs() << " " << I->NodeNum << " ";
2226     dbgs() << "\n";
2227   });
2228 }
2229
2230 /// Process the nodes in the computed order and create the pipelined schedule
2231 /// of the instructions, if possible. Return true if a schedule is found.
2232 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2233   if (NodeOrder.empty())
2234     return false;
2235
2236   bool scheduleFound = false;
2237   // Keep increasing II until a valid schedule is found.
2238   for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2239     Schedule.reset();
2240     Schedule.setInitiationInterval(II);
2241     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2242
2243     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2244     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2245     do {
2246       SUnit *SU = *NI;
2247
2248       // Compute the schedule time for the instruction, which is based
2249       // upon the scheduled time for any predecessors/successors.
2250       int EarlyStart = INT_MIN;
2251       int LateStart = INT_MAX;
2252       // These values are set when the size of the schedule window is limited
2253       // due to chain dependences.
2254       int SchedEnd = INT_MAX;
2255       int SchedStart = INT_MIN;
2256       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2257                             II, this);
2258       LLVM_DEBUG({
2259         dbgs() << "Inst (" << SU->NodeNum << ") ";
2260         SU->getInstr()->dump();
2261         dbgs() << "\n";
2262       });
2263       LLVM_DEBUG({
2264         dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2265                << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2266       });
2267
2268       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2269           SchedStart > LateStart)
2270         scheduleFound = false;
2271       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2272         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2273         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2274       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2275         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2276         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2277       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2278         SchedEnd =
2279             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2280         // When scheduling a Phi it is better to start at the late cycle and go
2281         // backwards. The default order may insert the Phi too far away from
2282         // its first dependence.
2283         if (SU->getInstr()->isPHI())
2284           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2285         else
2286           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2287       } else {
2288         int FirstCycle = Schedule.getFirstCycle();
2289         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2290                                         FirstCycle + getASAP(SU) + II - 1, II);
2291       }
2292       // Even if we find a schedule, make sure the schedule doesn't exceed the
2293       // allowable number of stages. We keep trying if this happens.
2294       if (scheduleFound)
2295         if (SwpMaxStages > -1 &&
2296             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2297           scheduleFound = false;
2298
2299       LLVM_DEBUG({
2300         if (!scheduleFound)
2301           dbgs() << "\tCan't schedule\n";
2302       });
2303     } while (++NI != NE && scheduleFound);
2304
2305     // If a schedule is found, check if it is a valid schedule too.
2306     if (scheduleFound)
2307       scheduleFound = Schedule.isValidSchedule(this);
2308   }
2309
2310   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2311
2312   if (scheduleFound)
2313     Schedule.finalizeSchedule(this);
2314   else
2315     Schedule.reset();
2316
2317   return scheduleFound && Schedule.getMaxStageCount() > 0;
2318 }
2319
2320 /// Given a schedule for the loop, generate a new version of the loop,
2321 /// and replace the old version.  This function generates a prolog
2322 /// that contains the initial iterations in the pipeline, and kernel
2323 /// loop, and the epilogue that contains the code for the final
2324 /// iterations.
2325 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2326   // Create a new basic block for the kernel and add it to the CFG.
2327   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2328
2329   unsigned MaxStageCount = Schedule.getMaxStageCount();
2330
2331   // Remember the registers that are used in different stages. The index is
2332   // the iteration, or stage, that the instruction is scheduled in.  This is
2333   // a map between register names in the original block and the names created
2334   // in each stage of the pipelined loop.
2335   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2336   InstrMapTy InstrMap;
2337
2338   SmallVector<MachineBasicBlock *, 4> PrologBBs;
2339   // Generate the prolog instructions that set up the pipeline.
2340   generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2341   MF.insert(BB->getIterator(), KernelBB);
2342
2343   // Rearrange the instructions to generate the new, pipelined loop,
2344   // and update register names as needed.
2345   for (int Cycle = Schedule.getFirstCycle(),
2346            LastCycle = Schedule.getFinalCycle();
2347        Cycle <= LastCycle; ++Cycle) {
2348     std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2349     // This inner loop schedules each instruction in the cycle.
2350     for (SUnit *CI : CycleInstrs) {
2351       if (CI->getInstr()->isPHI())
2352         continue;
2353       unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2354       MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2355       updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2356       KernelBB->push_back(NewMI);
2357       InstrMap[NewMI] = CI->getInstr();
2358     }
2359   }
2360
2361   // Copy any terminator instructions to the new kernel, and update
2362   // names as needed.
2363   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2364                                    E = BB->instr_end();
2365        I != E; ++I) {
2366     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2367     updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2368     KernelBB->push_back(NewMI);
2369     InstrMap[NewMI] = &*I;
2370   }
2371
2372   KernelBB->transferSuccessors(BB);
2373   KernelBB->replaceSuccessor(BB, KernelBB);
2374
2375   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2376                        VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2377   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2378                InstrMap, MaxStageCount, MaxStageCount, false);
2379
2380   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2381
2382   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2383   // Generate the epilog instructions to complete the pipeline.
2384   generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2385                  PrologBBs);
2386
2387   // We need this step because the register allocation doesn't handle some
2388   // situations well, so we insert copies to help out.
2389   splitLifetimes(KernelBB, EpilogBBs, Schedule);
2390
2391   // Remove dead instructions due to loop induction variables.
2392   removeDeadInstructions(KernelBB, EpilogBBs);
2393
2394   // Add branches between prolog and epilog blocks.
2395   addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2396
2397   // Remove the original loop since it's no longer referenced.
2398   for (auto &I : *BB)
2399     LIS.RemoveMachineInstrFromMaps(I);
2400   BB->clear();
2401   BB->eraseFromParent();
2402
2403   delete[] VRMap;
2404 }
2405
2406 /// Generate the pipeline prolog code.
2407 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2408                                        MachineBasicBlock *KernelBB,
2409                                        ValueMapTy *VRMap,
2410                                        MBBVectorTy &PrologBBs) {
2411   MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2412   assert(PreheaderBB != nullptr &&
2413          "Need to add code to handle loops w/o preheader");
2414   MachineBasicBlock *PredBB = PreheaderBB;
2415   InstrMapTy InstrMap;
2416
2417   // Generate a basic block for each stage, not including the last stage,
2418   // which will be generated in the kernel. Each basic block may contain
2419   // instructions from multiple stages/iterations.
2420   for (unsigned i = 0; i < LastStage; ++i) {
2421     // Create and insert the prolog basic block prior to the original loop
2422     // basic block.  The original loop is removed later.
2423     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2424     PrologBBs.push_back(NewBB);
2425     MF.insert(BB->getIterator(), NewBB);
2426     NewBB->transferSuccessors(PredBB);
2427     PredBB->addSuccessor(NewBB);
2428     PredBB = NewBB;
2429
2430     // Generate instructions for each appropriate stage. Process instructions
2431     // in original program order.
2432     for (int StageNum = i; StageNum >= 0; --StageNum) {
2433       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2434                                        BBE = BB->getFirstTerminator();
2435            BBI != BBE; ++BBI) {
2436         if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2437           if (BBI->isPHI())
2438             continue;
2439           MachineInstr *NewMI =
2440               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2441           updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2442                             VRMap);
2443           NewBB->push_back(NewMI);
2444           InstrMap[NewMI] = &*BBI;
2445         }
2446       }
2447     }
2448     rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2449     LLVM_DEBUG({
2450       dbgs() << "prolog:\n";
2451       NewBB->dump();
2452     });
2453   }
2454
2455   PredBB->replaceSuccessor(BB, KernelBB);
2456
2457   // Check if we need to remove the branch from the preheader to the original
2458   // loop, and replace it with a branch to the new loop.
2459   unsigned numBranches = TII->removeBranch(*PreheaderBB);
2460   if (numBranches) {
2461     SmallVector<MachineOperand, 0> Cond;
2462     TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2463   }
2464 }
2465
2466 /// Generate the pipeline epilog code. The epilog code finishes the iterations
2467 /// that were started in either the prolog or the kernel.  We create a basic
2468 /// block for each stage that needs to complete.
2469 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2470                                        MachineBasicBlock *KernelBB,
2471                                        ValueMapTy *VRMap,
2472                                        MBBVectorTy &EpilogBBs,
2473                                        MBBVectorTy &PrologBBs) {
2474   // We need to change the branch from the kernel to the first epilog block, so
2475   // this call to analyze branch uses the kernel rather than the original BB.
2476   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2477   SmallVector<MachineOperand, 4> Cond;
2478   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2479   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2480   if (checkBranch)
2481     return;
2482
2483   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2484   if (*LoopExitI == KernelBB)
2485     ++LoopExitI;
2486   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2487   MachineBasicBlock *LoopExitBB = *LoopExitI;
2488
2489   MachineBasicBlock *PredBB = KernelBB;
2490   MachineBasicBlock *EpilogStart = LoopExitBB;
2491   InstrMapTy InstrMap;
2492
2493   // Generate a basic block for each stage, not including the last stage,
2494   // which was generated for the kernel.  Each basic block may contain
2495   // instructions from multiple stages/iterations.
2496   int EpilogStage = LastStage + 1;
2497   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2498     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2499     EpilogBBs.push_back(NewBB);
2500     MF.insert(BB->getIterator(), NewBB);
2501
2502     PredBB->replaceSuccessor(LoopExitBB, NewBB);
2503     NewBB->addSuccessor(LoopExitBB);
2504
2505     if (EpilogStart == LoopExitBB)
2506       EpilogStart = NewBB;
2507
2508     // Add instructions to the epilog depending on the current block.
2509     // Process instructions in original program order.
2510     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2511       for (auto &BBI : *BB) {
2512         if (BBI.isPHI())
2513           continue;
2514         MachineInstr *In = &BBI;
2515         if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2516           // Instructions with memoperands in the epilog are updated with
2517           // conservative values.
2518           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
2519           updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2520           NewBB->push_back(NewMI);
2521           InstrMap[NewMI] = In;
2522         }
2523       }
2524     }
2525     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2526                          VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2527     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2528                  InstrMap, LastStage, EpilogStage, i == 1);
2529     PredBB = NewBB;
2530
2531     LLVM_DEBUG({
2532       dbgs() << "epilog:\n";
2533       NewBB->dump();
2534     });
2535   }
2536
2537   // Fix any Phi nodes in the loop exit block.
2538   for (MachineInstr &MI : *LoopExitBB) {
2539     if (!MI.isPHI())
2540       break;
2541     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2542       MachineOperand &MO = MI.getOperand(i);
2543       if (MO.getMBB() == BB)
2544         MO.setMBB(PredBB);
2545     }
2546   }
2547
2548   // Create a branch to the new epilog from the kernel.
2549   // Remove the original branch and add a new branch to the epilog.
2550   TII->removeBranch(*KernelBB);
2551   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2552   // Add a branch to the loop exit.
2553   if (EpilogBBs.size() > 0) {
2554     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2555     SmallVector<MachineOperand, 4> Cond1;
2556     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2557   }
2558 }
2559
2560 /// Replace all uses of FromReg that appear outside the specified
2561 /// basic block with ToReg.
2562 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2563                                     MachineBasicBlock *MBB,
2564                                     MachineRegisterInfo &MRI,
2565                                     LiveIntervals &LIS) {
2566   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2567                                          E = MRI.use_end();
2568        I != E;) {
2569     MachineOperand &O = *I;
2570     ++I;
2571     if (O.getParent()->getParent() != MBB)
2572       O.setReg(ToReg);
2573   }
2574   if (!LIS.hasInterval(ToReg))
2575     LIS.createEmptyInterval(ToReg);
2576 }
2577
2578 /// Return true if the register has a use that occurs outside the
2579 /// specified loop.
2580 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2581                             MachineRegisterInfo &MRI) {
2582   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2583                                          E = MRI.use_end();
2584        I != E; ++I)
2585     if (I->getParent()->getParent() != BB)
2586       return true;
2587   return false;
2588 }
2589
2590 /// Generate Phis for the specific block in the generated pipelined code.
2591 /// This function looks at the Phis from the original code to guide the
2592 /// creation of new Phis.
2593 void SwingSchedulerDAG::generateExistingPhis(
2594     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2595     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2596     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2597     bool IsLast) {
2598   // Compute the stage number for the initial value of the Phi, which
2599   // comes from the prolog. The prolog to use depends on to which kernel/
2600   // epilog that we're adding the Phi.
2601   unsigned PrologStage = 0;
2602   unsigned PrevStage = 0;
2603   bool InKernel = (LastStageNum == CurStageNum);
2604   if (InKernel) {
2605     PrologStage = LastStageNum - 1;
2606     PrevStage = CurStageNum;
2607   } else {
2608     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2609     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2610   }
2611
2612   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2613                                    BBE = BB->getFirstNonPHI();
2614        BBI != BBE; ++BBI) {
2615     unsigned Def = BBI->getOperand(0).getReg();
2616
2617     unsigned InitVal = 0;
2618     unsigned LoopVal = 0;
2619     getPhiRegs(*BBI, BB, InitVal, LoopVal);
2620
2621     unsigned PhiOp1 = 0;
2622     // The Phi value from the loop body typically is defined in the loop, but
2623     // not always. So, we need to check if the value is defined in the loop.
2624     unsigned PhiOp2 = LoopVal;
2625     if (VRMap[LastStageNum].count(LoopVal))
2626       PhiOp2 = VRMap[LastStageNum][LoopVal];
2627
2628     int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2629     int LoopValStage =
2630         Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2631     unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2632     if (NumStages == 0) {
2633       // We don't need to generate a Phi anymore, but we need to rename any uses
2634       // of the Phi value.
2635       unsigned NewReg = VRMap[PrevStage][LoopVal];
2636       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2637                             Def, InitVal, NewReg);
2638       if (VRMap[CurStageNum].count(LoopVal))
2639         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2640     }
2641     // Adjust the number of Phis needed depending on the number of prologs left,
2642     // and the distance from where the Phi is first scheduled. The number of
2643     // Phis cannot exceed the number of prolog stages. Each stage can
2644     // potentially define two values.
2645     unsigned MaxPhis = PrologStage + 2;
2646     if (!InKernel && (int)PrologStage <= LoopValStage)
2647       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2648     unsigned NumPhis = std::min(NumStages, MaxPhis);
2649
2650     unsigned NewReg = 0;
2651     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2652     // In the epilog, we may need to look back one stage to get the correct
2653     // Phi name because the epilog and prolog blocks execute the same stage.
2654     // The correct name is from the previous block only when the Phi has
2655     // been completely scheduled prior to the epilog, and Phi value is not
2656     // needed in multiple stages.
2657     int StageDiff = 0;
2658     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2659         NumPhis == 1)
2660       StageDiff = 1;
2661     // Adjust the computations below when the phi and the loop definition
2662     // are scheduled in different stages.
2663     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2664       StageDiff = StageScheduled - LoopValStage;
2665     for (unsigned np = 0; np < NumPhis; ++np) {
2666       // If the Phi hasn't been scheduled, then use the initial Phi operand
2667       // value. Otherwise, use the scheduled version of the instruction. This
2668       // is a little complicated when a Phi references another Phi.
2669       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2670         PhiOp1 = InitVal;
2671       // Check if the Phi has already been scheduled in a prolog stage.
2672       else if (PrologStage >= AccessStage + StageDiff + np &&
2673                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2674         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2675       // Check if the Phi has already been scheduled, but the loop intruction
2676       // is either another Phi, or doesn't occur in the loop.
2677       else if (PrologStage >= AccessStage + StageDiff + np) {
2678         // If the Phi references another Phi, we need to examine the other
2679         // Phi to get the correct value.
2680         PhiOp1 = LoopVal;
2681         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2682         int Indirects = 1;
2683         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2684           int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2685           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2686             PhiOp1 = getInitPhiReg(*InstOp1, BB);
2687           else
2688             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2689           InstOp1 = MRI.getVRegDef(PhiOp1);
2690           int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2691           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2692           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2693               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2694             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2695             break;
2696           }
2697           ++Indirects;
2698         }
2699       } else
2700         PhiOp1 = InitVal;
2701       // If this references a generated Phi in the kernel, get the Phi operand
2702       // from the incoming block.
2703       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2704         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2705           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2706
2707       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2708       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2709       // In the epilog, a map lookup is needed to get the value from the kernel,
2710       // or previous epilog block. How is does this depends on if the
2711       // instruction is scheduled in the previous block.
2712       if (!InKernel) {
2713         int StageDiffAdj = 0;
2714         if (LoopValStage != -1 && StageScheduled > LoopValStage)
2715           StageDiffAdj = StageScheduled - LoopValStage;
2716         // Use the loop value defined in the kernel, unless the kernel
2717         // contains the last definition of the Phi.
2718         if (np == 0 && PrevStage == LastStageNum &&
2719             (StageScheduled != 0 || LoopValStage != 0) &&
2720             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2721           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2722         // Use the value defined by the Phi. We add one because we switch
2723         // from looking at the loop value to the Phi definition.
2724         else if (np > 0 && PrevStage == LastStageNum &&
2725                  VRMap[PrevStage - np + 1].count(Def))
2726           PhiOp2 = VRMap[PrevStage - np + 1][Def];
2727         // Use the loop value defined in the kernel.
2728         else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2729                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2730           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2731         // Use the value defined by the Phi, unless we're generating the first
2732         // epilog and the Phi refers to a Phi in a different stage.
2733         else if (VRMap[PrevStage - np].count(Def) &&
2734                  (!LoopDefIsPhi || PrevStage != LastStageNum))
2735           PhiOp2 = VRMap[PrevStage - np][Def];
2736       }
2737
2738       // Check if we can reuse an existing Phi. This occurs when a Phi
2739       // references another Phi, and the other Phi is scheduled in an
2740       // earlier stage. We can try to reuse an existing Phi up until the last
2741       // stage of the current Phi.
2742       if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
2743         int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2744         int StageDiff = (StageScheduled - LoopValStage);
2745         LVNumStages -= StageDiff;
2746         // Make sure the loop value Phi has been processed already.
2747         if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2748           NewReg = PhiOp2;
2749           unsigned ReuseStage = CurStageNum;
2750           if (Schedule.isLoopCarried(this, *PhiInst))
2751             ReuseStage -= LVNumStages;
2752           // Check if the Phi to reuse has been generated yet. If not, then
2753           // there is nothing to reuse.
2754           if (VRMap[ReuseStage - np].count(LoopVal)) {
2755             NewReg = VRMap[ReuseStage - np][LoopVal];
2756
2757             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2758                                   &*BBI, Def, NewReg);
2759             // Update the map with the new Phi name.
2760             VRMap[CurStageNum - np][Def] = NewReg;
2761             PhiOp2 = NewReg;
2762             if (VRMap[LastStageNum - np - 1].count(LoopVal))
2763               PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2764
2765             if (IsLast && np == NumPhis - 1)
2766               replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2767             continue;
2768           }
2769         } else if (InKernel && StageDiff > 0 &&
2770                    VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2771           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2772       }
2773
2774       const TargetRegisterClass *RC = MRI.getRegClass(Def);
2775       NewReg = MRI.createVirtualRegister(RC);
2776
2777       MachineInstrBuilder NewPhi =
2778           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2779                   TII->get(TargetOpcode::PHI), NewReg);
2780       NewPhi.addReg(PhiOp1).addMBB(BB1);
2781       NewPhi.addReg(PhiOp2).addMBB(BB2);
2782       if (np == 0)
2783         InstrMap[NewPhi] = &*BBI;
2784
2785       // We define the Phis after creating the new pipelined code, so
2786       // we need to rename the Phi values in scheduled instructions.
2787
2788       unsigned PrevReg = 0;
2789       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2790         PrevReg = VRMap[PrevStage - np][LoopVal];
2791       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2792                             Def, NewReg, PrevReg);
2793       // If the Phi has been scheduled, use the new name for rewriting.
2794       if (VRMap[CurStageNum - np].count(Def)) {
2795         unsigned R = VRMap[CurStageNum - np][Def];
2796         rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2797                               R, NewReg);
2798       }
2799
2800       // Check if we need to rename any uses that occurs after the loop. The
2801       // register to replace depends on whether the Phi is scheduled in the
2802       // epilog.
2803       if (IsLast && np == NumPhis - 1)
2804         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2805
2806       // In the kernel, a dependent Phi uses the value from this Phi.
2807       if (InKernel)
2808         PhiOp2 = NewReg;
2809
2810       // Update the map with the new Phi name.
2811       VRMap[CurStageNum - np][Def] = NewReg;
2812     }
2813
2814     while (NumPhis++ < NumStages) {
2815       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2816                             &*BBI, Def, NewReg, 0);
2817     }
2818
2819     // Check if we need to rename a Phi that has been eliminated due to
2820     // scheduling.
2821     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2822       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2823   }
2824 }
2825
2826 /// Generate Phis for the specified block in the generated pipelined code.
2827 /// These are new Phis needed because the definition is scheduled after the
2828 /// use in the pipelined sequence.
2829 void SwingSchedulerDAG::generatePhis(
2830     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2831     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2832     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2833     bool IsLast) {
2834   // Compute the stage number that contains the initial Phi value, and
2835   // the Phi from the previous stage.
2836   unsigned PrologStage = 0;
2837   unsigned PrevStage = 0;
2838   unsigned StageDiff = CurStageNum - LastStageNum;
2839   bool InKernel = (StageDiff == 0);
2840   if (InKernel) {
2841     PrologStage = LastStageNum - 1;
2842     PrevStage = CurStageNum;
2843   } else {
2844     PrologStage = LastStageNum - StageDiff;
2845     PrevStage = LastStageNum + StageDiff - 1;
2846   }
2847
2848   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2849                                    BBE = BB->instr_end();
2850        BBI != BBE; ++BBI) {
2851     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2852       MachineOperand &MO = BBI->getOperand(i);
2853       if (!MO.isReg() || !MO.isDef() ||
2854           !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2855         continue;
2856
2857       int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2858       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2859       unsigned Def = MO.getReg();
2860       unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2861       // An instruction scheduled in stage 0 and is used after the loop
2862       // requires a phi in the epilog for the last definition from either
2863       // the kernel or prolog.
2864       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2865           hasUseAfterLoop(Def, BB, MRI))
2866         NumPhis = 1;
2867       if (!InKernel && (unsigned)StageScheduled > PrologStage)
2868         continue;
2869
2870       unsigned PhiOp2 = VRMap[PrevStage][Def];
2871       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2872         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2873           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2874       // The number of Phis can't exceed the number of prolog stages. The
2875       // prolog stage number is zero based.
2876       if (NumPhis > PrologStage + 1 - StageScheduled)
2877         NumPhis = PrologStage + 1 - StageScheduled;
2878       for (unsigned np = 0; np < NumPhis; ++np) {
2879         unsigned PhiOp1 = VRMap[PrologStage][Def];
2880         if (np <= PrologStage)
2881           PhiOp1 = VRMap[PrologStage - np][Def];
2882         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2883           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2884             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2885           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2886             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2887         }
2888         if (!InKernel)
2889           PhiOp2 = VRMap[PrevStage - np][Def];
2890
2891         const TargetRegisterClass *RC = MRI.getRegClass(Def);
2892         unsigned NewReg = MRI.createVirtualRegister(RC);
2893
2894         MachineInstrBuilder NewPhi =
2895             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2896                     TII->get(TargetOpcode::PHI), NewReg);
2897         NewPhi.addReg(PhiOp1).addMBB(BB1);
2898         NewPhi.addReg(PhiOp2).addMBB(BB2);
2899         if (np == 0)
2900           InstrMap[NewPhi] = &*BBI;
2901
2902         // Rewrite uses and update the map. The actions depend upon whether
2903         // we generating code for the kernel or epilog blocks.
2904         if (InKernel) {
2905           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2906                                 &*BBI, PhiOp1, NewReg);
2907           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2908                                 &*BBI, PhiOp2, NewReg);
2909
2910           PhiOp2 = NewReg;
2911           VRMap[PrevStage - np - 1][Def] = NewReg;
2912         } else {
2913           VRMap[CurStageNum - np][Def] = NewReg;
2914           if (np == NumPhis - 1)
2915             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2916                                   &*BBI, Def, NewReg);
2917         }
2918         if (IsLast && np == NumPhis - 1)
2919           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2920       }
2921     }
2922   }
2923 }
2924
2925 /// Remove instructions that generate values with no uses.
2926 /// Typically, these are induction variable operations that generate values
2927 /// used in the loop itself.  A dead instruction has a definition with
2928 /// no uses, or uses that occur in the original loop only.
2929 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2930                                                MBBVectorTy &EpilogBBs) {
2931   // For each epilog block, check that the value defined by each instruction
2932   // is used.  If not, delete it.
2933   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2934                                      MBE = EpilogBBs.rend();
2935        MBB != MBE; ++MBB)
2936     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2937                                                    ME = (*MBB)->instr_rend();
2938          MI != ME;) {
2939       // From DeadMachineInstructionElem. Don't delete inline assembly.
2940       if (MI->isInlineAsm()) {
2941         ++MI;
2942         continue;
2943       }
2944       bool SawStore = false;
2945       // Check if it's safe to remove the instruction due to side effects.
2946       // We can, and want to, remove Phis here.
2947       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2948         ++MI;
2949         continue;
2950       }
2951       bool used = true;
2952       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2953                                       MOE = MI->operands_end();
2954            MOI != MOE; ++MOI) {
2955         if (!MOI->isReg() || !MOI->isDef())
2956           continue;
2957         unsigned reg = MOI->getReg();
2958         // Assume physical registers are used, unless they are marked dead.
2959         if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2960           used = !MOI->isDead();
2961           if (used)
2962             break;
2963           continue;
2964         }
2965         unsigned realUses = 0;
2966         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2967                                                EI = MRI.use_end();
2968              UI != EI; ++UI) {
2969           // Check if there are any uses that occur only in the original
2970           // loop.  If so, that's not a real use.
2971           if (UI->getParent()->getParent() != BB) {
2972             realUses++;
2973             used = true;
2974             break;
2975           }
2976         }
2977         if (realUses > 0)
2978           break;
2979         used = false;
2980       }
2981       if (!used) {
2982         LIS.RemoveMachineInstrFromMaps(*MI);
2983         MI++->eraseFromParent();
2984         continue;
2985       }
2986       ++MI;
2987     }
2988   // In the kernel block, check if we can remove a Phi that generates a value
2989   // used in an instruction removed in the epilog block.
2990   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2991                                    BBE = KernelBB->getFirstNonPHI();
2992        BBI != BBE;) {
2993     MachineInstr *MI = &*BBI;
2994     ++BBI;
2995     unsigned reg = MI->getOperand(0).getReg();
2996     if (MRI.use_begin(reg) == MRI.use_end()) {
2997       LIS.RemoveMachineInstrFromMaps(*MI);
2998       MI->eraseFromParent();
2999     }
3000   }
3001 }
3002
3003 /// For loop carried definitions, we split the lifetime of a virtual register
3004 /// that has uses past the definition in the next iteration. A copy with a new
3005 /// virtual register is inserted before the definition, which helps with
3006 /// generating a better register assignment.
3007 ///
3008 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
3009 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
3010 ///   v3 = ..             v4 = copy v1
3011 ///   .. = V1             v3 = ..
3012 ///                       .. = v4
3013 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3014                                        MBBVectorTy &EpilogBBs,
3015                                        SMSchedule &Schedule) {
3016   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3017   for (auto &PHI : KernelBB->phis()) {
3018     unsigned Def = PHI.getOperand(0).getReg();
3019     // Check for any Phi definition that used as an operand of another Phi
3020     // in the same block.
3021     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3022                                                  E = MRI.use_instr_end();
3023          I != E; ++I) {
3024       if (I->isPHI() && I->getParent() == KernelBB) {
3025         // Get the loop carried definition.
3026         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
3027         if (!LCDef)
3028           continue;
3029         MachineInstr *MI = MRI.getVRegDef(LCDef);
3030         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3031           continue;
3032         // Search through the rest of the block looking for uses of the Phi
3033         // definition. If one occurs, then split the lifetime.
3034         unsigned SplitReg = 0;
3035         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3036                                     KernelBB->instr_end()))
3037           if (BBJ.readsRegister(Def)) {
3038             // We split the lifetime when we find the first use.
3039             if (SplitReg == 0) {
3040               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3041               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3042                       TII->get(TargetOpcode::COPY), SplitReg)
3043                   .addReg(Def);
3044             }
3045             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3046           }
3047         if (!SplitReg)
3048           continue;
3049         // Search through each of the epilog blocks for any uses to be renamed.
3050         for (auto &Epilog : EpilogBBs)
3051           for (auto &I : *Epilog)
3052             if (I.readsRegister(Def))
3053               I.substituteRegister(Def, SplitReg, 0, *TRI);
3054         break;
3055       }
3056     }
3057   }
3058 }
3059
3060 /// Remove the incoming block from the Phis in a basic block.
3061 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3062   for (MachineInstr &MI : *BB) {
3063     if (!MI.isPHI())
3064       break;
3065     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3066       if (MI.getOperand(i + 1).getMBB() == Incoming) {
3067         MI.RemoveOperand(i + 1);
3068         MI.RemoveOperand(i);
3069         break;
3070       }
3071   }
3072 }
3073
3074 /// Create branches from each prolog basic block to the appropriate epilog
3075 /// block.  These edges are needed if the loop ends before reaching the
3076 /// kernel.
3077 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3078                                     MachineBasicBlock *KernelBB,
3079                                     MBBVectorTy &EpilogBBs,
3080                                     SMSchedule &Schedule, ValueMapTy *VRMap) {
3081   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3082   MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3083   MachineInstr *Cmp = Pass.LI.LoopCompare;
3084   MachineBasicBlock *LastPro = KernelBB;
3085   MachineBasicBlock *LastEpi = KernelBB;
3086
3087   // Start from the blocks connected to the kernel and work "out"
3088   // to the first prolog and the last epilog blocks.
3089   SmallVector<MachineInstr *, 4> PrevInsts;
3090   unsigned MaxIter = PrologBBs.size() - 1;
3091   unsigned LC = UINT_MAX;
3092   unsigned LCMin = UINT_MAX;
3093   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3094     // Add branches to the prolog that go to the corresponding
3095     // epilog, and the fall-thru prolog/kernel block.
3096     MachineBasicBlock *Prolog = PrologBBs[j];
3097     MachineBasicBlock *Epilog = EpilogBBs[i];
3098     // We've executed one iteration, so decrement the loop count and check for
3099     // the loop end.
3100     SmallVector<MachineOperand, 4> Cond;
3101     // Check if the LOOP0 has already been removed. If so, then there is no need
3102     // to reduce the trip count.
3103     if (LC != 0)
3104       LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
3105                                 MaxIter);
3106
3107     // Record the value of the first trip count, which is used to determine if
3108     // branches and blocks can be removed for constant trip counts.
3109     if (LCMin == UINT_MAX)
3110       LCMin = LC;
3111
3112     unsigned numAdded = 0;
3113     if (TargetRegisterInfo::isVirtualRegister(LC)) {
3114       Prolog->addSuccessor(Epilog);
3115       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
3116     } else if (j >= LCMin) {
3117       Prolog->addSuccessor(Epilog);
3118       Prolog->removeSuccessor(LastPro);
3119       LastEpi->removeSuccessor(Epilog);
3120       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
3121       removePhis(Epilog, LastEpi);
3122       // Remove the blocks that are no longer referenced.
3123       if (LastPro != LastEpi) {
3124         LastEpi->clear();
3125         LastEpi->eraseFromParent();
3126       }
3127       LastPro->clear();
3128       LastPro->eraseFromParent();
3129     } else {
3130       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
3131       removePhis(Epilog, Prolog);
3132     }
3133     LastPro = Prolog;
3134     LastEpi = Epilog;
3135     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3136                                                    E = Prolog->instr_rend();
3137          I != E && numAdded > 0; ++I, --numAdded)
3138       updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3139   }
3140 }
3141
3142 /// Return true if we can compute the amount the instruction changes
3143 /// during each iteration. Set Delta to the amount of the change.
3144 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3145   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3146   unsigned BaseReg;
3147   int64_t Offset;
3148   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3149     return false;
3150
3151   MachineRegisterInfo &MRI = MF.getRegInfo();
3152   // Check if there is a Phi. If so, get the definition in the loop.
3153   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3154   if (BaseDef && BaseDef->isPHI()) {
3155     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3156     BaseDef = MRI.getVRegDef(BaseReg);
3157   }
3158   if (!BaseDef)
3159     return false;
3160
3161   int D = 0;
3162   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
3163     return false;
3164
3165   Delta = D;
3166   return true;
3167 }
3168
3169 /// Update the memory operand with a new offset when the pipeliner
3170 /// generates a new copy of the instruction that refers to a
3171 /// different memory location.
3172 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3173                                           MachineInstr &OldMI, unsigned Num) {
3174   if (Num == 0)
3175     return;
3176   // If the instruction has memory operands, then adjust the offset
3177   // when the instruction appears in different stages.
3178   unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3179   if (NumRefs == 0)
3180     return;
3181   MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3182   unsigned Refs = 0;
3183   for (MachineMemOperand *MMO : NewMI.memoperands()) {
3184     if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3185         (!MMO->getValue())) {
3186       NewMemRefs[Refs++] = MMO;
3187       continue;
3188     }
3189     unsigned Delta;
3190     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
3191       int64_t AdjOffset = Delta * Num;
3192       NewMemRefs[Refs++] =
3193           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
3194     } else {
3195       NewMI.dropMemRefs();
3196       return;
3197     }
3198   }
3199   NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3200 }
3201
3202 /// Clone the instruction for the new pipelined loop and update the
3203 /// memory operands, if needed.
3204 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3205                                             unsigned CurStageNum,
3206                                             unsigned InstStageNum) {
3207   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3208   // Check for tied operands in inline asm instructions. This should be handled
3209   // elsewhere, but I'm not sure of the best solution.
3210   if (OldMI->isInlineAsm())
3211     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3212       const auto &MO = OldMI->getOperand(i);
3213       if (MO.isReg() && MO.isUse())
3214         break;
3215       unsigned UseIdx;
3216       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3217         NewMI->tieOperands(i, UseIdx);
3218     }
3219   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3220   return NewMI;
3221 }
3222
3223 /// Clone the instruction for the new pipelined loop. If needed, this
3224 /// function updates the instruction using the values saved in the
3225 /// InstrChanges structure.
3226 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3227                                                      unsigned CurStageNum,
3228                                                      unsigned InstStageNum,
3229                                                      SMSchedule &Schedule) {
3230   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3231   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3232       InstrChanges.find(getSUnit(OldMI));
3233   if (It != InstrChanges.end()) {
3234     std::pair<unsigned, int64_t> RegAndOffset = It->second;
3235     unsigned BasePos, OffsetPos;
3236     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
3237       return nullptr;
3238     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3239     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3240     if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3241       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3242     NewMI->getOperand(OffsetPos).setImm(NewOffset);
3243   }
3244   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3245   return NewMI;
3246 }
3247
3248 /// Update the machine instruction with new virtual registers.  This
3249 /// function may change the defintions and/or uses.
3250 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3251                                           unsigned CurStageNum,
3252                                           unsigned InstrStageNum,
3253                                           SMSchedule &Schedule,
3254                                           ValueMapTy *VRMap) {
3255   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3256     MachineOperand &MO = NewMI->getOperand(i);
3257     if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3258       continue;
3259     unsigned reg = MO.getReg();
3260     if (MO.isDef()) {
3261       // Create a new virtual register for the definition.
3262       const TargetRegisterClass *RC = MRI.getRegClass(reg);
3263       unsigned NewReg = MRI.createVirtualRegister(RC);
3264       MO.setReg(NewReg);
3265       VRMap[CurStageNum][reg] = NewReg;
3266       if (LastDef)
3267         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3268     } else if (MO.isUse()) {
3269       MachineInstr *Def = MRI.getVRegDef(reg);
3270       // Compute the stage that contains the last definition for instruction.
3271       int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3272       unsigned StageNum = CurStageNum;
3273       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3274         // Compute the difference in stages between the defintion and the use.
3275         unsigned StageDiff = (InstrStageNum - DefStageNum);
3276         // Make an adjustment to get the last definition.
3277         StageNum -= StageDiff;
3278       }
3279       if (VRMap[StageNum].count(reg))
3280         MO.setReg(VRMap[StageNum][reg]);
3281     }
3282   }
3283 }
3284
3285 /// Return the instruction in the loop that defines the register.
3286 /// If the definition is a Phi, then follow the Phi operand to
3287 /// the instruction in the loop.
3288 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3289   SmallPtrSet<MachineInstr *, 8> Visited;
3290   MachineInstr *Def = MRI.getVRegDef(Reg);
3291   while (Def->isPHI()) {
3292     if (!Visited.insert(Def).second)
3293       break;
3294     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3295       if (Def->getOperand(i + 1).getMBB() == BB) {
3296         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3297         break;
3298       }
3299   }
3300   return Def;
3301 }
3302
3303 /// Return the new name for the value from the previous stage.
3304 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3305                                           unsigned LoopVal, unsigned LoopStage,
3306                                           ValueMapTy *VRMap,
3307                                           MachineBasicBlock *BB) {
3308   unsigned PrevVal = 0;
3309   if (StageNum > PhiStage) {
3310     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3311     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3312       // The name is defined in the previous stage.
3313       PrevVal = VRMap[StageNum - 1][LoopVal];
3314     else if (VRMap[StageNum].count(LoopVal))
3315       // The previous name is defined in the current stage when the instruction
3316       // order is swapped.
3317       PrevVal = VRMap[StageNum][LoopVal];
3318     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
3319       // The loop value hasn't yet been scheduled.
3320       PrevVal = LoopVal;
3321     else if (StageNum == PhiStage + 1)
3322       // The loop value is another phi, which has not been scheduled.
3323       PrevVal = getInitPhiReg(*LoopInst, BB);
3324     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3325       // The loop value is another phi, which has been scheduled.
3326       PrevVal =
3327           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3328                         LoopStage, VRMap, BB);
3329   }
3330   return PrevVal;
3331 }
3332
3333 /// Rewrite the Phi values in the specified block to use the mappings
3334 /// from the initial operand. Once the Phi is scheduled, we switch
3335 /// to using the loop value instead of the Phi value, so those names
3336 /// do not need to be rewritten.
3337 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3338                                          unsigned StageNum,
3339                                          SMSchedule &Schedule,
3340                                          ValueMapTy *VRMap,
3341                                          InstrMapTy &InstrMap) {
3342   for (auto &PHI : BB->phis()) {
3343     unsigned InitVal = 0;
3344     unsigned LoopVal = 0;
3345     getPhiRegs(PHI, BB, InitVal, LoopVal);
3346     unsigned PhiDef = PHI.getOperand(0).getReg();
3347
3348     unsigned PhiStage =
3349         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3350     unsigned LoopStage =
3351         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3352     unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3353     if (NumPhis > StageNum)
3354       NumPhis = StageNum;
3355     for (unsigned np = 0; np <= NumPhis; ++np) {
3356       unsigned NewVal =
3357           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3358       if (!NewVal)
3359         NewVal = InitVal;
3360       rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
3361                             PhiDef, NewVal);
3362     }
3363   }
3364 }
3365
3366 /// Rewrite a previously scheduled instruction to use the register value
3367 /// from the new instruction. Make sure the instruction occurs in the
3368 /// basic block, and we don't change the uses in the new instruction.
3369 void SwingSchedulerDAG::rewriteScheduledInstr(
3370     MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3371     unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3372     unsigned NewReg, unsigned PrevReg) {
3373   bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3374   int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3375   // Rewrite uses that have been scheduled already to use the new
3376   // Phi register.
3377   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3378                                          EI = MRI.use_end();
3379        UI != EI;) {
3380     MachineOperand &UseOp = *UI;
3381     MachineInstr *UseMI = UseOp.getParent();
3382     ++UI;
3383     if (UseMI->getParent() != BB)
3384       continue;
3385     if (UseMI->isPHI()) {
3386       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3387         continue;
3388       if (getLoopPhiReg(*UseMI, BB) != OldReg)
3389         continue;
3390     }
3391     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3392     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3393     SUnit *OrigMISU = getSUnit(OrigInstr->second);
3394     int StageSched = Schedule.stageScheduled(OrigMISU);
3395     int CycleSched = Schedule.cycleScheduled(OrigMISU);
3396     unsigned ReplaceReg = 0;
3397     // This is the stage for the scheduled instruction.
3398     if (StagePhi == StageSched && Phi->isPHI()) {
3399       int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3400       if (PrevReg && InProlog)
3401         ReplaceReg = PrevReg;
3402       else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3403                (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3404         ReplaceReg = PrevReg;
3405       else
3406         ReplaceReg = NewReg;
3407     }
3408     // The scheduled instruction occurs before the scheduled Phi, and the
3409     // Phi is not loop carried.
3410     if (!InProlog && StagePhi + 1 == StageSched &&
3411         !Schedule.isLoopCarried(this, *Phi))
3412       ReplaceReg = NewReg;
3413     if (StagePhi > StageSched && Phi->isPHI())
3414       ReplaceReg = NewReg;
3415     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3416       ReplaceReg = NewReg;
3417     if (ReplaceReg) {
3418       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3419       UseOp.setReg(ReplaceReg);
3420     }
3421   }
3422 }
3423
3424 /// Check if we can change the instruction to use an offset value from the
3425 /// previous iteration. If so, return true and set the base and offset values
3426 /// so that we can rewrite the load, if necessary.
3427 ///   v1 = Phi(v0, v3)
3428 ///   v2 = load v1, 0
3429 ///   v3 = post_store v1, 4, x
3430 /// This function enables the load to be rewritten as v2 = load v3, 4.
3431 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3432                                               unsigned &BasePos,
3433                                               unsigned &OffsetPos,
3434                                               unsigned &NewBase,
3435                                               int64_t &Offset) {
3436   // Get the load instruction.
3437   if (TII->isPostIncrement(*MI))
3438     return false;
3439   unsigned BasePosLd, OffsetPosLd;
3440   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3441     return false;
3442   unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3443
3444   // Look for the Phi instruction.
3445   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3446   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3447   if (!Phi || !Phi->isPHI())
3448     return false;
3449   // Get the register defined in the loop block.
3450   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3451   if (!PrevReg)
3452     return false;
3453
3454   // Check for the post-increment load/store instruction.
3455   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3456   if (!PrevDef || PrevDef == MI)
3457     return false;
3458
3459   if (!TII->isPostIncrement(*PrevDef))
3460     return false;
3461
3462   unsigned BasePos1 = 0, OffsetPos1 = 0;
3463   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3464     return false;
3465
3466   // Make sure that the instructions do not access the same memory location in
3467   // the next iteration.
3468   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3469   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3470   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3471   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3472   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3473   MF.DeleteMachineInstr(NewMI);
3474   if (!Disjoint)
3475     return false;
3476
3477   // Set the return value once we determine that we return true.
3478   BasePos = BasePosLd;
3479   OffsetPos = OffsetPosLd;
3480   NewBase = PrevReg;
3481   Offset = StoreOffset;
3482   return true;
3483 }
3484
3485 /// Apply changes to the instruction if needed. The changes are need
3486 /// to improve the scheduling and depend up on the final schedule.
3487 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3488                                          SMSchedule &Schedule) {
3489   SUnit *SU = getSUnit(MI);
3490   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3491       InstrChanges.find(SU);
3492   if (It != InstrChanges.end()) {
3493     std::pair<unsigned, int64_t> RegAndOffset = It->second;
3494     unsigned BasePos, OffsetPos;
3495     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3496       return;
3497     unsigned BaseReg = MI->getOperand(BasePos).getReg();
3498     MachineInstr *LoopDef = findDefInLoop(BaseReg);
3499     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3500     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3501     int BaseStageNum = Schedule.stageScheduled(SU);
3502     int BaseCycleNum = Schedule.cycleScheduled(SU);
3503     if (BaseStageNum < DefStageNum) {
3504       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3505       int OffsetDiff = DefStageNum - BaseStageNum;
3506       if (DefCycleNum < BaseCycleNum) {
3507         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3508         if (OffsetDiff > 0)
3509           --OffsetDiff;
3510       }
3511       int64_t NewOffset =
3512           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3513       NewMI->getOperand(OffsetPos).setImm(NewOffset);
3514       SU->setInstr(NewMI);
3515       MISUnitMap[NewMI] = SU;
3516       NewMIs.insert(NewMI);
3517     }
3518   }
3519 }
3520
3521 /// Return true for an order or output dependence that is loop carried
3522 /// potentially. A dependence is loop carried if the destination defines a valu
3523 /// that may be used or defined by the source in a subsequent iteration.
3524 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3525                                          bool isSucc) {
3526   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3527       Dep.isArtificial())
3528     return false;
3529
3530   if (!SwpPruneLoopCarried)
3531     return true;
3532
3533   if (Dep.getKind() == SDep::Output)
3534     return true;
3535
3536   MachineInstr *SI = Source->getInstr();
3537   MachineInstr *DI = Dep.getSUnit()->getInstr();
3538   if (!isSucc)
3539     std::swap(SI, DI);
3540   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3541
3542   // Assume ordered loads and stores may have a loop carried dependence.
3543   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3544       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3545     return true;
3546
3547   // Only chain dependences between a load and store can be loop carried.
3548   if (!DI->mayStore() || !SI->mayLoad())
3549     return false;
3550
3551   unsigned DeltaS, DeltaD;
3552   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3553     return true;
3554
3555   unsigned BaseRegS, BaseRegD;
3556   int64_t OffsetS, OffsetD;
3557   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3558   if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3559       !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3560     return true;
3561
3562   if (BaseRegS != BaseRegD)
3563     return true;
3564
3565   // Check that the base register is incremented by a constant value for each
3566   // iteration.
3567   MachineInstr *Def = MRI.getVRegDef(BaseRegS);
3568   if (!Def || !Def->isPHI())
3569     return true;
3570   unsigned InitVal = 0;
3571   unsigned LoopVal = 0;
3572   getPhiRegs(*Def, BB, InitVal, LoopVal);
3573   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3574   int D = 0;
3575   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3576     return true;
3577
3578   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3579   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3580
3581   // This is the main test, which checks the offset values and the loop
3582   // increment value to determine if the accesses may be loop carried.
3583   if (OffsetS >= OffsetD)
3584     return OffsetS + AccessSizeS > DeltaS;
3585   else
3586     return OffsetD + AccessSizeD > DeltaD;
3587
3588   return true;
3589 }
3590
3591 void SwingSchedulerDAG::postprocessDAG() {
3592   for (auto &M : Mutations)
3593     M->apply(this);
3594 }
3595
3596 /// Try to schedule the node at the specified StartCycle and continue
3597 /// until the node is schedule or the EndCycle is reached.  This function
3598 /// returns true if the node is scheduled.  This routine may search either
3599 /// forward or backward for a place to insert the instruction based upon
3600 /// the relative values of StartCycle and EndCycle.
3601 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3602   bool forward = true;
3603   if (StartCycle > EndCycle)
3604     forward = false;
3605
3606   // The terminating condition depends on the direction.
3607   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3608   for (int curCycle = StartCycle; curCycle != termCycle;
3609        forward ? ++curCycle : --curCycle) {
3610
3611     // Add the already scheduled instructions at the specified cycle to the DFA.
3612     Resources->clearResources();
3613     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3614          checkCycle <= LastCycle; checkCycle += II) {
3615       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3616
3617       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3618                                          E = cycleInstrs.end();
3619            I != E; ++I) {
3620         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3621           continue;
3622         assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3623                "These instructions have already been scheduled.");
3624         Resources->reserveResources(*(*I)->getInstr());
3625       }
3626     }
3627     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3628         Resources->canReserveResources(*SU->getInstr())) {
3629       LLVM_DEBUG({
3630         dbgs() << "\tinsert at cycle " << curCycle << " ";
3631         SU->getInstr()->dump();
3632       });
3633
3634       ScheduledInstrs[curCycle].push_back(SU);
3635       InstrToCycle.insert(std::make_pair(SU, curCycle));
3636       if (curCycle > LastCycle)
3637         LastCycle = curCycle;
3638       if (curCycle < FirstCycle)
3639         FirstCycle = curCycle;
3640       return true;
3641     }
3642     LLVM_DEBUG({
3643       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3644       SU->getInstr()->dump();
3645     });
3646   }
3647   return false;
3648 }
3649
3650 // Return the cycle of the earliest scheduled instruction in the chain.
3651 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3652   SmallPtrSet<SUnit *, 8> Visited;
3653   SmallVector<SDep, 8> Worklist;
3654   Worklist.push_back(Dep);
3655   int EarlyCycle = INT_MAX;
3656   while (!Worklist.empty()) {
3657     const SDep &Cur = Worklist.pop_back_val();
3658     SUnit *PrevSU = Cur.getSUnit();
3659     if (Visited.count(PrevSU))
3660       continue;
3661     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3662     if (it == InstrToCycle.end())
3663       continue;
3664     EarlyCycle = std::min(EarlyCycle, it->second);
3665     for (const auto &PI : PrevSU->Preds)
3666       if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3667         Worklist.push_back(PI);
3668     Visited.insert(PrevSU);
3669   }
3670   return EarlyCycle;
3671 }
3672
3673 // Return the cycle of the latest scheduled instruction in the chain.
3674 int SMSchedule::latestCycleInChain(const SDep &Dep) {
3675   SmallPtrSet<SUnit *, 8> Visited;
3676   SmallVector<SDep, 8> Worklist;
3677   Worklist.push_back(Dep);
3678   int LateCycle = INT_MIN;
3679   while (!Worklist.empty()) {
3680     const SDep &Cur = Worklist.pop_back_val();
3681     SUnit *SuccSU = Cur.getSUnit();
3682     if (Visited.count(SuccSU))
3683       continue;
3684     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3685     if (it == InstrToCycle.end())
3686       continue;
3687     LateCycle = std::max(LateCycle, it->second);
3688     for (const auto &SI : SuccSU->Succs)
3689       if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3690         Worklist.push_back(SI);
3691     Visited.insert(SuccSU);
3692   }
3693   return LateCycle;
3694 }
3695
3696 /// If an instruction has a use that spans multiple iterations, then
3697 /// return true. These instructions are characterized by having a back-ege
3698 /// to a Phi, which contains a reference to another Phi.
3699 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3700   for (auto &P : SU->Preds)
3701     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3702       for (auto &S : P.getSUnit()->Succs)
3703         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3704           return P.getSUnit();
3705   return nullptr;
3706 }
3707
3708 /// Compute the scheduling start slot for the instruction.  The start slot
3709 /// depends on any predecessor or successor nodes scheduled already.
3710 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3711                               int *MinEnd, int *MaxStart, int II,
3712                               SwingSchedulerDAG *DAG) {
3713   // Iterate over each instruction that has been scheduled already.  The start
3714   // slot computation depends on whether the previously scheduled instruction
3715   // is a predecessor or successor of the specified instruction.
3716   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3717
3718     // Iterate over each instruction in the current cycle.
3719     for (SUnit *I : getInstructions(cycle)) {
3720       // Because we're processing a DAG for the dependences, we recognize
3721       // the back-edge in recurrences by anti dependences.
3722       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3723         const SDep &Dep = SU->Preds[i];
3724         if (Dep.getSUnit() == I) {
3725           if (!DAG->isBackedge(SU, Dep)) {
3726             int EarlyStart = cycle + Dep.getLatency() -
3727                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3728             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3729             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3730               int End = earliestCycleInChain(Dep) + (II - 1);
3731               *MinEnd = std::min(*MinEnd, End);
3732             }
3733           } else {
3734             int LateStart = cycle - Dep.getLatency() +
3735                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3736             *MinLateStart = std::min(*MinLateStart, LateStart);
3737           }
3738         }
3739         // For instruction that requires multiple iterations, make sure that
3740         // the dependent instruction is not scheduled past the definition.
3741         SUnit *BE = multipleIterations(I, DAG);
3742         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3743             !SU->isPred(I))
3744           *MinLateStart = std::min(*MinLateStart, cycle);
3745       }
3746       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3747         if (SU->Succs[i].getSUnit() == I) {
3748           const SDep &Dep = SU->Succs[i];
3749           if (!DAG->isBackedge(SU, Dep)) {
3750             int LateStart = cycle - Dep.getLatency() +
3751                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3752             *MinLateStart = std::min(*MinLateStart, LateStart);
3753             if (DAG->isLoopCarriedDep(SU, Dep)) {
3754               int Start = latestCycleInChain(Dep) + 1 - II;
3755               *MaxStart = std::max(*MaxStart, Start);
3756             }
3757           } else {
3758             int EarlyStart = cycle + Dep.getLatency() -
3759                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3760             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3761           }
3762         }
3763       }
3764     }
3765   }
3766 }
3767
3768 /// Order the instructions within a cycle so that the definitions occur
3769 /// before the uses. Returns true if the instruction is added to the start
3770 /// of the list, or false if added to the end.
3771 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3772                                  std::deque<SUnit *> &Insts) {
3773   MachineInstr *MI = SU->getInstr();
3774   bool OrderBeforeUse = false;
3775   bool OrderAfterDef = false;
3776   bool OrderBeforeDef = false;
3777   unsigned MoveDef = 0;
3778   unsigned MoveUse = 0;
3779   int StageInst1 = stageScheduled(SU);
3780
3781   unsigned Pos = 0;
3782   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3783        ++I, ++Pos) {
3784     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3785       MachineOperand &MO = MI->getOperand(i);
3786       if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3787         continue;
3788
3789       unsigned Reg = MO.getReg();
3790       unsigned BasePos, OffsetPos;
3791       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3792         if (MI->getOperand(BasePos).getReg() == Reg)
3793           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3794             Reg = NewReg;
3795       bool Reads, Writes;
3796       std::tie(Reads, Writes) =
3797           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3798       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3799         OrderBeforeUse = true;
3800         if (MoveUse == 0)
3801           MoveUse = Pos;
3802       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3803         // Add the instruction after the scheduled instruction.
3804         OrderAfterDef = true;
3805         MoveDef = Pos;
3806       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3807         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3808           OrderBeforeUse = true;
3809           if (MoveUse == 0)
3810             MoveUse = Pos;
3811         } else {
3812           OrderAfterDef = true;
3813           MoveDef = Pos;
3814         }
3815       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3816         OrderBeforeUse = true;
3817         if (MoveUse == 0)
3818           MoveUse = Pos;
3819         if (MoveUse != 0) {
3820           OrderAfterDef = true;
3821           MoveDef = Pos - 1;
3822         }
3823       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3824         // Add the instruction before the scheduled instruction.
3825         OrderBeforeUse = true;
3826         if (MoveUse == 0)
3827           MoveUse = Pos;
3828       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3829                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3830         if (MoveUse == 0) {
3831           OrderBeforeDef = true;
3832           MoveUse = Pos;
3833         }
3834       }
3835     }
3836     // Check for order dependences between instructions. Make sure the source
3837     // is ordered before the destination.
3838     for (auto &S : SU->Succs) {
3839       if (S.getSUnit() != *I)
3840         continue;
3841       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3842         OrderBeforeUse = true;
3843         if (Pos < MoveUse)
3844           MoveUse = Pos;
3845       }
3846     }
3847     for (auto &P : SU->Preds) {
3848       if (P.getSUnit() != *I)
3849         continue;
3850       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3851         OrderAfterDef = true;
3852         MoveDef = Pos;
3853       }
3854     }
3855   }
3856
3857   // A circular dependence.
3858   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3859     OrderBeforeUse = false;
3860
3861   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3862   // to a loop-carried dependence.
3863   if (OrderBeforeDef)
3864     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3865
3866   // The uncommon case when the instruction order needs to be updated because
3867   // there is both a use and def.
3868   if (OrderBeforeUse && OrderAfterDef) {
3869     SUnit *UseSU = Insts.at(MoveUse);
3870     SUnit *DefSU = Insts.at(MoveDef);
3871     if (MoveUse > MoveDef) {
3872       Insts.erase(Insts.begin() + MoveUse);
3873       Insts.erase(Insts.begin() + MoveDef);
3874     } else {
3875       Insts.erase(Insts.begin() + MoveDef);
3876       Insts.erase(Insts.begin() + MoveUse);
3877     }
3878     orderDependence(SSD, UseSU, Insts);
3879     orderDependence(SSD, SU, Insts);
3880     orderDependence(SSD, DefSU, Insts);
3881     return;
3882   }
3883   // Put the new instruction first if there is a use in the list. Otherwise,
3884   // put it at the end of the list.
3885   if (OrderBeforeUse)
3886     Insts.push_front(SU);
3887   else
3888     Insts.push_back(SU);
3889 }
3890
3891 /// Return true if the scheduled Phi has a loop carried operand.
3892 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3893   if (!Phi.isPHI())
3894     return false;
3895   assert(Phi.isPHI() && "Expecting a Phi.");
3896   SUnit *DefSU = SSD->getSUnit(&Phi);
3897   unsigned DefCycle = cycleScheduled(DefSU);
3898   int DefStage = stageScheduled(DefSU);
3899
3900   unsigned InitVal = 0;
3901   unsigned LoopVal = 0;
3902   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3903   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3904   if (!UseSU)
3905     return true;
3906   if (UseSU->getInstr()->isPHI())
3907     return true;
3908   unsigned LoopCycle = cycleScheduled(UseSU);
3909   int LoopStage = stageScheduled(UseSU);
3910   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3911 }
3912
3913 /// Return true if the instruction is a definition that is loop carried
3914 /// and defines the use on the next iteration.
3915 ///        v1 = phi(v2, v3)
3916 ///  (Def) v3 = op v1
3917 ///  (MO)   = v1
3918 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3919 /// register.
3920 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3921                                        MachineInstr *Def, MachineOperand &MO) {
3922   if (!MO.isReg())
3923     return false;
3924   if (Def->isPHI())
3925     return false;
3926   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3927   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3928     return false;
3929   if (!isLoopCarried(SSD, *Phi))
3930     return false;
3931   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3932   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3933     MachineOperand &DMO = Def->getOperand(i);
3934     if (!DMO.isReg() || !DMO.isDef())
3935       continue;
3936     if (DMO.getReg() == LoopReg)
3937       return true;
3938   }
3939   return false;
3940 }
3941
3942 // Check if the generated schedule is valid. This function checks if
3943 // an instruction that uses a physical register is scheduled in a
3944 // different stage than the definition. The pipeliner does not handle
3945 // physical register values that may cross a basic block boundary.
3946 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3947   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3948     SUnit &SU = SSD->SUnits[i];
3949     if (!SU.hasPhysRegDefs)
3950       continue;
3951     int StageDef = stageScheduled(&SU);
3952     assert(StageDef != -1 && "Instruction should have been scheduled.");
3953     for (auto &SI : SU.Succs)
3954       if (SI.isAssignedRegDep())
3955         if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3956           if (stageScheduled(SI.getSUnit()) != StageDef)
3957             return false;
3958   }
3959   return true;
3960 }
3961
3962 /// A property of the node order in swing-modulo-scheduling is
3963 /// that for nodes outside circuits the following holds:
3964 /// none of them is scheduled after both a successor and a
3965 /// predecessor.
3966 /// The method below checks whether the property is met.
3967 /// If not, debug information is printed and statistics information updated.
3968 /// Note that we do not use an assert statement.
3969 /// The reason is that although an invalid node oder may prevent
3970 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3971 /// it does not lead to the generation of incorrect code.
3972 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3973
3974   // a sorted vector that maps each SUnit to its index in the NodeOrder
3975   typedef std::pair<SUnit *, unsigned> UnitIndex;
3976   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3977
3978   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3979     Indices.push_back(std::make_pair(NodeOrder[i], i));
3980
3981   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3982     return std::get<0>(i1) < std::get<0>(i2);
3983   };
3984
3985   // sort, so that we can perform a binary search
3986   llvm::sort(Indices.begin(), Indices.end(), CompareKey);
3987
3988   bool Valid = true;
3989   (void)Valid;
3990   // for each SUnit in the NodeOrder, check whether
3991   // it appears after both a successor and a predecessor
3992   // of the SUnit. If this is the case, and the SUnit
3993   // is not part of circuit, then the NodeOrder is not
3994   // valid.
3995   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3996     SUnit *SU = NodeOrder[i];
3997     unsigned Index = i;
3998
3999     bool PredBefore = false;
4000     bool SuccBefore = false;
4001
4002     SUnit *Succ;
4003     SUnit *Pred;
4004     (void)Succ;
4005     (void)Pred;
4006
4007     for (SDep &PredEdge : SU->Preds) {
4008       SUnit *PredSU = PredEdge.getSUnit();
4009       unsigned PredIndex =
4010           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4011                                         std::make_pair(PredSU, 0), CompareKey));
4012       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
4013         PredBefore = true;
4014         Pred = PredSU;
4015         break;
4016       }
4017     }
4018
4019     for (SDep &SuccEdge : SU->Succs) {
4020       SUnit *SuccSU = SuccEdge.getSUnit();
4021       unsigned SuccIndex =
4022           std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4023                                         std::make_pair(SuccSU, 0), CompareKey));
4024       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4025         SuccBefore = true;
4026         Succ = SuccSU;
4027         break;
4028       }
4029     }
4030
4031     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4032       // instructions in circuits are allowed to be scheduled
4033       // after both a successor and predecessor.
4034       bool InCircuit = std::any_of(
4035           Circuits.begin(), Circuits.end(),
4036           [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4037       if (InCircuit)
4038         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
4039       else {
4040         Valid = false;
4041         NumNodeOrderIssues++;
4042         LLVM_DEBUG(dbgs() << "Predecessor ";);
4043       }
4044       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4045                         << " are scheduled before node " << SU->NodeNum
4046                         << "\n";);
4047     }
4048   }
4049
4050   LLVM_DEBUG({
4051     if (!Valid)
4052       dbgs() << "Invalid node order found!\n";
4053   });
4054 }
4055
4056 /// Attempt to fix the degenerate cases when the instruction serialization
4057 /// causes the register lifetimes to overlap. For example,
4058 ///   p' = store_pi(p, b)
4059 ///      = load p, offset
4060 /// In this case p and p' overlap, which means that two registers are needed.
4061 /// Instead, this function changes the load to use p' and updates the offset.
4062 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4063   unsigned OverlapReg = 0;
4064   unsigned NewBaseReg = 0;
4065   for (SUnit *SU : Instrs) {
4066     MachineInstr *MI = SU->getInstr();
4067     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4068       const MachineOperand &MO = MI->getOperand(i);
4069       // Look for an instruction that uses p. The instruction occurs in the
4070       // same cycle but occurs later in the serialized order.
4071       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4072         // Check that the instruction appears in the InstrChanges structure,
4073         // which contains instructions that can have the offset updated.
4074         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4075           InstrChanges.find(SU);
4076         if (It != InstrChanges.end()) {
4077           unsigned BasePos, OffsetPos;
4078           // Update the base register and adjust the offset.
4079           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
4080             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4081             NewMI->getOperand(BasePos).setReg(NewBaseReg);
4082             int64_t NewOffset =
4083                 MI->getOperand(OffsetPos).getImm() - It->second.second;
4084             NewMI->getOperand(OffsetPos).setImm(NewOffset);
4085             SU->setInstr(NewMI);
4086             MISUnitMap[NewMI] = SU;
4087             NewMIs.insert(NewMI);
4088           }
4089         }
4090         OverlapReg = 0;
4091         NewBaseReg = 0;
4092         break;
4093       }
4094       // Look for an instruction of the form p' = op(p), which uses and defines
4095       // two virtual registers that get allocated to the same physical register.
4096       unsigned TiedUseIdx = 0;
4097       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4098         // OverlapReg is p in the example above.
4099         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4100         // NewBaseReg is p' in the example above.
4101         NewBaseReg = MI->getOperand(i).getReg();
4102         break;
4103       }
4104     }
4105   }
4106 }
4107
4108 /// After the schedule has been formed, call this function to combine
4109 /// the instructions from the different stages/cycles.  That is, this
4110 /// function creates a schedule that represents a single iteration.
4111 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4112   // Move all instructions to the first stage from later stages.
4113   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4114     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4115          ++stage) {
4116       std::deque<SUnit *> &cycleInstrs =
4117           ScheduledInstrs[cycle + (stage * InitiationInterval)];
4118       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4119                                                  E = cycleInstrs.rend();
4120            I != E; ++I)
4121         ScheduledInstrs[cycle].push_front(*I);
4122     }
4123   }
4124   // Iterate over the definitions in each instruction, and compute the
4125   // stage difference for each use.  Keep the maximum value.
4126   for (auto &I : InstrToCycle) {
4127     int DefStage = stageScheduled(I.first);
4128     MachineInstr *MI = I.first->getInstr();
4129     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4130       MachineOperand &Op = MI->getOperand(i);
4131       if (!Op.isReg() || !Op.isDef())
4132         continue;
4133
4134       unsigned Reg = Op.getReg();
4135       unsigned MaxDiff = 0;
4136       bool PhiIsSwapped = false;
4137       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4138                                              EI = MRI.use_end();
4139            UI != EI; ++UI) {
4140         MachineOperand &UseOp = *UI;
4141         MachineInstr *UseMI = UseOp.getParent();
4142         SUnit *SUnitUse = SSD->getSUnit(UseMI);
4143         int UseStage = stageScheduled(SUnitUse);
4144         unsigned Diff = 0;
4145         if (UseStage != -1 && UseStage >= DefStage)
4146           Diff = UseStage - DefStage;
4147         if (MI->isPHI()) {
4148           if (isLoopCarried(SSD, *MI))
4149             ++Diff;
4150           else
4151             PhiIsSwapped = true;
4152         }
4153         MaxDiff = std::max(Diff, MaxDiff);
4154       }
4155       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4156     }
4157   }
4158
4159   // Erase all the elements in the later stages. Only one iteration should
4160   // remain in the scheduled list, and it contains all the instructions.
4161   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4162     ScheduledInstrs.erase(cycle);
4163
4164   // Change the registers in instruction as specified in the InstrChanges
4165   // map. We need to use the new registers to create the correct order.
4166   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4167     SUnit *SU = &SSD->SUnits[i];
4168     SSD->applyInstrChange(SU->getInstr(), *this);
4169   }
4170
4171   // Reorder the instructions in each cycle to fix and improve the
4172   // generated code.
4173   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4174     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
4175     std::deque<SUnit *> newOrderPhi;
4176     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4177       SUnit *SU = cycleInstrs[i];
4178       if (SU->getInstr()->isPHI())
4179         newOrderPhi.push_back(SU);
4180     }
4181     std::deque<SUnit *> newOrderI;
4182     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4183       SUnit *SU = cycleInstrs[i];
4184       if (!SU->getInstr()->isPHI())
4185         orderDependence(SSD, SU, newOrderI);
4186     }
4187     // Replace the old order with the new order.
4188     cycleInstrs.swap(newOrderPhi);
4189     cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
4190     SSD->fixupRegisterOverlaps(cycleInstrs);
4191   }
4192
4193   LLVM_DEBUG(dump(););
4194 }
4195
4196 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4197 /// Print the schedule information to the given output.
4198 void SMSchedule::print(raw_ostream &os) const {
4199   // Iterate over each cycle.
4200   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4201     // Iterate over each instruction in the cycle.
4202     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4203     for (SUnit *CI : cycleInstrs->second) {
4204       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4205       os << "(" << CI->NodeNum << ") ";
4206       CI->getInstr()->print(os);
4207       os << "\n";
4208     }
4209   }
4210 }
4211
4212 /// Utility function used for debugging to print the schedule.
4213 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4214 #endif