]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / ScheduleDAG.cpp
1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Implements the ScheduleDAG class, which is a base class used by
10 /// scheduling implementation classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/ScheduleDAG.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 #include <limits>
34 #include <utility>
35 #include <vector>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "pre-RA-sched"
40
41 STATISTIC(NumNewPredsAdded, "Number of times a  single predecessor was added");
42 STATISTIC(NumTopoInits,
43           "Number of times the topological order has been recomputed");
44
45 #ifndef NDEBUG
46 static cl::opt<bool> StressSchedOpt(
47   "stress-sched", cl::Hidden, cl::init(false),
48   cl::desc("Stress test instruction scheduling"));
49 #endif
50
51 void SchedulingPriorityQueue::anchor() {}
52
53 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
54     : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
55       TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
56       MRI(mf.getRegInfo()) {
57 #ifndef NDEBUG
58   StressSched = StressSchedOpt;
59 #endif
60 }
61
62 ScheduleDAG::~ScheduleDAG() = default;
63
64 void ScheduleDAG::clearDAG() {
65   SUnits.clear();
66   EntrySU = SUnit();
67   ExitSU = SUnit();
68 }
69
70 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
71   if (!Node || !Node->isMachineOpcode()) return nullptr;
72   return &TII->get(Node->getMachineOpcode());
73 }
74
75 LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
76   switch (getKind()) {
77   case Data:   dbgs() << "Data"; break;
78   case Anti:   dbgs() << "Anti"; break;
79   case Output: dbgs() << "Out "; break;
80   case Order:  dbgs() << "Ord "; break;
81   }
82
83   switch (getKind()) {
84   case Data:
85     dbgs() << " Latency=" << getLatency();
86     if (TRI && isAssignedRegDep())
87       dbgs() << " Reg=" << printReg(getReg(), TRI);
88     break;
89   case Anti:
90   case Output:
91     dbgs() << " Latency=" << getLatency();
92     break;
93   case Order:
94     dbgs() << " Latency=" << getLatency();
95     switch(Contents.OrdKind) {
96     case Barrier:      dbgs() << " Barrier"; break;
97     case MayAliasMem:
98     case MustAliasMem: dbgs() << " Memory"; break;
99     case Artificial:   dbgs() << " Artificial"; break;
100     case Weak:         dbgs() << " Weak"; break;
101     case Cluster:      dbgs() << " Cluster"; break;
102     }
103     break;
104   }
105 }
106
107 bool SUnit::addPred(const SDep &D, bool Required) {
108   // If this node already has this dependence, don't add a redundant one.
109   for (SDep &PredDep : Preds) {
110     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
111     // add them if another kind of edge already exists.
112     if (!Required && PredDep.getSUnit() == D.getSUnit())
113       return false;
114     if (PredDep.overlaps(D)) {
115       // Extend the latency if needed. Equivalent to
116       // removePred(PredDep) + addPred(D).
117       if (PredDep.getLatency() < D.getLatency()) {
118         SUnit *PredSU = PredDep.getSUnit();
119         // Find the corresponding successor in N.
120         SDep ForwardD = PredDep;
121         ForwardD.setSUnit(this);
122         for (SDep &SuccDep : PredSU->Succs) {
123           if (SuccDep == ForwardD) {
124             SuccDep.setLatency(D.getLatency());
125             break;
126           }
127         }
128         PredDep.setLatency(D.getLatency());
129       }
130       return false;
131     }
132   }
133   // Now add a corresponding succ to N.
134   SDep P = D;
135   P.setSUnit(this);
136   SUnit *N = D.getSUnit();
137   // Update the bookkeeping.
138   if (D.getKind() == SDep::Data) {
139     assert(NumPreds < std::numeric_limits<unsigned>::max() &&
140            "NumPreds will overflow!");
141     assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
142            "NumSuccs will overflow!");
143     ++NumPreds;
144     ++N->NumSuccs;
145   }
146   if (!N->isScheduled) {
147     if (D.isWeak()) {
148       ++WeakPredsLeft;
149     }
150     else {
151       assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
152              "NumPredsLeft will overflow!");
153       ++NumPredsLeft;
154     }
155   }
156   if (!isScheduled) {
157     if (D.isWeak()) {
158       ++N->WeakSuccsLeft;
159     }
160     else {
161       assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
162              "NumSuccsLeft will overflow!");
163       ++N->NumSuccsLeft;
164     }
165   }
166   Preds.push_back(D);
167   N->Succs.push_back(P);
168   if (P.getLatency() != 0) {
169     this->setDepthDirty();
170     N->setHeightDirty();
171   }
172   return true;
173 }
174
175 void SUnit::removePred(const SDep &D) {
176   // Find the matching predecessor.
177   SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
178   if (I == Preds.end())
179     return;
180   // Find the corresponding successor in N.
181   SDep P = D;
182   P.setSUnit(this);
183   SUnit *N = D.getSUnit();
184   SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
185   assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
186   N->Succs.erase(Succ);
187   Preds.erase(I);
188   // Update the bookkeeping.
189   if (P.getKind() == SDep::Data) {
190     assert(NumPreds > 0 && "NumPreds will underflow!");
191     assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
192     --NumPreds;
193     --N->NumSuccs;
194   }
195   if (!N->isScheduled) {
196     if (D.isWeak())
197       --WeakPredsLeft;
198     else {
199       assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
200       --NumPredsLeft;
201     }
202   }
203   if (!isScheduled) {
204     if (D.isWeak())
205       --N->WeakSuccsLeft;
206     else {
207       assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
208       --N->NumSuccsLeft;
209     }
210   }
211   if (P.getLatency() != 0) {
212     this->setDepthDirty();
213     N->setHeightDirty();
214   }
215 }
216
217 void SUnit::setDepthDirty() {
218   if (!isDepthCurrent) return;
219   SmallVector<SUnit*, 8> WorkList;
220   WorkList.push_back(this);
221   do {
222     SUnit *SU = WorkList.pop_back_val();
223     SU->isDepthCurrent = false;
224     for (SDep &SuccDep : SU->Succs) {
225       SUnit *SuccSU = SuccDep.getSUnit();
226       if (SuccSU->isDepthCurrent)
227         WorkList.push_back(SuccSU);
228     }
229   } while (!WorkList.empty());
230 }
231
232 void SUnit::setHeightDirty() {
233   if (!isHeightCurrent) return;
234   SmallVector<SUnit*, 8> WorkList;
235   WorkList.push_back(this);
236   do {
237     SUnit *SU = WorkList.pop_back_val();
238     SU->isHeightCurrent = false;
239     for (SDep &PredDep : SU->Preds) {
240       SUnit *PredSU = PredDep.getSUnit();
241       if (PredSU->isHeightCurrent)
242         WorkList.push_back(PredSU);
243     }
244   } while (!WorkList.empty());
245 }
246
247 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
248   if (NewDepth <= getDepth())
249     return;
250   setDepthDirty();
251   Depth = NewDepth;
252   isDepthCurrent = true;
253 }
254
255 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
256   if (NewHeight <= getHeight())
257     return;
258   setHeightDirty();
259   Height = NewHeight;
260   isHeightCurrent = true;
261 }
262
263 /// Calculates the maximal path from the node to the exit.
264 void SUnit::ComputeDepth() {
265   SmallVector<SUnit*, 8> WorkList;
266   WorkList.push_back(this);
267   do {
268     SUnit *Cur = WorkList.back();
269
270     bool Done = true;
271     unsigned MaxPredDepth = 0;
272     for (const SDep &PredDep : Cur->Preds) {
273       SUnit *PredSU = PredDep.getSUnit();
274       if (PredSU->isDepthCurrent)
275         MaxPredDepth = std::max(MaxPredDepth,
276                                 PredSU->Depth + PredDep.getLatency());
277       else {
278         Done = false;
279         WorkList.push_back(PredSU);
280       }
281     }
282
283     if (Done) {
284       WorkList.pop_back();
285       if (MaxPredDepth != Cur->Depth) {
286         Cur->setDepthDirty();
287         Cur->Depth = MaxPredDepth;
288       }
289       Cur->isDepthCurrent = true;
290     }
291   } while (!WorkList.empty());
292 }
293
294 /// Calculates the maximal path from the node to the entry.
295 void SUnit::ComputeHeight() {
296   SmallVector<SUnit*, 8> WorkList;
297   WorkList.push_back(this);
298   do {
299     SUnit *Cur = WorkList.back();
300
301     bool Done = true;
302     unsigned MaxSuccHeight = 0;
303     for (const SDep &SuccDep : Cur->Succs) {
304       SUnit *SuccSU = SuccDep.getSUnit();
305       if (SuccSU->isHeightCurrent)
306         MaxSuccHeight = std::max(MaxSuccHeight,
307                                  SuccSU->Height + SuccDep.getLatency());
308       else {
309         Done = false;
310         WorkList.push_back(SuccSU);
311       }
312     }
313
314     if (Done) {
315       WorkList.pop_back();
316       if (MaxSuccHeight != Cur->Height) {
317         Cur->setHeightDirty();
318         Cur->Height = MaxSuccHeight;
319       }
320       Cur->isHeightCurrent = true;
321     }
322   } while (!WorkList.empty());
323 }
324
325 void SUnit::biasCriticalPath() {
326   if (NumPreds < 2)
327     return;
328
329   SUnit::pred_iterator BestI = Preds.begin();
330   unsigned MaxDepth = BestI->getSUnit()->getDepth();
331   for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
332        ++I) {
333     if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
334       BestI = I;
335   }
336   if (BestI != Preds.begin())
337     std::swap(*Preds.begin(), *BestI);
338 }
339
340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
341 LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
342   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
343   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
344   if (WeakPredsLeft)
345     dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
346   if (WeakSuccsLeft)
347     dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
348   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
349   dbgs() << "  Latency            : " << Latency << "\n";
350   dbgs() << "  Depth              : " << getDepth() << "\n";
351   dbgs() << "  Height             : " << getHeight() << "\n";
352 }
353
354 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
355   if (&SU == &EntrySU)
356     dbgs() << "EntrySU";
357   else if (&SU == &ExitSU)
358     dbgs() << "ExitSU";
359   else
360     dbgs() << "SU(" << SU.NodeNum << ")";
361 }
362
363 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
364   dumpNode(SU);
365   SU.dumpAttributes();
366   if (SU.Preds.size() > 0) {
367     dbgs() << "  Predecessors:\n";
368     for (const SDep &Dep : SU.Preds) {
369       dbgs() << "    ";
370       dumpNodeName(*Dep.getSUnit());
371       dbgs() << ": ";
372       Dep.dump(TRI);
373       dbgs() << '\n';
374     }
375   }
376   if (SU.Succs.size() > 0) {
377     dbgs() << "  Successors:\n";
378     for (const SDep &Dep : SU.Succs) {
379       dbgs() << "    ";
380       dumpNodeName(*Dep.getSUnit());
381       dbgs() << ": ";
382       Dep.dump(TRI);
383       dbgs() << '\n';
384     }
385   }
386 }
387 #endif
388
389 #ifndef NDEBUG
390 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
391   bool AnyNotSched = false;
392   unsigned DeadNodes = 0;
393   for (const SUnit &SUnit : SUnits) {
394     if (!SUnit.isScheduled) {
395       if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
396         ++DeadNodes;
397         continue;
398       }
399       if (!AnyNotSched)
400         dbgs() << "*** Scheduling failed! ***\n";
401       dumpNode(SUnit);
402       dbgs() << "has not been scheduled!\n";
403       AnyNotSched = true;
404     }
405     if (SUnit.isScheduled &&
406         (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
407           unsigned(std::numeric_limits<int>::max())) {
408       if (!AnyNotSched)
409         dbgs() << "*** Scheduling failed! ***\n";
410       dumpNode(SUnit);
411       dbgs() << "has an unexpected "
412            << (isBottomUp ? "Height" : "Depth") << " value!\n";
413       AnyNotSched = true;
414     }
415     if (isBottomUp) {
416       if (SUnit.NumSuccsLeft != 0) {
417         if (!AnyNotSched)
418           dbgs() << "*** Scheduling failed! ***\n";
419         dumpNode(SUnit);
420         dbgs() << "has successors left!\n";
421         AnyNotSched = true;
422       }
423     } else {
424       if (SUnit.NumPredsLeft != 0) {
425         if (!AnyNotSched)
426           dbgs() << "*** Scheduling failed! ***\n";
427         dumpNode(SUnit);
428         dbgs() << "has predecessors left!\n";
429         AnyNotSched = true;
430       }
431     }
432   }
433   assert(!AnyNotSched);
434   return SUnits.size() - DeadNodes;
435 }
436 #endif
437
438 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
439   // The idea of the algorithm is taken from
440   // "Online algorithms for managing the topological order of
441   // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
442   // This is the MNR algorithm, which was first introduced by
443   // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
444   // "Maintaining a topological order under edge insertions".
445   //
446   // Short description of the algorithm:
447   //
448   // Topological ordering, ord, of a DAG maps each node to a topological
449   // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
450   //
451   // This means that if there is a path from the node X to the node Z,
452   // then ord(X) < ord(Z).
453   //
454   // This property can be used to check for reachability of nodes:
455   // if Z is reachable from X, then an insertion of the edge Z->X would
456   // create a cycle.
457   //
458   // The algorithm first computes a topological ordering for the DAG by
459   // initializing the Index2Node and Node2Index arrays and then tries to keep
460   // the ordering up-to-date after edge insertions by reordering the DAG.
461   //
462   // On insertion of the edge X->Y, the algorithm first marks by calling DFS
463   // the nodes reachable from Y, and then shifts them using Shift to lie
464   // immediately after X in Index2Node.
465
466   // Cancel pending updates, mark as valid.
467   Dirty = false;
468   Updates.clear();
469
470   unsigned DAGSize = SUnits.size();
471   std::vector<SUnit*> WorkList;
472   WorkList.reserve(DAGSize);
473
474   Index2Node.resize(DAGSize);
475   Node2Index.resize(DAGSize);
476
477   // Initialize the data structures.
478   if (ExitSU)
479     WorkList.push_back(ExitSU);
480   for (SUnit &SU : SUnits) {
481     int NodeNum = SU.NodeNum;
482     unsigned Degree = SU.Succs.size();
483     // Temporarily use the Node2Index array as scratch space for degree counts.
484     Node2Index[NodeNum] = Degree;
485
486     // Is it a node without dependencies?
487     if (Degree == 0) {
488       assert(SU.Succs.empty() && "SUnit should have no successors");
489       // Collect leaf nodes.
490       WorkList.push_back(&SU);
491     }
492   }
493
494   int Id = DAGSize;
495   while (!WorkList.empty()) {
496     SUnit *SU = WorkList.back();
497     WorkList.pop_back();
498     if (SU->NodeNum < DAGSize)
499       Allocate(SU->NodeNum, --Id);
500     for (const SDep &PredDep : SU->Preds) {
501       SUnit *SU = PredDep.getSUnit();
502       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
503         // If all dependencies of the node are processed already,
504         // then the node can be computed now.
505         WorkList.push_back(SU);
506     }
507   }
508
509   Visited.resize(DAGSize);
510   NumTopoInits++;
511
512 #ifndef NDEBUG
513   // Check correctness of the ordering
514   for (SUnit &SU : SUnits)  {
515     for (const SDep &PD : SU.Preds) {
516       assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
517       "Wrong topological sorting");
518     }
519   }
520 #endif
521 }
522
523 void ScheduleDAGTopologicalSort::FixOrder() {
524   // Recompute from scratch after new nodes have been added.
525   if (Dirty) {
526     InitDAGTopologicalSorting();
527     return;
528   }
529
530   // Otherwise apply updates one-by-one.
531   for (auto &U : Updates)
532     AddPred(U.first, U.second);
533   Updates.clear();
534 }
535
536 void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) {
537   // Recomputing the order from scratch is likely more efficient than applying
538   // updates one-by-one for too many updates. The current cut-off is arbitrarily
539   // chosen.
540   Dirty = Dirty || Updates.size() > 10;
541
542   if (Dirty)
543     return;
544
545   Updates.emplace_back(Y, X);
546 }
547
548 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
549   int UpperBound, LowerBound;
550   LowerBound = Node2Index[Y->NodeNum];
551   UpperBound = Node2Index[X->NodeNum];
552   bool HasLoop = false;
553   // Is Ord(X) < Ord(Y) ?
554   if (LowerBound < UpperBound) {
555     // Update the topological order.
556     Visited.reset();
557     DFS(Y, UpperBound, HasLoop);
558     assert(!HasLoop && "Inserted edge creates a loop!");
559     // Recompute topological indexes.
560     Shift(Visited, LowerBound, UpperBound);
561   }
562
563   NumNewPredsAdded++;
564 }
565
566 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
567   // InitDAGTopologicalSorting();
568 }
569
570 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
571                                      bool &HasLoop) {
572   std::vector<const SUnit*> WorkList;
573   WorkList.reserve(SUnits.size());
574
575   WorkList.push_back(SU);
576   do {
577     SU = WorkList.back();
578     WorkList.pop_back();
579     Visited.set(SU->NodeNum);
580     for (const SDep &SuccDep
581          : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
582       unsigned s = SuccDep.getSUnit()->NodeNum;
583       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
584       if (s >= Node2Index.size())
585         continue;
586       if (Node2Index[s] == UpperBound) {
587         HasLoop = true;
588         return;
589       }
590       // Visit successors if not already and in affected region.
591       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
592         WorkList.push_back(SuccDep.getSUnit());
593       }
594     }
595   } while (!WorkList.empty());
596 }
597
598 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
599                                                          const SUnit &TargetSU,
600                                                          bool &Success) {
601   std::vector<const SUnit*> WorkList;
602   int LowerBound = Node2Index[StartSU.NodeNum];
603   int UpperBound = Node2Index[TargetSU.NodeNum];
604   bool Found = false;
605   BitVector VisitedBack;
606   std::vector<int> Nodes;
607
608   if (LowerBound > UpperBound) {
609     Success = false;
610     return Nodes;
611   }
612
613   WorkList.reserve(SUnits.size());
614   Visited.reset();
615
616   // Starting from StartSU, visit all successors up
617   // to UpperBound.
618   WorkList.push_back(&StartSU);
619   do {
620     const SUnit *SU = WorkList.back();
621     WorkList.pop_back();
622     for (int I = SU->Succs.size()-1; I >= 0; --I) {
623       const SUnit *Succ = SU->Succs[I].getSUnit();
624       unsigned s = Succ->NodeNum;
625       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
626       if (Succ->isBoundaryNode())
627         continue;
628       if (Node2Index[s] == UpperBound) {
629         Found = true;
630         continue;
631       }
632       // Visit successors if not already and in affected region.
633       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
634         Visited.set(s);
635         WorkList.push_back(Succ);
636       }
637     }
638   } while (!WorkList.empty());
639
640   if (!Found) {
641     Success = false;
642     return Nodes;
643   }
644
645   WorkList.clear();
646   VisitedBack.resize(SUnits.size());
647   Found = false;
648
649   // Starting from TargetSU, visit all predecessors up
650   // to LowerBound. SUs that are visited by the two
651   // passes are added to Nodes.
652   WorkList.push_back(&TargetSU);
653   do {
654     const SUnit *SU = WorkList.back();
655     WorkList.pop_back();
656     for (int I = SU->Preds.size()-1; I >= 0; --I) {
657       const SUnit *Pred = SU->Preds[I].getSUnit();
658       unsigned s = Pred->NodeNum;
659       // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
660       if (Pred->isBoundaryNode())
661         continue;
662       if (Node2Index[s] == LowerBound) {
663         Found = true;
664         continue;
665       }
666       if (!VisitedBack.test(s) && Visited.test(s)) {
667         VisitedBack.set(s);
668         WorkList.push_back(Pred);
669         Nodes.push_back(s);
670       }
671     }
672   } while (!WorkList.empty());
673
674   assert(Found && "Error in SUnit Graph!");
675   Success = true;
676   return Nodes;
677 }
678
679 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
680                                        int UpperBound) {
681   std::vector<int> L;
682   int shift = 0;
683   int i;
684
685   for (i = LowerBound; i <= UpperBound; ++i) {
686     // w is node at topological index i.
687     int w = Index2Node[i];
688     if (Visited.test(w)) {
689       // Unmark.
690       Visited.reset(w);
691       L.push_back(w);
692       shift = shift + 1;
693     } else {
694       Allocate(w, i - shift);
695     }
696   }
697
698   for (unsigned LI : L) {
699     Allocate(LI, i - shift);
700     i = i + 1;
701   }
702 }
703
704 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
705   FixOrder();
706   // Is SU reachable from TargetSU via successor edges?
707   if (IsReachable(SU, TargetSU))
708     return true;
709   for (const SDep &PredDep : TargetSU->Preds)
710     if (PredDep.isAssignedRegDep() &&
711         IsReachable(SU, PredDep.getSUnit()))
712       return true;
713   return false;
714 }
715
716 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
717                                              const SUnit *TargetSU) {
718   FixOrder();
719   // If insertion of the edge SU->TargetSU would create a cycle
720   // then there is a path from TargetSU to SU.
721   int UpperBound, LowerBound;
722   LowerBound = Node2Index[TargetSU->NodeNum];
723   UpperBound = Node2Index[SU->NodeNum];
724   bool HasLoop = false;
725   // Is Ord(TargetSU) < Ord(SU) ?
726   if (LowerBound < UpperBound) {
727     Visited.reset();
728     // There may be a path from TargetSU to SU. Check for it.
729     DFS(TargetSU, UpperBound, HasLoop);
730   }
731   return HasLoop;
732 }
733
734 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
735   Node2Index[n] = index;
736   Index2Node[index] = n;
737 }
738
739 ScheduleDAGTopologicalSort::
740 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
741   : SUnits(sunits), ExitSU(exitsu) {}
742
743 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;