]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
Update our devicetree to 4.19 for arm and arm64
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / ScheduleDAGInstrs.cpp
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This implements the ScheduleDAGInstrs class, which implements
11 /// re-scheduling of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/LivePhysRegs.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/RegisterPressure.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/ScheduleDFS.h"
38 #include "llvm/CodeGen/SlotIndexes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 #include <vector>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "machine-scheduler"
67
68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
69     cl::ZeroOrMore, cl::init(false),
70     cl::desc("Enable use of AA during MI DAG construction"));
71
72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
73     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
74
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
78
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
82     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83                              "prior to scheduling, at which point a trade-off "
84                              "is made to avoid excessive compile time."));
85
86 static cl::opt<unsigned> ReductionSize(
87     "dag-maps-reduction-size", cl::Hidden,
88     cl::desc("A huge scheduling region will have maps reduced by this many "
89              "nodes at a time. Defaults to HugeRegion / 2."));
90
91 static unsigned getReductionSize() {
92   // Always reduce a huge region with half of the elements, except
93   // when user sets this number explicitly.
94   if (ReductionSize.getNumOccurrences() == 0)
95     return HugeRegion / 2;
96   return ReductionSize;
97 }
98
99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101   dbgs() << "{ ";
102   for (const SUnit *su : L) {
103     dbgs() << "SU(" << su->NodeNum << ")";
104     if (su != L.back())
105       dbgs() << ", ";
106   }
107   dbgs() << "}\n";
108 #endif
109 }
110
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
112                                      const MachineLoopInfo *mli,
113                                      bool RemoveKillFlags)
114     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
115       RemoveKillFlags(RemoveKillFlags),
116       UnknownValue(UndefValue::get(
117                              Type::getVoidTy(mf.getFunction().getContext()))) {
118   DbgValues.clear();
119
120   const TargetSubtargetInfo &ST = mf.getSubtarget();
121   SchedModel.init(ST.getSchedModel(), &ST, TII);
122 }
123
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
129                                          const MachineFrameInfo &MFI,
130                                          UnderlyingObjectsVector &Objects,
131                                          const DataLayout &DL) {
132   auto allMMOsOkay = [&]() {
133     for (const MachineMemOperand *MMO : MI->memoperands()) {
134       if (MMO->isVolatile())
135         return false;
136
137       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
138         // Function that contain tail calls don't have unique PseudoSourceValue
139         // objects. Two PseudoSourceValues might refer to the same or
140         // overlapping locations. The client code calling this function assumes
141         // this is not the case. So return a conservative answer of no known
142         // object.
143         if (MFI.hasTailCall())
144           return false;
145
146         // For now, ignore PseudoSourceValues which may alias LLVM IR values
147         // because the code that uses this function has no way to cope with
148         // such aliases.
149         if (PSV->isAliased(&MFI))
150           return false;
151
152         bool MayAlias = PSV->mayAlias(&MFI);
153         Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
154       } else if (const Value *V = MMO->getValue()) {
155         SmallVector<Value *, 4> Objs;
156         if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
157           return false;
158
159         for (Value *V : Objs) {
160           assert(isIdentifiedObject(V));
161           Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
162         }
163       } else
164         return false;
165     }
166     return true;
167   };
168
169   if (!allMMOsOkay()) {
170     Objects.clear();
171     return false;
172   }
173
174   return true;
175 }
176
177 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
178   BB = bb;
179 }
180
181 void ScheduleDAGInstrs::finishBlock() {
182   // Subclasses should no longer refer to the old block.
183   BB = nullptr;
184 }
185
186 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
187                                     MachineBasicBlock::iterator begin,
188                                     MachineBasicBlock::iterator end,
189                                     unsigned regioninstrs) {
190   assert(bb == BB && "startBlock should set BB");
191   RegionBegin = begin;
192   RegionEnd = end;
193   NumRegionInstrs = regioninstrs;
194 }
195
196 void ScheduleDAGInstrs::exitRegion() {
197   // Nothing to do.
198 }
199
200 void ScheduleDAGInstrs::addSchedBarrierDeps() {
201   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
202   ExitSU.setInstr(ExitMI);
203   // Add dependencies on the defs and uses of the instruction.
204   if (ExitMI) {
205     for (const MachineOperand &MO : ExitMI->operands()) {
206       if (!MO.isReg() || MO.isDef()) continue;
207       unsigned Reg = MO.getReg();
208       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
209         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
210       } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
211         addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
212       }
213     }
214   }
215   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
216     // For others, e.g. fallthrough, conditional branch, assume the exit
217     // uses all the registers that are livein to the successor blocks.
218     for (const MachineBasicBlock *Succ : BB->successors()) {
219       for (const auto &LI : Succ->liveins()) {
220         if (!Uses.contains(LI.PhysReg))
221           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
222       }
223     }
224   }
225 }
226
227 /// MO is an operand of SU's instruction that defines a physical register. Adds
228 /// data dependencies from SU to any uses of the physical register.
229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
230   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
231   assert(MO.isDef() && "expect physreg def");
232
233   // Ask the target if address-backscheduling is desirable, and if so how much.
234   const TargetSubtargetInfo &ST = MF.getSubtarget();
235
236   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
237        Alias.isValid(); ++Alias) {
238     if (!Uses.contains(*Alias))
239       continue;
240     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
241       SUnit *UseSU = I->SU;
242       if (UseSU == SU)
243         continue;
244
245       // Adjust the dependence latency using operand def/use information,
246       // then allow the target to perform its own adjustments.
247       int UseOp = I->OpIdx;
248       MachineInstr *RegUse = nullptr;
249       SDep Dep;
250       if (UseOp < 0)
251         Dep = SDep(SU, SDep::Artificial);
252       else {
253         // Set the hasPhysRegDefs only for physreg defs that have a use within
254         // the scheduling region.
255         SU->hasPhysRegDefs = true;
256         Dep = SDep(SU, SDep::Data, *Alias);
257         RegUse = UseSU->getInstr();
258       }
259       Dep.setLatency(
260         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
261                                          UseOp));
262
263       ST.adjustSchedDependency(SU, UseSU, Dep);
264       UseSU->addPred(Dep);
265     }
266   }
267 }
268
269 /// \brief Adds register dependencies (data, anti, and output) from this SUnit
270 /// to following instructions in the same scheduling region that depend the
271 /// physical register referenced at OperIdx.
272 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
273   MachineInstr *MI = SU->getInstr();
274   MachineOperand &MO = MI->getOperand(OperIdx);
275   unsigned Reg = MO.getReg();
276   // We do not need to track any dependencies for constant registers.
277   if (MRI.isConstantPhysReg(Reg))
278     return;
279
280   // Optionally add output and anti dependencies. For anti
281   // dependencies we use a latency of 0 because for a multi-issue
282   // target we want to allow the defining instruction to issue
283   // in the same cycle as the using instruction.
284   // TODO: Using a latency of 1 here for output dependencies assumes
285   //       there's no cost for reusing registers.
286   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
287   for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
288     if (!Defs.contains(*Alias))
289       continue;
290     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
291       SUnit *DefSU = I->SU;
292       if (DefSU == &ExitSU)
293         continue;
294       if (DefSU != SU &&
295           (Kind != SDep::Output || !MO.isDead() ||
296            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
297         if (Kind == SDep::Anti)
298           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
299         else {
300           SDep Dep(SU, Kind, /*Reg=*/*Alias);
301           Dep.setLatency(
302             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
303           DefSU->addPred(Dep);
304         }
305       }
306     }
307   }
308
309   if (!MO.isDef()) {
310     SU->hasPhysRegUses = true;
311     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
312     // retrieve the existing SUnits list for this register's uses.
313     // Push this SUnit on the use list.
314     Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
315     if (RemoveKillFlags)
316       MO.setIsKill(false);
317   } else {
318     addPhysRegDataDeps(SU, OperIdx);
319
320     // clear this register's use list
321     if (Uses.contains(Reg))
322       Uses.eraseAll(Reg);
323
324     if (!MO.isDead()) {
325       Defs.eraseAll(Reg);
326     } else if (SU->isCall) {
327       // Calls will not be reordered because of chain dependencies (see
328       // below). Since call operands are dead, calls may continue to be added
329       // to the DefList making dependence checking quadratic in the size of
330       // the block. Instead, we leave only one call at the back of the
331       // DefList.
332       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
333       Reg2SUnitsMap::iterator B = P.first;
334       Reg2SUnitsMap::iterator I = P.second;
335       for (bool isBegin = I == B; !isBegin; /* empty */) {
336         isBegin = (--I) == B;
337         if (!I->SU->isCall)
338           break;
339         I = Defs.erase(I);
340       }
341     }
342
343     // Defs are pushed in the order they are visited and never reordered.
344     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
345   }
346 }
347
348 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
349 {
350   unsigned Reg = MO.getReg();
351   // No point in tracking lanemasks if we don't have interesting subregisters.
352   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
353   if (!RC.HasDisjunctSubRegs)
354     return LaneBitmask::getAll();
355
356   unsigned SubReg = MO.getSubReg();
357   if (SubReg == 0)
358     return RC.getLaneMask();
359   return TRI->getSubRegIndexLaneMask(SubReg);
360 }
361
362 /// Adds register output and data dependencies from this SUnit to instructions
363 /// that occur later in the same scheduling region if they read from or write to
364 /// the virtual register defined at OperIdx.
365 ///
366 /// TODO: Hoist loop induction variable increments. This has to be
367 /// reevaluated. Generally, IV scheduling should be done before coalescing.
368 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
369   MachineInstr *MI = SU->getInstr();
370   MachineOperand &MO = MI->getOperand(OperIdx);
371   unsigned Reg = MO.getReg();
372
373   LaneBitmask DefLaneMask;
374   LaneBitmask KillLaneMask;
375   if (TrackLaneMasks) {
376     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
377     DefLaneMask = getLaneMaskForMO(MO);
378     // If we have a <read-undef> flag, none of the lane values comes from an
379     // earlier instruction.
380     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
381
382     // Clear undef flag, we'll re-add it later once we know which subregister
383     // Def is first.
384     MO.setIsUndef(false);
385   } else {
386     DefLaneMask = LaneBitmask::getAll();
387     KillLaneMask = LaneBitmask::getAll();
388   }
389
390   if (MO.isDead()) {
391     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
392            "Dead defs should have no uses");
393   } else {
394     // Add data dependence to all uses we found so far.
395     const TargetSubtargetInfo &ST = MF.getSubtarget();
396     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
397          E = CurrentVRegUses.end(); I != E; /*empty*/) {
398       LaneBitmask LaneMask = I->LaneMask;
399       // Ignore uses of other lanes.
400       if ((LaneMask & KillLaneMask).none()) {
401         ++I;
402         continue;
403       }
404
405       if ((LaneMask & DefLaneMask).any()) {
406         SUnit *UseSU = I->SU;
407         MachineInstr *Use = UseSU->getInstr();
408         SDep Dep(SU, SDep::Data, Reg);
409         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
410                                                         I->OperandIndex));
411         ST.adjustSchedDependency(SU, UseSU, Dep);
412         UseSU->addPred(Dep);
413       }
414
415       LaneMask &= ~KillLaneMask;
416       // If we found a Def for all lanes of this use, remove it from the list.
417       if (LaneMask.any()) {
418         I->LaneMask = LaneMask;
419         ++I;
420       } else
421         I = CurrentVRegUses.erase(I);
422     }
423   }
424
425   // Shortcut: Singly defined vregs do not have output/anti dependencies.
426   if (MRI.hasOneDef(Reg))
427     return;
428
429   // Add output dependence to the next nearest defs of this vreg.
430   //
431   // Unless this definition is dead, the output dependence should be
432   // transitively redundant with antidependencies from this definition's
433   // uses. We're conservative for now until we have a way to guarantee the uses
434   // are not eliminated sometime during scheduling. The output dependence edge
435   // is also useful if output latency exceeds def-use latency.
436   LaneBitmask LaneMask = DefLaneMask;
437   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
438                                      CurrentVRegDefs.end())) {
439     // Ignore defs for other lanes.
440     if ((V2SU.LaneMask & LaneMask).none())
441       continue;
442     // Add an output dependence.
443     SUnit *DefSU = V2SU.SU;
444     // Ignore additional defs of the same lanes in one instruction. This can
445     // happen because lanemasks are shared for targets with too many
446     // subregisters. We also use some representration tricks/hacks where we
447     // add super-register defs/uses, to imply that although we only access parts
448     // of the reg we care about the full one.
449     if (DefSU == SU)
450       continue;
451     SDep Dep(SU, SDep::Output, Reg);
452     Dep.setLatency(
453       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
454     DefSU->addPred(Dep);
455
456     // Update current definition. This can get tricky if the def was about a
457     // bigger lanemask before. We then have to shrink it and create a new
458     // VReg2SUnit for the non-overlapping part.
459     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
460     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
461     V2SU.SU = SU;
462     V2SU.LaneMask = OverlapMask;
463     if (NonOverlapMask.any())
464       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
465   }
466   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
467   if (LaneMask.any())
468     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
469 }
470
471 /// \brief Adds a register data dependency if the instruction that defines the
472 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
473 /// antidependency from this SUnit to instructions that occur later in the same
474 /// scheduling region if they write the virtual register.
475 ///
476 /// TODO: Handle ExitSU "uses" properly.
477 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
478   const MachineInstr *MI = SU->getInstr();
479   const MachineOperand &MO = MI->getOperand(OperIdx);
480   unsigned Reg = MO.getReg();
481
482   // Remember the use. Data dependencies will be added when we find the def.
483   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
484                                         : LaneBitmask::getAll();
485   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
486
487   // Add antidependences to the following defs of the vreg.
488   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
489                                      CurrentVRegDefs.end())) {
490     // Ignore defs for unrelated lanes.
491     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
492     if ((PrevDefLaneMask & LaneMask).none())
493       continue;
494     if (V2SU.SU == SU)
495       continue;
496
497     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
498   }
499 }
500
501 /// Returns true if MI is an instruction we are unable to reason about
502 /// (like a call or something with unmodeled side effects).
503 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
504   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
505          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
506 }
507
508 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
509                                             unsigned Latency) {
510   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
511     SDep Dep(SUa, SDep::MayAliasMem);
512     Dep.setLatency(Latency);
513     SUb->addPred(Dep);
514   }
515 }
516
517 /// \brief Creates an SUnit for each real instruction, numbered in top-down
518 /// topological order. The instruction order A < B, implies that no edge exists
519 /// from B to A.
520 ///
521 /// Map each real instruction to its SUnit.
522 ///
523 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
524 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
525 /// instead of pointers.
526 ///
527 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
528 /// the original instruction list.
529 void ScheduleDAGInstrs::initSUnits() {
530   // We'll be allocating one SUnit for each real instruction in the region,
531   // which is contained within a basic block.
532   SUnits.reserve(NumRegionInstrs);
533
534   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
535     if (MI.isDebugValue())
536       continue;
537
538     SUnit *SU = newSUnit(&MI);
539     MISUnitMap[&MI] = SU;
540
541     SU->isCall = MI.isCall();
542     SU->isCommutable = MI.isCommutable();
543
544     // Assign the Latency field of SU using target-provided information.
545     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
546
547     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
548     //
549     // Reserved resources block an instruction from issuing and stall the
550     // entire pipeline. These are identified by BufferSize=0.
551     //
552     // Unbuffered resources prevent execution of subsequent instructions that
553     // require the same resources. This is used for in-order execution pipelines
554     // within an out-of-order core. These are identified by BufferSize=1.
555     if (SchedModel.hasInstrSchedModel()) {
556       const MCSchedClassDesc *SC = getSchedClass(SU);
557       for (const MCWriteProcResEntry &PRE :
558            make_range(SchedModel.getWriteProcResBegin(SC),
559                       SchedModel.getWriteProcResEnd(SC))) {
560         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
561         case 0:
562           SU->hasReservedResource = true;
563           break;
564         case 1:
565           SU->isUnbuffered = true;
566           break;
567         default:
568           break;
569         }
570       }
571     }
572   }
573 }
574
575 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
576   /// Current total number of SUs in map.
577   unsigned NumNodes = 0;
578
579   /// 1 for loads, 0 for stores. (see comment in SUList)
580   unsigned TrueMemOrderLatency;
581
582 public:
583   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
584
585   /// To keep NumNodes up to date, insert() is used instead of
586   /// this operator w/ push_back().
587   ValueType &operator[](const SUList &Key) {
588     llvm_unreachable("Don't use. Use insert() instead."); };
589
590   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
591   /// reduce().
592   void inline insert(SUnit *SU, ValueType V) {
593     MapVector::operator[](V).push_back(SU);
594     NumNodes++;
595   }
596
597   /// Clears the list of SUs mapped to V.
598   void inline clearList(ValueType V) {
599     iterator Itr = find(V);
600     if (Itr != end()) {
601       assert(NumNodes >= Itr->second.size());
602       NumNodes -= Itr->second.size();
603
604       Itr->second.clear();
605     }
606   }
607
608   /// Clears map from all contents.
609   void clear() {
610     MapVector<ValueType, SUList>::clear();
611     NumNodes = 0;
612   }
613
614   unsigned inline size() const { return NumNodes; }
615
616   /// Counts the number of SUs in this map after a reduction.
617   void reComputeSize() {
618     NumNodes = 0;
619     for (auto &I : *this)
620       NumNodes += I.second.size();
621   }
622
623   unsigned inline getTrueMemOrderLatency() const {
624     return TrueMemOrderLatency;
625   }
626
627   void dump();
628 };
629
630 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
631                                              Value2SUsMap &Val2SUsMap) {
632   for (auto &I : Val2SUsMap)
633     addChainDependencies(SU, I.second,
634                          Val2SUsMap.getTrueMemOrderLatency());
635 }
636
637 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
638                                              Value2SUsMap &Val2SUsMap,
639                                              ValueType V) {
640   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
641   if (Itr != Val2SUsMap.end())
642     addChainDependencies(SU, Itr->second,
643                          Val2SUsMap.getTrueMemOrderLatency());
644 }
645
646 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
647   assert(BarrierChain != nullptr);
648
649   for (auto &I : map) {
650     SUList &sus = I.second;
651     for (auto *SU : sus)
652       SU->addPredBarrier(BarrierChain);
653   }
654   map.clear();
655 }
656
657 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
658   assert(BarrierChain != nullptr);
659
660   // Go through all lists of SUs.
661   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
662     Value2SUsMap::iterator CurrItr = I++;
663     SUList &sus = CurrItr->second;
664     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
665     for (; SUItr != SUEE; ++SUItr) {
666       // Stop on BarrierChain or any instruction above it.
667       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
668         break;
669
670       (*SUItr)->addPredBarrier(BarrierChain);
671     }
672
673     // Remove also the BarrierChain from list if present.
674     if (SUItr != SUEE && *SUItr == BarrierChain)
675       SUItr++;
676
677     // Remove all SUs that are now successors of BarrierChain.
678     if (SUItr != sus.begin())
679       sus.erase(sus.begin(), SUItr);
680   }
681
682   // Remove all entries with empty su lists.
683   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
684       return (mapEntry.second.empty()); });
685
686   // Recompute the size of the map (NumNodes).
687   map.reComputeSize();
688 }
689
690 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
691                                         RegPressureTracker *RPTracker,
692                                         PressureDiffs *PDiffs,
693                                         LiveIntervals *LIS,
694                                         bool TrackLaneMasks) {
695   const TargetSubtargetInfo &ST = MF.getSubtarget();
696   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
697                                                        : ST.useAA();
698   AAForDep = UseAA ? AA : nullptr;
699
700   BarrierChain = nullptr;
701
702   this->TrackLaneMasks = TrackLaneMasks;
703   MISUnitMap.clear();
704   ScheduleDAG::clearDAG();
705
706   // Create an SUnit for each real instruction.
707   initSUnits();
708
709   if (PDiffs)
710     PDiffs->init(SUnits.size());
711
712   // We build scheduling units by walking a block's instruction list
713   // from bottom to top.
714
715   // Each MIs' memory operand(s) is analyzed to a list of underlying
716   // objects. The SU is then inserted in the SUList(s) mapped from the
717   // Value(s). Each Value thus gets mapped to lists of SUs depending
718   // on it, stores and loads kept separately. Two SUs are trivially
719   // non-aliasing if they both depend on only identified Values and do
720   // not share any common Value.
721   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
722
723   // Certain memory accesses are known to not alias any SU in Stores
724   // or Loads, and have therefore their own 'NonAlias'
725   // domain. E.g. spill / reload instructions never alias LLVM I/R
726   // Values. It would be nice to assume that this type of memory
727   // accesses always have a proper memory operand modelling, and are
728   // therefore never unanalyzable, but this is conservatively not
729   // done.
730   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
731
732   // Remove any stale debug info; sometimes BuildSchedGraph is called again
733   // without emitting the info from the previous call.
734   DbgValues.clear();
735   FirstDbgValue = nullptr;
736
737   assert(Defs.empty() && Uses.empty() &&
738          "Only BuildGraph should update Defs/Uses");
739   Defs.setUniverse(TRI->getNumRegs());
740   Uses.setUniverse(TRI->getNumRegs());
741
742   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
743   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
744   unsigned NumVirtRegs = MRI.getNumVirtRegs();
745   CurrentVRegDefs.setUniverse(NumVirtRegs);
746   CurrentVRegUses.setUniverse(NumVirtRegs);
747
748   // Model data dependencies between instructions being scheduled and the
749   // ExitSU.
750   addSchedBarrierDeps();
751
752   // Walk the list of instructions, from bottom moving up.
753   MachineInstr *DbgMI = nullptr;
754   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
755        MII != MIE; --MII) {
756     MachineInstr &MI = *std::prev(MII);
757     if (DbgMI) {
758       DbgValues.push_back(std::make_pair(DbgMI, &MI));
759       DbgMI = nullptr;
760     }
761
762     if (MI.isDebugValue()) {
763       DbgMI = &MI;
764       continue;
765     }
766     SUnit *SU = MISUnitMap[&MI];
767     assert(SU && "No SUnit mapped to this MI");
768
769     if (RPTracker) {
770       RegisterOperands RegOpers;
771       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
772       if (TrackLaneMasks) {
773         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
774         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
775       }
776       if (PDiffs != nullptr)
777         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
778
779       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
780         RPTracker->recedeSkipDebugValues();
781       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
782       RPTracker->recede(RegOpers);
783     }
784
785     assert(
786         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
787         "Cannot schedule terminators or labels!");
788
789     // Add register-based dependencies (data, anti, and output).
790     // For some instructions (calls, returns, inline-asm, etc.) there can
791     // be explicit uses and implicit defs, in which case the use will appear
792     // on the operand list before the def. Do two passes over the operand
793     // list to make sure that defs are processed before any uses.
794     bool HasVRegDef = false;
795     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
796       const MachineOperand &MO = MI.getOperand(j);
797       if (!MO.isReg() || !MO.isDef())
798         continue;
799       unsigned Reg = MO.getReg();
800       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
801         addPhysRegDeps(SU, j);
802       } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
803         HasVRegDef = true;
804         addVRegDefDeps(SU, j);
805       }
806     }
807     // Now process all uses.
808     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
809       const MachineOperand &MO = MI.getOperand(j);
810       // Only look at use operands.
811       // We do not need to check for MO.readsReg() here because subsequent
812       // subregister defs will get output dependence edges and need no
813       // additional use dependencies.
814       if (!MO.isReg() || !MO.isUse())
815         continue;
816       unsigned Reg = MO.getReg();
817       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
818         addPhysRegDeps(SU, j);
819       } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
820         addVRegUseDeps(SU, j);
821       }
822     }
823
824     // If we haven't seen any uses in this scheduling region, create a
825     // dependence edge to ExitSU to model the live-out latency. This is required
826     // for vreg defs with no in-region use, and prefetches with no vreg def.
827     //
828     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
829     // check currently relies on being called before adding chain deps.
830     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
831       SDep Dep(SU, SDep::Artificial);
832       Dep.setLatency(SU->Latency - 1);
833       ExitSU.addPred(Dep);
834     }
835
836     // Add memory dependencies (Note: isStoreToStackSlot and
837     // isLoadFromStackSLot are not usable after stack slots are lowered to
838     // actual addresses).
839
840     // This is a barrier event that acts as a pivotal node in the DAG.
841     if (isGlobalMemoryObject(AA, &MI)) {
842
843       // Become the barrier chain.
844       if (BarrierChain)
845         BarrierChain->addPredBarrier(SU);
846       BarrierChain = SU;
847
848       DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
849             << BarrierChain->NodeNum << ").\n";);
850
851       // Add dependencies against everything below it and clear maps.
852       addBarrierChain(Stores);
853       addBarrierChain(Loads);
854       addBarrierChain(NonAliasStores);
855       addBarrierChain(NonAliasLoads);
856
857       continue;
858     }
859
860     // If it's not a store or a variant load, we're done.
861     if (!MI.mayStore() &&
862         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
863       continue;
864
865     // Always add dependecy edge to BarrierChain if present.
866     if (BarrierChain)
867       BarrierChain->addPredBarrier(SU);
868
869     // Find the underlying objects for MI. The Objs vector is either
870     // empty, or filled with the Values of memory locations which this
871     // SU depends on.
872     UnderlyingObjectsVector Objs;
873     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
874                                                   MF.getDataLayout());
875
876     if (MI.mayStore()) {
877       if (!ObjsFound) {
878         // An unknown store depends on all stores and loads.
879         addChainDependencies(SU, Stores);
880         addChainDependencies(SU, NonAliasStores);
881         addChainDependencies(SU, Loads);
882         addChainDependencies(SU, NonAliasLoads);
883
884         // Map this store to 'UnknownValue'.
885         Stores.insert(SU, UnknownValue);
886       } else {
887         // Add precise dependencies against all previously seen memory
888         // accesses mapped to the same Value(s).
889         for (const UnderlyingObject &UnderlObj : Objs) {
890           ValueType V = UnderlObj.getValue();
891           bool ThisMayAlias = UnderlObj.mayAlias();
892
893           // Add dependencies to previous stores and loads mapped to V.
894           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
895           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
896         }
897         // Update the store map after all chains have been added to avoid adding
898         // self-loop edge if multiple underlying objects are present.
899         for (const UnderlyingObject &UnderlObj : Objs) {
900           ValueType V = UnderlObj.getValue();
901           bool ThisMayAlias = UnderlObj.mayAlias();
902
903           // Map this store to V.
904           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
905         }
906         // The store may have dependencies to unanalyzable loads and
907         // stores.
908         addChainDependencies(SU, Loads, UnknownValue);
909         addChainDependencies(SU, Stores, UnknownValue);
910       }
911     } else { // SU is a load.
912       if (!ObjsFound) {
913         // An unknown load depends on all stores.
914         addChainDependencies(SU, Stores);
915         addChainDependencies(SU, NonAliasStores);
916
917         Loads.insert(SU, UnknownValue);
918       } else {
919         for (const UnderlyingObject &UnderlObj : Objs) {
920           ValueType V = UnderlObj.getValue();
921           bool ThisMayAlias = UnderlObj.mayAlias();
922
923           // Add precise dependencies against all previously seen stores
924           // mapping to the same Value(s).
925           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
926
927           // Map this load to V.
928           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
929         }
930         // The load may have dependencies to unanalyzable stores.
931         addChainDependencies(SU, Stores, UnknownValue);
932       }
933     }
934
935     // Reduce maps if they grow huge.
936     if (Stores.size() + Loads.size() >= HugeRegion) {
937       DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
938       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
939     }
940     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
941       DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
942       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
943     }
944   }
945
946   if (DbgMI)
947     FirstDbgValue = DbgMI;
948
949   Defs.clear();
950   Uses.clear();
951   CurrentVRegDefs.clear();
952   CurrentVRegUses.clear();
953 }
954
955 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
956   PSV->printCustom(OS);
957   return OS;
958 }
959
960 void ScheduleDAGInstrs::Value2SUsMap::dump() {
961   for (auto &Itr : *this) {
962     if (Itr.first.is<const Value*>()) {
963       const Value *V = Itr.first.get<const Value*>();
964       if (isa<UndefValue>(V))
965         dbgs() << "Unknown";
966       else
967         V->printAsOperand(dbgs());
968     }
969     else if (Itr.first.is<const PseudoSourceValue*>())
970       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
971     else
972       llvm_unreachable("Unknown Value type.");
973
974     dbgs() << " : ";
975     dumpSUList(Itr.second);
976   }
977 }
978
979 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
980                                               Value2SUsMap &loads, unsigned N) {
981   DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
982         stores.dump();
983         dbgs() << "Loading SUnits:\n";
984         loads.dump());
985
986   // Insert all SU's NodeNums into a vector and sort it.
987   std::vector<unsigned> NodeNums;
988   NodeNums.reserve(stores.size() + loads.size());
989   for (auto &I : stores)
990     for (auto *SU : I.second)
991       NodeNums.push_back(SU->NodeNum);
992   for (auto &I : loads)
993     for (auto *SU : I.second)
994       NodeNums.push_back(SU->NodeNum);
995   std::sort(NodeNums.begin(), NodeNums.end());
996
997   // The N last elements in NodeNums will be removed, and the SU with
998   // the lowest NodeNum of them will become the new BarrierChain to
999   // let the not yet seen SUs have a dependency to the removed SUs.
1000   assert(N <= NodeNums.size());
1001   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1002   if (BarrierChain) {
1003     // The aliasing and non-aliasing maps reduce independently of each
1004     // other, but share a common BarrierChain. Check if the
1005     // newBarrierChain is above the former one. If it is not, it may
1006     // introduce a loop to use newBarrierChain, so keep the old one.
1007     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1008       BarrierChain->addPredBarrier(newBarrierChain);
1009       BarrierChain = newBarrierChain;
1010       DEBUG(dbgs() << "Inserting new barrier chain: SU("
1011             << BarrierChain->NodeNum << ").\n";);
1012     }
1013     else
1014       DEBUG(dbgs() << "Keeping old barrier chain: SU("
1015             << BarrierChain->NodeNum << ").\n";);
1016   }
1017   else
1018     BarrierChain = newBarrierChain;
1019
1020   insertBarrierChain(stores);
1021   insertBarrierChain(loads);
1022
1023   DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
1024         stores.dump();
1025         dbgs() << "Loading SUnits:\n";
1026         loads.dump());
1027 }
1028
1029 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1030                         MachineInstr &MI, bool addToLiveRegs) {
1031   for (MachineOperand &MO : MI.operands()) {
1032     if (!MO.isReg() || !MO.readsReg())
1033       continue;
1034     unsigned Reg = MO.getReg();
1035     if (!Reg)
1036       continue;
1037
1038     // Things that are available after the instruction are killed by it.
1039     bool IsKill = LiveRegs.available(MRI, Reg);
1040     MO.setIsKill(IsKill);
1041     if (addToLiveRegs)
1042       LiveRegs.addReg(Reg);
1043   }
1044 }
1045
1046 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1047   DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1048
1049   LiveRegs.init(*TRI);
1050   LiveRegs.addLiveOuts(MBB);
1051
1052   // Examine block from end to start...
1053   for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1054     if (MI.isDebugValue())
1055       continue;
1056
1057     // Update liveness.  Registers that are defed but not used in this
1058     // instruction are now dead. Mark register and all subregs as they
1059     // are completely defined.
1060     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1061       const MachineOperand &MO = *O;
1062       if (MO.isReg()) {
1063         if (!MO.isDef())
1064           continue;
1065         unsigned Reg = MO.getReg();
1066         if (!Reg)
1067           continue;
1068         LiveRegs.removeReg(Reg);
1069       } else if (MO.isRegMask()) {
1070         LiveRegs.removeRegsInMask(MO);
1071       }
1072     }
1073
1074     // If there is a bundle header fix it up first.
1075     if (!MI.isBundled()) {
1076       toggleKills(MRI, LiveRegs, MI, true);
1077     } else {
1078       MachineBasicBlock::instr_iterator First = MI.getIterator();
1079       if (MI.isBundle()) {
1080         toggleKills(MRI, LiveRegs, MI, false);
1081         ++First;
1082       }
1083       // Some targets make the (questionable) assumtion that the instructions
1084       // inside the bundle are ordered and consequently only the last use of
1085       // a register inside the bundle can kill it.
1086       MachineBasicBlock::instr_iterator I = std::next(First);
1087       while (I->isBundledWithSucc())
1088         ++I;
1089       do {
1090         if (!I->isDebugValue())
1091           toggleKills(MRI, LiveRegs, *I, true);
1092         --I;
1093       } while(I != First);
1094     }
1095   }
1096 }
1097
1098 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1099   // Cannot completely remove virtual function even in release mode.
1100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1101   SU->getInstr()->dump();
1102 #endif
1103 }
1104
1105 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1106   std::string s;
1107   raw_string_ostream oss(s);
1108   if (SU == &EntrySU)
1109     oss << "<entry>";
1110   else if (SU == &ExitSU)
1111     oss << "<exit>";
1112   else
1113     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1114   return oss.str();
1115 }
1116
1117 /// Return the basic block label. It is not necessarilly unique because a block
1118 /// contains multiple scheduling regions. But it is fine for visualization.
1119 std::string ScheduleDAGInstrs::getDAGName() const {
1120   return "dag." + BB->getFullName();
1121 }
1122
1123 //===----------------------------------------------------------------------===//
1124 // SchedDFSResult Implementation
1125 //===----------------------------------------------------------------------===//
1126
1127 namespace llvm {
1128
1129 /// Internal state used to compute SchedDFSResult.
1130 class SchedDFSImpl {
1131   SchedDFSResult &R;
1132
1133   /// Join DAG nodes into equivalence classes by their subtree.
1134   IntEqClasses SubtreeClasses;
1135   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1136   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1137
1138   struct RootData {
1139     unsigned NodeID;
1140     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1141     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1142                                 /// children.
1143
1144     RootData(unsigned id): NodeID(id),
1145                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1146
1147     unsigned getSparseSetIndex() const { return NodeID; }
1148   };
1149
1150   SparseSet<RootData> RootSet;
1151
1152 public:
1153   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1154     RootSet.setUniverse(R.DFSNodeData.size());
1155   }
1156
1157   /// Returns true if this node been visited by the DFS traversal.
1158   ///
1159   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1160   /// ID. Later, SubtreeID is updated but remains valid.
1161   bool isVisited(const SUnit *SU) const {
1162     return R.DFSNodeData[SU->NodeNum].SubtreeID
1163       != SchedDFSResult::InvalidSubtreeID;
1164   }
1165
1166   /// Initializes this node's instruction count. We don't need to flag the node
1167   /// visited until visitPostorder because the DAG cannot have cycles.
1168   void visitPreorder(const SUnit *SU) {
1169     R.DFSNodeData[SU->NodeNum].InstrCount =
1170       SU->getInstr()->isTransient() ? 0 : 1;
1171   }
1172
1173   /// Called once for each node after all predecessors are visited. Revisit this
1174   /// node's predecessors and potentially join them now that we know the ILP of
1175   /// the other predecessors.
1176   void visitPostorderNode(const SUnit *SU) {
1177     // Mark this node as the root of a subtree. It may be joined with its
1178     // successors later.
1179     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1180     RootData RData(SU->NodeNum);
1181     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1182
1183     // If any predecessors are still in their own subtree, they either cannot be
1184     // joined or are large enough to remain separate. If this parent node's
1185     // total instruction count is not greater than a child subtree by at least
1186     // the subtree limit, then try to join it now since splitting subtrees is
1187     // only useful if multiple high-pressure paths are possible.
1188     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1189     for (const SDep &PredDep : SU->Preds) {
1190       if (PredDep.getKind() != SDep::Data)
1191         continue;
1192       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1193       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1194         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1195
1196       // Either link or merge the TreeData entry from the child to the parent.
1197       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1198         // If the predecessor's parent is invalid, this is a tree edge and the
1199         // current node is the parent.
1200         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1201           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1202       }
1203       else if (RootSet.count(PredNum)) {
1204         // The predecessor is not a root, but is still in the root set. This
1205         // must be the new parent that it was just joined to. Note that
1206         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1207         // set to the original parent.
1208         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1209         RootSet.erase(PredNum);
1210       }
1211     }
1212     RootSet[SU->NodeNum] = RData;
1213   }
1214
1215   /// \brief Called once for each tree edge after calling visitPostOrderNode on
1216   /// the predecessor. Increment the parent node's instruction count and
1217   /// preemptively join this subtree to its parent's if it is small enough.
1218   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1219     R.DFSNodeData[Succ->NodeNum].InstrCount
1220       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1221     joinPredSubtree(PredDep, Succ);
1222   }
1223
1224   /// Adds a connection for cross edges.
1225   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1226     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1227   }
1228
1229   /// Sets each node's subtree ID to the representative ID and record
1230   /// connections between trees.
1231   void finalize() {
1232     SubtreeClasses.compress();
1233     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1234     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1235            && "number of roots should match trees");
1236     for (const RootData &Root : RootSet) {
1237       unsigned TreeID = SubtreeClasses[Root.NodeID];
1238       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1239         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1240       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1241       // Note that SubInstrCount may be greater than InstrCount if we joined
1242       // subtrees across a cross edge. InstrCount will be attributed to the
1243       // original parent, while SubInstrCount will be attributed to the joined
1244       // parent.
1245     }
1246     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1247     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1248     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1249     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1250       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1251       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1252             << R.DFSNodeData[Idx].SubtreeID << '\n');
1253     }
1254     for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1255       unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1256       unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1257       if (PredTree == SuccTree)
1258         continue;
1259       unsigned Depth = P.first->getDepth();
1260       addConnection(PredTree, SuccTree, Depth);
1261       addConnection(SuccTree, PredTree, Depth);
1262     }
1263   }
1264
1265 protected:
1266   /// Joins the predecessor subtree with the successor that is its DFS parent.
1267   /// Applies some heuristics before joining.
1268   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1269                        bool CheckLimit = true) {
1270     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1271
1272     // Check if the predecessor is already joined.
1273     const SUnit *PredSU = PredDep.getSUnit();
1274     unsigned PredNum = PredSU->NodeNum;
1275     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1276       return false;
1277
1278     // Four is the magic number of successors before a node is considered a
1279     // pinch point.
1280     unsigned NumDataSucs = 0;
1281     for (const SDep &SuccDep : PredSU->Succs) {
1282       if (SuccDep.getKind() == SDep::Data) {
1283         if (++NumDataSucs >= 4)
1284           return false;
1285       }
1286     }
1287     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1288       return false;
1289     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1290     SubtreeClasses.join(Succ->NodeNum, PredNum);
1291     return true;
1292   }
1293
1294   /// Called by finalize() to record a connection between trees.
1295   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1296     if (!Depth)
1297       return;
1298
1299     do {
1300       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1301         R.SubtreeConnections[FromTree];
1302       for (SchedDFSResult::Connection &C : Connections) {
1303         if (C.TreeID == ToTree) {
1304           C.Level = std::max(C.Level, Depth);
1305           return;
1306         }
1307       }
1308       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1309       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1310     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1311   }
1312 };
1313
1314 } // end namespace llvm
1315
1316 namespace {
1317
1318 /// Manage the stack used by a reverse depth-first search over the DAG.
1319 class SchedDAGReverseDFS {
1320   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1321
1322 public:
1323   bool isComplete() const { return DFSStack.empty(); }
1324
1325   void follow(const SUnit *SU) {
1326     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1327   }
1328   void advance() { ++DFSStack.back().second; }
1329
1330   const SDep *backtrack() {
1331     DFSStack.pop_back();
1332     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1333   }
1334
1335   const SUnit *getCurr() const { return DFSStack.back().first; }
1336
1337   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1338
1339   SUnit::const_pred_iterator getPredEnd() const {
1340     return getCurr()->Preds.end();
1341   }
1342 };
1343
1344 } // end anonymous namespace
1345
1346 static bool hasDataSucc(const SUnit *SU) {
1347   for (const SDep &SuccDep : SU->Succs) {
1348     if (SuccDep.getKind() == SDep::Data &&
1349         !SuccDep.getSUnit()->isBoundaryNode())
1350       return true;
1351   }
1352   return false;
1353 }
1354
1355 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1356 /// search from this root.
1357 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1358   if (!IsBottomUp)
1359     llvm_unreachable("Top-down ILP metric is unimplemented");
1360
1361   SchedDFSImpl Impl(*this);
1362   for (const SUnit &SU : SUnits) {
1363     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1364       continue;
1365
1366     SchedDAGReverseDFS DFS;
1367     Impl.visitPreorder(&SU);
1368     DFS.follow(&SU);
1369     while (true) {
1370       // Traverse the leftmost path as far as possible.
1371       while (DFS.getPred() != DFS.getPredEnd()) {
1372         const SDep &PredDep = *DFS.getPred();
1373         DFS.advance();
1374         // Ignore non-data edges.
1375         if (PredDep.getKind() != SDep::Data
1376             || PredDep.getSUnit()->isBoundaryNode()) {
1377           continue;
1378         }
1379         // An already visited edge is a cross edge, assuming an acyclic DAG.
1380         if (Impl.isVisited(PredDep.getSUnit())) {
1381           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1382           continue;
1383         }
1384         Impl.visitPreorder(PredDep.getSUnit());
1385         DFS.follow(PredDep.getSUnit());
1386       }
1387       // Visit the top of the stack in postorder and backtrack.
1388       const SUnit *Child = DFS.getCurr();
1389       const SDep *PredDep = DFS.backtrack();
1390       Impl.visitPostorderNode(Child);
1391       if (PredDep)
1392         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1393       if (DFS.isComplete())
1394         break;
1395     }
1396   }
1397   Impl.finalize();
1398 }
1399
1400 /// The root of the given SubtreeID was just scheduled. For all subtrees
1401 /// connected to this tree, record the depth of the connection so that the
1402 /// nearest connected subtrees can be prioritized.
1403 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1404   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1405     SubtreeConnectLevels[C.TreeID] =
1406       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1407     DEBUG(dbgs() << "  Tree: " << C.TreeID
1408           << " @" << SubtreeConnectLevels[C.TreeID] << '\n');
1409   }
1410 }
1411
1412 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1413 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1414   OS << InstrCount << " / " << Length << " = ";
1415   if (!Length)
1416     OS << "BADILP";
1417   else
1418     OS << format("%g", ((double)InstrCount / Length));
1419 }
1420
1421 LLVM_DUMP_METHOD void ILPValue::dump() const {
1422   dbgs() << *this << '\n';
1423 }
1424
1425 namespace llvm {
1426
1427 LLVM_DUMP_METHOD
1428 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1429   Val.print(OS);
1430   return OS;
1431 }
1432
1433 } // end namespace llvm
1434
1435 #endif