]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / PeepholeOptimizer.cpp
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 //     Optimization of sign / zero extension instructions. It may be extended to
15 //     handle other instructions with similar properties.
16 //
17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
18 //     leave the source value in the lower part of the result. This optimization
19 //     will replace some uses of the pre-extension value with uses of the
20 //     sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 //     Optimization of comparison instructions. For instance, in this code:
25 //
26 //       sub r1, 1
27 //       cmp r1, 0
28 //       bz  L1
29 //
30 //     If the "sub" instruction all ready sets (or could be modified to set) the
31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 //     eliminate the "cmp" instruction.
33 //
34 //     Another instance, in this code:
35 //
36 //       sub r1, r3 | sub r1, imm
37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 //       bge L1
39 //
40 //     If the branch instruction can use flag from "sub", then we can replace
41 //     "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 //     Loads that can be folded into a later instruction. A load is foldable
46 //     if it loads to virtual registers and the virtual register defined has
47 //     a single use.
48 //
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 //
51 //     Rewrite copies and bitcasts to avoid cross register bank copies
52 //     when possible.
53 //     E.g., Consider the following example, where capital and lower
54 //     letters denote different register file:
55 //     b = copy A <-- cross-bank copy
56 //     C = copy b <-- cross-bank copy
57 //   =>
58 //     b = copy A <-- cross-bank copy
59 //     C = copy A <-- same-bank copy
60 //
61 //     E.g., for bitcast:
62 //     b = bitcast A <-- cross-bank copy
63 //     C = bitcast b <-- cross-bank copy
64 //   =>
65 //     b = bitcast A <-- cross-bank copy
66 //     C = copy A    <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68
69 #include "llvm/ADT/DenseMap.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/CodeGen/MachineBasicBlock.h"
76 #include "llvm/CodeGen/MachineDominators.h"
77 #include "llvm/CodeGen/MachineFunction.h"
78 #include "llvm/CodeGen/MachineFunctionPass.h"
79 #include "llvm/CodeGen/MachineInstr.h"
80 #include "llvm/CodeGen/MachineInstrBuilder.h"
81 #include "llvm/CodeGen/MachineLoopInfo.h"
82 #include "llvm/CodeGen/MachineOperand.h"
83 #include "llvm/CodeGen/MachineRegisterInfo.h"
84 #include "llvm/CodeGen/TargetInstrInfo.h"
85 #include "llvm/CodeGen/TargetOpcodes.h"
86 #include "llvm/CodeGen/TargetRegisterInfo.h"
87 #include "llvm/CodeGen/TargetSubtargetInfo.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103
104 #define DEBUG_TYPE "peephole-opt"
105
106 // Optimize Extensions
107 static cl::opt<bool>
108 Aggressive("aggressive-ext-opt", cl::Hidden,
109            cl::desc("Aggressive extension optimization"));
110
111 static cl::opt<bool>
112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                 cl::desc("Disable the peephole optimizer"));
114
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
118 static cl::opt<bool>
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                   cl::desc("Disable advanced copy optimization"));
121
122 static cl::opt<bool> DisableNAPhysCopyOpt(
123     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124     cl::desc("Disable non-allocatable physical register copy optimization"));
125
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt<unsigned> RewritePHILimit(
129     "rewrite-phi-limit", cl::Hidden, cl::init(10),
130     cl::desc("Limit the length of PHI chains to lookup"));
131
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt<unsigned> MaxRecurrenceChain(
135     "recurrence-chain-limit", cl::Hidden, cl::init(3),
136     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137              "of commuting operands"));
138
139
140 STATISTIC(NumReuse, "Number of extension results reused");
141 STATISTIC(NumCmps, "Number of compares eliminated");
142 STATISTIC(NumImmFold, "Number of move immediate folded");
143 STATISTIC(NumLoadFold, "Number of loads folded");
144 STATISTIC(NumSelects, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148
149 namespace {
150
151   class ValueTrackerResult;
152   class RecurrenceInstr;
153
154   class PeepholeOptimizer : public MachineFunctionPass {
155     const TargetInstrInfo *TII;
156     const TargetRegisterInfo *TRI;
157     MachineRegisterInfo *MRI;
158     MachineDominatorTree *DT;  // Machine dominator tree
159     MachineLoopInfo *MLI;
160
161   public:
162     static char ID; // Pass identification
163
164     PeepholeOptimizer() : MachineFunctionPass(ID) {
165       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166     }
167
168     bool runOnMachineFunction(MachineFunction &MF) override;
169
170     void getAnalysisUsage(AnalysisUsage &AU) const override {
171       AU.setPreservesCFG();
172       MachineFunctionPass::getAnalysisUsage(AU);
173       AU.addRequired<MachineLoopInfo>();
174       AU.addPreserved<MachineLoopInfo>();
175       if (Aggressive) {
176         AU.addRequired<MachineDominatorTree>();
177         AU.addPreserved<MachineDominatorTree>();
178       }
179     }
180
181     /// Track Def -> Use info used for rewriting copies.
182     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183
184     /// Sequence of instructions that formulate recurrence cycle.
185     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186
187   private:
188     bool optimizeCmpInstr(MachineInstr &MI);
189     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191     bool optimizeSelect(MachineInstr &MI,
192                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193     bool optimizeCondBranch(MachineInstr &MI);
194     bool optimizeCoalescableCopy(MachineInstr &MI);
195     bool optimizeUncoalescableCopy(MachineInstr &MI,
196                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197     bool optimizeRecurrence(MachineInstr &PHI);
198     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199     bool isMoveImmediate(MachineInstr &MI,
200                          SmallSet<unsigned, 4> &ImmDefRegs,
201                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202     bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204
205     /// Finds recurrence cycles, but only ones that formulated around
206     /// a def operand and a use operand that are tied. If there is a use
207     /// operand commutable with the tied use operand, find recurrence cycle
208     /// along that operand as well.
209     bool findTargetRecurrence(unsigned Reg,
210                               const SmallSet<unsigned, 2> &TargetReg,
211                               RecurrenceCycle &RC);
212
213     /// If copy instruction \p MI is a virtual register copy, track it in
214     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215     /// previously seen as a copy, replace the uses of this copy with the
216     /// previously seen copy's destination register.
217     bool foldRedundantCopy(MachineInstr &MI,
218                            SmallSet<unsigned, 4> &CopySrcRegs,
219                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
220
221     /// Is the register \p Reg a non-allocatable physical register?
222     bool isNAPhysCopy(unsigned Reg);
223
224     /// If copy instruction \p MI is a non-allocatable virtual<->physical
225     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226     /// non-allocatable physical register was previously copied to a virtual
227     /// registered and hasn't been clobbered, the virt->phys copy can be
228     /// deleted.
229     bool foldRedundantNAPhysCopy(MachineInstr &MI,
230         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231
232     bool isLoadFoldable(MachineInstr &MI,
233                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234
235     /// Check whether \p MI is understood by the register coalescer
236     /// but may require some rewriting.
237     bool isCoalescableCopy(const MachineInstr &MI) {
238       // SubregToRegs are not interesting, because they are already register
239       // coalescer friendly.
240       return MI.isCopy() || (!DisableAdvCopyOpt &&
241                              (MI.isRegSequence() || MI.isInsertSubreg() ||
242                               MI.isExtractSubreg()));
243     }
244
245     /// Check whether \p MI is a copy like instruction that is
246     /// not recognized by the register coalescer.
247     bool isUncoalescableCopy(const MachineInstr &MI) {
248       return MI.isBitcast() ||
249              (!DisableAdvCopyOpt &&
250               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251                MI.isExtractSubregLike()));
252     }
253
254     MachineInstr &rewriteSource(MachineInstr &CopyLike,
255                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
256   };
257
258   /// Helper class to hold instructions that are inside recurrence cycles.
259   /// The recurrence cycle is formulated around 1) a def operand and its
260   /// tied use operand, or 2) a def operand and a use operand that is commutable
261   /// with another use operand which is tied to the def operand. In the latter
262   /// case, index of the tied use operand and the commutable use operand are
263   /// maintained with CommutePair.
264   class RecurrenceInstr {
265   public:
266     using IndexPair = std::pair<unsigned, unsigned>;
267
268     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
269     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271
272     MachineInstr *getMI() const { return MI; }
273     Optional<IndexPair> getCommutePair() const { return CommutePair; }
274
275   private:
276     MachineInstr *MI;
277     Optional<IndexPair> CommutePair;
278   };
279
280   /// Helper class to hold a reply for ValueTracker queries.
281   /// Contains the returned sources for a given search and the instructions
282   /// where the sources were tracked from.
283   class ValueTrackerResult {
284   private:
285     /// Track all sources found by one ValueTracker query.
286     SmallVector<RegSubRegPair, 2> RegSrcs;
287
288     /// Instruction using the sources in 'RegSrcs'.
289     const MachineInstr *Inst = nullptr;
290
291   public:
292     ValueTrackerResult() = default;
293
294     ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295       addSource(Reg, SubReg);
296     }
297
298     bool isValid() const { return getNumSources() > 0; }
299
300     void setInst(const MachineInstr *I) { Inst = I; }
301     const MachineInstr *getInst() const { return Inst; }
302
303     void clear() {
304       RegSrcs.clear();
305       Inst = nullptr;
306     }
307
308     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310     }
311
312     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313       assert(Idx < getNumSources() && "Reg pair source out of index");
314       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315     }
316
317     int getNumSources() const { return RegSrcs.size(); }
318
319     RegSubRegPair getSrc(int Idx) const {
320       return RegSrcs[Idx];
321     }
322
323     unsigned getSrcReg(int Idx) const {
324       assert(Idx < getNumSources() && "Reg source out of index");
325       return RegSrcs[Idx].Reg;
326     }
327
328     unsigned getSrcSubReg(int Idx) const {
329       assert(Idx < getNumSources() && "SubReg source out of index");
330       return RegSrcs[Idx].SubReg;
331     }
332
333     bool operator==(const ValueTrackerResult &Other) {
334       if (Other.getInst() != getInst())
335         return false;
336
337       if (Other.getNumSources() != getNumSources())
338         return false;
339
340       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341         if (Other.getSrcReg(i) != getSrcReg(i) ||
342             Other.getSrcSubReg(i) != getSrcSubReg(i))
343           return false;
344       return true;
345     }
346   };
347
348   /// Helper class to track the possible sources of a value defined by
349   /// a (chain of) copy related instructions.
350   /// Given a definition (instruction and definition index), this class
351   /// follows the use-def chain to find successive suitable sources.
352   /// The given source can be used to rewrite the definition into
353   /// def = COPY src.
354   ///
355   /// For instance, let us consider the following snippet:
356   /// v0 =
357   /// v2 = INSERT_SUBREG v1, v0, sub0
358   /// def = COPY v2.sub0
359   ///
360   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361   /// suitable sources:
362   /// v2.sub0 and v0.
363   /// Then, def can be rewritten into def = COPY v0.
364   class ValueTracker {
365   private:
366     /// The current point into the use-def chain.
367     const MachineInstr *Def = nullptr;
368
369     /// The index of the definition in Def.
370     unsigned DefIdx = 0;
371
372     /// The sub register index of the definition.
373     unsigned DefSubReg;
374
375     /// The register where the value can be found.
376     unsigned Reg;
377
378     /// MachineRegisterInfo used to perform tracking.
379     const MachineRegisterInfo &MRI;
380
381     /// Optional TargetInstrInfo used to perform some complex tracking.
382     const TargetInstrInfo *TII;
383
384     /// Dispatcher to the right underlying implementation of getNextSource.
385     ValueTrackerResult getNextSourceImpl();
386
387     /// Specialized version of getNextSource for Copy instructions.
388     ValueTrackerResult getNextSourceFromCopy();
389
390     /// Specialized version of getNextSource for Bitcast instructions.
391     ValueTrackerResult getNextSourceFromBitcast();
392
393     /// Specialized version of getNextSource for RegSequence instructions.
394     ValueTrackerResult getNextSourceFromRegSequence();
395
396     /// Specialized version of getNextSource for InsertSubreg instructions.
397     ValueTrackerResult getNextSourceFromInsertSubreg();
398
399     /// Specialized version of getNextSource for ExtractSubreg instructions.
400     ValueTrackerResult getNextSourceFromExtractSubreg();
401
402     /// Specialized version of getNextSource for SubregToReg instructions.
403     ValueTrackerResult getNextSourceFromSubregToReg();
404
405     /// Specialized version of getNextSource for PHI instructions.
406     ValueTrackerResult getNextSourceFromPHI();
407
408   public:
409     /// Create a ValueTracker instance for the value defined by \p Reg.
410     /// \p DefSubReg represents the sub register index the value tracker will
411     /// track. It does not need to match the sub register index used in the
412     /// definition of \p Reg.
413     /// If \p Reg is a physical register, a value tracker constructed with
414     /// this constructor will not find any alternative source.
415     /// Indeed, when \p Reg is a physical register that constructor does not
416     /// know which definition of \p Reg it should track.
417     /// Use the next constructor to track a physical register.
418     ValueTracker(unsigned Reg, unsigned DefSubReg,
419                  const MachineRegisterInfo &MRI,
420                  const TargetInstrInfo *TII = nullptr)
421         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
423         Def = MRI.getVRegDef(Reg);
424         DefIdx = MRI.def_begin(Reg).getOperandNo();
425       }
426     }
427
428     /// Following the use-def chain, get the next available source
429     /// for the tracked value.
430     /// \return A ValueTrackerResult containing a set of registers
431     /// and sub registers with tracked values. A ValueTrackerResult with
432     /// an empty set of registers means no source was found.
433     ValueTrackerResult getNextSource();
434   };
435
436 } // end anonymous namespace
437
438 char PeepholeOptimizer::ID = 0;
439
440 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441
442 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443                       "Peephole Optimizations", false, false)
444 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447                     "Peephole Optimizations", false, false)
448
449 /// If instruction is a copy-like instruction, i.e. it reads a single register
450 /// and writes a single register and it does not modify the source, and if the
451 /// source value is preserved as a sub-register of the result, then replace all
452 /// reachable uses of the source with the subreg of the result.
453 ///
454 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455 /// the code. Since this code does not currently share EXTRACTs, just ignore all
456 /// debug uses.
457 bool PeepholeOptimizer::
458 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460   unsigned SrcReg, DstReg, SubIdx;
461   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462     return false;
463
464   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
465       TargetRegisterInfo::isPhysicalRegister(SrcReg))
466     return false;
467
468   if (MRI->hasOneNonDBGUse(SrcReg))
469     // No other uses.
470     return false;
471
472   // Ensure DstReg can get a register class that actually supports
473   // sub-registers. Don't change the class until we commit.
474   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476   if (!DstRC)
477     return false;
478
479   // The ext instr may be operating on a sub-register of SrcReg as well.
480   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481   // register.
482   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483   // SrcReg:SubIdx should be replaced.
484   bool UseSrcSubIdx =
485       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486
487   // The source has other uses. See if we can replace the other uses with use of
488   // the result of the extension.
489   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491     ReachedBBs.insert(UI.getParent());
492
493   // Uses that are in the same BB of uses of the result of the instruction.
494   SmallVector<MachineOperand*, 8> Uses;
495
496   // Uses that the result of the instruction can reach.
497   SmallVector<MachineOperand*, 8> ExtendedUses;
498
499   bool ExtendLife = true;
500   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501     MachineInstr *UseMI = UseMO.getParent();
502     if (UseMI == &MI)
503       continue;
504
505     if (UseMI->isPHI()) {
506       ExtendLife = false;
507       continue;
508     }
509
510     // Only accept uses of SrcReg:SubIdx.
511     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512       continue;
513
514     // It's an error to translate this:
515     //
516     //    %reg1025 = <sext> %reg1024
517     //     ...
518     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519     //
520     // into this:
521     //
522     //    %reg1025 = <sext> %reg1024
523     //     ...
524     //    %reg1027 = COPY %reg1025:4
525     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526     //
527     // The problem here is that SUBREG_TO_REG is there to assert that an
528     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529     // the COPY here, it will give us the value after the <sext>, not the
530     // original value of %reg1024 before <sext>.
531     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532       continue;
533
534     MachineBasicBlock *UseMBB = UseMI->getParent();
535     if (UseMBB == &MBB) {
536       // Local uses that come after the extension.
537       if (!LocalMIs.count(UseMI))
538         Uses.push_back(&UseMO);
539     } else if (ReachedBBs.count(UseMBB)) {
540       // Non-local uses where the result of the extension is used. Always
541       // replace these unless it's a PHI.
542       Uses.push_back(&UseMO);
543     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544       // We may want to extend the live range of the extension result in order
545       // to replace these uses.
546       ExtendedUses.push_back(&UseMO);
547     } else {
548       // Both will be live out of the def MBB anyway. Don't extend live range of
549       // the extension result.
550       ExtendLife = false;
551       break;
552     }
553   }
554
555   if (ExtendLife && !ExtendedUses.empty())
556     // Extend the liveness of the extension result.
557     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558
559   // Now replace all uses.
560   bool Changed = false;
561   if (!Uses.empty()) {
562     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563
564     // Look for PHI uses of the extended result, we don't want to extend the
565     // liveness of a PHI input. It breaks all kinds of assumptions down
566     // stream. A PHI use is expected to be the kill of its source values.
567     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568       if (UI.isPHI())
569         PHIBBs.insert(UI.getParent());
570
571     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573       MachineOperand *UseMO = Uses[i];
574       MachineInstr *UseMI = UseMO->getParent();
575       MachineBasicBlock *UseMBB = UseMI->getParent();
576       if (PHIBBs.count(UseMBB))
577         continue;
578
579       // About to add uses of DstReg, clear DstReg's kill flags.
580       if (!Changed) {
581         MRI->clearKillFlags(DstReg);
582         MRI->constrainRegClass(DstReg, DstRC);
583       }
584
585       unsigned NewVR = MRI->createVirtualRegister(RC);
586       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587                                    TII->get(TargetOpcode::COPY), NewVR)
588         .addReg(DstReg, 0, SubIdx);
589       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590       if (UseSrcSubIdx) {
591         Copy->getOperand(0).setSubReg(SubIdx);
592         Copy->getOperand(0).setIsUndef();
593       }
594       UseMO->setReg(NewVR);
595       ++NumReuse;
596       Changed = true;
597     }
598   }
599
600   return Changed;
601 }
602
603 /// If the instruction is a compare and the previous instruction it's comparing
604 /// against already sets (or could be modified to set) the same flag as the
605 /// compare, then we can remove the comparison and use the flag from the
606 /// previous instruction.
607 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608   // If this instruction is a comparison against zero and isn't comparing a
609   // physical register, we can try to optimize it.
610   unsigned SrcReg, SrcReg2;
611   int CmpMask, CmpValue;
612   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
614       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
615     return false;
616
617   // Attempt to optimize the comparison instruction.
618   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619     ++NumCmps;
620     return true;
621   }
622
623   return false;
624 }
625
626 /// Optimize a select instruction.
627 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629   unsigned TrueOp = 0;
630   unsigned FalseOp = 0;
631   bool Optimizable = false;
632   SmallVector<MachineOperand, 4> Cond;
633   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634     return false;
635   if (!Optimizable)
636     return false;
637   if (!TII->optimizeSelect(MI, LocalMIs))
638     return false;
639   MI.eraseFromParent();
640   ++NumSelects;
641   return true;
642 }
643
644 /// Check if a simpler conditional branch can be generated.
645 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646   return TII->optimizeCondBranch(MI);
647 }
648
649 /// Try to find the next source that share the same register file
650 /// for the value defined by \p Reg and \p SubReg.
651 /// When true is returned, the \p RewriteMap can be used by the client to
652 /// retrieve all Def -> Use along the way up to the next source. Any found
653 /// Use that is not itself a key for another entry, is the next source to
654 /// use. During the search for the next source, multiple sources can be found
655 /// given multiple incoming sources of a PHI instruction. In this case, we
656 /// look in each PHI source for the next source; all found next sources must
657 /// share the same register file as \p Reg and \p SubReg. The client should
658 /// then be capable to rewrite all intermediate PHIs to get the next source.
659 /// \return False if no alternative sources are available. True otherwise.
660 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661                                        RewriteMapTy &RewriteMap) {
662   // Do not try to find a new source for a physical register.
663   // So far we do not have any motivating example for doing that.
664   // Thus, instead of maintaining untested code, we will revisit that if
665   // that changes at some point.
666   unsigned Reg = RegSubReg.Reg;
667   if (TargetRegisterInfo::isPhysicalRegister(Reg))
668     return false;
669   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670
671   SmallVector<RegSubRegPair, 4> SrcToLook;
672   RegSubRegPair CurSrcPair = RegSubReg;
673   SrcToLook.push_back(CurSrcPair);
674
675   unsigned PHICount = 0;
676   do {
677     CurSrcPair = SrcToLook.pop_back_val();
678     // As explained above, do not handle physical registers
679     if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
680       return false;
681
682     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683
684     // Follow the chain of copies until we find a more suitable source, a phi
685     // or have to abort.
686     while (true) {
687       ValueTrackerResult Res = ValTracker.getNextSource();
688       // Abort at the end of a chain (without finding a suitable source).
689       if (!Res.isValid())
690         return false;
691
692       // Insert the Def -> Use entry for the recently found source.
693       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694       if (CurSrcRes.isValid()) {
695         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696         // An existent entry with multiple sources is a PHI cycle we must avoid.
697         // Otherwise it's an entry with a valid next source we already found.
698         if (CurSrcRes.getNumSources() > 1) {
699           LLVM_DEBUG(dbgs()
700                      << "findNextSource: found PHI cycle, aborting...\n");
701           return false;
702         }
703         break;
704       }
705       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706
707       // ValueTrackerResult usually have one source unless it's the result from
708       // a PHI instruction. Add the found PHI edges to be looked up further.
709       unsigned NumSrcs = Res.getNumSources();
710       if (NumSrcs > 1) {
711         PHICount++;
712         if (PHICount >= RewritePHILimit) {
713           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714           return false;
715         }
716
717         for (unsigned i = 0; i < NumSrcs; ++i)
718           SrcToLook.push_back(Res.getSrc(i));
719         break;
720       }
721
722       CurSrcPair = Res.getSrc(0);
723       // Do not extend the live-ranges of physical registers as they add
724       // constraints to the register allocator. Moreover, if we want to extend
725       // the live-range of a physical register, unlike SSA virtual register,
726       // we will have to check that they aren't redefine before the related use.
727       if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
728         return false;
729
730       // Keep following the chain if the value isn't any better yet.
731       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733                                      CurSrcPair.SubReg))
734         continue;
735
736       // We currently cannot deal with subreg operands on PHI instructions
737       // (see insertPHI()).
738       if (PHICount > 0 && CurSrcPair.SubReg != 0)
739         continue;
740
741       // We found a suitable source, and are done with this chain.
742       break;
743     }
744   } while (!SrcToLook.empty());
745
746   // If we did not find a more suitable source, there is nothing to optimize.
747   return CurSrcPair.Reg != Reg;
748 }
749
750 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
751 /// guaranteed to have the same register class. This is necessary whenever we
752 /// successfully traverse a PHI instruction and find suitable sources coming
753 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754 /// suitable to be used in a new COPY instruction.
755 static MachineInstr &
756 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758           MachineInstr &OrigPHI) {
759   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760
761   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762   // NewRC is only correct if no subregisters are involved. findNextSource()
763   // should have rejected those cases already.
764   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765   unsigned NewVR = MRI.createVirtualRegister(NewRC);
766   MachineBasicBlock *MBB = OrigPHI.getParent();
767   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768                                     TII.get(TargetOpcode::PHI), NewVR);
769
770   unsigned MBBOpIdx = 2;
771   for (const RegSubRegPair &RegPair : SrcRegs) {
772     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774     // Since we're extended the lifetime of RegPair.Reg, clear the
775     // kill flags to account for that and make RegPair.Reg reaches
776     // the new PHI.
777     MRI.clearKillFlags(RegPair.Reg);
778     MBBOpIdx += 2;
779   }
780
781   return *MIB;
782 }
783
784 namespace {
785
786 /// Interface to query instructions amenable to copy rewriting.
787 class Rewriter {
788 protected:
789   MachineInstr &CopyLike;
790   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
791 public:
792   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
793   virtual ~Rewriter() {}
794
795   /// Get the next rewritable source (SrcReg, SrcSubReg) and
796   /// the related value that it affects (DstReg, DstSubReg).
797   /// A source is considered rewritable if its register class and the
798   /// register class of the related DstReg may not be register
799   /// coalescer friendly. In other words, given a copy-like instruction
800   /// not all the arguments may be returned at rewritable source, since
801   /// some arguments are none to be register coalescer friendly.
802   ///
803   /// Each call of this method moves the current source to the next
804   /// rewritable source.
805   /// For instance, let CopyLike be the instruction to rewrite.
806   /// CopyLike has one definition and one source:
807   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808   ///
809   /// The first call will give the first rewritable source, i.e.,
810   /// the only source this instruction has:
811   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812   /// This source defines the whole definition, i.e.,
813   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814   ///
815   /// The second and subsequent calls will return false, as there is only one
816   /// rewritable source.
817   ///
818   /// \return True if a rewritable source has been found, false otherwise.
819   /// The output arguments are valid if and only if true is returned.
820   virtual bool getNextRewritableSource(RegSubRegPair &Src,
821                                        RegSubRegPair &Dst) = 0;
822
823   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824   /// \return True if the rewriting was possible, false otherwise.
825   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826 };
827
828 /// Rewriter for COPY instructions.
829 class CopyRewriter : public Rewriter {
830 public:
831   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832     assert(MI.isCopy() && "Expected copy instruction");
833   }
834   virtual ~CopyRewriter() = default;
835
836   bool getNextRewritableSource(RegSubRegPair &Src,
837                                RegSubRegPair &Dst) override {
838     // CurrentSrcIdx > 0 means this function has already been called.
839     if (CurrentSrcIdx > 0)
840       return false;
841     // This is the first call to getNextRewritableSource.
842     // Move the CurrentSrcIdx to remember that we made that call.
843     CurrentSrcIdx = 1;
844     // The rewritable source is the argument.
845     const MachineOperand &MOSrc = CopyLike.getOperand(1);
846     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847     // What we track are the alternative sources of the definition.
848     const MachineOperand &MODef = CopyLike.getOperand(0);
849     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850     return true;
851   }
852
853   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854     if (CurrentSrcIdx != 1)
855       return false;
856     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857     MOSrc.setReg(NewReg);
858     MOSrc.setSubReg(NewSubReg);
859     return true;
860   }
861 };
862
863 /// Helper class to rewrite uncoalescable copy like instructions
864 /// into new COPY (coalescable friendly) instructions.
865 class UncoalescableRewriter : public Rewriter {
866   unsigned NumDefs;  ///< Number of defs in the bitcast.
867
868 public:
869   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870     NumDefs = MI.getDesc().getNumDefs();
871   }
872
873   /// \see See Rewriter::getNextRewritableSource()
874   /// All such sources need to be considered rewritable in order to
875   /// rewrite a uncoalescable copy-like instruction. This method return
876   /// each definition that must be checked if rewritable.
877   bool getNextRewritableSource(RegSubRegPair &Src,
878                                RegSubRegPair &Dst) override {
879     // Find the next non-dead definition and continue from there.
880     if (CurrentSrcIdx == NumDefs)
881       return false;
882
883     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884       ++CurrentSrcIdx;
885       if (CurrentSrcIdx == NumDefs)
886         return false;
887     }
888
889     // What we track are the alternative sources of the definition.
890     Src = RegSubRegPair(0, 0);
891     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893
894     CurrentSrcIdx++;
895     return true;
896   }
897
898   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899     return false;
900   }
901 };
902
903 /// Specialized rewriter for INSERT_SUBREG instruction.
904 class InsertSubregRewriter : public Rewriter {
905 public:
906   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907     assert(MI.isInsertSubreg() && "Invalid instruction");
908   }
909
910   /// \see See Rewriter::getNextRewritableSource()
911   /// Here CopyLike has the following form:
912   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913   /// Src1 has the same register class has dst, hence, there is
914   /// nothing to rewrite.
915   /// Src2.src2SubIdx, may not be register coalescer friendly.
916   /// Therefore, the first call to this method returns:
917   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918   /// (DstReg, DstSubReg) = (dst, subIdx).
919   ///
920   /// Subsequence calls will return false.
921   bool getNextRewritableSource(RegSubRegPair &Src,
922                                RegSubRegPair &Dst) override {
923     // If we already get the only source we can rewrite, return false.
924     if (CurrentSrcIdx == 2)
925       return false;
926     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927     CurrentSrcIdx = 2;
928     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930     const MachineOperand &MODef = CopyLike.getOperand(0);
931
932     // We want to track something that is compatible with the
933     // partial definition.
934     if (MODef.getSubReg())
935       // Bail if we have to compose sub-register indices.
936       return false;
937     Dst = RegSubRegPair(MODef.getReg(),
938                         (unsigned)CopyLike.getOperand(3).getImm());
939     return true;
940   }
941
942   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943     if (CurrentSrcIdx != 2)
944       return false;
945     // We are rewriting the inserted reg.
946     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947     MO.setReg(NewReg);
948     MO.setSubReg(NewSubReg);
949     return true;
950   }
951 };
952
953 /// Specialized rewriter for EXTRACT_SUBREG instruction.
954 class ExtractSubregRewriter : public Rewriter {
955   const TargetInstrInfo &TII;
956
957 public:
958   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959       : Rewriter(MI), TII(TII) {
960     assert(MI.isExtractSubreg() && "Invalid instruction");
961   }
962
963   /// \see Rewriter::getNextRewritableSource()
964   /// Here CopyLike has the following form:
965   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966   /// There is only one rewritable source: Src.subIdx,
967   /// which defines dst.dstSubIdx.
968   bool getNextRewritableSource(RegSubRegPair &Src,
969                                RegSubRegPair &Dst) override {
970     // If we already get the only source we can rewrite, return false.
971     if (CurrentSrcIdx == 1)
972       return false;
973     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974     CurrentSrcIdx = 1;
975     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976     // If we have to compose sub-register indices, bail out.
977     if (MOExtractedReg.getSubReg())
978       return false;
979
980     Src = RegSubRegPair(MOExtractedReg.getReg(),
981                         CopyLike.getOperand(2).getImm());
982
983     // We want to track something that is compatible with the definition.
984     const MachineOperand &MODef = CopyLike.getOperand(0);
985     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986     return true;
987   }
988
989   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990     // The only source we can rewrite is the input register.
991     if (CurrentSrcIdx != 1)
992       return false;
993
994     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995
996     // If we find a source that does not require to extract something,
997     // rewrite the operation with a copy.
998     if (!NewSubReg) {
999       // Move the current index to an invalid position.
1000       // We do not want another call to this method to be able
1001       // to do any change.
1002       CurrentSrcIdx = -1;
1003       // Rewrite the operation as a COPY.
1004       // Get rid of the sub-register index.
1005       CopyLike.RemoveOperand(2);
1006       // Morph the operation into a COPY.
1007       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008       return true;
1009     }
1010     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011     return true;
1012   }
1013 };
1014
1015 /// Specialized rewriter for REG_SEQUENCE instruction.
1016 class RegSequenceRewriter : public Rewriter {
1017 public:
1018   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019     assert(MI.isRegSequence() && "Invalid instruction");
1020   }
1021
1022   /// \see Rewriter::getNextRewritableSource()
1023   /// Here CopyLike has the following form:
1024   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025   /// Each call will return a different source, walking all the available
1026   /// source.
1027   ///
1028   /// The first call returns:
1029   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030   /// (DstReg, DstSubReg) = (dst, subIdx1).
1031   ///
1032   /// The second call returns:
1033   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034   /// (DstReg, DstSubReg) = (dst, subIdx2).
1035   ///
1036   /// And so on, until all the sources have been traversed, then
1037   /// it returns false.
1038   bool getNextRewritableSource(RegSubRegPair &Src,
1039                                RegSubRegPair &Dst) override {
1040     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041
1042     // If this is the first call, move to the first argument.
1043     if (CurrentSrcIdx == 0) {
1044       CurrentSrcIdx = 1;
1045     } else {
1046       // Otherwise, move to the next argument and check that it is valid.
1047       CurrentSrcIdx += 2;
1048       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049         return false;
1050     }
1051     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052     Src.Reg = MOInsertedReg.getReg();
1053     // If we have to compose sub-register indices, bail out.
1054     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055       return false;
1056
1057     // We want to track something that is compatible with the related
1058     // partial definition.
1059     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060
1061     const MachineOperand &MODef = CopyLike.getOperand(0);
1062     Dst.Reg = MODef.getReg();
1063     // If we have to compose sub-registers, bail.
1064     return MODef.getSubReg() == 0;
1065   }
1066
1067   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068     // We cannot rewrite out of bound operands.
1069     // Moreover, rewritable sources are at odd positions.
1070     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071       return false;
1072
1073     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074     MO.setReg(NewReg);
1075     MO.setSubReg(NewSubReg);
1076     return true;
1077   }
1078 };
1079
1080 } // end anonymous namespace
1081
1082 /// Get the appropriated Rewriter for \p MI.
1083 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084 /// rewriter works for \p MI.
1085 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086   // Handle uncoalescable copy-like instructions.
1087   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088       MI.isExtractSubregLike())
1089     return new UncoalescableRewriter(MI);
1090
1091   switch (MI.getOpcode()) {
1092   default:
1093     return nullptr;
1094   case TargetOpcode::COPY:
1095     return new CopyRewriter(MI);
1096   case TargetOpcode::INSERT_SUBREG:
1097     return new InsertSubregRewriter(MI);
1098   case TargetOpcode::EXTRACT_SUBREG:
1099     return new ExtractSubregRewriter(MI, TII);
1100   case TargetOpcode::REG_SEQUENCE:
1101     return new RegSequenceRewriter(MI);
1102   }
1103 }
1104
1105 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1106 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107 /// multiple sources for a given \p Def are found along the way, we found a
1108 /// PHI instructions that needs to be rewritten.
1109 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1110 /// with coalescable copies.
1111 static RegSubRegPair
1112 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113              RegSubRegPair Def,
1114              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115              bool HandleMultipleSources = true) {
1116   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117   while (true) {
1118     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119     // If there are no entries on the map, LookupSrc is the new source.
1120     if (!Res.isValid())
1121       return LookupSrc;
1122
1123     // There's only one source for this definition, keep searching...
1124     unsigned NumSrcs = Res.getNumSources();
1125     if (NumSrcs == 1) {
1126       LookupSrc.Reg = Res.getSrcReg(0);
1127       LookupSrc.SubReg = Res.getSrcSubReg(0);
1128       continue;
1129     }
1130
1131     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132     if (!HandleMultipleSources)
1133       break;
1134
1135     // Multiple sources, recurse into each source to find a new source
1136     // for it. Then, rewrite the PHI accordingly to its new edges.
1137     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138     for (unsigned i = 0; i < NumSrcs; ++i) {
1139       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140       NewPHISrcs.push_back(
1141           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142     }
1143
1144     // Build the new PHI node and return its def register as the new source.
1145     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1149     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1150     const MachineOperand &MODef = NewPHI.getOperand(0);
1151     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152   }
1153
1154   return RegSubRegPair(0, 0);
1155 }
1156
1157 /// Optimize generic copy instructions to avoid cross register bank copy.
1158 /// The optimization looks through a chain of copies and tries to find a source
1159 /// that has a compatible register class.
1160 /// Two register classes are considered to be compatible if they share the same
1161 /// register bank.
1162 /// New copies issued by this optimization are register allocator
1163 /// friendly. This optimization does not remove any copy as it may
1164 /// overconstrain the register allocator, but replaces some operands
1165 /// when possible.
1166 /// \pre isCoalescableCopy(*MI) is true.
1167 /// \return True, when \p MI has been rewritten. False otherwise.
1168 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169   assert(isCoalescableCopy(MI) && "Invalid argument");
1170   assert(MI.getDesc().getNumDefs() == 1 &&
1171          "Coalescer can understand multiple defs?!");
1172   const MachineOperand &MODef = MI.getOperand(0);
1173   // Do not rewrite physical definitions.
1174   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
1175     return false;
1176
1177   bool Changed = false;
1178   // Get the right rewriter for the current copy.
1179   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180   // If none exists, bail out.
1181   if (!CpyRewriter)
1182     return false;
1183   // Rewrite each rewritable source.
1184   RegSubRegPair Src;
1185   RegSubRegPair TrackPair;
1186   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187     // Keep track of PHI nodes and its incoming edges when looking for sources.
1188     RewriteMapTy RewriteMap;
1189     // Try to find a more suitable source. If we failed to do so, or get the
1190     // actual source, move to the next source.
1191     if (!findNextSource(TrackPair, RewriteMap))
1192       continue;
1193
1194     // Get the new source to rewrite. TODO: Only enable handling of multiple
1195     // sources (PHIs) once we have a motivating example and testcases for it.
1196     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197                                         /*HandleMultipleSources=*/false);
1198     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199       continue;
1200
1201     // Rewrite source.
1202     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203       // We may have extended the live-range of NewSrc, account for that.
1204       MRI->clearKillFlags(NewSrc.Reg);
1205       Changed = true;
1206     }
1207   }
1208   // TODO: We could have a clean-up method to tidy the instruction.
1209   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210   // => v0 = COPY v1
1211   // Currently we haven't seen motivating example for that and we
1212   // want to avoid untested code.
1213   NumRewrittenCopies += Changed;
1214   return Changed;
1215 }
1216
1217 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1218 /// and create a new COPY instruction. More info about RewriteMap in
1219 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220 /// Uncoalescable copies, since they are copy like instructions that aren't
1221 /// recognized by the register allocator.
1222 MachineInstr &
1223 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225   assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
1226          "We do not rewrite physical registers");
1227
1228   // Find the new source to use in the COPY rewrite.
1229   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230
1231   // Insert the COPY.
1232   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233   unsigned NewVReg = MRI->createVirtualRegister(DefRC);
1234
1235   MachineInstr *NewCopy =
1236       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237               TII->get(TargetOpcode::COPY), NewVReg)
1238           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239
1240   if (Def.SubReg) {
1241     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242     NewCopy->getOperand(0).setIsUndef();
1243   }
1244
1245   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1247   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1248   MRI->replaceRegWith(Def.Reg, NewVReg);
1249   MRI->clearKillFlags(NewVReg);
1250
1251   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252   // account for that.
1253   MRI->clearKillFlags(NewSrc.Reg);
1254
1255   return *NewCopy;
1256 }
1257
1258 /// Optimize copy-like instructions to create
1259 /// register coalescer friendly instruction.
1260 /// The optimization tries to kill-off the \p MI by looking
1261 /// through a chain of copies to find a source that has a compatible
1262 /// register class.
1263 /// If such a source is found, it replace \p MI by a generic COPY
1264 /// operation.
1265 /// \pre isUncoalescableCopy(*MI) is true.
1266 /// \return True, when \p MI has been optimized. In that case, \p MI has
1267 /// been removed from its parent.
1268 /// All COPY instructions created, are inserted in \p LocalMIs.
1269 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271   assert(isUncoalescableCopy(MI) && "Invalid argument");
1272   UncoalescableRewriter CpyRewriter(MI);
1273
1274   // Rewrite each rewritable source by generating new COPYs. This works
1275   // differently from optimizeCoalescableCopy since it first makes sure that all
1276   // definitions can be rewritten.
1277   RewriteMapTy RewriteMap;
1278   RegSubRegPair Src;
1279   RegSubRegPair Def;
1280   SmallVector<RegSubRegPair, 4> RewritePairs;
1281   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282     // If a physical register is here, this is probably for a good reason.
1283     // Do not rewrite that.
1284     if (TargetRegisterInfo::isPhysicalRegister(Def.Reg))
1285       return false;
1286
1287     // If we do not know how to rewrite this definition, there is no point
1288     // in trying to kill this instruction.
1289     if (!findNextSource(Def, RewriteMap))
1290       return false;
1291
1292     RewritePairs.push_back(Def);
1293   }
1294
1295   // The change is possible for all defs, do it.
1296   for (const RegSubRegPair &Def : RewritePairs) {
1297     // Rewrite the "copy" in a way the register coalescer understands.
1298     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299     LocalMIs.insert(&NewCopy);
1300   }
1301
1302   // MI is now dead.
1303   MI.eraseFromParent();
1304   ++NumUncoalescableCopies;
1305   return true;
1306 }
1307
1308 /// Check whether MI is a candidate for folding into a later instruction.
1309 /// We only fold loads to virtual registers and the virtual register defined
1310 /// has a single use.
1311 bool PeepholeOptimizer::isLoadFoldable(
1312     MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314     return false;
1315   const MCInstrDesc &MCID = MI.getDesc();
1316   if (MCID.getNumDefs() != 1)
1317     return false;
1318
1319   unsigned Reg = MI.getOperand(0).getReg();
1320   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1321   // loads. It should be checked when processing uses of the load, since
1322   // uses can be removed during peephole.
1323   if (!MI.getOperand(0).getSubReg() &&
1324       TargetRegisterInfo::isVirtualRegister(Reg) &&
1325       MRI->hasOneNonDBGUse(Reg)) {
1326     FoldAsLoadDefCandidates.insert(Reg);
1327     return true;
1328   }
1329   return false;
1330 }
1331
1332 bool PeepholeOptimizer::isMoveImmediate(
1333     MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1334     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1335   const MCInstrDesc &MCID = MI.getDesc();
1336   if (!MI.isMoveImmediate())
1337     return false;
1338   if (MCID.getNumDefs() != 1)
1339     return false;
1340   unsigned Reg = MI.getOperand(0).getReg();
1341   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1342     ImmDefMIs.insert(std::make_pair(Reg, &MI));
1343     ImmDefRegs.insert(Reg);
1344     return true;
1345   }
1346
1347   return false;
1348 }
1349
1350 /// Try folding register operands that are defined by move immediate
1351 /// instructions, i.e. a trivial constant folding optimization, if
1352 /// and only if the def and use are in the same BB.
1353 bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1354     SmallSet<unsigned, 4> &ImmDefRegs,
1355     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1356   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1357     MachineOperand &MO = MI.getOperand(i);
1358     if (!MO.isReg() || MO.isDef())
1359       continue;
1360     // Ignore dead implicit defs.
1361     if (MO.isImplicit() && MO.isDead())
1362       continue;
1363     unsigned Reg = MO.getReg();
1364     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1365       continue;
1366     if (ImmDefRegs.count(Reg) == 0)
1367       continue;
1368     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1369     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1370     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1371       ++NumImmFold;
1372       return true;
1373     }
1374   }
1375   return false;
1376 }
1377
1378 // FIXME: This is very simple and misses some cases which should be handled when
1379 // motivating examples are found.
1380 //
1381 // The copy rewriting logic should look at uses as well as defs and be able to
1382 // eliminate copies across blocks.
1383 //
1384 // Later copies that are subregister extracts will also not be eliminated since
1385 // only the first copy is considered.
1386 //
1387 // e.g.
1388 // %1 = COPY %0
1389 // %2 = COPY %0:sub1
1390 //
1391 // Should replace %2 uses with %1:sub1
1392 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1393     SmallSet<unsigned, 4> &CopySrcRegs,
1394     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1395   assert(MI.isCopy() && "expected a COPY machine instruction");
1396
1397   unsigned SrcReg = MI.getOperand(1).getReg();
1398   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1399     return false;
1400
1401   unsigned DstReg = MI.getOperand(0).getReg();
1402   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1403     return false;
1404
1405   if (CopySrcRegs.insert(SrcReg).second) {
1406     // First copy of this reg seen.
1407     CopyMIs.insert(std::make_pair(SrcReg, &MI));
1408     return false;
1409   }
1410
1411   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1412
1413   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1414   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1415
1416   // Can't replace different subregister extracts.
1417   if (SrcSubReg != PrevSrcSubReg)
1418     return false;
1419
1420   unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
1421
1422   // Only replace if the copy register class is the same.
1423   //
1424   // TODO: If we have multiple copies to different register classes, we may want
1425   // to track multiple copies of the same source register.
1426   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1427     return false;
1428
1429   MRI->replaceRegWith(DstReg, PrevDstReg);
1430
1431   // Lifetime of the previous copy has been extended.
1432   MRI->clearKillFlags(PrevDstReg);
1433   return true;
1434 }
1435
1436 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1437   return TargetRegisterInfo::isPhysicalRegister(Reg) &&
1438          !MRI->isAllocatable(Reg);
1439 }
1440
1441 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1442     MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1443   assert(MI.isCopy() && "expected a COPY machine instruction");
1444
1445   if (DisableNAPhysCopyOpt)
1446     return false;
1447
1448   unsigned DstReg = MI.getOperand(0).getReg();
1449   unsigned SrcReg = MI.getOperand(1).getReg();
1450   if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
1451     // %vreg = COPY %physreg
1452     // Avoid using a datastructure which can track multiple live non-allocatable
1453     // phys->virt copies since LLVM doesn't seem to do this.
1454     NAPhysToVirtMIs.insert({SrcReg, &MI});
1455     return false;
1456   }
1457
1458   if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1459     return false;
1460
1461   // %physreg = COPY %vreg
1462   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1463   if (PrevCopy == NAPhysToVirtMIs.end()) {
1464     // We can't remove the copy: there was an intervening clobber of the
1465     // non-allocatable physical register after the copy to virtual.
1466     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1467                       << MI);
1468     return false;
1469   }
1470
1471   unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1472   if (PrevDstReg == SrcReg) {
1473     // Remove the virt->phys copy: we saw the virtual register definition, and
1474     // the non-allocatable physical register's state hasn't changed since then.
1475     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1476     ++NumNAPhysCopies;
1477     return true;
1478   }
1479
1480   // Potential missed optimization opportunity: we saw a different virtual
1481   // register get a copy of the non-allocatable physical register, and we only
1482   // track one such copy. Avoid getting confused by this new non-allocatable
1483   // physical register definition, and remove it from the tracked copies.
1484   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1485   NAPhysToVirtMIs.erase(PrevCopy);
1486   return false;
1487 }
1488
1489 /// \bried Returns true if \p MO is a virtual register operand.
1490 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1491   if (!MO.isReg())
1492     return false;
1493   return TargetRegisterInfo::isVirtualRegister(MO.getReg());
1494 }
1495
1496 bool PeepholeOptimizer::findTargetRecurrence(
1497     unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1498     RecurrenceCycle &RC) {
1499   // Recurrence found if Reg is in TargetRegs.
1500   if (TargetRegs.count(Reg))
1501     return true;
1502
1503   // TODO: Curerntly, we only allow the last instruction of the recurrence
1504   // cycle (the instruction that feeds the PHI instruction) to have more than
1505   // one uses to guarantee that commuting operands does not tie registers
1506   // with overlapping live range. Once we have actual live range info of
1507   // each register, this constraint can be relaxed.
1508   if (!MRI->hasOneNonDBGUse(Reg))
1509     return false;
1510
1511   // Give up if the reccurrence chain length is longer than the limit.
1512   if (RC.size() >= MaxRecurrenceChain)
1513     return false;
1514
1515   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1516   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1517
1518   // Only interested in recurrences whose instructions have only one def, which
1519   // is a virtual register.
1520   if (MI.getDesc().getNumDefs() != 1)
1521     return false;
1522
1523   MachineOperand &DefOp = MI.getOperand(0);
1524   if (!isVirtualRegisterOperand(DefOp))
1525     return false;
1526
1527   // Check if def operand of MI is tied to any use operand. We are only
1528   // interested in the case that all the instructions in the recurrence chain
1529   // have there def operand tied with one of the use operand.
1530   unsigned TiedUseIdx;
1531   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1532     return false;
1533
1534   if (Idx == TiedUseIdx) {
1535     RC.push_back(RecurrenceInstr(&MI));
1536     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1537   } else {
1538     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1539     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1540     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1541       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1542       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1543     }
1544   }
1545
1546   return false;
1547 }
1548
1549 /// Phi instructions will eventually be lowered to copy instructions.
1550 /// If phi is in a loop header, a recurrence may formulated around the source
1551 /// and destination of the phi. For such case commuting operands of the
1552 /// instructions in the recurrence may enable coalescing of the copy instruction
1553 /// generated from the phi. For example, if there is a recurrence of
1554 ///
1555 /// LoopHeader:
1556 ///   %1 = phi(%0, %100)
1557 /// LoopLatch:
1558 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1559 ///
1560 /// , the fact that %0 and %2 are in the same tied operands set makes
1561 /// the coalescing of copy instruction generated from the phi in
1562 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1563 /// %2 have overlapping live range. This introduces additional move
1564 /// instruction to the final assembly. However, if we commute %2 and
1565 /// %1 of ADD instruction, the redundant move instruction can be
1566 /// avoided.
1567 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1568   SmallSet<unsigned, 2> TargetRegs;
1569   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1570     MachineOperand &MO = PHI.getOperand(Idx);
1571     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1572     TargetRegs.insert(MO.getReg());
1573   }
1574
1575   bool Changed = false;
1576   RecurrenceCycle RC;
1577   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1578     // Commutes operands of instructions in RC if necessary so that the copy to
1579     // be generated from PHI can be coalesced.
1580     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1581     for (auto &RI : RC) {
1582       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1583       auto CP = RI.getCommutePair();
1584       if (CP) {
1585         Changed = true;
1586         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1587                                 (*CP).second);
1588         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1589       }
1590     }
1591   }
1592
1593   return Changed;
1594 }
1595
1596 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1597   if (skipFunction(MF.getFunction()))
1598     return false;
1599
1600   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1601   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1602
1603   if (DisablePeephole)
1604     return false;
1605
1606   TII = MF.getSubtarget().getInstrInfo();
1607   TRI = MF.getSubtarget().getRegisterInfo();
1608   MRI = &MF.getRegInfo();
1609   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1610   MLI = &getAnalysis<MachineLoopInfo>();
1611
1612   bool Changed = false;
1613
1614   for (MachineBasicBlock &MBB : MF) {
1615     bool SeenMoveImm = false;
1616
1617     // During this forward scan, at some point it needs to answer the question
1618     // "given a pointer to an MI in the current BB, is it located before or
1619     // after the current instruction".
1620     // To perform this, the following set keeps track of the MIs already seen
1621     // during the scan, if a MI is not in the set, it is assumed to be located
1622     // after. Newly created MIs have to be inserted in the set as well.
1623     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1624     SmallSet<unsigned, 4> ImmDefRegs;
1625     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1626     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1627
1628     // Track when a non-allocatable physical register is copied to a virtual
1629     // register so that useless moves can be removed.
1630     //
1631     // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1632     // without any intervening re-definition of %physreg.
1633     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1634
1635     // Set of virtual registers that are copied from.
1636     SmallSet<unsigned, 4> CopySrcRegs;
1637     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1638
1639     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1640
1641     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1642          MII != MIE; ) {
1643       MachineInstr *MI = &*MII;
1644       // We may be erasing MI below, increment MII now.
1645       ++MII;
1646       LocalMIs.insert(MI);
1647
1648       // Skip debug instructions. They should not affect this peephole optimization.
1649       if (MI->isDebugInstr())
1650           continue;
1651
1652       if (MI->isPosition())
1653         continue;
1654
1655       if (IsLoopHeader && MI->isPHI()) {
1656         if (optimizeRecurrence(*MI)) {
1657           Changed = true;
1658           continue;
1659         }
1660       }
1661
1662       if (!MI->isCopy()) {
1663         for (const MachineOperand &MO : MI->operands()) {
1664           // Visit all operands: definitions can be implicit or explicit.
1665           if (MO.isReg()) {
1666             unsigned Reg = MO.getReg();
1667             if (MO.isDef() && isNAPhysCopy(Reg)) {
1668               const auto &Def = NAPhysToVirtMIs.find(Reg);
1669               if (Def != NAPhysToVirtMIs.end()) {
1670                 // A new definition of the non-allocatable physical register
1671                 // invalidates previous copies.
1672                 LLVM_DEBUG(dbgs()
1673                            << "NAPhysCopy: invalidating because of " << *MI);
1674                 NAPhysToVirtMIs.erase(Def);
1675               }
1676             }
1677           } else if (MO.isRegMask()) {
1678             const uint32_t *RegMask = MO.getRegMask();
1679             for (auto &RegMI : NAPhysToVirtMIs) {
1680               unsigned Def = RegMI.first;
1681               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1682                 LLVM_DEBUG(dbgs()
1683                            << "NAPhysCopy: invalidating because of " << *MI);
1684                 NAPhysToVirtMIs.erase(Def);
1685               }
1686             }
1687           }
1688         }
1689       }
1690
1691       if (MI->isImplicitDef() || MI->isKill())
1692         continue;
1693
1694       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1695         // Blow away all non-allocatable physical registers knowledge since we
1696         // don't know what's correct anymore.
1697         //
1698         // FIXME: handle explicit asm clobbers.
1699         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1700                           << *MI);
1701         NAPhysToVirtMIs.clear();
1702       }
1703
1704       if ((isUncoalescableCopy(*MI) &&
1705            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1706           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1707           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1708         // MI is deleted.
1709         LocalMIs.erase(MI);
1710         Changed = true;
1711         continue;
1712       }
1713
1714       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1715         Changed = true;
1716         continue;
1717       }
1718
1719       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1720         // MI is just rewritten.
1721         Changed = true;
1722         continue;
1723       }
1724
1725       if (MI->isCopy() &&
1726           (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1727            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1728         LocalMIs.erase(MI);
1729         MI->eraseFromParent();
1730         Changed = true;
1731         continue;
1732       }
1733
1734       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1735         SeenMoveImm = true;
1736       } else {
1737         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1738         // optimizeExtInstr might have created new instructions after MI
1739         // and before the already incremented MII. Adjust MII so that the
1740         // next iteration sees the new instructions.
1741         MII = MI;
1742         ++MII;
1743         if (SeenMoveImm)
1744           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1745       }
1746
1747       // Check whether MI is a load candidate for folding into a later
1748       // instruction. If MI is not a candidate, check whether we can fold an
1749       // earlier load into MI.
1750       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1751           !FoldAsLoadDefCandidates.empty()) {
1752
1753         // We visit each operand even after successfully folding a previous
1754         // one.  This allows us to fold multiple loads into a single
1755         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1756         // foldable uses earlier in the argument list.  Since we don't restart
1757         // iteration, we'd miss such cases.
1758         const MCInstrDesc &MIDesc = MI->getDesc();
1759         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1760              ++i) {
1761           const MachineOperand &MOp = MI->getOperand(i);
1762           if (!MOp.isReg())
1763             continue;
1764           unsigned FoldAsLoadDefReg = MOp.getReg();
1765           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1766             // We need to fold load after optimizeCmpInstr, since
1767             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1768             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1769             // we need it for markUsesInDebugValueAsUndef().
1770             unsigned FoldedReg = FoldAsLoadDefReg;
1771             MachineInstr *DefMI = nullptr;
1772             if (MachineInstr *FoldMI =
1773                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1774               // Update LocalMIs since we replaced MI with FoldMI and deleted
1775               // DefMI.
1776               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1777               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1778               LocalMIs.erase(MI);
1779               LocalMIs.erase(DefMI);
1780               LocalMIs.insert(FoldMI);
1781               MI->eraseFromParent();
1782               DefMI->eraseFromParent();
1783               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784               FoldAsLoadDefCandidates.erase(FoldedReg);
1785               ++NumLoadFold;
1786
1787               // MI is replaced with FoldMI so we can continue trying to fold
1788               Changed = true;
1789               MI = FoldMI;
1790             }
1791           }
1792         }
1793       }
1794
1795       // If we run into an instruction we can't fold across, discard
1796       // the load candidates.  Note: We might be able to fold *into* this
1797       // instruction, so this needs to be after the folding logic.
1798       if (MI->isLoadFoldBarrier()) {
1799         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800         FoldAsLoadDefCandidates.clear();
1801       }
1802     }
1803   }
1804
1805   return Changed;
1806 }
1807
1808 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809   assert(Def->isCopy() && "Invalid definition");
1810   // Copy instruction are supposed to be: Def = Src.
1811   // If someone breaks this assumption, bad things will happen everywhere.
1812   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1813
1814   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1815     // If we look for a different subreg, it means we want a subreg of src.
1816     // Bails as we do not support composing subregs yet.
1817     return ValueTrackerResult();
1818   // Otherwise, we want the whole source.
1819   const MachineOperand &Src = Def->getOperand(1);
1820   if (Src.isUndef())
1821     return ValueTrackerResult();
1822   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1823 }
1824
1825 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1826   assert(Def->isBitcast() && "Invalid definition");
1827
1828   // Bail if there are effects that a plain copy will not expose.
1829   if (Def->hasUnmodeledSideEffects())
1830     return ValueTrackerResult();
1831
1832   // Bitcasts with more than one def are not supported.
1833   if (Def->getDesc().getNumDefs() != 1)
1834     return ValueTrackerResult();
1835   const MachineOperand DefOp = Def->getOperand(DefIdx);
1836   if (DefOp.getSubReg() != DefSubReg)
1837     // If we look for a different subreg, it means we want a subreg of the src.
1838     // Bails as we do not support composing subregs yet.
1839     return ValueTrackerResult();
1840
1841   unsigned SrcIdx = Def->getNumOperands();
1842   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1843        ++OpIdx) {
1844     const MachineOperand &MO = Def->getOperand(OpIdx);
1845     if (!MO.isReg() || !MO.getReg())
1846       continue;
1847     // Ignore dead implicit defs.
1848     if (MO.isImplicit() && MO.isDead())
1849       continue;
1850     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1851     if (SrcIdx != EndOpIdx)
1852       // Multiple sources?
1853       return ValueTrackerResult();
1854     SrcIdx = OpIdx;
1855   }
1856
1857   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1858   // will break the assumed guarantees for the upper bits.
1859   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1860     if (UseMI.isSubregToReg())
1861       return ValueTrackerResult();
1862   }
1863
1864   const MachineOperand &Src = Def->getOperand(SrcIdx);
1865   if (Src.isUndef())
1866     return ValueTrackerResult();
1867   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1868 }
1869
1870 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1871   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1872          "Invalid definition");
1873
1874   if (Def->getOperand(DefIdx).getSubReg())
1875     // If we are composing subregs, bail out.
1876     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1877     // This should almost never happen as the SSA property is tracked at
1878     // the register level (as opposed to the subreg level).
1879     // I.e.,
1880     // Def.sub0 =
1881     // Def.sub1 =
1882     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1883     // Def. Thus, it must not be generated.
1884     // However, some code could theoretically generates a single
1885     // Def.sub0 (i.e, not defining the other subregs) and we would
1886     // have this case.
1887     // If we can ascertain (or force) that this never happens, we could
1888     // turn that into an assertion.
1889     return ValueTrackerResult();
1890
1891   if (!TII)
1892     // We could handle the REG_SEQUENCE here, but we do not want to
1893     // duplicate the code from the generic TII.
1894     return ValueTrackerResult();
1895
1896   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1897   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1898     return ValueTrackerResult();
1899
1900   // We are looking at:
1901   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1902   // Check if one of the operand defines the subreg we are interested in.
1903   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1904     if (RegSeqInput.SubIdx == DefSubReg) {
1905       if (RegSeqInput.SubReg)
1906         // Bail if we have to compose sub registers.
1907         return ValueTrackerResult();
1908
1909       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1910     }
1911   }
1912
1913   // If the subreg we are tracking is super-defined by another subreg,
1914   // we could follow this value. However, this would require to compose
1915   // the subreg and we do not do that for now.
1916   return ValueTrackerResult();
1917 }
1918
1919 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1920   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1921          "Invalid definition");
1922
1923   if (Def->getOperand(DefIdx).getSubReg())
1924     // If we are composing subreg, bail out.
1925     // Same remark as getNextSourceFromRegSequence.
1926     // I.e., this may be turned into an assert.
1927     return ValueTrackerResult();
1928
1929   if (!TII)
1930     // We could handle the REG_SEQUENCE here, but we do not want to
1931     // duplicate the code from the generic TII.
1932     return ValueTrackerResult();
1933
1934   RegSubRegPair BaseReg;
1935   RegSubRegPairAndIdx InsertedReg;
1936   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1937     return ValueTrackerResult();
1938
1939   // We are looking at:
1940   // Def = INSERT_SUBREG v0, v1, sub1
1941   // There are two cases:
1942   // 1. DefSubReg == sub1, get v1.
1943   // 2. DefSubReg != sub1, the value may be available through v0.
1944
1945   // #1 Check if the inserted register matches the required sub index.
1946   if (InsertedReg.SubIdx == DefSubReg) {
1947     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1948   }
1949   // #2 Otherwise, if the sub register we are looking for is not partial
1950   // defined by the inserted element, we can look through the main
1951   // register (v0).
1952   const MachineOperand &MODef = Def->getOperand(DefIdx);
1953   // If the result register (Def) and the base register (v0) do not
1954   // have the same register class or if we have to compose
1955   // subregisters, bail out.
1956   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1957       BaseReg.SubReg)
1958     return ValueTrackerResult();
1959
1960   // Get the TRI and check if the inserted sub-register overlaps with the
1961   // sub-register we are tracking.
1962   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1963   if (!TRI ||
1964       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1965         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1966     return ValueTrackerResult();
1967   // At this point, the value is available in v0 via the same subreg
1968   // we used for Def.
1969   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1970 }
1971
1972 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1973   assert((Def->isExtractSubreg() ||
1974           Def->isExtractSubregLike()) && "Invalid definition");
1975   // We are looking at:
1976   // Def = EXTRACT_SUBREG v0, sub0
1977
1978   // Bail if we have to compose sub registers.
1979   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1980   if (DefSubReg)
1981     return ValueTrackerResult();
1982
1983   if (!TII)
1984     // We could handle the EXTRACT_SUBREG here, but we do not want to
1985     // duplicate the code from the generic TII.
1986     return ValueTrackerResult();
1987
1988   RegSubRegPairAndIdx ExtractSubregInputReg;
1989   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1990     return ValueTrackerResult();
1991
1992   // Bail if we have to compose sub registers.
1993   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1994   if (ExtractSubregInputReg.SubReg)
1995     return ValueTrackerResult();
1996   // Otherwise, the value is available in the v0.sub0.
1997   return ValueTrackerResult(ExtractSubregInputReg.Reg,
1998                             ExtractSubregInputReg.SubIdx);
1999 }
2000
2001 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2002   assert(Def->isSubregToReg() && "Invalid definition");
2003   // We are looking at:
2004   // Def = SUBREG_TO_REG Imm, v0, sub0
2005
2006   // Bail if we have to compose sub registers.
2007   // If DefSubReg != sub0, we would have to check that all the bits
2008   // we track are included in sub0 and if yes, we would have to
2009   // determine the right subreg in v0.
2010   if (DefSubReg != Def->getOperand(3).getImm())
2011     return ValueTrackerResult();
2012   // Bail if we have to compose sub registers.
2013   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2014   if (Def->getOperand(2).getSubReg())
2015     return ValueTrackerResult();
2016
2017   return ValueTrackerResult(Def->getOperand(2).getReg(),
2018                             Def->getOperand(3).getImm());
2019 }
2020
2021 /// Explore each PHI incoming operand and return its sources.
2022 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2023   assert(Def->isPHI() && "Invalid definition");
2024   ValueTrackerResult Res;
2025
2026   // If we look for a different subreg, bail as we do not support composing
2027   // subregs yet.
2028   if (Def->getOperand(0).getSubReg() != DefSubReg)
2029     return ValueTrackerResult();
2030
2031   // Return all register sources for PHI instructions.
2032   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2033     const MachineOperand &MO = Def->getOperand(i);
2034     assert(MO.isReg() && "Invalid PHI instruction");
2035     // We have no code to deal with undef operands. They shouldn't happen in
2036     // normal programs anyway.
2037     if (MO.isUndef())
2038       return ValueTrackerResult();
2039     Res.addSource(MO.getReg(), MO.getSubReg());
2040   }
2041
2042   return Res;
2043 }
2044
2045 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2046   assert(Def && "This method needs a valid definition");
2047
2048   assert(((Def->getOperand(DefIdx).isDef() &&
2049            (DefIdx < Def->getDesc().getNumDefs() ||
2050             Def->getDesc().isVariadic())) ||
2051           Def->getOperand(DefIdx).isImplicit()) &&
2052          "Invalid DefIdx");
2053   if (Def->isCopy())
2054     return getNextSourceFromCopy();
2055   if (Def->isBitcast())
2056     return getNextSourceFromBitcast();
2057   // All the remaining cases involve "complex" instructions.
2058   // Bail if we did not ask for the advanced tracking.
2059   if (DisableAdvCopyOpt)
2060     return ValueTrackerResult();
2061   if (Def->isRegSequence() || Def->isRegSequenceLike())
2062     return getNextSourceFromRegSequence();
2063   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2064     return getNextSourceFromInsertSubreg();
2065   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2066     return getNextSourceFromExtractSubreg();
2067   if (Def->isSubregToReg())
2068     return getNextSourceFromSubregToReg();
2069   if (Def->isPHI())
2070     return getNextSourceFromPHI();
2071   return ValueTrackerResult();
2072 }
2073
2074 ValueTrackerResult ValueTracker::getNextSource() {
2075   // If we reach a point where we cannot move up in the use-def chain,
2076   // there is nothing we can get.
2077   if (!Def)
2078     return ValueTrackerResult();
2079
2080   ValueTrackerResult Res = getNextSourceImpl();
2081   if (Res.isValid()) {
2082     // Update definition, definition index, and subregister for the
2083     // next call of getNextSource.
2084     // Update the current register.
2085     bool OneRegSrc = Res.getNumSources() == 1;
2086     if (OneRegSrc)
2087       Reg = Res.getSrcReg(0);
2088     // Update the result before moving up in the use-def chain
2089     // with the instruction containing the last found sources.
2090     Res.setInst(Def);
2091
2092     // If we can still move up in the use-def chain, move to the next
2093     // definition.
2094     if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
2095       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2096       if (DI != MRI.def_end()) {
2097         Def = DI->getParent();
2098         DefIdx = DI.getOperandNo();
2099         DefSubReg = Res.getSrcSubReg(0);
2100       } else {
2101         Def = nullptr;
2102       }
2103       return Res;
2104     }
2105   }
2106   // If we end up here, this means we will not be able to find another source
2107   // for the next iteration. Make sure any new call to getNextSource bails out
2108   // early by cutting the use-def chain.
2109   Def = nullptr;
2110   return Res;
2111 }