]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SafeStack.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SafeStack.cpp
1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
11 // and the unsafe stack (explicitly allocated and managed through the runtime
12 // support library).
13 //
14 // http://clang.llvm.org/docs/SafeStack.html
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "SafeStackColoring.h"
19 #include "SafeStackLayout.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InlineCost.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/CallSite.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DIBuilder.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <string>
71 #include <utility>
72
73 using namespace llvm;
74 using namespace llvm::safestack;
75
76 #define DEBUG_TYPE "safe-stack"
77
78 namespace llvm {
79
80 STATISTIC(NumFunctions, "Total number of functions");
81 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
82 STATISTIC(NumUnsafeStackRestorePointsFunctions,
83           "Number of functions that use setjmp or exceptions");
84
85 STATISTIC(NumAllocas, "Total number of allocas");
86 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
87 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
88 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
89 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
90
91 } // namespace llvm
92
93 /// Use __safestack_pointer_address even if the platform has a faster way of
94 /// access safe stack pointer.
95 static cl::opt<bool>
96     SafeStackUsePointerAddress("safestack-use-pointer-address",
97                                   cl::init(false), cl::Hidden);
98
99
100 namespace {
101
102 /// Rewrite an SCEV expression for a memory access address to an expression that
103 /// represents offset from the given alloca.
104 ///
105 /// The implementation simply replaces all mentions of the alloca with zero.
106 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
107   const Value *AllocaPtr;
108
109 public:
110   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
111       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
112
113   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
114     if (Expr->getValue() == AllocaPtr)
115       return SE.getZero(Expr->getType());
116     return Expr;
117   }
118 };
119
120 /// The SafeStack pass splits the stack of each function into the safe
121 /// stack, which is only accessed through memory safe dereferences (as
122 /// determined statically), and the unsafe stack, which contains all
123 /// local variables that are accessed in ways that we can't prove to
124 /// be safe.
125 class SafeStack {
126   Function &F;
127   const TargetLoweringBase &TL;
128   const DataLayout &DL;
129   ScalarEvolution &SE;
130
131   Type *StackPtrTy;
132   Type *IntPtrTy;
133   Type *Int32Ty;
134   Type *Int8Ty;
135
136   Value *UnsafeStackPtr = nullptr;
137
138   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
139   /// aligned to this value. We need to re-align the unsafe stack if the
140   /// alignment of any object on the stack exceeds this value.
141   ///
142   /// 16 seems like a reasonable upper bound on the alignment of objects that we
143   /// might expect to appear on the stack on most common targets.
144   enum { StackAlignment = 16 };
145
146   /// Return the value of the stack canary.
147   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
148
149   /// Load stack guard from the frame and check if it has changed.
150   void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
151                        AllocaInst *StackGuardSlot, Value *StackGuard);
152
153   /// Find all static allocas, dynamic allocas, return instructions and
154   /// stack restore points (exception unwind blocks and setjmp calls) in the
155   /// given function and append them to the respective vectors.
156   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
157                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
158                  SmallVectorImpl<Argument *> &ByValArguments,
159                  SmallVectorImpl<ReturnInst *> &Returns,
160                  SmallVectorImpl<Instruction *> &StackRestorePoints);
161
162   /// Calculate the allocation size of a given alloca. Returns 0 if the
163   /// size can not be statically determined.
164   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
165
166   /// Allocate space for all static allocas in \p StaticAllocas,
167   /// replace allocas with pointers into the unsafe stack and generate code to
168   /// restore the stack pointer before all return instructions in \p Returns.
169   ///
170   /// \returns A pointer to the top of the unsafe stack after all unsafe static
171   /// allocas are allocated.
172   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
173                                         ArrayRef<AllocaInst *> StaticAllocas,
174                                         ArrayRef<Argument *> ByValArguments,
175                                         ArrayRef<ReturnInst *> Returns,
176                                         Instruction *BasePointer,
177                                         AllocaInst *StackGuardSlot);
178
179   /// Generate code to restore the stack after all stack restore points
180   /// in \p StackRestorePoints.
181   ///
182   /// \returns A local variable in which to maintain the dynamic top of the
183   /// unsafe stack if needed.
184   AllocaInst *
185   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
186                            ArrayRef<Instruction *> StackRestorePoints,
187                            Value *StaticTop, bool NeedDynamicTop);
188
189   /// Replace all allocas in \p DynamicAllocas with code to allocate
190   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
191   /// top to \p DynamicTop if non-null.
192   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
193                                        AllocaInst *DynamicTop,
194                                        ArrayRef<AllocaInst *> DynamicAllocas);
195
196   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
197
198   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
199                           const Value *AllocaPtr, uint64_t AllocaSize);
200   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
201                     uint64_t AllocaSize);
202
203   bool ShouldInlinePointerAddress(CallSite &CS);
204   void TryInlinePointerAddress();
205
206 public:
207   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
208             ScalarEvolution &SE)
209       : F(F), TL(TL), DL(DL), SE(SE),
210         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
211         IntPtrTy(DL.getIntPtrType(F.getContext())),
212         Int32Ty(Type::getInt32Ty(F.getContext())),
213         Int8Ty(Type::getInt8Ty(F.getContext())) {}
214
215   // Run the transformation on the associated function.
216   // Returns whether the function was changed.
217   bool run();
218 };
219
220 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
221   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
222   if (AI->isArrayAllocation()) {
223     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
224     if (!C)
225       return 0;
226     Size *= C->getZExtValue();
227   }
228   return Size;
229 }
230
231 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
232                              const Value *AllocaPtr, uint64_t AllocaSize) {
233   AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
234   const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
235
236   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
237   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
238   ConstantRange SizeRange =
239       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
240   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
241   ConstantRange AllocaRange =
242       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
243   bool Safe = AllocaRange.contains(AccessRange);
244
245   LLVM_DEBUG(
246       dbgs() << "[SafeStack] "
247              << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
248              << *AllocaPtr << "\n"
249              << "            Access " << *Addr << "\n"
250              << "            SCEV " << *Expr
251              << " U: " << SE.getUnsignedRange(Expr)
252              << ", S: " << SE.getSignedRange(Expr) << "\n"
253              << "            Range " << AccessRange << "\n"
254              << "            AllocaRange " << AllocaRange << "\n"
255              << "            " << (Safe ? "safe" : "unsafe") << "\n");
256
257   return Safe;
258 }
259
260 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
261                                    const Value *AllocaPtr,
262                                    uint64_t AllocaSize) {
263   if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
264     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
265       return true;
266   } else {
267     if (MI->getRawDest() != U)
268       return true;
269   }
270
271   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
272   // Non-constant size => unsafe. FIXME: try SCEV getRange.
273   if (!Len) return false;
274   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
275 }
276
277 /// Check whether a given allocation must be put on the safe
278 /// stack or not. The function analyzes all uses of AI and checks whether it is
279 /// only accessed in a memory safe way (as decided statically).
280 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
281   // Go through all uses of this alloca and check whether all accesses to the
282   // allocated object are statically known to be memory safe and, hence, the
283   // object can be placed on the safe stack.
284   SmallPtrSet<const Value *, 16> Visited;
285   SmallVector<const Value *, 8> WorkList;
286   WorkList.push_back(AllocaPtr);
287
288   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
289   while (!WorkList.empty()) {
290     const Value *V = WorkList.pop_back_val();
291     for (const Use &UI : V->uses()) {
292       auto I = cast<const Instruction>(UI.getUser());
293       assert(V == UI.get());
294
295       switch (I->getOpcode()) {
296       case Instruction::Load:
297         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
298                           AllocaSize))
299           return false;
300         break;
301
302       case Instruction::VAArg:
303         // "va-arg" from a pointer is safe.
304         break;
305       case Instruction::Store:
306         if (V == I->getOperand(0)) {
307           // Stored the pointer - conservatively assume it may be unsafe.
308           LLVM_DEBUG(dbgs()
309                      << "[SafeStack] Unsafe alloca: " << *AllocaPtr
310                      << "\n            store of address: " << *I << "\n");
311           return false;
312         }
313
314         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
315                           AllocaPtr, AllocaSize))
316           return false;
317         break;
318
319       case Instruction::Ret:
320         // Information leak.
321         return false;
322
323       case Instruction::Call:
324       case Instruction::Invoke: {
325         ImmutableCallSite CS(I);
326
327         if (I->isLifetimeStartOrEnd())
328           continue;
329
330         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
331           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
332             LLVM_DEBUG(dbgs()
333                        << "[SafeStack] Unsafe alloca: " << *AllocaPtr
334                        << "\n            unsafe memintrinsic: " << *I << "\n");
335             return false;
336           }
337           continue;
338         }
339
340         // LLVM 'nocapture' attribute is only set for arguments whose address
341         // is not stored, passed around, or used in any other non-trivial way.
342         // We assume that passing a pointer to an object as a 'nocapture
343         // readnone' argument is safe.
344         // FIXME: a more precise solution would require an interprocedural
345         // analysis here, which would look at all uses of an argument inside
346         // the function being called.
347         ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
348         for (ImmutableCallSite::arg_iterator A = B; A != E; ++A)
349           if (A->get() == V)
350             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
351                                                CS.doesNotAccessMemory()))) {
352               LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
353                                 << "\n            unsafe call: " << *I << "\n");
354               return false;
355             }
356         continue;
357       }
358
359       default:
360         if (Visited.insert(I).second)
361           WorkList.push_back(cast<const Instruction>(I));
362       }
363     }
364   }
365
366   // All uses of the alloca are safe, we can place it on the safe stack.
367   return true;
368 }
369
370 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
371   Value *StackGuardVar = TL.getIRStackGuard(IRB);
372   if (!StackGuardVar)
373     StackGuardVar =
374         F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
375   return IRB.CreateLoad(StackGuardVar, "StackGuard");
376 }
377
378 void SafeStack::findInsts(Function &F,
379                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
380                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
381                           SmallVectorImpl<Argument *> &ByValArguments,
382                           SmallVectorImpl<ReturnInst *> &Returns,
383                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
384   for (Instruction &I : instructions(&F)) {
385     if (auto AI = dyn_cast<AllocaInst>(&I)) {
386       ++NumAllocas;
387
388       uint64_t Size = getStaticAllocaAllocationSize(AI);
389       if (IsSafeStackAlloca(AI, Size))
390         continue;
391
392       if (AI->isStaticAlloca()) {
393         ++NumUnsafeStaticAllocas;
394         StaticAllocas.push_back(AI);
395       } else {
396         ++NumUnsafeDynamicAllocas;
397         DynamicAllocas.push_back(AI);
398       }
399     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
400       Returns.push_back(RI);
401     } else if (auto CI = dyn_cast<CallInst>(&I)) {
402       // setjmps require stack restore.
403       if (CI->getCalledFunction() && CI->canReturnTwice())
404         StackRestorePoints.push_back(CI);
405     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
406       // Exception landing pads require stack restore.
407       StackRestorePoints.push_back(LP);
408     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
409       if (II->getIntrinsicID() == Intrinsic::gcroot)
410         report_fatal_error(
411             "gcroot intrinsic not compatible with safestack attribute");
412     }
413   }
414   for (Argument &Arg : F.args()) {
415     if (!Arg.hasByValAttr())
416       continue;
417     uint64_t Size =
418         DL.getTypeStoreSize(Arg.getType()->getPointerElementType());
419     if (IsSafeStackAlloca(&Arg, Size))
420       continue;
421
422     ++NumUnsafeByValArguments;
423     ByValArguments.push_back(&Arg);
424   }
425 }
426
427 AllocaInst *
428 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
429                                     ArrayRef<Instruction *> StackRestorePoints,
430                                     Value *StaticTop, bool NeedDynamicTop) {
431   assert(StaticTop && "The stack top isn't set.");
432
433   if (StackRestorePoints.empty())
434     return nullptr;
435
436   // We need the current value of the shadow stack pointer to restore
437   // after longjmp or exception catching.
438
439   // FIXME: On some platforms this could be handled by the longjmp/exception
440   // runtime itself.
441
442   AllocaInst *DynamicTop = nullptr;
443   if (NeedDynamicTop) {
444     // If we also have dynamic alloca's, the stack pointer value changes
445     // throughout the function. For now we store it in an alloca.
446     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
447                                   "unsafe_stack_dynamic_ptr");
448     IRB.CreateStore(StaticTop, DynamicTop);
449   }
450
451   // Restore current stack pointer after longjmp/exception catch.
452   for (Instruction *I : StackRestorePoints) {
453     ++NumUnsafeStackRestorePoints;
454
455     IRB.SetInsertPoint(I->getNextNode());
456     Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop;
457     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
458   }
459
460   return DynamicTop;
461 }
462
463 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
464                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
465   Value *V = IRB.CreateLoad(StackGuardSlot);
466   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
467
468   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
469   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
470   MDNode *Weights = MDBuilder(F.getContext())
471                         .createBranchWeights(SuccessProb.getNumerator(),
472                                              FailureProb.getNumerator());
473   Instruction *CheckTerm =
474       SplitBlockAndInsertIfThen(Cmp, &RI,
475                                 /* Unreachable */ true, Weights);
476   IRBuilder<> IRBFail(CheckTerm);
477   // FIXME: respect -fsanitize-trap / -ftrap-function here?
478   Constant *StackChkFail = F.getParent()->getOrInsertFunction(
479       "__stack_chk_fail", IRB.getVoidTy());
480   IRBFail.CreateCall(StackChkFail, {});
481 }
482
483 /// We explicitly compute and set the unsafe stack layout for all unsafe
484 /// static alloca instructions. We save the unsafe "base pointer" in the
485 /// prologue into a local variable and restore it in the epilogue.
486 Value *SafeStack::moveStaticAllocasToUnsafeStack(
487     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
488     ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
489     Instruction *BasePointer, AllocaInst *StackGuardSlot) {
490   if (StaticAllocas.empty() && ByValArguments.empty())
491     return BasePointer;
492
493   DIBuilder DIB(*F.getParent());
494
495   StackColoring SSC(F, StaticAllocas);
496   SSC.run();
497   SSC.removeAllMarkers();
498
499   // Unsafe stack always grows down.
500   StackLayout SSL(StackAlignment);
501   if (StackGuardSlot) {
502     Type *Ty = StackGuardSlot->getAllocatedType();
503     unsigned Align =
504         std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment());
505     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
506                   Align, SSC.getFullLiveRange());
507   }
508
509   for (Argument *Arg : ByValArguments) {
510     Type *Ty = Arg->getType()->getPointerElementType();
511     uint64_t Size = DL.getTypeStoreSize(Ty);
512     if (Size == 0)
513       Size = 1; // Don't create zero-sized stack objects.
514
515     // Ensure the object is properly aligned.
516     unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty),
517                               Arg->getParamAlignment());
518     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
519   }
520
521   for (AllocaInst *AI : StaticAllocas) {
522     Type *Ty = AI->getAllocatedType();
523     uint64_t Size = getStaticAllocaAllocationSize(AI);
524     if (Size == 0)
525       Size = 1; // Don't create zero-sized stack objects.
526
527     // Ensure the object is properly aligned.
528     unsigned Align =
529         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment());
530
531     SSL.addObject(AI, Size, Align, SSC.getLiveRange(AI));
532   }
533
534   SSL.computeLayout();
535   unsigned FrameAlignment = SSL.getFrameAlignment();
536
537   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
538   // (AlignmentSkew).
539   if (FrameAlignment > StackAlignment) {
540     // Re-align the base pointer according to the max requested alignment.
541     assert(isPowerOf2_32(FrameAlignment));
542     IRB.SetInsertPoint(BasePointer->getNextNode());
543     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
544         IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
545                       ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))),
546         StackPtrTy));
547   }
548
549   IRB.SetInsertPoint(BasePointer->getNextNode());
550
551   if (StackGuardSlot) {
552     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
553     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
554                                ConstantInt::get(Int32Ty, -Offset));
555     Value *NewAI =
556         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
557
558     // Replace alloc with the new location.
559     StackGuardSlot->replaceAllUsesWith(NewAI);
560     StackGuardSlot->eraseFromParent();
561   }
562
563   for (Argument *Arg : ByValArguments) {
564     unsigned Offset = SSL.getObjectOffset(Arg);
565     unsigned Align = SSL.getObjectAlignment(Arg);
566     Type *Ty = Arg->getType()->getPointerElementType();
567
568     uint64_t Size = DL.getTypeStoreSize(Ty);
569     if (Size == 0)
570       Size = 1; // Don't create zero-sized stack objects.
571
572     Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8*
573                                ConstantInt::get(Int32Ty, -Offset));
574     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
575                                      Arg->getName() + ".unsafe-byval");
576
577     // Replace alloc with the new location.
578     replaceDbgDeclare(Arg, BasePointer, BasePointer->getNextNode(), DIB,
579                       DIExpression::NoDeref, -Offset, DIExpression::NoDeref);
580     Arg->replaceAllUsesWith(NewArg);
581     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
582     IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlignment(), Size);
583   }
584
585   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
586   for (AllocaInst *AI : StaticAllocas) {
587     IRB.SetInsertPoint(AI);
588     unsigned Offset = SSL.getObjectOffset(AI);
589
590     uint64_t Size = getStaticAllocaAllocationSize(AI);
591     if (Size == 0)
592       Size = 1; // Don't create zero-sized stack objects.
593
594     replaceDbgDeclareForAlloca(AI, BasePointer, DIB, DIExpression::NoDeref,
595                                -Offset, DIExpression::NoDeref);
596     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
597
598     // Replace uses of the alloca with the new location.
599     // Insert address calculation close to each use to work around PR27844.
600     std::string Name = std::string(AI->getName()) + ".unsafe";
601     while (!AI->use_empty()) {
602       Use &U = *AI->use_begin();
603       Instruction *User = cast<Instruction>(U.getUser());
604
605       Instruction *InsertBefore;
606       if (auto *PHI = dyn_cast<PHINode>(User))
607         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
608       else
609         InsertBefore = User;
610
611       IRBuilder<> IRBUser(InsertBefore);
612       Value *Off = IRBUser.CreateGEP(BasePointer, // BasePointer is i8*
613                                      ConstantInt::get(Int32Ty, -Offset));
614       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
615
616       if (auto *PHI = dyn_cast<PHINode>(User)) {
617         // PHI nodes may have multiple incoming edges from the same BB (why??),
618         // all must be updated at once with the same incoming value.
619         auto *BB = PHI->getIncomingBlock(U);
620         for (unsigned I = 0; I < PHI->getNumIncomingValues(); ++I)
621           if (PHI->getIncomingBlock(I) == BB)
622             PHI->setIncomingValue(I, Replacement);
623       } else {
624         U.set(Replacement);
625       }
626     }
627
628     AI->eraseFromParent();
629   }
630
631   // Re-align BasePointer so that our callees would see it aligned as
632   // expected.
633   // FIXME: no need to update BasePointer in leaf functions.
634   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
635
636   // Update shadow stack pointer in the function epilogue.
637   IRB.SetInsertPoint(BasePointer->getNextNode());
638
639   Value *StaticTop =
640       IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
641                     "unsafe_stack_static_top");
642   IRB.CreateStore(StaticTop, UnsafeStackPtr);
643   return StaticTop;
644 }
645
646 void SafeStack::moveDynamicAllocasToUnsafeStack(
647     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
648     ArrayRef<AllocaInst *> DynamicAllocas) {
649   DIBuilder DIB(*F.getParent());
650
651   for (AllocaInst *AI : DynamicAllocas) {
652     IRBuilder<> IRB(AI);
653
654     // Compute the new SP value (after AI).
655     Value *ArraySize = AI->getArraySize();
656     if (ArraySize->getType() != IntPtrTy)
657       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
658
659     Type *Ty = AI->getAllocatedType();
660     uint64_t TySize = DL.getTypeAllocSize(Ty);
661     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
662
663     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy);
664     SP = IRB.CreateSub(SP, Size);
665
666     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
667     unsigned Align = std::max(
668         std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
669         (unsigned)StackAlignment);
670
671     assert(isPowerOf2_32(Align));
672     Value *NewTop = IRB.CreateIntToPtr(
673         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
674         StackPtrTy);
675
676     // Save the stack pointer.
677     IRB.CreateStore(NewTop, UnsafeStackPtr);
678     if (DynamicTop)
679       IRB.CreateStore(NewTop, DynamicTop);
680
681     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
682     if (AI->hasName() && isa<Instruction>(NewAI))
683       NewAI->takeName(AI);
684
685     replaceDbgDeclareForAlloca(AI, NewAI, DIB, DIExpression::NoDeref, 0,
686                                DIExpression::NoDeref);
687     AI->replaceAllUsesWith(NewAI);
688     AI->eraseFromParent();
689   }
690
691   if (!DynamicAllocas.empty()) {
692     // Now go through the instructions again, replacing stacksave/stackrestore.
693     for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
694       Instruction *I = &*(It++);
695       auto II = dyn_cast<IntrinsicInst>(I);
696       if (!II)
697         continue;
698
699       if (II->getIntrinsicID() == Intrinsic::stacksave) {
700         IRBuilder<> IRB(II);
701         Instruction *LI = IRB.CreateLoad(UnsafeStackPtr);
702         LI->takeName(II);
703         II->replaceAllUsesWith(LI);
704         II->eraseFromParent();
705       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
706         IRBuilder<> IRB(II);
707         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
708         SI->takeName(II);
709         assert(II->use_empty());
710         II->eraseFromParent();
711       }
712     }
713   }
714 }
715
716 bool SafeStack::ShouldInlinePointerAddress(CallSite &CS) {
717   Function *Callee = CS.getCalledFunction();
718   if (CS.hasFnAttr(Attribute::AlwaysInline) && isInlineViable(*Callee))
719     return true;
720   if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
721       CS.isNoInline())
722     return false;
723   return true;
724 }
725
726 void SafeStack::TryInlinePointerAddress() {
727   if (!isa<CallInst>(UnsafeStackPtr))
728     return;
729
730   if(F.hasFnAttribute(Attribute::OptimizeNone))
731     return;
732
733   CallSite CS(UnsafeStackPtr);
734   Function *Callee = CS.getCalledFunction();
735   if (!Callee || Callee->isDeclaration())
736     return;
737
738   if (!ShouldInlinePointerAddress(CS))
739     return;
740
741   InlineFunctionInfo IFI;
742   InlineFunction(CS, IFI);
743 }
744
745 bool SafeStack::run() {
746   assert(F.hasFnAttribute(Attribute::SafeStack) &&
747          "Can't run SafeStack on a function without the attribute");
748   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
749
750   ++NumFunctions;
751
752   SmallVector<AllocaInst *, 16> StaticAllocas;
753   SmallVector<AllocaInst *, 4> DynamicAllocas;
754   SmallVector<Argument *, 4> ByValArguments;
755   SmallVector<ReturnInst *, 4> Returns;
756
757   // Collect all points where stack gets unwound and needs to be restored
758   // This is only necessary because the runtime (setjmp and unwind code) is
759   // not aware of the unsafe stack and won't unwind/restore it properly.
760   // To work around this problem without changing the runtime, we insert
761   // instrumentation to restore the unsafe stack pointer when necessary.
762   SmallVector<Instruction *, 4> StackRestorePoints;
763
764   // Find all static and dynamic alloca instructions that must be moved to the
765   // unsafe stack, all return instructions and stack restore points.
766   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
767             StackRestorePoints);
768
769   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
770       ByValArguments.empty() && StackRestorePoints.empty())
771     return false; // Nothing to do in this function.
772
773   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
774       !ByValArguments.empty())
775     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
776
777   if (!StackRestorePoints.empty())
778     ++NumUnsafeStackRestorePointsFunctions;
779
780   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
781   // Calls must always have a debug location, or else inlining breaks. So
782   // we explicitly set a artificial debug location here.
783   if (DISubprogram *SP = F.getSubprogram())
784     IRB.SetCurrentDebugLocation(DebugLoc::get(SP->getScopeLine(), 0, SP));
785   if (SafeStackUsePointerAddress) {
786     Value *Fn = F.getParent()->getOrInsertFunction(
787         "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
788     UnsafeStackPtr = IRB.CreateCall(Fn);
789   } else {
790     UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
791   }
792
793   // Load the current stack pointer (we'll also use it as a base pointer).
794   // FIXME: use a dedicated register for it ?
795   Instruction *BasePointer =
796       IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr");
797   assert(BasePointer->getType() == StackPtrTy);
798
799   AllocaInst *StackGuardSlot = nullptr;
800   // FIXME: implement weaker forms of stack protector.
801   if (F.hasFnAttribute(Attribute::StackProtect) ||
802       F.hasFnAttribute(Attribute::StackProtectStrong) ||
803       F.hasFnAttribute(Attribute::StackProtectReq)) {
804     Value *StackGuard = getStackGuard(IRB, F);
805     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
806     IRB.CreateStore(StackGuard, StackGuardSlot);
807
808     for (ReturnInst *RI : Returns) {
809       IRBuilder<> IRBRet(RI);
810       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
811     }
812   }
813
814   // The top of the unsafe stack after all unsafe static allocas are
815   // allocated.
816   Value *StaticTop =
817       moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments,
818                                      Returns, BasePointer, StackGuardSlot);
819
820   // Safe stack object that stores the current unsafe stack top. It is updated
821   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
822   // This is only needed if we need to restore stack pointer after longjmp
823   // or exceptions, and we have dynamic allocations.
824   // FIXME: a better alternative might be to store the unsafe stack pointer
825   // before setjmp / invoke instructions.
826   AllocaInst *DynamicTop = createStackRestorePoints(
827       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
828
829   // Handle dynamic allocas.
830   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
831                                   DynamicAllocas);
832
833   // Restore the unsafe stack pointer before each return.
834   for (ReturnInst *RI : Returns) {
835     IRB.SetInsertPoint(RI);
836     IRB.CreateStore(BasePointer, UnsafeStackPtr);
837   }
838
839   TryInlinePointerAddress();
840
841   LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
842   return true;
843 }
844
845 class SafeStackLegacyPass : public FunctionPass {
846   const TargetMachine *TM = nullptr;
847
848 public:
849   static char ID; // Pass identification, replacement for typeid..
850
851   SafeStackLegacyPass() : FunctionPass(ID) {
852     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
853   }
854
855   void getAnalysisUsage(AnalysisUsage &AU) const override {
856     AU.addRequired<TargetPassConfig>();
857     AU.addRequired<TargetLibraryInfoWrapperPass>();
858     AU.addRequired<AssumptionCacheTracker>();
859   }
860
861   bool runOnFunction(Function &F) override {
862     LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
863
864     if (!F.hasFnAttribute(Attribute::SafeStack)) {
865       LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
866                            " for this function\n");
867       return false;
868     }
869
870     if (F.isDeclaration()) {
871       LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
872                            " is not available\n");
873       return false;
874     }
875
876     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
877     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
878     if (!TL)
879       report_fatal_error("TargetLowering instance is required");
880
881     auto *DL = &F.getParent()->getDataLayout();
882     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
883     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
884
885     // Compute DT and LI only for functions that have the attribute.
886     // This is only useful because the legacy pass manager doesn't let us
887     // compute analyzes lazily.
888     // In the backend pipeline, nothing preserves DT before SafeStack, so we
889     // would otherwise always compute it wastefully, even if there is no
890     // function with the safestack attribute.
891     DominatorTree DT(F);
892     LoopInfo LI(DT);
893
894     ScalarEvolution SE(F, TLI, ACT, DT, LI);
895
896     return SafeStack(F, *TL, *DL, SE).run();
897   }
898 };
899
900 } // end anonymous namespace
901
902 char SafeStackLegacyPass::ID = 0;
903
904 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
905                       "Safe Stack instrumentation pass", false, false)
906 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
907 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
908                     "Safe Stack instrumentation pass", false, false)
909
910 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }