]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91
92 #define DEBUG_TYPE "selectiondag"
93
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159   unsigned i = 0, e = N->getNumOperands();
160
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265
266   for (const SDValue &Op : N->op_values())
267     if (!Op.isUndef())
268       return false;
269
270   return true;
271 }
272
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs) {
303   if (LHS.getValueType() != RHS.getValueType())
304     return false;
305
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (LHSOp.getValueType() != SVT ||
327         LHSOp.getValueType() != RHSOp.getValueType())
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346
347   llvm_unreachable("Invalid LoadExtType");
348 }
349
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359
360 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
361   unsigned Operation = Op;
362   if (isInteger)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369
370   return ISD::CondCode(Operation);
371 }
372
373 /// For an integer comparison, return 1 if the comparison is a signed operation
374 /// and 2 if the result is an unsigned comparison. Return zero if the operation
375 /// does not depend on the sign of the input (setne and seteq).
376 static int isSignedOp(ISD::CondCode Opcode) {
377   switch (Opcode) {
378   default: llvm_unreachable("Illegal integer setcc operation!");
379   case ISD::SETEQ:
380   case ISD::SETNE: return 0;
381   case ISD::SETLT:
382   case ISD::SETLE:
383   case ISD::SETGT:
384   case ISD::SETGE: return 1;
385   case ISD::SETULT:
386   case ISD::SETULE:
387   case ISD::SETUGT:
388   case ISD::SETUGE: return 2;
389   }
390 }
391
392 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
393                                        bool IsInteger) {
394   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
395     // Cannot fold a signed integer setcc with an unsigned integer setcc.
396     return ISD::SETCC_INVALID;
397
398   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
399
400   // If the N and U bits get set, then the resultant comparison DOES suddenly
401   // care about orderedness, and it is true when ordered.
402   if (Op > ISD::SETTRUE2)
403     Op &= ~16;     // Clear the U bit if the N bit is set.
404
405   // Canonicalize illegal integer setcc's.
406   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
407     Op = ISD::SETNE;
408
409   return ISD::CondCode(Op);
410 }
411
412 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
413                                         bool IsInteger) {
414   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
415     // Cannot fold a signed setcc with an unsigned setcc.
416     return ISD::SETCC_INVALID;
417
418   // Combine all of the condition bits.
419   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
420
421   // Canonicalize illegal integer setcc's.
422   if (IsInteger) {
423     switch (Result) {
424     default: break;
425     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
426     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
427     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
428     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
429     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
430     }
431   }
432
433   return Result;
434 }
435
436 //===----------------------------------------------------------------------===//
437 //                           SDNode Profile Support
438 //===----------------------------------------------------------------------===//
439
440 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
441 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
442   ID.AddInteger(OpC);
443 }
444
445 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
446 /// solely with their pointer.
447 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
448   ID.AddPointer(VTList.VTs);
449 }
450
451 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
452 static void AddNodeIDOperands(FoldingSetNodeID &ID,
453                               ArrayRef<SDValue> Ops) {
454   for (auto& Op : Ops) {
455     ID.AddPointer(Op.getNode());
456     ID.AddInteger(Op.getResNo());
457   }
458 }
459
460 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
461 static void AddNodeIDOperands(FoldingSetNodeID &ID,
462                               ArrayRef<SDUse> Ops) {
463   for (auto& Op : Ops) {
464     ID.AddPointer(Op.getNode());
465     ID.AddInteger(Op.getResNo());
466   }
467 }
468
469 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
470                           SDVTList VTList, ArrayRef<SDValue> OpList) {
471   AddNodeIDOpcode(ID, OpC);
472   AddNodeIDValueTypes(ID, VTList);
473   AddNodeIDOperands(ID, OpList);
474 }
475
476 /// If this is an SDNode with special info, add this info to the NodeID data.
477 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
478   switch (N->getOpcode()) {
479   case ISD::TargetExternalSymbol:
480   case ISD::ExternalSymbol:
481   case ISD::MCSymbol:
482     llvm_unreachable("Should only be used on nodes with operands");
483   default: break;  // Normal nodes don't need extra info.
484   case ISD::TargetConstant:
485   case ISD::Constant: {
486     const ConstantSDNode *C = cast<ConstantSDNode>(N);
487     ID.AddPointer(C->getConstantIntValue());
488     ID.AddBoolean(C->isOpaque());
489     break;
490   }
491   case ISD::TargetConstantFP:
492   case ISD::ConstantFP:
493     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
494     break;
495   case ISD::TargetGlobalAddress:
496   case ISD::GlobalAddress:
497   case ISD::TargetGlobalTLSAddress:
498   case ISD::GlobalTLSAddress: {
499     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
500     ID.AddPointer(GA->getGlobal());
501     ID.AddInteger(GA->getOffset());
502     ID.AddInteger(GA->getTargetFlags());
503     break;
504   }
505   case ISD::BasicBlock:
506     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
507     break;
508   case ISD::Register:
509     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
510     break;
511   case ISD::RegisterMask:
512     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
513     break;
514   case ISD::SRCVALUE:
515     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
516     break;
517   case ISD::FrameIndex:
518   case ISD::TargetFrameIndex:
519     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
520     break;
521   case ISD::JumpTable:
522   case ISD::TargetJumpTable:
523     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
524     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
525     break;
526   case ISD::ConstantPool:
527   case ISD::TargetConstantPool: {
528     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
529     ID.AddInteger(CP->getAlignment());
530     ID.AddInteger(CP->getOffset());
531     if (CP->isMachineConstantPoolEntry())
532       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
533     else
534       ID.AddPointer(CP->getConstVal());
535     ID.AddInteger(CP->getTargetFlags());
536     break;
537   }
538   case ISD::TargetIndex: {
539     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
540     ID.AddInteger(TI->getIndex());
541     ID.AddInteger(TI->getOffset());
542     ID.AddInteger(TI->getTargetFlags());
543     break;
544   }
545   case ISD::LOAD: {
546     const LoadSDNode *LD = cast<LoadSDNode>(N);
547     ID.AddInteger(LD->getMemoryVT().getRawBits());
548     ID.AddInteger(LD->getRawSubclassData());
549     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
550     break;
551   }
552   case ISD::STORE: {
553     const StoreSDNode *ST = cast<StoreSDNode>(N);
554     ID.AddInteger(ST->getMemoryVT().getRawBits());
555     ID.AddInteger(ST->getRawSubclassData());
556     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
557     break;
558   }
559   case ISD::MLOAD: {
560     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
561     ID.AddInteger(MLD->getMemoryVT().getRawBits());
562     ID.AddInteger(MLD->getRawSubclassData());
563     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
564     break;
565   }
566   case ISD::MSTORE: {
567     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
568     ID.AddInteger(MST->getMemoryVT().getRawBits());
569     ID.AddInteger(MST->getRawSubclassData());
570     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
571     break;
572   }
573   case ISD::MGATHER: {
574     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
575     ID.AddInteger(MG->getMemoryVT().getRawBits());
576     ID.AddInteger(MG->getRawSubclassData());
577     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
578     break;
579   }
580   case ISD::MSCATTER: {
581     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
582     ID.AddInteger(MS->getMemoryVT().getRawBits());
583     ID.AddInteger(MS->getRawSubclassData());
584     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
585     break;
586   }
587   case ISD::ATOMIC_CMP_SWAP:
588   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
589   case ISD::ATOMIC_SWAP:
590   case ISD::ATOMIC_LOAD_ADD:
591   case ISD::ATOMIC_LOAD_SUB:
592   case ISD::ATOMIC_LOAD_AND:
593   case ISD::ATOMIC_LOAD_CLR:
594   case ISD::ATOMIC_LOAD_OR:
595   case ISD::ATOMIC_LOAD_XOR:
596   case ISD::ATOMIC_LOAD_NAND:
597   case ISD::ATOMIC_LOAD_MIN:
598   case ISD::ATOMIC_LOAD_MAX:
599   case ISD::ATOMIC_LOAD_UMIN:
600   case ISD::ATOMIC_LOAD_UMAX:
601   case ISD::ATOMIC_LOAD:
602   case ISD::ATOMIC_STORE: {
603     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
604     ID.AddInteger(AT->getMemoryVT().getRawBits());
605     ID.AddInteger(AT->getRawSubclassData());
606     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
607     break;
608   }
609   case ISD::PREFETCH: {
610     const MemSDNode *PF = cast<MemSDNode>(N);
611     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
612     break;
613   }
614   case ISD::VECTOR_SHUFFLE: {
615     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
616     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
617          i != e; ++i)
618       ID.AddInteger(SVN->getMaskElt(i));
619     break;
620   }
621   case ISD::TargetBlockAddress:
622   case ISD::BlockAddress: {
623     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
624     ID.AddPointer(BA->getBlockAddress());
625     ID.AddInteger(BA->getOffset());
626     ID.AddInteger(BA->getTargetFlags());
627     break;
628   }
629   } // end switch (N->getOpcode())
630
631   // Target specific memory nodes could also have address spaces to check.
632   if (N->isTargetMemoryOpcode())
633     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
634 }
635
636 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
637 /// data.
638 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
639   AddNodeIDOpcode(ID, N->getOpcode());
640   // Add the return value info.
641   AddNodeIDValueTypes(ID, N->getVTList());
642   // Add the operand info.
643   AddNodeIDOperands(ID, N->ops());
644
645   // Handle SDNode leafs with special info.
646   AddNodeIDCustom(ID, N);
647 }
648
649 //===----------------------------------------------------------------------===//
650 //                              SelectionDAG Class
651 //===----------------------------------------------------------------------===//
652
653 /// doNotCSE - Return true if CSE should not be performed for this node.
654 static bool doNotCSE(SDNode *N) {
655   if (N->getValueType(0) == MVT::Glue)
656     return true; // Never CSE anything that produces a flag.
657
658   switch (N->getOpcode()) {
659   default: break;
660   case ISD::HANDLENODE:
661   case ISD::EH_LABEL:
662     return true;   // Never CSE these nodes.
663   }
664
665   // Check that remaining values produced are not flags.
666   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
667     if (N->getValueType(i) == MVT::Glue)
668       return true; // Never CSE anything that produces a flag.
669
670   return false;
671 }
672
673 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
674 /// SelectionDAG.
675 void SelectionDAG::RemoveDeadNodes() {
676   // Create a dummy node (which is not added to allnodes), that adds a reference
677   // to the root node, preventing it from being deleted.
678   HandleSDNode Dummy(getRoot());
679
680   SmallVector<SDNode*, 128> DeadNodes;
681
682   // Add all obviously-dead nodes to the DeadNodes worklist.
683   for (SDNode &Node : allnodes())
684     if (Node.use_empty())
685       DeadNodes.push_back(&Node);
686
687   RemoveDeadNodes(DeadNodes);
688
689   // If the root changed (e.g. it was a dead load, update the root).
690   setRoot(Dummy.getValue());
691 }
692
693 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
694 /// given list, and any nodes that become unreachable as a result.
695 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
696
697   // Process the worklist, deleting the nodes and adding their uses to the
698   // worklist.
699   while (!DeadNodes.empty()) {
700     SDNode *N = DeadNodes.pop_back_val();
701     // Skip to next node if we've already managed to delete the node. This could
702     // happen if replacing a node causes a node previously added to the node to
703     // be deleted.
704     if (N->getOpcode() == ISD::DELETED_NODE)
705       continue;
706
707     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
708       DUL->NodeDeleted(N, nullptr);
709
710     // Take the node out of the appropriate CSE map.
711     RemoveNodeFromCSEMaps(N);
712
713     // Next, brutally remove the operand list.  This is safe to do, as there are
714     // no cycles in the graph.
715     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
716       SDUse &Use = *I++;
717       SDNode *Operand = Use.getNode();
718       Use.set(SDValue());
719
720       // Now that we removed this operand, see if there are no uses of it left.
721       if (Operand->use_empty())
722         DeadNodes.push_back(Operand);
723     }
724
725     DeallocateNode(N);
726   }
727 }
728
729 void SelectionDAG::RemoveDeadNode(SDNode *N){
730   SmallVector<SDNode*, 16> DeadNodes(1, N);
731
732   // Create a dummy node that adds a reference to the root node, preventing
733   // it from being deleted.  (This matters if the root is an operand of the
734   // dead node.)
735   HandleSDNode Dummy(getRoot());
736
737   RemoveDeadNodes(DeadNodes);
738 }
739
740 void SelectionDAG::DeleteNode(SDNode *N) {
741   // First take this out of the appropriate CSE map.
742   RemoveNodeFromCSEMaps(N);
743
744   // Finally, remove uses due to operands of this node, remove from the
745   // AllNodes list, and delete the node.
746   DeleteNodeNotInCSEMaps(N);
747 }
748
749 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
750   assert(N->getIterator() != AllNodes.begin() &&
751          "Cannot delete the entry node!");
752   assert(N->use_empty() && "Cannot delete a node that is not dead!");
753
754   // Drop all of the operands and decrement used node's use counts.
755   N->DropOperands();
756
757   DeallocateNode(N);
758 }
759
760 void SDDbgInfo::erase(const SDNode *Node) {
761   DbgValMapType::iterator I = DbgValMap.find(Node);
762   if (I == DbgValMap.end())
763     return;
764   for (auto &Val: I->second)
765     Val->setIsInvalidated();
766   DbgValMap.erase(I);
767 }
768
769 void SelectionDAG::DeallocateNode(SDNode *N) {
770   // If we have operands, deallocate them.
771   removeOperands(N);
772
773   NodeAllocator.Deallocate(AllNodes.remove(N));
774
775   // Set the opcode to DELETED_NODE to help catch bugs when node
776   // memory is reallocated.
777   // FIXME: There are places in SDag that have grown a dependency on the opcode
778   // value in the released node.
779   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
780   N->NodeType = ISD::DELETED_NODE;
781
782   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
783   // them and forget about that node.
784   DbgInfo->erase(N);
785 }
786
787 #ifndef NDEBUG
788 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
789 static void VerifySDNode(SDNode *N) {
790   switch (N->getOpcode()) {
791   default:
792     break;
793   case ISD::BUILD_PAIR: {
794     EVT VT = N->getValueType(0);
795     assert(N->getNumValues() == 1 && "Too many results!");
796     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
797            "Wrong return type!");
798     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
799     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
800            "Mismatched operand types!");
801     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
802            "Wrong operand type!");
803     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
804            "Wrong return type size");
805     break;
806   }
807   case ISD::BUILD_VECTOR: {
808     assert(N->getNumValues() == 1 && "Too many results!");
809     assert(N->getValueType(0).isVector() && "Wrong return type!");
810     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
811            "Wrong number of operands!");
812     EVT EltVT = N->getValueType(0).getVectorElementType();
813     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
814       assert((I->getValueType() == EltVT ||
815              (EltVT.isInteger() && I->getValueType().isInteger() &&
816               EltVT.bitsLE(I->getValueType()))) &&
817             "Wrong operand type!");
818       assert(I->getValueType() == N->getOperand(0).getValueType() &&
819              "Operands must all have the same type");
820     }
821     break;
822   }
823   }
824 }
825 #endif // NDEBUG
826
827 /// Insert a newly allocated node into the DAG.
828 ///
829 /// Handles insertion into the all nodes list and CSE map, as well as
830 /// verification and other common operations when a new node is allocated.
831 void SelectionDAG::InsertNode(SDNode *N) {
832   AllNodes.push_back(N);
833 #ifndef NDEBUG
834   N->PersistentId = NextPersistentId++;
835   VerifySDNode(N);
836 #endif
837 }
838
839 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
840 /// correspond to it.  This is useful when we're about to delete or repurpose
841 /// the node.  We don't want future request for structurally identical nodes
842 /// to return N anymore.
843 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
844   bool Erased = false;
845   switch (N->getOpcode()) {
846   case ISD::HANDLENODE: return false;  // noop.
847   case ISD::CONDCODE:
848     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
849            "Cond code doesn't exist!");
850     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
851     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
852     break;
853   case ISD::ExternalSymbol:
854     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
855     break;
856   case ISD::TargetExternalSymbol: {
857     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
858     Erased = TargetExternalSymbols.erase(
859                std::pair<std::string,unsigned char>(ESN->getSymbol(),
860                                                     ESN->getTargetFlags()));
861     break;
862   }
863   case ISD::MCSymbol: {
864     auto *MCSN = cast<MCSymbolSDNode>(N);
865     Erased = MCSymbols.erase(MCSN->getMCSymbol());
866     break;
867   }
868   case ISD::VALUETYPE: {
869     EVT VT = cast<VTSDNode>(N)->getVT();
870     if (VT.isExtended()) {
871       Erased = ExtendedValueTypeNodes.erase(VT);
872     } else {
873       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
874       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
875     }
876     break;
877   }
878   default:
879     // Remove it from the CSE Map.
880     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
881     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
882     Erased = CSEMap.RemoveNode(N);
883     break;
884   }
885 #ifndef NDEBUG
886   // Verify that the node was actually in one of the CSE maps, unless it has a
887   // flag result (which cannot be CSE'd) or is one of the special cases that are
888   // not subject to CSE.
889   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
890       !N->isMachineOpcode() && !doNotCSE(N)) {
891     N->dump(this);
892     dbgs() << "\n";
893     llvm_unreachable("Node is not in map!");
894   }
895 #endif
896   return Erased;
897 }
898
899 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
900 /// maps and modified in place. Add it back to the CSE maps, unless an identical
901 /// node already exists, in which case transfer all its users to the existing
902 /// node. This transfer can potentially trigger recursive merging.
903 void
904 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
905   // For node types that aren't CSE'd, just act as if no identical node
906   // already exists.
907   if (!doNotCSE(N)) {
908     SDNode *Existing = CSEMap.GetOrInsertNode(N);
909     if (Existing != N) {
910       // If there was already an existing matching node, use ReplaceAllUsesWith
911       // to replace the dead one with the existing one.  This can cause
912       // recursive merging of other unrelated nodes down the line.
913       ReplaceAllUsesWith(N, Existing);
914
915       // N is now dead. Inform the listeners and delete it.
916       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
917         DUL->NodeDeleted(N, Existing);
918       DeleteNodeNotInCSEMaps(N);
919       return;
920     }
921   }
922
923   // If the node doesn't already exist, we updated it.  Inform listeners.
924   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
925     DUL->NodeUpdated(N);
926 }
927
928 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
929 /// were replaced with those specified.  If this node is never memoized,
930 /// return null, otherwise return a pointer to the slot it would take.  If a
931 /// node already exists with these operands, the slot will be non-null.
932 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
933                                            void *&InsertPos) {
934   if (doNotCSE(N))
935     return nullptr;
936
937   SDValue Ops[] = { Op };
938   FoldingSetNodeID ID;
939   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
940   AddNodeIDCustom(ID, N);
941   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
942   if (Node)
943     Node->intersectFlagsWith(N->getFlags());
944   return Node;
945 }
946
947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
948 /// were replaced with those specified.  If this node is never memoized,
949 /// return null, otherwise return a pointer to the slot it would take.  If a
950 /// node already exists with these operands, the slot will be non-null.
951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
952                                            SDValue Op1, SDValue Op2,
953                                            void *&InsertPos) {
954   if (doNotCSE(N))
955     return nullptr;
956
957   SDValue Ops[] = { Op1, Op2 };
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966
967 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
968 /// were replaced with those specified.  If this node is never memoized,
969 /// return null, otherwise return a pointer to the slot it would take.  If a
970 /// node already exists with these operands, the slot will be non-null.
971 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
972                                            void *&InsertPos) {
973   if (doNotCSE(N))
974     return nullptr;
975
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984
985 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
986   Type *Ty = VT == MVT::iPTR ?
987                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
988                    VT.getTypeForEVT(*getContext());
989
990   return getDataLayout().getABITypeAlignment(Ty);
991 }
992
993 // EntryNode could meaningfully have debug info if we can find it...
994 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
995     : TM(tm), OptLevel(OL),
996       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
997       Root(getEntryNode()) {
998   InsertNode(&EntryNode);
999   DbgInfo = new SDDbgInfo();
1000 }
1001
1002 void SelectionDAG::init(MachineFunction &NewMF,
1003                         OptimizationRemarkEmitter &NewORE,
1004                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1005                         LegacyDivergenceAnalysis * Divergence) {
1006   MF = &NewMF;
1007   SDAGISelPass = PassPtr;
1008   ORE = &NewORE;
1009   TLI = getSubtarget().getTargetLowering();
1010   TSI = getSubtarget().getSelectionDAGInfo();
1011   LibInfo = LibraryInfo;
1012   Context = &MF->getFunction().getContext();
1013   DA = Divergence;
1014 }
1015
1016 SelectionDAG::~SelectionDAG() {
1017   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1018   allnodes_clear();
1019   OperandRecycler.clear(OperandAllocator);
1020   delete DbgInfo;
1021 }
1022
1023 void SelectionDAG::allnodes_clear() {
1024   assert(&*AllNodes.begin() == &EntryNode);
1025   AllNodes.remove(AllNodes.begin());
1026   while (!AllNodes.empty())
1027     DeallocateNode(&AllNodes.front());
1028 #ifndef NDEBUG
1029   NextPersistentId = 0;
1030 #endif
1031 }
1032
1033 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1034                                           void *&InsertPos) {
1035   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1036   if (N) {
1037     switch (N->getOpcode()) {
1038     default: break;
1039     case ISD::Constant:
1040     case ISD::ConstantFP:
1041       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1042                        "debug location.  Use another overload.");
1043     }
1044   }
1045   return N;
1046 }
1047
1048 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1049                                           const SDLoc &DL, void *&InsertPos) {
1050   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1051   if (N) {
1052     switch (N->getOpcode()) {
1053     case ISD::Constant:
1054     case ISD::ConstantFP:
1055       // Erase debug location from the node if the node is used at several
1056       // different places. Do not propagate one location to all uses as it
1057       // will cause a worse single stepping debugging experience.
1058       if (N->getDebugLoc() != DL.getDebugLoc())
1059         N->setDebugLoc(DebugLoc());
1060       break;
1061     default:
1062       // When the node's point of use is located earlier in the instruction
1063       // sequence than its prior point of use, update its debug info to the
1064       // earlier location.
1065       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1066         N->setDebugLoc(DL.getDebugLoc());
1067       break;
1068     }
1069   }
1070   return N;
1071 }
1072
1073 void SelectionDAG::clear() {
1074   allnodes_clear();
1075   OperandRecycler.clear(OperandAllocator);
1076   OperandAllocator.Reset();
1077   CSEMap.clear();
1078
1079   ExtendedValueTypeNodes.clear();
1080   ExternalSymbols.clear();
1081   TargetExternalSymbols.clear();
1082   MCSymbols.clear();
1083   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1084             static_cast<CondCodeSDNode*>(nullptr));
1085   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1086             static_cast<SDNode*>(nullptr));
1087
1088   EntryNode.UseList = nullptr;
1089   InsertNode(&EntryNode);
1090   Root = getEntryNode();
1091   DbgInfo->clear();
1092 }
1093
1094 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1095   return VT.bitsGT(Op.getValueType())
1096              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1097              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1098 }
1099
1100 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1101   return VT.bitsGT(Op.getValueType()) ?
1102     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1103     getNode(ISD::TRUNCATE, DL, VT, Op);
1104 }
1105
1106 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1107   return VT.bitsGT(Op.getValueType()) ?
1108     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1109     getNode(ISD::TRUNCATE, DL, VT, Op);
1110 }
1111
1112 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1113   return VT.bitsGT(Op.getValueType()) ?
1114     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1115     getNode(ISD::TRUNCATE, DL, VT, Op);
1116 }
1117
1118 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1119                                         EVT OpVT) {
1120   if (VT.bitsLE(Op.getValueType()))
1121     return getNode(ISD::TRUNCATE, SL, VT, Op);
1122
1123   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1124   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1125 }
1126
1127 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1128   assert(!VT.isVector() &&
1129          "getZeroExtendInReg should use the vector element type instead of "
1130          "the vector type!");
1131   if (Op.getValueType().getScalarType() == VT) return Op;
1132   unsigned BitWidth = Op.getScalarValueSizeInBits();
1133   APInt Imm = APInt::getLowBitsSet(BitWidth,
1134                                    VT.getSizeInBits());
1135   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1136                  getConstant(Imm, DL, Op.getValueType()));
1137 }
1138
1139 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1140 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1141   EVT EltVT = VT.getScalarType();
1142   SDValue NegOne =
1143     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1144   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1145 }
1146
1147 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1148   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1149   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1150 }
1151
1152 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1153                                       EVT OpVT) {
1154   if (!V)
1155     return getConstant(0, DL, VT);
1156
1157   switch (TLI->getBooleanContents(OpVT)) {
1158   case TargetLowering::ZeroOrOneBooleanContent:
1159   case TargetLowering::UndefinedBooleanContent:
1160     return getConstant(1, DL, VT);
1161   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1162     return getAllOnesConstant(DL, VT);
1163   }
1164   llvm_unreachable("Unexpected boolean content enum!");
1165 }
1166
1167 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1168                                   bool isT, bool isO) {
1169   EVT EltVT = VT.getScalarType();
1170   assert((EltVT.getSizeInBits() >= 64 ||
1171          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1172          "getConstant with a uint64_t value that doesn't fit in the type!");
1173   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1174 }
1175
1176 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1177                                   bool isT, bool isO) {
1178   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1179 }
1180
1181 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1182                                   EVT VT, bool isT, bool isO) {
1183   assert(VT.isInteger() && "Cannot create FP integer constant!");
1184
1185   EVT EltVT = VT.getScalarType();
1186   const ConstantInt *Elt = &Val;
1187
1188   // In some cases the vector type is legal but the element type is illegal and
1189   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1190   // inserted value (the type does not need to match the vector element type).
1191   // Any extra bits introduced will be truncated away.
1192   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1193       TargetLowering::TypePromoteInteger) {
1194    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1195    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1196    Elt = ConstantInt::get(*getContext(), NewVal);
1197   }
1198   // In other cases the element type is illegal and needs to be expanded, for
1199   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1200   // the value into n parts and use a vector type with n-times the elements.
1201   // Then bitcast to the type requested.
1202   // Legalizing constants too early makes the DAGCombiner's job harder so we
1203   // only legalize if the DAG tells us we must produce legal types.
1204   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1205            TLI->getTypeAction(*getContext(), EltVT) ==
1206            TargetLowering::TypeExpandInteger) {
1207     const APInt &NewVal = Elt->getValue();
1208     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1209     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1210     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1211     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1212
1213     // Check the temporary vector is the correct size. If this fails then
1214     // getTypeToTransformTo() probably returned a type whose size (in bits)
1215     // isn't a power-of-2 factor of the requested type size.
1216     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1217
1218     SmallVector<SDValue, 2> EltParts;
1219     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1220       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1221                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1222                                      ViaEltVT, isT, isO));
1223     }
1224
1225     // EltParts is currently in little endian order. If we actually want
1226     // big-endian order then reverse it now.
1227     if (getDataLayout().isBigEndian())
1228       std::reverse(EltParts.begin(), EltParts.end());
1229
1230     // The elements must be reversed when the element order is different
1231     // to the endianness of the elements (because the BITCAST is itself a
1232     // vector shuffle in this situation). However, we do not need any code to
1233     // perform this reversal because getConstant() is producing a vector
1234     // splat.
1235     // This situation occurs in MIPS MSA.
1236
1237     SmallVector<SDValue, 8> Ops;
1238     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1239       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1240
1241     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1242     return V;
1243   }
1244
1245   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1246          "APInt size does not match type size!");
1247   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1248   FoldingSetNodeID ID;
1249   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1250   ID.AddPointer(Elt);
1251   ID.AddBoolean(isO);
1252   void *IP = nullptr;
1253   SDNode *N = nullptr;
1254   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1255     if (!VT.isVector())
1256       return SDValue(N, 0);
1257
1258   if (!N) {
1259     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1260     CSEMap.InsertNode(N, IP);
1261     InsertNode(N);
1262     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1263   }
1264
1265   SDValue Result(N, 0);
1266   if (VT.isVector())
1267     Result = getSplatBuildVector(VT, DL, Result);
1268
1269   return Result;
1270 }
1271
1272 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1273                                         bool isTarget) {
1274   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1275 }
1276
1277 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1278                                     bool isTarget) {
1279   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1280 }
1281
1282 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1283                                     EVT VT, bool isTarget) {
1284   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1285
1286   EVT EltVT = VT.getScalarType();
1287
1288   // Do the map lookup using the actual bit pattern for the floating point
1289   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1290   // we don't have issues with SNANs.
1291   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1292   FoldingSetNodeID ID;
1293   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1294   ID.AddPointer(&V);
1295   void *IP = nullptr;
1296   SDNode *N = nullptr;
1297   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1298     if (!VT.isVector())
1299       return SDValue(N, 0);
1300
1301   if (!N) {
1302     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1303     CSEMap.InsertNode(N, IP);
1304     InsertNode(N);
1305   }
1306
1307   SDValue Result(N, 0);
1308   if (VT.isVector())
1309     Result = getSplatBuildVector(VT, DL, Result);
1310   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1311   return Result;
1312 }
1313
1314 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1315                                     bool isTarget) {
1316   EVT EltVT = VT.getScalarType();
1317   if (EltVT == MVT::f32)
1318     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1319   else if (EltVT == MVT::f64)
1320     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1321   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1322            EltVT == MVT::f16) {
1323     bool Ignored;
1324     APFloat APF = APFloat(Val);
1325     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1326                 &Ignored);
1327     return getConstantFP(APF, DL, VT, isTarget);
1328   } else
1329     llvm_unreachable("Unsupported type in getConstantFP");
1330 }
1331
1332 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1333                                        EVT VT, int64_t Offset, bool isTargetGA,
1334                                        unsigned char TargetFlags) {
1335   assert((TargetFlags == 0 || isTargetGA) &&
1336          "Cannot set target flags on target-independent globals");
1337
1338   // Truncate (with sign-extension) the offset value to the pointer size.
1339   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1340   if (BitWidth < 64)
1341     Offset = SignExtend64(Offset, BitWidth);
1342
1343   unsigned Opc;
1344   if (GV->isThreadLocal())
1345     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1346   else
1347     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1348
1349   FoldingSetNodeID ID;
1350   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1351   ID.AddPointer(GV);
1352   ID.AddInteger(Offset);
1353   ID.AddInteger(TargetFlags);
1354   void *IP = nullptr;
1355   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1356     return SDValue(E, 0);
1357
1358   auto *N = newSDNode<GlobalAddressSDNode>(
1359       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1360   CSEMap.InsertNode(N, IP);
1361     InsertNode(N);
1362   return SDValue(N, 0);
1363 }
1364
1365 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1366   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1369   ID.AddInteger(FI);
1370   void *IP = nullptr;
1371   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1372     return SDValue(E, 0);
1373
1374   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1375   CSEMap.InsertNode(N, IP);
1376   InsertNode(N);
1377   return SDValue(N, 0);
1378 }
1379
1380 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1381                                    unsigned char TargetFlags) {
1382   assert((TargetFlags == 0 || isTarget) &&
1383          "Cannot set target flags on target-independent jump tables");
1384   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1385   FoldingSetNodeID ID;
1386   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1387   ID.AddInteger(JTI);
1388   ID.AddInteger(TargetFlags);
1389   void *IP = nullptr;
1390   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1391     return SDValue(E, 0);
1392
1393   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1394   CSEMap.InsertNode(N, IP);
1395   InsertNode(N);
1396   return SDValue(N, 0);
1397 }
1398
1399 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1400                                       unsigned Alignment, int Offset,
1401                                       bool isTarget,
1402                                       unsigned char TargetFlags) {
1403   assert((TargetFlags == 0 || isTarget) &&
1404          "Cannot set target flags on target-independent globals");
1405   if (Alignment == 0)
1406     Alignment = MF->getFunction().optForSize()
1407                     ? getDataLayout().getABITypeAlignment(C->getType())
1408                     : getDataLayout().getPrefTypeAlignment(C->getType());
1409   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1410   FoldingSetNodeID ID;
1411   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1412   ID.AddInteger(Alignment);
1413   ID.AddInteger(Offset);
1414   ID.AddPointer(C);
1415   ID.AddInteger(TargetFlags);
1416   void *IP = nullptr;
1417   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1418     return SDValue(E, 0);
1419
1420   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1421                                           TargetFlags);
1422   CSEMap.InsertNode(N, IP);
1423   InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426
1427 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1428                                       unsigned Alignment, int Offset,
1429                                       bool isTarget,
1430                                       unsigned char TargetFlags) {
1431   assert((TargetFlags == 0 || isTarget) &&
1432          "Cannot set target flags on target-independent globals");
1433   if (Alignment == 0)
1434     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1435   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1436   FoldingSetNodeID ID;
1437   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1438   ID.AddInteger(Alignment);
1439   ID.AddInteger(Offset);
1440   C->addSelectionDAGCSEId(ID);
1441   ID.AddInteger(TargetFlags);
1442   void *IP = nullptr;
1443   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1444     return SDValue(E, 0);
1445
1446   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1447                                           TargetFlags);
1448   CSEMap.InsertNode(N, IP);
1449   InsertNode(N);
1450   return SDValue(N, 0);
1451 }
1452
1453 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1454                                      unsigned char TargetFlags) {
1455   FoldingSetNodeID ID;
1456   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1457   ID.AddInteger(Index);
1458   ID.AddInteger(Offset);
1459   ID.AddInteger(TargetFlags);
1460   void *IP = nullptr;
1461   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1462     return SDValue(E, 0);
1463
1464   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1465   CSEMap.InsertNode(N, IP);
1466   InsertNode(N);
1467   return SDValue(N, 0);
1468 }
1469
1470 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1471   FoldingSetNodeID ID;
1472   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1473   ID.AddPointer(MBB);
1474   void *IP = nullptr;
1475   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1476     return SDValue(E, 0);
1477
1478   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1479   CSEMap.InsertNode(N, IP);
1480   InsertNode(N);
1481   return SDValue(N, 0);
1482 }
1483
1484 SDValue SelectionDAG::getValueType(EVT VT) {
1485   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1486       ValueTypeNodes.size())
1487     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1488
1489   SDNode *&N = VT.isExtended() ?
1490     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1491
1492   if (N) return SDValue(N, 0);
1493   N = newSDNode<VTSDNode>(VT);
1494   InsertNode(N);
1495   return SDValue(N, 0);
1496 }
1497
1498 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1499   SDNode *&N = ExternalSymbols[Sym];
1500   if (N) return SDValue(N, 0);
1501   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505
1506 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1507   SDNode *&N = MCSymbols[Sym];
1508   if (N)
1509     return SDValue(N, 0);
1510   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1511   InsertNode(N);
1512   return SDValue(N, 0);
1513 }
1514
1515 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1516                                               unsigned char TargetFlags) {
1517   SDNode *&N =
1518     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1519                                                                TargetFlags)];
1520   if (N) return SDValue(N, 0);
1521   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1522   InsertNode(N);
1523   return SDValue(N, 0);
1524 }
1525
1526 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1527   if ((unsigned)Cond >= CondCodeNodes.size())
1528     CondCodeNodes.resize(Cond+1);
1529
1530   if (!CondCodeNodes[Cond]) {
1531     auto *N = newSDNode<CondCodeSDNode>(Cond);
1532     CondCodeNodes[Cond] = N;
1533     InsertNode(N);
1534   }
1535
1536   return SDValue(CondCodeNodes[Cond], 0);
1537 }
1538
1539 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1540 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1541 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1542   std::swap(N1, N2);
1543   ShuffleVectorSDNode::commuteMask(M);
1544 }
1545
1546 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1547                                        SDValue N2, ArrayRef<int> Mask) {
1548   assert(VT.getVectorNumElements() == Mask.size() &&
1549            "Must have the same number of vector elements as mask elements!");
1550   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1551          "Invalid VECTOR_SHUFFLE");
1552
1553   // Canonicalize shuffle undef, undef -> undef
1554   if (N1.isUndef() && N2.isUndef())
1555     return getUNDEF(VT);
1556
1557   // Validate that all indices in Mask are within the range of the elements
1558   // input to the shuffle.
1559   int NElts = Mask.size();
1560   assert(llvm::all_of(Mask,
1561                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1562          "Index out of range");
1563
1564   // Copy the mask so we can do any needed cleanup.
1565   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1566
1567   // Canonicalize shuffle v, v -> v, undef
1568   if (N1 == N2) {
1569     N2 = getUNDEF(VT);
1570     for (int i = 0; i != NElts; ++i)
1571       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1572   }
1573
1574   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1575   if (N1.isUndef())
1576     commuteShuffle(N1, N2, MaskVec);
1577
1578   if (TLI->hasVectorBlend()) {
1579     // If shuffling a splat, try to blend the splat instead. We do this here so
1580     // that even when this arises during lowering we don't have to re-handle it.
1581     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1582       BitVector UndefElements;
1583       SDValue Splat = BV->getSplatValue(&UndefElements);
1584       if (!Splat)
1585         return;
1586
1587       for (int i = 0; i < NElts; ++i) {
1588         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1589           continue;
1590
1591         // If this input comes from undef, mark it as such.
1592         if (UndefElements[MaskVec[i] - Offset]) {
1593           MaskVec[i] = -1;
1594           continue;
1595         }
1596
1597         // If we can blend a non-undef lane, use that instead.
1598         if (!UndefElements[i])
1599           MaskVec[i] = i + Offset;
1600       }
1601     };
1602     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1603       BlendSplat(N1BV, 0);
1604     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1605       BlendSplat(N2BV, NElts);
1606   }
1607
1608   // Canonicalize all index into lhs, -> shuffle lhs, undef
1609   // Canonicalize all index into rhs, -> shuffle rhs, undef
1610   bool AllLHS = true, AllRHS = true;
1611   bool N2Undef = N2.isUndef();
1612   for (int i = 0; i != NElts; ++i) {
1613     if (MaskVec[i] >= NElts) {
1614       if (N2Undef)
1615         MaskVec[i] = -1;
1616       else
1617         AllLHS = false;
1618     } else if (MaskVec[i] >= 0) {
1619       AllRHS = false;
1620     }
1621   }
1622   if (AllLHS && AllRHS)
1623     return getUNDEF(VT);
1624   if (AllLHS && !N2Undef)
1625     N2 = getUNDEF(VT);
1626   if (AllRHS) {
1627     N1 = getUNDEF(VT);
1628     commuteShuffle(N1, N2, MaskVec);
1629   }
1630   // Reset our undef status after accounting for the mask.
1631   N2Undef = N2.isUndef();
1632   // Re-check whether both sides ended up undef.
1633   if (N1.isUndef() && N2Undef)
1634     return getUNDEF(VT);
1635
1636   // If Identity shuffle return that node.
1637   bool Identity = true, AllSame = true;
1638   for (int i = 0; i != NElts; ++i) {
1639     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1640     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1641   }
1642   if (Identity && NElts)
1643     return N1;
1644
1645   // Shuffling a constant splat doesn't change the result.
1646   if (N2Undef) {
1647     SDValue V = N1;
1648
1649     // Look through any bitcasts. We check that these don't change the number
1650     // (and size) of elements and just changes their types.
1651     while (V.getOpcode() == ISD::BITCAST)
1652       V = V->getOperand(0);
1653
1654     // A splat should always show up as a build vector node.
1655     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1656       BitVector UndefElements;
1657       SDValue Splat = BV->getSplatValue(&UndefElements);
1658       // If this is a splat of an undef, shuffling it is also undef.
1659       if (Splat && Splat.isUndef())
1660         return getUNDEF(VT);
1661
1662       bool SameNumElts =
1663           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1664
1665       // We only have a splat which can skip shuffles if there is a splatted
1666       // value and no undef lanes rearranged by the shuffle.
1667       if (Splat && UndefElements.none()) {
1668         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1669         // number of elements match or the value splatted is a zero constant.
1670         if (SameNumElts)
1671           return N1;
1672         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1673           if (C->isNullValue())
1674             return N1;
1675       }
1676
1677       // If the shuffle itself creates a splat, build the vector directly.
1678       if (AllSame && SameNumElts) {
1679         EVT BuildVT = BV->getValueType(0);
1680         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1681         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1682
1683         // We may have jumped through bitcasts, so the type of the
1684         // BUILD_VECTOR may not match the type of the shuffle.
1685         if (BuildVT != VT)
1686           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1687         return NewBV;
1688       }
1689     }
1690   }
1691
1692   FoldingSetNodeID ID;
1693   SDValue Ops[2] = { N1, N2 };
1694   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1695   for (int i = 0; i != NElts; ++i)
1696     ID.AddInteger(MaskVec[i]);
1697
1698   void* IP = nullptr;
1699   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1700     return SDValue(E, 0);
1701
1702   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1703   // SDNode doesn't have access to it.  This memory will be "leaked" when
1704   // the node is deallocated, but recovered when the NodeAllocator is released.
1705   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1706   llvm::copy(MaskVec, MaskAlloc);
1707
1708   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1709                                            dl.getDebugLoc(), MaskAlloc);
1710   createOperands(N, Ops);
1711
1712   CSEMap.InsertNode(N, IP);
1713   InsertNode(N);
1714   SDValue V = SDValue(N, 0);
1715   NewSDValueDbgMsg(V, "Creating new node: ", this);
1716   return V;
1717 }
1718
1719 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1720   EVT VT = SV.getValueType(0);
1721   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1722   ShuffleVectorSDNode::commuteMask(MaskVec);
1723
1724   SDValue Op0 = SV.getOperand(0);
1725   SDValue Op1 = SV.getOperand(1);
1726   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1727 }
1728
1729 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1730   FoldingSetNodeID ID;
1731   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1732   ID.AddInteger(RegNo);
1733   void *IP = nullptr;
1734   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1735     return SDValue(E, 0);
1736
1737   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1738   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1739   CSEMap.InsertNode(N, IP);
1740   InsertNode(N);
1741   return SDValue(N, 0);
1742 }
1743
1744 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1745   FoldingSetNodeID ID;
1746   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1747   ID.AddPointer(RegMask);
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751
1752   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1753   CSEMap.InsertNode(N, IP);
1754   InsertNode(N);
1755   return SDValue(N, 0);
1756 }
1757
1758 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1759                                  MCSymbol *Label) {
1760   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1761 }
1762
1763 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1764                                    SDValue Root, MCSymbol *Label) {
1765   FoldingSetNodeID ID;
1766   SDValue Ops[] = { Root };
1767   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1768   ID.AddPointer(Label);
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1771     return SDValue(E, 0);
1772
1773   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1774   createOperands(N, Ops);
1775
1776   CSEMap.InsertNode(N, IP);
1777   InsertNode(N);
1778   return SDValue(N, 0);
1779 }
1780
1781 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1782                                       int64_t Offset,
1783                                       bool isTarget,
1784                                       unsigned char TargetFlags) {
1785   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1786
1787   FoldingSetNodeID ID;
1788   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1789   ID.AddPointer(BA);
1790   ID.AddInteger(Offset);
1791   ID.AddInteger(TargetFlags);
1792   void *IP = nullptr;
1793   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1794     return SDValue(E, 0);
1795
1796   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1797   CSEMap.InsertNode(N, IP);
1798   InsertNode(N);
1799   return SDValue(N, 0);
1800 }
1801
1802 SDValue SelectionDAG::getSrcValue(const Value *V) {
1803   assert((!V || V->getType()->isPointerTy()) &&
1804          "SrcValue is not a pointer?");
1805
1806   FoldingSetNodeID ID;
1807   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1808   ID.AddPointer(V);
1809
1810   void *IP = nullptr;
1811   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1812     return SDValue(E, 0);
1813
1814   auto *N = newSDNode<SrcValueSDNode>(V);
1815   CSEMap.InsertNode(N, IP);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819
1820 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1821   FoldingSetNodeID ID;
1822   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1823   ID.AddPointer(MD);
1824
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828
1829   auto *N = newSDNode<MDNodeSDNode>(MD);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834
1835 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1836   if (VT == V.getValueType())
1837     return V;
1838
1839   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1840 }
1841
1842 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1843                                        unsigned SrcAS, unsigned DestAS) {
1844   SDValue Ops[] = {Ptr};
1845   FoldingSetNodeID ID;
1846   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1847   ID.AddInteger(SrcAS);
1848   ID.AddInteger(DestAS);
1849
1850   void *IP = nullptr;
1851   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1852     return SDValue(E, 0);
1853
1854   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1855                                            VT, SrcAS, DestAS);
1856   createOperands(N, Ops);
1857
1858   CSEMap.InsertNode(N, IP);
1859   InsertNode(N);
1860   return SDValue(N, 0);
1861 }
1862
1863 /// getShiftAmountOperand - Return the specified value casted to
1864 /// the target's desired shift amount type.
1865 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1866   EVT OpTy = Op.getValueType();
1867   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1868   if (OpTy == ShTy || OpTy.isVector()) return Op;
1869
1870   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1871 }
1872
1873 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1874   SDLoc dl(Node);
1875   const TargetLowering &TLI = getTargetLoweringInfo();
1876   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1877   EVT VT = Node->getValueType(0);
1878   SDValue Tmp1 = Node->getOperand(0);
1879   SDValue Tmp2 = Node->getOperand(1);
1880   unsigned Align = Node->getConstantOperandVal(3);
1881
1882   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1883                                Tmp2, MachinePointerInfo(V));
1884   SDValue VAList = VAListLoad;
1885
1886   if (Align > TLI.getMinStackArgumentAlignment()) {
1887     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1888
1889     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1890                      getConstant(Align - 1, dl, VAList.getValueType()));
1891
1892     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1893                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1894   }
1895
1896   // Increment the pointer, VAList, to the next vaarg
1897   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1898                  getConstant(getDataLayout().getTypeAllocSize(
1899                                                VT.getTypeForEVT(*getContext())),
1900                              dl, VAList.getValueType()));
1901   // Store the incremented VAList to the legalized pointer
1902   Tmp1 =
1903       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1904   // Load the actual argument out of the pointer VAList
1905   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1906 }
1907
1908 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1909   SDLoc dl(Node);
1910   const TargetLowering &TLI = getTargetLoweringInfo();
1911   // This defaults to loading a pointer from the input and storing it to the
1912   // output, returning the chain.
1913   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1914   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1915   SDValue Tmp1 =
1916       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1917               Node->getOperand(2), MachinePointerInfo(VS));
1918   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1919                   MachinePointerInfo(VD));
1920 }
1921
1922 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1923   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1924   unsigned ByteSize = VT.getStoreSize();
1925   Type *Ty = VT.getTypeForEVT(*getContext());
1926   unsigned StackAlign =
1927       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1928
1929   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1930   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1931 }
1932
1933 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1934   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1935   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1936   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1937   const DataLayout &DL = getDataLayout();
1938   unsigned Align =
1939       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1940
1941   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1942   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1943   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1944 }
1945
1946 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1947                                 ISD::CondCode Cond, const SDLoc &dl) {
1948   EVT OpVT = N1.getValueType();
1949
1950   // These setcc operations always fold.
1951   switch (Cond) {
1952   default: break;
1953   case ISD::SETFALSE:
1954   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1955   case ISD::SETTRUE:
1956   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1957
1958   case ISD::SETOEQ:
1959   case ISD::SETOGT:
1960   case ISD::SETOGE:
1961   case ISD::SETOLT:
1962   case ISD::SETOLE:
1963   case ISD::SETONE:
1964   case ISD::SETO:
1965   case ISD::SETUO:
1966   case ISD::SETUEQ:
1967   case ISD::SETUNE:
1968     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1969     break;
1970   }
1971
1972   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1973     const APInt &C2 = N2C->getAPIntValue();
1974     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1975       const APInt &C1 = N1C->getAPIntValue();
1976
1977       switch (Cond) {
1978       default: llvm_unreachable("Unknown integer setcc!");
1979       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1980       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1981       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1982       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1983       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1984       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1985       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1986       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1987       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1988       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1989       }
1990     }
1991   }
1992   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1993     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1994       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1995       switch (Cond) {
1996       default: break;
1997       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1998                           return getUNDEF(VT);
1999                         LLVM_FALLTHROUGH;
2000       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2001                                                OpVT);
2002       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2003                           return getUNDEF(VT);
2004                         LLVM_FALLTHROUGH;
2005       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2006                                                R==APFloat::cmpLessThan, dl, VT,
2007                                                OpVT);
2008       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2009                           return getUNDEF(VT);
2010                         LLVM_FALLTHROUGH;
2011       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2012                                                OpVT);
2013       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2014                           return getUNDEF(VT);
2015                         LLVM_FALLTHROUGH;
2016       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2017                                                VT, OpVT);
2018       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2019                           return getUNDEF(VT);
2020                         LLVM_FALLTHROUGH;
2021       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2022                                                R==APFloat::cmpEqual, dl, VT,
2023                                                OpVT);
2024       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2025                           return getUNDEF(VT);
2026                         LLVM_FALLTHROUGH;
2027       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2028                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2029       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2030                                                OpVT);
2031       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2032                                                OpVT);
2033       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2034                                                R==APFloat::cmpEqual, dl, VT,
2035                                                OpVT);
2036       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2037                                                OpVT);
2038       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2039                                                R==APFloat::cmpLessThan, dl, VT,
2040                                                OpVT);
2041       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2042                                                R==APFloat::cmpUnordered, dl, VT,
2043                                                OpVT);
2044       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2045                                                VT, OpVT);
2046       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2047                                                OpVT);
2048       }
2049     } else {
2050       // Ensure that the constant occurs on the RHS.
2051       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2052       MVT CompVT = N1.getValueType().getSimpleVT();
2053       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2054         return SDValue();
2055
2056       return getSetCC(dl, VT, N2, N1, SwappedCond);
2057     }
2058   }
2059
2060   // Could not fold it.
2061   return SDValue();
2062 }
2063
2064 /// See if the specified operand can be simplified with the knowledge that only
2065 /// the bits specified by Mask are used.
2066 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2067   switch (V.getOpcode()) {
2068   default:
2069     break;
2070   case ISD::Constant: {
2071     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2072     assert(CV && "Const value should be ConstSDNode.");
2073     const APInt &CVal = CV->getAPIntValue();
2074     APInt NewVal = CVal & Mask;
2075     if (NewVal != CVal)
2076       return getConstant(NewVal, SDLoc(V), V.getValueType());
2077     break;
2078   }
2079   case ISD::OR:
2080   case ISD::XOR:
2081     // If the LHS or RHS don't contribute bits to the or, drop them.
2082     if (MaskedValueIsZero(V.getOperand(0), Mask))
2083       return V.getOperand(1);
2084     if (MaskedValueIsZero(V.getOperand(1), Mask))
2085       return V.getOperand(0);
2086     break;
2087   case ISD::SRL:
2088     // Only look at single-use SRLs.
2089     if (!V.getNode()->hasOneUse())
2090       break;
2091     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2092       // See if we can recursively simplify the LHS.
2093       unsigned Amt = RHSC->getZExtValue();
2094
2095       // Watch out for shift count overflow though.
2096       if (Amt >= Mask.getBitWidth())
2097         break;
2098       APInt NewMask = Mask << Amt;
2099       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2100         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2101                        V.getOperand(1));
2102     }
2103     break;
2104   case ISD::AND: {
2105     // X & -1 -> X (ignoring bits which aren't demanded).
2106     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2107     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2108       return V.getOperand(0);
2109     break;
2110   }
2111   case ISD::ANY_EXTEND: {
2112     SDValue Src = V.getOperand(0);
2113     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2114     // Being conservative here - only peek through if we only demand bits in the
2115     // non-extended source (even though the extended bits are technically undef).
2116     if (Mask.getActiveBits() > SrcBitWidth)
2117       break;
2118     APInt SrcMask = Mask.trunc(SrcBitWidth);
2119     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2120       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2121     break;
2122   }
2123   case ISD::SIGN_EXTEND_INREG:
2124     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2125     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2126
2127     // If none of the extended bits are demanded, eliminate the sextinreg.
2128     if (Mask.getActiveBits() <= ExVTBits)
2129       return V.getOperand(0);
2130
2131     break;
2132   }
2133   return SDValue();
2134 }
2135
2136 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2137 /// use this predicate to simplify operations downstream.
2138 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2139   unsigned BitWidth = Op.getScalarValueSizeInBits();
2140   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2141 }
2142
2143 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2144 /// this predicate to simplify operations downstream.  Mask is known to be zero
2145 /// for bits that V cannot have.
2146 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2147                                      unsigned Depth) const {
2148   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2149 }
2150
2151 /// isSplatValue - Return true if the vector V has the same value
2152 /// across all DemandedElts.
2153 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2154                                 APInt &UndefElts) {
2155   if (!DemandedElts)
2156     return false; // No demanded elts, better to assume we don't know anything.
2157
2158   EVT VT = V.getValueType();
2159   assert(VT.isVector() && "Vector type expected");
2160
2161   unsigned NumElts = VT.getVectorNumElements();
2162   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2163   UndefElts = APInt::getNullValue(NumElts);
2164
2165   switch (V.getOpcode()) {
2166   case ISD::BUILD_VECTOR: {
2167     SDValue Scl;
2168     for (unsigned i = 0; i != NumElts; ++i) {
2169       SDValue Op = V.getOperand(i);
2170       if (Op.isUndef()) {
2171         UndefElts.setBit(i);
2172         continue;
2173       }
2174       if (!DemandedElts[i])
2175         continue;
2176       if (Scl && Scl != Op)
2177         return false;
2178       Scl = Op;
2179     }
2180     return true;
2181   }
2182   case ISD::VECTOR_SHUFFLE: {
2183     // Check if this is a shuffle node doing a splat.
2184     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2185     int SplatIndex = -1;
2186     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2187     for (int i = 0; i != (int)NumElts; ++i) {
2188       int M = Mask[i];
2189       if (M < 0) {
2190         UndefElts.setBit(i);
2191         continue;
2192       }
2193       if (!DemandedElts[i])
2194         continue;
2195       if (0 <= SplatIndex && SplatIndex != M)
2196         return false;
2197       SplatIndex = M;
2198     }
2199     return true;
2200   }
2201   case ISD::EXTRACT_SUBVECTOR: {
2202     SDValue Src = V.getOperand(0);
2203     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2204     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2205     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2206       // Offset the demanded elts by the subvector index.
2207       uint64_t Idx = SubIdx->getZExtValue();
2208       APInt UndefSrcElts;
2209       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2210       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2211         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2212         return true;
2213       }
2214     }
2215     break;
2216   }
2217   case ISD::ADD:
2218   case ISD::SUB:
2219   case ISD::AND: {
2220     APInt UndefLHS, UndefRHS;
2221     SDValue LHS = V.getOperand(0);
2222     SDValue RHS = V.getOperand(1);
2223     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2224         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2225       UndefElts = UndefLHS | UndefRHS;
2226       return true;
2227     }
2228     break;
2229   }
2230   }
2231
2232   return false;
2233 }
2234
2235 /// Helper wrapper to main isSplatValue function.
2236 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2237   EVT VT = V.getValueType();
2238   assert(VT.isVector() && "Vector type expected");
2239   unsigned NumElts = VT.getVectorNumElements();
2240
2241   APInt UndefElts;
2242   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2243   return isSplatValue(V, DemandedElts, UndefElts) &&
2244          (AllowUndefs || !UndefElts);
2245 }
2246
2247 /// Helper function that checks to see if a node is a constant or a
2248 /// build vector of splat constants at least within the demanded elts.
2249 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2250                                                    const APInt &DemandedElts) {
2251   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2252     return CN;
2253   if (N.getOpcode() != ISD::BUILD_VECTOR)
2254     return nullptr;
2255   EVT VT = N.getValueType();
2256   ConstantSDNode *Cst = nullptr;
2257   unsigned NumElts = VT.getVectorNumElements();
2258   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2259   for (unsigned i = 0; i != NumElts; ++i) {
2260     if (!DemandedElts[i])
2261       continue;
2262     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2263     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2264         C->getValueType(0) != VT.getScalarType())
2265       return nullptr;
2266     Cst = C;
2267   }
2268   return Cst;
2269 }
2270
2271 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2272 /// is less than the element bit-width of the shift node, return it.
2273 static const APInt *getValidShiftAmountConstant(SDValue V) {
2274   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2275     // Shifting more than the bitwidth is not valid.
2276     const APInt &ShAmt = SA->getAPIntValue();
2277     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2278       return &ShAmt;
2279   }
2280   return nullptr;
2281 }
2282
2283 /// Determine which bits of Op are known to be either zero or one and return
2284 /// them in Known. For vectors, the known bits are those that are shared by
2285 /// every vector element.
2286 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2287   EVT VT = Op.getValueType();
2288   APInt DemandedElts = VT.isVector()
2289                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2290                            : APInt(1, 1);
2291   return computeKnownBits(Op, DemandedElts, Depth);
2292 }
2293
2294 /// Determine which bits of Op are known to be either zero or one and return
2295 /// them in Known. The DemandedElts argument allows us to only collect the known
2296 /// bits that are shared by the requested vector elements.
2297 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2298                                          unsigned Depth) const {
2299   unsigned BitWidth = Op.getScalarValueSizeInBits();
2300
2301   KnownBits Known(BitWidth);   // Don't know anything.
2302
2303   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2304     // We know all of the bits for a constant!
2305     Known.One = C->getAPIntValue();
2306     Known.Zero = ~Known.One;
2307     return Known;
2308   }
2309   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2310     // We know all of the bits for a constant fp!
2311     Known.One = C->getValueAPF().bitcastToAPInt();
2312     Known.Zero = ~Known.One;
2313     return Known;
2314   }
2315
2316   if (Depth == 6)
2317     return Known;  // Limit search depth.
2318
2319   KnownBits Known2;
2320   unsigned NumElts = DemandedElts.getBitWidth();
2321   assert((!Op.getValueType().isVector() ||
2322           NumElts == Op.getValueType().getVectorNumElements()) &&
2323          "Unexpected vector size");
2324
2325   if (!DemandedElts)
2326     return Known;  // No demanded elts, better to assume we don't know anything.
2327
2328   unsigned Opcode = Op.getOpcode();
2329   switch (Opcode) {
2330   case ISD::BUILD_VECTOR:
2331     // Collect the known bits that are shared by every demanded vector element.
2332     Known.Zero.setAllBits(); Known.One.setAllBits();
2333     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2334       if (!DemandedElts[i])
2335         continue;
2336
2337       SDValue SrcOp = Op.getOperand(i);
2338       Known2 = computeKnownBits(SrcOp, Depth + 1);
2339
2340       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2341       if (SrcOp.getValueSizeInBits() != BitWidth) {
2342         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2343                "Expected BUILD_VECTOR implicit truncation");
2344         Known2 = Known2.trunc(BitWidth);
2345       }
2346
2347       // Known bits are the values that are shared by every demanded element.
2348       Known.One &= Known2.One;
2349       Known.Zero &= Known2.Zero;
2350
2351       // If we don't know any bits, early out.
2352       if (Known.isUnknown())
2353         break;
2354     }
2355     break;
2356   case ISD::VECTOR_SHUFFLE: {
2357     // Collect the known bits that are shared by every vector element referenced
2358     // by the shuffle.
2359     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2360     Known.Zero.setAllBits(); Known.One.setAllBits();
2361     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2362     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2363     for (unsigned i = 0; i != NumElts; ++i) {
2364       if (!DemandedElts[i])
2365         continue;
2366
2367       int M = SVN->getMaskElt(i);
2368       if (M < 0) {
2369         // For UNDEF elements, we don't know anything about the common state of
2370         // the shuffle result.
2371         Known.resetAll();
2372         DemandedLHS.clearAllBits();
2373         DemandedRHS.clearAllBits();
2374         break;
2375       }
2376
2377       if ((unsigned)M < NumElts)
2378         DemandedLHS.setBit((unsigned)M % NumElts);
2379       else
2380         DemandedRHS.setBit((unsigned)M % NumElts);
2381     }
2382     // Known bits are the values that are shared by every demanded element.
2383     if (!!DemandedLHS) {
2384       SDValue LHS = Op.getOperand(0);
2385       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2386       Known.One &= Known2.One;
2387       Known.Zero &= Known2.Zero;
2388     }
2389     // If we don't know any bits, early out.
2390     if (Known.isUnknown())
2391       break;
2392     if (!!DemandedRHS) {
2393       SDValue RHS = Op.getOperand(1);
2394       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2395       Known.One &= Known2.One;
2396       Known.Zero &= Known2.Zero;
2397     }
2398     break;
2399   }
2400   case ISD::CONCAT_VECTORS: {
2401     // Split DemandedElts and test each of the demanded subvectors.
2402     Known.Zero.setAllBits(); Known.One.setAllBits();
2403     EVT SubVectorVT = Op.getOperand(0).getValueType();
2404     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2405     unsigned NumSubVectors = Op.getNumOperands();
2406     for (unsigned i = 0; i != NumSubVectors; ++i) {
2407       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2408       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2409       if (!!DemandedSub) {
2410         SDValue Sub = Op.getOperand(i);
2411         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2412         Known.One &= Known2.One;
2413         Known.Zero &= Known2.Zero;
2414       }
2415       // If we don't know any bits, early out.
2416       if (Known.isUnknown())
2417         break;
2418     }
2419     break;
2420   }
2421   case ISD::INSERT_SUBVECTOR: {
2422     // If we know the element index, demand any elements from the subvector and
2423     // the remainder from the src its inserted into, otherwise demand them all.
2424     SDValue Src = Op.getOperand(0);
2425     SDValue Sub = Op.getOperand(1);
2426     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2427     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2428     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2429       Known.One.setAllBits();
2430       Known.Zero.setAllBits();
2431       uint64_t Idx = SubIdx->getZExtValue();
2432       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2433       if (!!DemandedSubElts) {
2434         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2435         if (Known.isUnknown())
2436           break; // early-out.
2437       }
2438       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2439       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2440       if (!!DemandedSrcElts) {
2441         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2442         Known.One &= Known2.One;
2443         Known.Zero &= Known2.Zero;
2444       }
2445     } else {
2446       Known = computeKnownBits(Sub, Depth + 1);
2447       if (Known.isUnknown())
2448         break; // early-out.
2449       Known2 = computeKnownBits(Src, Depth + 1);
2450       Known.One &= Known2.One;
2451       Known.Zero &= Known2.Zero;
2452     }
2453     break;
2454   }
2455   case ISD::EXTRACT_SUBVECTOR: {
2456     // If we know the element index, just demand that subvector elements,
2457     // otherwise demand them all.
2458     SDValue Src = Op.getOperand(0);
2459     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2460     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2461     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2462       // Offset the demanded elts by the subvector index.
2463       uint64_t Idx = SubIdx->getZExtValue();
2464       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2465       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2466     } else {
2467       Known = computeKnownBits(Src, Depth + 1);
2468     }
2469     break;
2470   }
2471   case ISD::SCALAR_TO_VECTOR: {
2472     // We know about scalar_to_vector as much as we know about it source,
2473     // which becomes the first element of otherwise unknown vector.
2474     if (DemandedElts != 1)
2475       break;
2476
2477     SDValue N0 = Op.getOperand(0);
2478     Known = computeKnownBits(N0, Depth + 1);
2479     if (N0.getValueSizeInBits() != BitWidth)
2480       Known = Known.trunc(BitWidth);
2481
2482     break;
2483   }
2484   case ISD::BITCAST: {
2485     SDValue N0 = Op.getOperand(0);
2486     EVT SubVT = N0.getValueType();
2487     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2488
2489     // Ignore bitcasts from unsupported types.
2490     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2491       break;
2492
2493     // Fast handling of 'identity' bitcasts.
2494     if (BitWidth == SubBitWidth) {
2495       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2496       break;
2497     }
2498
2499     bool IsLE = getDataLayout().isLittleEndian();
2500
2501     // Bitcast 'small element' vector to 'large element' scalar/vector.
2502     if ((BitWidth % SubBitWidth) == 0) {
2503       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2504
2505       // Collect known bits for the (larger) output by collecting the known
2506       // bits from each set of sub elements and shift these into place.
2507       // We need to separately call computeKnownBits for each set of
2508       // sub elements as the knownbits for each is likely to be different.
2509       unsigned SubScale = BitWidth / SubBitWidth;
2510       APInt SubDemandedElts(NumElts * SubScale, 0);
2511       for (unsigned i = 0; i != NumElts; ++i)
2512         if (DemandedElts[i])
2513           SubDemandedElts.setBit(i * SubScale);
2514
2515       for (unsigned i = 0; i != SubScale; ++i) {
2516         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2517                          Depth + 1);
2518         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2519         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2520         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2521       }
2522     }
2523
2524     // Bitcast 'large element' scalar/vector to 'small element' vector.
2525     if ((SubBitWidth % BitWidth) == 0) {
2526       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2527
2528       // Collect known bits for the (smaller) output by collecting the known
2529       // bits from the overlapping larger input elements and extracting the
2530       // sub sections we actually care about.
2531       unsigned SubScale = SubBitWidth / BitWidth;
2532       APInt SubDemandedElts(NumElts / SubScale, 0);
2533       for (unsigned i = 0; i != NumElts; ++i)
2534         if (DemandedElts[i])
2535           SubDemandedElts.setBit(i / SubScale);
2536
2537       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2538
2539       Known.Zero.setAllBits(); Known.One.setAllBits();
2540       for (unsigned i = 0; i != NumElts; ++i)
2541         if (DemandedElts[i]) {
2542           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2543           unsigned Offset = (Shifts % SubScale) * BitWidth;
2544           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2545           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2546           // If we don't know any bits, early out.
2547           if (Known.isUnknown())
2548             break;
2549         }
2550     }
2551     break;
2552   }
2553   case ISD::AND:
2554     // If either the LHS or the RHS are Zero, the result is zero.
2555     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2556     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2557
2558     // Output known-1 bits are only known if set in both the LHS & RHS.
2559     Known.One &= Known2.One;
2560     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2561     Known.Zero |= Known2.Zero;
2562     break;
2563   case ISD::OR:
2564     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2565     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2566
2567     // Output known-0 bits are only known if clear in both the LHS & RHS.
2568     Known.Zero &= Known2.Zero;
2569     // Output known-1 are known to be set if set in either the LHS | RHS.
2570     Known.One |= Known2.One;
2571     break;
2572   case ISD::XOR: {
2573     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2574     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2575
2576     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2577     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2578     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2579     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2580     Known.Zero = KnownZeroOut;
2581     break;
2582   }
2583   case ISD::MUL: {
2584     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2585     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2586
2587     // If low bits are zero in either operand, output low known-0 bits.
2588     // Also compute a conservative estimate for high known-0 bits.
2589     // More trickiness is possible, but this is sufficient for the
2590     // interesting case of alignment computation.
2591     unsigned TrailZ = Known.countMinTrailingZeros() +
2592                       Known2.countMinTrailingZeros();
2593     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2594                                Known2.countMinLeadingZeros(),
2595                                BitWidth) - BitWidth;
2596
2597     Known.resetAll();
2598     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2599     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2600     break;
2601   }
2602   case ISD::UDIV: {
2603     // For the purposes of computing leading zeros we can conservatively
2604     // treat a udiv as a logical right shift by the power of 2 known to
2605     // be less than the denominator.
2606     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2607     unsigned LeadZ = Known2.countMinLeadingZeros();
2608
2609     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2610     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2611     if (RHSMaxLeadingZeros != BitWidth)
2612       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2613
2614     Known.Zero.setHighBits(LeadZ);
2615     break;
2616   }
2617   case ISD::SELECT:
2618   case ISD::VSELECT:
2619     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2620     // If we don't know any bits, early out.
2621     if (Known.isUnknown())
2622       break;
2623     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2624
2625     // Only known if known in both the LHS and RHS.
2626     Known.One &= Known2.One;
2627     Known.Zero &= Known2.Zero;
2628     break;
2629   case ISD::SELECT_CC:
2630     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2631     // If we don't know any bits, early out.
2632     if (Known.isUnknown())
2633       break;
2634     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2635
2636     // Only known if known in both the LHS and RHS.
2637     Known.One &= Known2.One;
2638     Known.Zero &= Known2.Zero;
2639     break;
2640   case ISD::SMULO:
2641   case ISD::UMULO:
2642   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2643     if (Op.getResNo() != 1)
2644       break;
2645     // The boolean result conforms to getBooleanContents.
2646     // If we know the result of a setcc has the top bits zero, use this info.
2647     // We know that we have an integer-based boolean since these operations
2648     // are only available for integer.
2649     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2650             TargetLowering::ZeroOrOneBooleanContent &&
2651         BitWidth > 1)
2652       Known.Zero.setBitsFrom(1);
2653     break;
2654   case ISD::SETCC:
2655     // If we know the result of a setcc has the top bits zero, use this info.
2656     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2657             TargetLowering::ZeroOrOneBooleanContent &&
2658         BitWidth > 1)
2659       Known.Zero.setBitsFrom(1);
2660     break;
2661   case ISD::SHL:
2662     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2663       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2664       unsigned Shift = ShAmt->getZExtValue();
2665       Known.Zero <<= Shift;
2666       Known.One <<= Shift;
2667       // Low bits are known zero.
2668       Known.Zero.setLowBits(Shift);
2669     }
2670     break;
2671   case ISD::SRL:
2672     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2673       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2674       unsigned Shift = ShAmt->getZExtValue();
2675       Known.Zero.lshrInPlace(Shift);
2676       Known.One.lshrInPlace(Shift);
2677       // High bits are known zero.
2678       Known.Zero.setHighBits(Shift);
2679     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2680       // If the shift amount is a vector of constants see if we can bound
2681       // the number of upper zero bits.
2682       unsigned ShiftAmountMin = BitWidth;
2683       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2684         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2685           const APInt &ShAmt = C->getAPIntValue();
2686           if (ShAmt.ult(BitWidth)) {
2687             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2688                                                 ShAmt.getZExtValue());
2689             continue;
2690           }
2691         }
2692         // Don't know anything.
2693         ShiftAmountMin = 0;
2694         break;
2695       }
2696
2697       Known.Zero.setHighBits(ShiftAmountMin);
2698     }
2699     break;
2700   case ISD::SRA:
2701     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2702       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2703       unsigned Shift = ShAmt->getZExtValue();
2704       // Sign extend known zero/one bit (else is unknown).
2705       Known.Zero.ashrInPlace(Shift);
2706       Known.One.ashrInPlace(Shift);
2707     }
2708     break;
2709   case ISD::FSHL:
2710   case ISD::FSHR:
2711     if (ConstantSDNode *C =
2712             isConstOrDemandedConstSplat(Op.getOperand(2), DemandedElts)) {
2713       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2714
2715       // For fshl, 0-shift returns the 1st arg.
2716       // For fshr, 0-shift returns the 2nd arg.
2717       if (Amt == 0) {
2718         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2719                                  DemandedElts, Depth + 1);
2720         break;
2721       }
2722
2723       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2724       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2725       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2726       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2727       if (Opcode == ISD::FSHL) {
2728         Known.One <<= Amt;
2729         Known.Zero <<= Amt;
2730         Known2.One.lshrInPlace(BitWidth - Amt);
2731         Known2.Zero.lshrInPlace(BitWidth - Amt);
2732       } else {
2733         Known.One <<= BitWidth - Amt;
2734         Known.Zero <<= BitWidth - Amt;
2735         Known2.One.lshrInPlace(Amt);
2736         Known2.Zero.lshrInPlace(Amt);
2737       }
2738       Known.One |= Known2.One;
2739       Known.Zero |= Known2.Zero;
2740     }
2741     break;
2742   case ISD::SIGN_EXTEND_INREG: {
2743     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2744     unsigned EBits = EVT.getScalarSizeInBits();
2745
2746     // Sign extension.  Compute the demanded bits in the result that are not
2747     // present in the input.
2748     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2749
2750     APInt InSignMask = APInt::getSignMask(EBits);
2751     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2752
2753     // If the sign extended bits are demanded, we know that the sign
2754     // bit is demanded.
2755     InSignMask = InSignMask.zext(BitWidth);
2756     if (NewBits.getBoolValue())
2757       InputDemandedBits |= InSignMask;
2758
2759     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2760     Known.One &= InputDemandedBits;
2761     Known.Zero &= InputDemandedBits;
2762
2763     // If the sign bit of the input is known set or clear, then we know the
2764     // top bits of the result.
2765     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2766       Known.Zero |= NewBits;
2767       Known.One  &= ~NewBits;
2768     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2769       Known.One  |= NewBits;
2770       Known.Zero &= ~NewBits;
2771     } else {                              // Input sign bit unknown
2772       Known.Zero &= ~NewBits;
2773       Known.One  &= ~NewBits;
2774     }
2775     break;
2776   }
2777   case ISD::CTTZ:
2778   case ISD::CTTZ_ZERO_UNDEF: {
2779     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2780     // If we have a known 1, its position is our upper bound.
2781     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2782     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2783     Known.Zero.setBitsFrom(LowBits);
2784     break;
2785   }
2786   case ISD::CTLZ:
2787   case ISD::CTLZ_ZERO_UNDEF: {
2788     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2789     // If we have a known 1, its position is our upper bound.
2790     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2791     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2792     Known.Zero.setBitsFrom(LowBits);
2793     break;
2794   }
2795   case ISD::CTPOP: {
2796     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2797     // If we know some of the bits are zero, they can't be one.
2798     unsigned PossibleOnes = Known2.countMaxPopulation();
2799     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2800     break;
2801   }
2802   case ISD::LOAD: {
2803     LoadSDNode *LD = cast<LoadSDNode>(Op);
2804     // If this is a ZEXTLoad and we are looking at the loaded value.
2805     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2806       EVT VT = LD->getMemoryVT();
2807       unsigned MemBits = VT.getScalarSizeInBits();
2808       Known.Zero.setBitsFrom(MemBits);
2809     } else if (const MDNode *Ranges = LD->getRanges()) {
2810       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2811         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2812     }
2813     break;
2814   }
2815   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2816     EVT InVT = Op.getOperand(0).getValueType();
2817     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2818     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2819     Known = Known.zext(BitWidth);
2820     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2821     break;
2822   }
2823   case ISD::ZERO_EXTEND: {
2824     EVT InVT = Op.getOperand(0).getValueType();
2825     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2826     Known = Known.zext(BitWidth);
2827     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2828     break;
2829   }
2830   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2831     EVT InVT = Op.getOperand(0).getValueType();
2832     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2833     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2834     // If the sign bit is known to be zero or one, then sext will extend
2835     // it to the top bits, else it will just zext.
2836     Known = Known.sext(BitWidth);
2837     break;
2838   }
2839   case ISD::SIGN_EXTEND: {
2840     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2841     // If the sign bit is known to be zero or one, then sext will extend
2842     // it to the top bits, else it will just zext.
2843     Known = Known.sext(BitWidth);
2844     break;
2845   }
2846   case ISD::ANY_EXTEND: {
2847     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2848     Known = Known.zext(BitWidth);
2849     break;
2850   }
2851   case ISD::TRUNCATE: {
2852     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2853     Known = Known.trunc(BitWidth);
2854     break;
2855   }
2856   case ISD::AssertZext: {
2857     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2858     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2859     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2860     Known.Zero |= (~InMask);
2861     Known.One  &= (~Known.Zero);
2862     break;
2863   }
2864   case ISD::FGETSIGN:
2865     // All bits are zero except the low bit.
2866     Known.Zero.setBitsFrom(1);
2867     break;
2868   case ISD::USUBO:
2869   case ISD::SSUBO:
2870     if (Op.getResNo() == 1) {
2871       // If we know the result of a setcc has the top bits zero, use this info.
2872       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2873               TargetLowering::ZeroOrOneBooleanContent &&
2874           BitWidth > 1)
2875         Known.Zero.setBitsFrom(1);
2876       break;
2877     }
2878     LLVM_FALLTHROUGH;
2879   case ISD::SUB:
2880   case ISD::SUBC: {
2881     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2882       // We know that the top bits of C-X are clear if X contains less bits
2883       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2884       // positive if we can prove that X is >= 0 and < 16.
2885       if (CLHS->getAPIntValue().isNonNegative()) {
2886         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2887         // NLZ can't be BitWidth with no sign bit
2888         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2889         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2890                          Depth + 1);
2891
2892         // If all of the MaskV bits are known to be zero, then we know the
2893         // output top bits are zero, because we now know that the output is
2894         // from [0-C].
2895         if ((Known2.Zero & MaskV) == MaskV) {
2896           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2897           // Top bits known zero.
2898           Known.Zero.setHighBits(NLZ2);
2899         }
2900       }
2901     }
2902
2903     // If low bits are know to be zero in both operands, then we know they are
2904     // going to be 0 in the result. Both addition and complement operations
2905     // preserve the low zero bits.
2906     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2907     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2908     if (KnownZeroLow == 0)
2909       break;
2910
2911     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2912     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2913     Known.Zero.setLowBits(KnownZeroLow);
2914     break;
2915   }
2916   case ISD::UADDO:
2917   case ISD::SADDO:
2918   case ISD::ADDCARRY:
2919     if (Op.getResNo() == 1) {
2920       // If we know the result of a setcc has the top bits zero, use this info.
2921       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2922               TargetLowering::ZeroOrOneBooleanContent &&
2923           BitWidth > 1)
2924         Known.Zero.setBitsFrom(1);
2925       break;
2926     }
2927     LLVM_FALLTHROUGH;
2928   case ISD::ADD:
2929   case ISD::ADDC:
2930   case ISD::ADDE: {
2931     // Output known-0 bits are known if clear or set in both the low clear bits
2932     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2933     // low 3 bits clear.
2934     // Output known-0 bits are also known if the top bits of each input are
2935     // known to be clear. For example, if one input has the top 10 bits clear
2936     // and the other has the top 8 bits clear, we know the top 7 bits of the
2937     // output must be clear.
2938     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2939     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2940     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2941
2942     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2943     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2944     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2945
2946     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2947       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2948       // use this information if we know (at least) that the low two bits are
2949       // clear. We then return to the caller that the low bit is unknown but
2950       // that other bits are known zero.
2951       if (KnownZeroLow >= 2)
2952         Known.Zero.setBits(1, KnownZeroLow);
2953       break;
2954     }
2955
2956     Known.Zero.setLowBits(KnownZeroLow);
2957     if (KnownZeroHigh > 1)
2958       Known.Zero.setHighBits(KnownZeroHigh - 1);
2959     break;
2960   }
2961   case ISD::SREM:
2962     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2963       const APInt &RA = Rem->getAPIntValue().abs();
2964       if (RA.isPowerOf2()) {
2965         APInt LowBits = RA - 1;
2966         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2967
2968         // The low bits of the first operand are unchanged by the srem.
2969         Known.Zero = Known2.Zero & LowBits;
2970         Known.One = Known2.One & LowBits;
2971
2972         // If the first operand is non-negative or has all low bits zero, then
2973         // the upper bits are all zero.
2974         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2975           Known.Zero |= ~LowBits;
2976
2977         // If the first operand is negative and not all low bits are zero, then
2978         // the upper bits are all one.
2979         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2980           Known.One |= ~LowBits;
2981         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2982       }
2983     }
2984     break;
2985   case ISD::UREM: {
2986     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2987       const APInt &RA = Rem->getAPIntValue();
2988       if (RA.isPowerOf2()) {
2989         APInt LowBits = (RA - 1);
2990         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991
2992         // The upper bits are all zero, the lower ones are unchanged.
2993         Known.Zero = Known2.Zero | ~LowBits;
2994         Known.One = Known2.One & LowBits;
2995         break;
2996       }
2997     }
2998
2999     // Since the result is less than or equal to either operand, any leading
3000     // zero bits in either operand must also exist in the result.
3001     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3002     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3003
3004     uint32_t Leaders =
3005         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3006     Known.resetAll();
3007     Known.Zero.setHighBits(Leaders);
3008     break;
3009   }
3010   case ISD::EXTRACT_ELEMENT: {
3011     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3012     const unsigned Index = Op.getConstantOperandVal(1);
3013     const unsigned BitWidth = Op.getValueSizeInBits();
3014
3015     // Remove low part of known bits mask
3016     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
3017     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
3018
3019     // Remove high part of known bit mask
3020     Known = Known.trunc(BitWidth);
3021     break;
3022   }
3023   case ISD::EXTRACT_VECTOR_ELT: {
3024     SDValue InVec = Op.getOperand(0);
3025     SDValue EltNo = Op.getOperand(1);
3026     EVT VecVT = InVec.getValueType();
3027     const unsigned BitWidth = Op.getValueSizeInBits();
3028     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3029     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3030     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3031     // anything about the extended bits.
3032     if (BitWidth > EltBitWidth)
3033       Known = Known.trunc(EltBitWidth);
3034     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3035     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3036       // If we know the element index, just demand that vector element.
3037       unsigned Idx = ConstEltNo->getZExtValue();
3038       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3039       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3040     } else {
3041       // Unknown element index, so ignore DemandedElts and demand them all.
3042       Known = computeKnownBits(InVec, Depth + 1);
3043     }
3044     if (BitWidth > EltBitWidth)
3045       Known = Known.zext(BitWidth);
3046     break;
3047   }
3048   case ISD::INSERT_VECTOR_ELT: {
3049     SDValue InVec = Op.getOperand(0);
3050     SDValue InVal = Op.getOperand(1);
3051     SDValue EltNo = Op.getOperand(2);
3052
3053     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3054     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3055       // If we know the element index, split the demand between the
3056       // source vector and the inserted element.
3057       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3058       unsigned EltIdx = CEltNo->getZExtValue();
3059
3060       // If we demand the inserted element then add its common known bits.
3061       if (DemandedElts[EltIdx]) {
3062         Known2 = computeKnownBits(InVal, Depth + 1);
3063         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3064         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3065       }
3066
3067       // If we demand the source vector then add its common known bits, ensuring
3068       // that we don't demand the inserted element.
3069       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3070       if (!!VectorElts) {
3071         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3072         Known.One &= Known2.One;
3073         Known.Zero &= Known2.Zero;
3074       }
3075     } else {
3076       // Unknown element index, so ignore DemandedElts and demand them all.
3077       Known = computeKnownBits(InVec, Depth + 1);
3078       Known2 = computeKnownBits(InVal, Depth + 1);
3079       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3080       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3081     }
3082     break;
3083   }
3084   case ISD::BITREVERSE: {
3085     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3086     Known.Zero = Known2.Zero.reverseBits();
3087     Known.One = Known2.One.reverseBits();
3088     break;
3089   }
3090   case ISD::BSWAP: {
3091     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3092     Known.Zero = Known2.Zero.byteSwap();
3093     Known.One = Known2.One.byteSwap();
3094     break;
3095   }
3096   case ISD::ABS: {
3097     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098
3099     // If the source's MSB is zero then we know the rest of the bits already.
3100     if (Known2.isNonNegative()) {
3101       Known.Zero = Known2.Zero;
3102       Known.One = Known2.One;
3103       break;
3104     }
3105
3106     // We only know that the absolute values's MSB will be zero iff there is
3107     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3108     Known2.One.clearSignBit();
3109     if (Known2.One.getBoolValue()) {
3110       Known.Zero = APInt::getSignMask(BitWidth);
3111       break;
3112     }
3113     break;
3114   }
3115   case ISD::UMIN: {
3116     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3117     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3118
3119     // UMIN - we know that the result will have the maximum of the
3120     // known zero leading bits of the inputs.
3121     unsigned LeadZero = Known.countMinLeadingZeros();
3122     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3123
3124     Known.Zero &= Known2.Zero;
3125     Known.One &= Known2.One;
3126     Known.Zero.setHighBits(LeadZero);
3127     break;
3128   }
3129   case ISD::UMAX: {
3130     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3131     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3132
3133     // UMAX - we know that the result will have the maximum of the
3134     // known one leading bits of the inputs.
3135     unsigned LeadOne = Known.countMinLeadingOnes();
3136     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3137
3138     Known.Zero &= Known2.Zero;
3139     Known.One &= Known2.One;
3140     Known.One.setHighBits(LeadOne);
3141     break;
3142   }
3143   case ISD::SMIN:
3144   case ISD::SMAX: {
3145     // If we have a clamp pattern, we know that the number of sign bits will be
3146     // the minimum of the clamp min/max range.
3147     bool IsMax = (Opcode == ISD::SMAX);
3148     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3149     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3150       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3151         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3152                                               DemandedElts);
3153     if (CstLow && CstHigh) {
3154       if (!IsMax)
3155         std::swap(CstLow, CstHigh);
3156
3157       const APInt &ValueLow = CstLow->getAPIntValue();
3158       const APInt &ValueHigh = CstHigh->getAPIntValue();
3159       if (ValueLow.sle(ValueHigh)) {
3160         unsigned LowSignBits = ValueLow.getNumSignBits();
3161         unsigned HighSignBits = ValueHigh.getNumSignBits();
3162         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3163         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3164           Known.One.setHighBits(MinSignBits);
3165           break;
3166         }
3167         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3168           Known.Zero.setHighBits(MinSignBits);
3169           break;
3170         }
3171       }
3172     }
3173
3174     // Fallback - just get the shared known bits of the operands.
3175     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3176     if (Known.isUnknown()) break; // Early-out
3177     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3178     Known.Zero &= Known2.Zero;
3179     Known.One &= Known2.One;
3180     break;
3181   }
3182   case ISD::FrameIndex:
3183   case ISD::TargetFrameIndex:
3184     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3185     break;
3186
3187   default:
3188     if (Opcode < ISD::BUILTIN_OP_END)
3189       break;
3190     LLVM_FALLTHROUGH;
3191   case ISD::INTRINSIC_WO_CHAIN:
3192   case ISD::INTRINSIC_W_CHAIN:
3193   case ISD::INTRINSIC_VOID:
3194     // Allow the target to implement this method for its nodes.
3195     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3196     break;
3197   }
3198
3199   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3200   return Known;
3201 }
3202
3203 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3204                                                              SDValue N1) const {
3205   // X + 0 never overflow
3206   if (isNullConstant(N1))
3207     return OFK_Never;
3208
3209   KnownBits N1Known = computeKnownBits(N1);
3210   if (N1Known.Zero.getBoolValue()) {
3211     KnownBits N0Known = computeKnownBits(N0);
3212
3213     bool overflow;
3214     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3215     if (!overflow)
3216       return OFK_Never;
3217   }
3218
3219   // mulhi + 1 never overflow
3220   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3221       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3222     return OFK_Never;
3223
3224   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3225     KnownBits N0Known = computeKnownBits(N0);
3226
3227     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3228       return OFK_Never;
3229   }
3230
3231   return OFK_Sometime;
3232 }
3233
3234 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3235   EVT OpVT = Val.getValueType();
3236   unsigned BitWidth = OpVT.getScalarSizeInBits();
3237
3238   // Is the constant a known power of 2?
3239   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3240     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3241
3242   // A left-shift of a constant one will have exactly one bit set because
3243   // shifting the bit off the end is undefined.
3244   if (Val.getOpcode() == ISD::SHL) {
3245     auto *C = isConstOrConstSplat(Val.getOperand(0));
3246     if (C && C->getAPIntValue() == 1)
3247       return true;
3248   }
3249
3250   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3251   // one bit set.
3252   if (Val.getOpcode() == ISD::SRL) {
3253     auto *C = isConstOrConstSplat(Val.getOperand(0));
3254     if (C && C->getAPIntValue().isSignMask())
3255       return true;
3256   }
3257
3258   // Are all operands of a build vector constant powers of two?
3259   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3260     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3261           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3262             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3263           return false;
3264         }))
3265       return true;
3266
3267   // More could be done here, though the above checks are enough
3268   // to handle some common cases.
3269
3270   // Fall back to computeKnownBits to catch other known cases.
3271   KnownBits Known = computeKnownBits(Val);
3272   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3273 }
3274
3275 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3276   EVT VT = Op.getValueType();
3277   APInt DemandedElts = VT.isVector()
3278                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3279                            : APInt(1, 1);
3280   return ComputeNumSignBits(Op, DemandedElts, Depth);
3281 }
3282
3283 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3284                                           unsigned Depth) const {
3285   EVT VT = Op.getValueType();
3286   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3287   unsigned VTBits = VT.getScalarSizeInBits();
3288   unsigned NumElts = DemandedElts.getBitWidth();
3289   unsigned Tmp, Tmp2;
3290   unsigned FirstAnswer = 1;
3291
3292   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3293     const APInt &Val = C->getAPIntValue();
3294     return Val.getNumSignBits();
3295   }
3296
3297   if (Depth == 6)
3298     return 1;  // Limit search depth.
3299
3300   if (!DemandedElts)
3301     return 1;  // No demanded elts, better to assume we don't know anything.
3302
3303   unsigned Opcode = Op.getOpcode();
3304   switch (Opcode) {
3305   default: break;
3306   case ISD::AssertSext:
3307     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3308     return VTBits-Tmp+1;
3309   case ISD::AssertZext:
3310     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3311     return VTBits-Tmp;
3312
3313   case ISD::BUILD_VECTOR:
3314     Tmp = VTBits;
3315     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3316       if (!DemandedElts[i])
3317         continue;
3318
3319       SDValue SrcOp = Op.getOperand(i);
3320       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3321
3322       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3323       if (SrcOp.getValueSizeInBits() != VTBits) {
3324         assert(SrcOp.getValueSizeInBits() > VTBits &&
3325                "Expected BUILD_VECTOR implicit truncation");
3326         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3327         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3328       }
3329       Tmp = std::min(Tmp, Tmp2);
3330     }
3331     return Tmp;
3332
3333   case ISD::VECTOR_SHUFFLE: {
3334     // Collect the minimum number of sign bits that are shared by every vector
3335     // element referenced by the shuffle.
3336     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3337     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3338     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3339     for (unsigned i = 0; i != NumElts; ++i) {
3340       int M = SVN->getMaskElt(i);
3341       if (!DemandedElts[i])
3342         continue;
3343       // For UNDEF elements, we don't know anything about the common state of
3344       // the shuffle result.
3345       if (M < 0)
3346         return 1;
3347       if ((unsigned)M < NumElts)
3348         DemandedLHS.setBit((unsigned)M % NumElts);
3349       else
3350         DemandedRHS.setBit((unsigned)M % NumElts);
3351     }
3352     Tmp = std::numeric_limits<unsigned>::max();
3353     if (!!DemandedLHS)
3354       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3355     if (!!DemandedRHS) {
3356       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3357       Tmp = std::min(Tmp, Tmp2);
3358     }
3359     // If we don't know anything, early out and try computeKnownBits fall-back.
3360     if (Tmp == 1)
3361       break;
3362     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3363     return Tmp;
3364   }
3365
3366   case ISD::BITCAST: {
3367     SDValue N0 = Op.getOperand(0);
3368     EVT SrcVT = N0.getValueType();
3369     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3370
3371     // Ignore bitcasts from unsupported types..
3372     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3373       break;
3374
3375     // Fast handling of 'identity' bitcasts.
3376     if (VTBits == SrcBits)
3377       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3378
3379     bool IsLE = getDataLayout().isLittleEndian();
3380
3381     // Bitcast 'large element' scalar/vector to 'small element' vector.
3382     if ((SrcBits % VTBits) == 0) {
3383       assert(VT.isVector() && "Expected bitcast to vector");
3384
3385       unsigned Scale = SrcBits / VTBits;
3386       APInt SrcDemandedElts(NumElts / Scale, 0);
3387       for (unsigned i = 0; i != NumElts; ++i)
3388         if (DemandedElts[i])
3389           SrcDemandedElts.setBit(i / Scale);
3390
3391       // Fast case - sign splat can be simply split across the small elements.
3392       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3393       if (Tmp == SrcBits)
3394         return VTBits;
3395
3396       // Slow case - determine how far the sign extends into each sub-element.
3397       Tmp2 = VTBits;
3398       for (unsigned i = 0; i != NumElts; ++i)
3399         if (DemandedElts[i]) {
3400           unsigned SubOffset = i % Scale;
3401           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3402           SubOffset = SubOffset * VTBits;
3403           if (Tmp <= SubOffset)
3404             return 1;
3405           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3406         }
3407       return Tmp2;
3408     }
3409     break;
3410   }
3411
3412   case ISD::SIGN_EXTEND:
3413     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3414     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3415   case ISD::SIGN_EXTEND_INREG:
3416     // Max of the input and what this extends.
3417     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3418     Tmp = VTBits-Tmp+1;
3419     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3420     return std::max(Tmp, Tmp2);
3421   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3422     SDValue Src = Op.getOperand(0);
3423     EVT SrcVT = Src.getValueType();
3424     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3425     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3426     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3427   }
3428
3429   case ISD::SRA:
3430     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3431     // SRA X, C   -> adds C sign bits.
3432     if (ConstantSDNode *C =
3433             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3434       APInt ShiftVal = C->getAPIntValue();
3435       ShiftVal += Tmp;
3436       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3437     }
3438     return Tmp;
3439   case ISD::SHL:
3440     if (ConstantSDNode *C =
3441             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3442       // shl destroys sign bits.
3443       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3444       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3445           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3446       return Tmp - C->getZExtValue();
3447     }
3448     break;
3449   case ISD::AND:
3450   case ISD::OR:
3451   case ISD::XOR:    // NOT is handled here.
3452     // Logical binary ops preserve the number of sign bits at the worst.
3453     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3454     if (Tmp != 1) {
3455       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3456       FirstAnswer = std::min(Tmp, Tmp2);
3457       // We computed what we know about the sign bits as our first
3458       // answer. Now proceed to the generic code that uses
3459       // computeKnownBits, and pick whichever answer is better.
3460     }
3461     break;
3462
3463   case ISD::SELECT:
3464   case ISD::VSELECT:
3465     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3466     if (Tmp == 1) return 1;  // Early out.
3467     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3468     return std::min(Tmp, Tmp2);
3469   case ISD::SELECT_CC:
3470     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3471     if (Tmp == 1) return 1;  // Early out.
3472     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3473     return std::min(Tmp, Tmp2);
3474
3475   case ISD::SMIN:
3476   case ISD::SMAX: {
3477     // If we have a clamp pattern, we know that the number of sign bits will be
3478     // the minimum of the clamp min/max range.
3479     bool IsMax = (Opcode == ISD::SMAX);
3480     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3481     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3482       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3483         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3484                                               DemandedElts);
3485     if (CstLow && CstHigh) {
3486       if (!IsMax)
3487         std::swap(CstLow, CstHigh);
3488       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3489         Tmp = CstLow->getAPIntValue().getNumSignBits();
3490         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3491         return std::min(Tmp, Tmp2);
3492       }
3493     }
3494
3495     // Fallback - just get the minimum number of sign bits of the operands.
3496     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3497     if (Tmp == 1)
3498       return 1;  // Early out.
3499     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3500     return std::min(Tmp, Tmp2);
3501   }
3502   case ISD::UMIN:
3503   case ISD::UMAX:
3504     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3505     if (Tmp == 1)
3506       return 1;  // Early out.
3507     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3508     return std::min(Tmp, Tmp2);
3509   case ISD::SADDO:
3510   case ISD::UADDO:
3511   case ISD::SSUBO:
3512   case ISD::USUBO:
3513   case ISD::SMULO:
3514   case ISD::UMULO:
3515     if (Op.getResNo() != 1)
3516       break;
3517     // The boolean result conforms to getBooleanContents.  Fall through.
3518     // If setcc returns 0/-1, all bits are sign bits.
3519     // We know that we have an integer-based boolean since these operations
3520     // are only available for integer.
3521     if (TLI->getBooleanContents(VT.isVector(), false) ==
3522         TargetLowering::ZeroOrNegativeOneBooleanContent)
3523       return VTBits;
3524     break;
3525   case ISD::SETCC:
3526     // If setcc returns 0/-1, all bits are sign bits.
3527     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3528         TargetLowering::ZeroOrNegativeOneBooleanContent)
3529       return VTBits;
3530     break;
3531   case ISD::ROTL:
3532   case ISD::ROTR:
3533     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3534       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3535
3536       // Handle rotate right by N like a rotate left by 32-N.
3537       if (Opcode == ISD::ROTR)
3538         RotAmt = (VTBits - RotAmt) % VTBits;
3539
3540       // If we aren't rotating out all of the known-in sign bits, return the
3541       // number that are left.  This handles rotl(sext(x), 1) for example.
3542       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3543       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3544     }
3545     break;
3546   case ISD::ADD:
3547   case ISD::ADDC:
3548     // Add can have at most one carry bit.  Thus we know that the output
3549     // is, at worst, one more bit than the inputs.
3550     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3551     if (Tmp == 1) return 1;  // Early out.
3552
3553     // Special case decrementing a value (ADD X, -1):
3554     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3555       if (CRHS->isAllOnesValue()) {
3556         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3557
3558         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3559         // sign bits set.
3560         if ((Known.Zero | 1).isAllOnesValue())
3561           return VTBits;
3562
3563         // If we are subtracting one from a positive number, there is no carry
3564         // out of the result.
3565         if (Known.isNonNegative())
3566           return Tmp;
3567       }
3568
3569     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3570     if (Tmp2 == 1) return 1;
3571     return std::min(Tmp, Tmp2)-1;
3572
3573   case ISD::SUB:
3574     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3575     if (Tmp2 == 1) return 1;
3576
3577     // Handle NEG.
3578     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3579       if (CLHS->isNullValue()) {
3580         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3581         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3582         // sign bits set.
3583         if ((Known.Zero | 1).isAllOnesValue())
3584           return VTBits;
3585
3586         // If the input is known to be positive (the sign bit is known clear),
3587         // the output of the NEG has the same number of sign bits as the input.
3588         if (Known.isNonNegative())
3589           return Tmp2;
3590
3591         // Otherwise, we treat this like a SUB.
3592       }
3593
3594     // Sub can have at most one carry bit.  Thus we know that the output
3595     // is, at worst, one more bit than the inputs.
3596     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3597     if (Tmp == 1) return 1;  // Early out.
3598     return std::min(Tmp, Tmp2)-1;
3599   case ISD::TRUNCATE: {
3600     // Check if the sign bits of source go down as far as the truncated value.
3601     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3602     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3603     if (NumSrcSignBits > (NumSrcBits - VTBits))
3604       return NumSrcSignBits - (NumSrcBits - VTBits);
3605     break;
3606   }
3607   case ISD::EXTRACT_ELEMENT: {
3608     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3609     const int BitWidth = Op.getValueSizeInBits();
3610     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3611
3612     // Get reverse index (starting from 1), Op1 value indexes elements from
3613     // little end. Sign starts at big end.
3614     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3615
3616     // If the sign portion ends in our element the subtraction gives correct
3617     // result. Otherwise it gives either negative or > bitwidth result
3618     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3619   }
3620   case ISD::INSERT_VECTOR_ELT: {
3621     SDValue InVec = Op.getOperand(0);
3622     SDValue InVal = Op.getOperand(1);
3623     SDValue EltNo = Op.getOperand(2);
3624     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3625
3626     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3627     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3628       // If we know the element index, split the demand between the
3629       // source vector and the inserted element.
3630       unsigned EltIdx = CEltNo->getZExtValue();
3631
3632       // If we demand the inserted element then get its sign bits.
3633       Tmp = std::numeric_limits<unsigned>::max();
3634       if (DemandedElts[EltIdx]) {
3635         // TODO - handle implicit truncation of inserted elements.
3636         if (InVal.getScalarValueSizeInBits() != VTBits)
3637           break;
3638         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3639       }
3640
3641       // If we demand the source vector then get its sign bits, and determine
3642       // the minimum.
3643       APInt VectorElts = DemandedElts;
3644       VectorElts.clearBit(EltIdx);
3645       if (!!VectorElts) {
3646         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3647         Tmp = std::min(Tmp, Tmp2);
3648       }
3649     } else {
3650       // Unknown element index, so ignore DemandedElts and demand them all.
3651       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3652       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3653       Tmp = std::min(Tmp, Tmp2);
3654     }
3655     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3656     return Tmp;
3657   }
3658   case ISD::EXTRACT_VECTOR_ELT: {
3659     SDValue InVec = Op.getOperand(0);
3660     SDValue EltNo = Op.getOperand(1);
3661     EVT VecVT = InVec.getValueType();
3662     const unsigned BitWidth = Op.getValueSizeInBits();
3663     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3664     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3665
3666     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3667     // anything about sign bits. But if the sizes match we can derive knowledge
3668     // about sign bits from the vector operand.
3669     if (BitWidth != EltBitWidth)
3670       break;
3671
3672     // If we know the element index, just demand that vector element, else for
3673     // an unknown element index, ignore DemandedElts and demand them all.
3674     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3675     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3676     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3677       DemandedSrcElts =
3678           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3679
3680     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3681   }
3682   case ISD::EXTRACT_SUBVECTOR: {
3683     // If we know the element index, just demand that subvector elements,
3684     // otherwise demand them all.
3685     SDValue Src = Op.getOperand(0);
3686     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3687     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3688     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3689       // Offset the demanded elts by the subvector index.
3690       uint64_t Idx = SubIdx->getZExtValue();
3691       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3692       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3693     }
3694     return ComputeNumSignBits(Src, Depth + 1);
3695   }
3696   case ISD::CONCAT_VECTORS: {
3697     // Determine the minimum number of sign bits across all demanded
3698     // elts of the input vectors. Early out if the result is already 1.
3699     Tmp = std::numeric_limits<unsigned>::max();
3700     EVT SubVectorVT = Op.getOperand(0).getValueType();
3701     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3702     unsigned NumSubVectors = Op.getNumOperands();
3703     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3704       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3705       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3706       if (!DemandedSub)
3707         continue;
3708       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3709       Tmp = std::min(Tmp, Tmp2);
3710     }
3711     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3712     return Tmp;
3713   }
3714   case ISD::INSERT_SUBVECTOR: {
3715     // If we know the element index, demand any elements from the subvector and
3716     // the remainder from the src its inserted into, otherwise demand them all.
3717     SDValue Src = Op.getOperand(0);
3718     SDValue Sub = Op.getOperand(1);
3719     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3720     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3721     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3722       Tmp = std::numeric_limits<unsigned>::max();
3723       uint64_t Idx = SubIdx->getZExtValue();
3724       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3725       if (!!DemandedSubElts) {
3726         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3727         if (Tmp == 1) return 1; // early-out
3728       }
3729       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3730       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3731       if (!!DemandedSrcElts) {
3732         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3733         Tmp = std::min(Tmp, Tmp2);
3734       }
3735       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3736       return Tmp;
3737     }
3738
3739     // Not able to determine the index so just assume worst case.
3740     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3741     if (Tmp == 1) return 1; // early-out
3742     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3743     Tmp = std::min(Tmp, Tmp2);
3744     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3745     return Tmp;
3746   }
3747   }
3748
3749   // If we are looking at the loaded value of the SDNode.
3750   if (Op.getResNo() == 0) {
3751     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3752     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3753       unsigned ExtType = LD->getExtensionType();
3754       switch (ExtType) {
3755         default: break;
3756         case ISD::SEXTLOAD:    // '17' bits known
3757           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3758           return VTBits-Tmp+1;
3759         case ISD::ZEXTLOAD:    // '16' bits known
3760           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3761           return VTBits-Tmp;
3762       }
3763     }
3764   }
3765
3766   // Allow the target to implement this method for its nodes.
3767   if (Opcode >= ISD::BUILTIN_OP_END ||
3768       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3769       Opcode == ISD::INTRINSIC_W_CHAIN ||
3770       Opcode == ISD::INTRINSIC_VOID) {
3771     unsigned NumBits =
3772         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3773     if (NumBits > 1)
3774       FirstAnswer = std::max(FirstAnswer, NumBits);
3775   }
3776
3777   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3778   // use this information.
3779   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3780
3781   APInt Mask;
3782   if (Known.isNonNegative()) {        // sign bit is 0
3783     Mask = Known.Zero;
3784   } else if (Known.isNegative()) {  // sign bit is 1;
3785     Mask = Known.One;
3786   } else {
3787     // Nothing known.
3788     return FirstAnswer;
3789   }
3790
3791   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3792   // the number of identical bits in the top of the input value.
3793   Mask = ~Mask;
3794   Mask <<= Mask.getBitWidth()-VTBits;
3795   // Return # leading zeros.  We use 'min' here in case Val was zero before
3796   // shifting.  We don't want to return '64' as for an i32 "0".
3797   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3798 }
3799
3800 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3801   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3802       !isa<ConstantSDNode>(Op.getOperand(1)))
3803     return false;
3804
3805   if (Op.getOpcode() == ISD::OR &&
3806       !MaskedValueIsZero(Op.getOperand(0),
3807                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3808     return false;
3809
3810   return true;
3811 }
3812
3813 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3814   // If we're told that NaNs won't happen, assume they won't.
3815   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3816     return true;
3817
3818   if (Depth == 6)
3819     return false; // Limit search depth.
3820
3821   // TODO: Handle vectors.
3822   // If the value is a constant, we can obviously see if it is a NaN or not.
3823   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3824     return !C->getValueAPF().isNaN() ||
3825            (SNaN && !C->getValueAPF().isSignaling());
3826   }
3827
3828   unsigned Opcode = Op.getOpcode();
3829   switch (Opcode) {
3830   case ISD::FADD:
3831   case ISD::FSUB:
3832   case ISD::FMUL:
3833   case ISD::FDIV:
3834   case ISD::FREM:
3835   case ISD::FSIN:
3836   case ISD::FCOS: {
3837     if (SNaN)
3838       return true;
3839     // TODO: Need isKnownNeverInfinity
3840     return false;
3841   }
3842   case ISD::FCANONICALIZE:
3843   case ISD::FEXP:
3844   case ISD::FEXP2:
3845   case ISD::FTRUNC:
3846   case ISD::FFLOOR:
3847   case ISD::FCEIL:
3848   case ISD::FROUND:
3849   case ISD::FRINT:
3850   case ISD::FNEARBYINT: {
3851     if (SNaN)
3852       return true;
3853     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3854   }
3855   case ISD::FABS:
3856   case ISD::FNEG:
3857   case ISD::FCOPYSIGN: {
3858     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3859   }
3860   case ISD::SELECT:
3861     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3862            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3863   case ISD::FP_EXTEND:
3864   case ISD::FP_ROUND: {
3865     if (SNaN)
3866       return true;
3867     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3868   }
3869   case ISD::SINT_TO_FP:
3870   case ISD::UINT_TO_FP:
3871     return true;
3872   case ISD::FMA:
3873   case ISD::FMAD: {
3874     if (SNaN)
3875       return true;
3876     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3877            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3878            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3879   }
3880   case ISD::FSQRT: // Need is known positive
3881   case ISD::FLOG:
3882   case ISD::FLOG2:
3883   case ISD::FLOG10:
3884   case ISD::FPOWI:
3885   case ISD::FPOW: {
3886     if (SNaN)
3887       return true;
3888     // TODO: Refine on operand
3889     return false;
3890   }
3891   case ISD::FMINNUM:
3892   case ISD::FMAXNUM: {
3893     // Only one needs to be known not-nan, since it will be returned if the
3894     // other ends up being one.
3895     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3896            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3897   }
3898   case ISD::FMINNUM_IEEE:
3899   case ISD::FMAXNUM_IEEE: {
3900     if (SNaN)
3901       return true;
3902     // This can return a NaN if either operand is an sNaN, or if both operands
3903     // are NaN.
3904     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3905             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3906            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3907             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3908   }
3909   case ISD::FMINIMUM:
3910   case ISD::FMAXIMUM: {
3911     // TODO: Does this quiet or return the origina NaN as-is?
3912     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3913            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3914   }
3915   case ISD::EXTRACT_VECTOR_ELT: {
3916     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3917   }
3918   default:
3919     if (Opcode >= ISD::BUILTIN_OP_END ||
3920         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3921         Opcode == ISD::INTRINSIC_W_CHAIN ||
3922         Opcode == ISD::INTRINSIC_VOID) {
3923       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3924     }
3925
3926     return false;
3927   }
3928 }
3929
3930 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3931   assert(Op.getValueType().isFloatingPoint() &&
3932          "Floating point type expected");
3933
3934   // If the value is a constant, we can obviously see if it is a zero or not.
3935   // TODO: Add BuildVector support.
3936   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3937     return !C->isZero();
3938   return false;
3939 }
3940
3941 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3942   assert(!Op.getValueType().isFloatingPoint() &&
3943          "Floating point types unsupported - use isKnownNeverZeroFloat");
3944
3945   // If the value is a constant, we can obviously see if it is a zero or not.
3946   if (ISD::matchUnaryPredicate(
3947           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3948     return true;
3949
3950   // TODO: Recognize more cases here.
3951   switch (Op.getOpcode()) {
3952   default: break;
3953   case ISD::OR:
3954     if (isKnownNeverZero(Op.getOperand(1)) ||
3955         isKnownNeverZero(Op.getOperand(0)))
3956       return true;
3957     break;
3958   }
3959
3960   return false;
3961 }
3962
3963 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3964   // Check the obvious case.
3965   if (A == B) return true;
3966
3967   // For for negative and positive zero.
3968   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3969     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3970       if (CA->isZero() && CB->isZero()) return true;
3971
3972   // Otherwise they may not be equal.
3973   return false;
3974 }
3975
3976 // FIXME: unify with llvm::haveNoCommonBitsSet.
3977 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3978 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3979   assert(A.getValueType() == B.getValueType() &&
3980          "Values must have the same type");
3981   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3982 }
3983
3984 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
3985                                 ArrayRef<SDValue> Ops,
3986                                 SelectionDAG &DAG) {
3987   int NumOps = Ops.size();
3988   assert(NumOps != 0 && "Can't build an empty vector!");
3989   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
3990          "Incorrect element count in BUILD_VECTOR!");
3991
3992   // BUILD_VECTOR of UNDEFs is UNDEF.
3993   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3994     return DAG.getUNDEF(VT);
3995
3996   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3997   SDValue IdentitySrc;
3998   bool IsIdentity = true;
3999   for (int i = 0; i != NumOps; ++i) {
4000     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4001         Ops[i].getOperand(0).getValueType() != VT ||
4002         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4003         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4004         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4005       IsIdentity = false;
4006       break;
4007     }
4008     IdentitySrc = Ops[i].getOperand(0);
4009   }
4010   if (IsIdentity)
4011     return IdentitySrc;
4012
4013   return SDValue();
4014 }
4015
4016 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4017                                   ArrayRef<SDValue> Ops,
4018                                   SelectionDAG &DAG) {
4019   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4020   assert(llvm::all_of(Ops,
4021                       [Ops](SDValue Op) {
4022                         return Ops[0].getValueType() == Op.getValueType();
4023                       }) &&
4024          "Concatenation of vectors with inconsistent value types!");
4025   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4026              VT.getVectorNumElements() &&
4027          "Incorrect element count in vector concatenation!");
4028
4029   if (Ops.size() == 1)
4030     return Ops[0];
4031
4032   // Concat of UNDEFs is UNDEF.
4033   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4034     return DAG.getUNDEF(VT);
4035
4036   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4037   // simplified to one big BUILD_VECTOR.
4038   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4039   EVT SVT = VT.getScalarType();
4040   SmallVector<SDValue, 16> Elts;
4041   for (SDValue Op : Ops) {
4042     EVT OpVT = Op.getValueType();
4043     if (Op.isUndef())
4044       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4045     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4046       Elts.append(Op->op_begin(), Op->op_end());
4047     else
4048       return SDValue();
4049   }
4050
4051   // BUILD_VECTOR requires all inputs to be of the same type, find the
4052   // maximum type and extend them all.
4053   for (SDValue Op : Elts)
4054     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4055
4056   if (SVT.bitsGT(VT.getScalarType()))
4057     for (SDValue &Op : Elts)
4058       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4059                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4060                : DAG.getSExtOrTrunc(Op, DL, SVT);
4061
4062   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4063   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4064   return V;
4065 }
4066
4067 /// Gets or creates the specified node.
4068 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4069   FoldingSetNodeID ID;
4070   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4071   void *IP = nullptr;
4072   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4073     return SDValue(E, 0);
4074
4075   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4076                               getVTList(VT));
4077   CSEMap.InsertNode(N, IP);
4078
4079   InsertNode(N);
4080   SDValue V = SDValue(N, 0);
4081   NewSDValueDbgMsg(V, "Creating new node: ", this);
4082   return V;
4083 }
4084
4085 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4086                               SDValue Operand, const SDNodeFlags Flags) {
4087   // Constant fold unary operations with an integer constant operand. Even
4088   // opaque constant will be folded, because the folding of unary operations
4089   // doesn't create new constants with different values. Nevertheless, the
4090   // opaque flag is preserved during folding to prevent future folding with
4091   // other constants.
4092   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4093     const APInt &Val = C->getAPIntValue();
4094     switch (Opcode) {
4095     default: break;
4096     case ISD::SIGN_EXTEND:
4097       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4098                          C->isTargetOpcode(), C->isOpaque());
4099     case ISD::TRUNCATE:
4100       if (C->isOpaque())
4101         break;
4102       LLVM_FALLTHROUGH;
4103     case ISD::ANY_EXTEND:
4104     case ISD::ZERO_EXTEND:
4105       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4106                          C->isTargetOpcode(), C->isOpaque());
4107     case ISD::UINT_TO_FP:
4108     case ISD::SINT_TO_FP: {
4109       APFloat apf(EVTToAPFloatSemantics(VT),
4110                   APInt::getNullValue(VT.getSizeInBits()));
4111       (void)apf.convertFromAPInt(Val,
4112                                  Opcode==ISD::SINT_TO_FP,
4113                                  APFloat::rmNearestTiesToEven);
4114       return getConstantFP(apf, DL, VT);
4115     }
4116     case ISD::BITCAST:
4117       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4118         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4119       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4120         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4121       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4122         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4123       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4124         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4125       break;
4126     case ISD::ABS:
4127       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4128                          C->isOpaque());
4129     case ISD::BITREVERSE:
4130       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4131                          C->isOpaque());
4132     case ISD::BSWAP:
4133       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4134                          C->isOpaque());
4135     case ISD::CTPOP:
4136       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4137                          C->isOpaque());
4138     case ISD::CTLZ:
4139     case ISD::CTLZ_ZERO_UNDEF:
4140       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4141                          C->isOpaque());
4142     case ISD::CTTZ:
4143     case ISD::CTTZ_ZERO_UNDEF:
4144       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4145                          C->isOpaque());
4146     case ISD::FP16_TO_FP: {
4147       bool Ignored;
4148       APFloat FPV(APFloat::IEEEhalf(),
4149                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4150
4151       // This can return overflow, underflow, or inexact; we don't care.
4152       // FIXME need to be more flexible about rounding mode.
4153       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4154                         APFloat::rmNearestTiesToEven, &Ignored);
4155       return getConstantFP(FPV, DL, VT);
4156     }
4157     }
4158   }
4159
4160   // Constant fold unary operations with a floating point constant operand.
4161   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4162     APFloat V = C->getValueAPF();    // make copy
4163     switch (Opcode) {
4164     case ISD::FNEG:
4165       V.changeSign();
4166       return getConstantFP(V, DL, VT);
4167     case ISD::FABS:
4168       V.clearSign();
4169       return getConstantFP(V, DL, VT);
4170     case ISD::FCEIL: {
4171       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4172       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4173         return getConstantFP(V, DL, VT);
4174       break;
4175     }
4176     case ISD::FTRUNC: {
4177       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4178       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4179         return getConstantFP(V, DL, VT);
4180       break;
4181     }
4182     case ISD::FFLOOR: {
4183       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4184       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4185         return getConstantFP(V, DL, VT);
4186       break;
4187     }
4188     case ISD::FP_EXTEND: {
4189       bool ignored;
4190       // This can return overflow, underflow, or inexact; we don't care.
4191       // FIXME need to be more flexible about rounding mode.
4192       (void)V.convert(EVTToAPFloatSemantics(VT),
4193                       APFloat::rmNearestTiesToEven, &ignored);
4194       return getConstantFP(V, DL, VT);
4195     }
4196     case ISD::FP_TO_SINT:
4197     case ISD::FP_TO_UINT: {
4198       bool ignored;
4199       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4200       // FIXME need to be more flexible about rounding mode.
4201       APFloat::opStatus s =
4202           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4203       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4204         break;
4205       return getConstant(IntVal, DL, VT);
4206     }
4207     case ISD::BITCAST:
4208       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4209         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4210       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4211         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4212       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4213         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4214       break;
4215     case ISD::FP_TO_FP16: {
4216       bool Ignored;
4217       // This can return overflow, underflow, or inexact; we don't care.
4218       // FIXME need to be more flexible about rounding mode.
4219       (void)V.convert(APFloat::IEEEhalf(),
4220                       APFloat::rmNearestTiesToEven, &Ignored);
4221       return getConstant(V.bitcastToAPInt(), DL, VT);
4222     }
4223     }
4224   }
4225
4226   // Constant fold unary operations with a vector integer or float operand.
4227   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4228     if (BV->isConstant()) {
4229       switch (Opcode) {
4230       default:
4231         // FIXME: Entirely reasonable to perform folding of other unary
4232         // operations here as the need arises.
4233         break;
4234       case ISD::FNEG:
4235       case ISD::FABS:
4236       case ISD::FCEIL:
4237       case ISD::FTRUNC:
4238       case ISD::FFLOOR:
4239       case ISD::FP_EXTEND:
4240       case ISD::FP_TO_SINT:
4241       case ISD::FP_TO_UINT:
4242       case ISD::TRUNCATE:
4243       case ISD::ANY_EXTEND:
4244       case ISD::ZERO_EXTEND:
4245       case ISD::SIGN_EXTEND:
4246       case ISD::UINT_TO_FP:
4247       case ISD::SINT_TO_FP:
4248       case ISD::ABS:
4249       case ISD::BITREVERSE:
4250       case ISD::BSWAP:
4251       case ISD::CTLZ:
4252       case ISD::CTLZ_ZERO_UNDEF:
4253       case ISD::CTTZ:
4254       case ISD::CTTZ_ZERO_UNDEF:
4255       case ISD::CTPOP: {
4256         SDValue Ops = { Operand };
4257         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4258           return Fold;
4259       }
4260       }
4261     }
4262   }
4263
4264   unsigned OpOpcode = Operand.getNode()->getOpcode();
4265   switch (Opcode) {
4266   case ISD::TokenFactor:
4267   case ISD::MERGE_VALUES:
4268   case ISD::CONCAT_VECTORS:
4269     return Operand;         // Factor, merge or concat of one node?  No need.
4270   case ISD::BUILD_VECTOR: {
4271     // Attempt to simplify BUILD_VECTOR.
4272     SDValue Ops[] = {Operand};
4273     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4274       return V;
4275     break;
4276   }
4277   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4278   case ISD::FP_EXTEND:
4279     assert(VT.isFloatingPoint() &&
4280            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4281     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4282     assert((!VT.isVector() ||
4283             VT.getVectorNumElements() ==
4284             Operand.getValueType().getVectorNumElements()) &&
4285            "Vector element count mismatch!");
4286     assert(Operand.getValueType().bitsLT(VT) &&
4287            "Invalid fpext node, dst < src!");
4288     if (Operand.isUndef())
4289       return getUNDEF(VT);
4290     break;
4291   case ISD::SIGN_EXTEND:
4292     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4293            "Invalid SIGN_EXTEND!");
4294     if (Operand.getValueType() == VT) return Operand;   // noop extension
4295     assert((!VT.isVector() ||
4296             VT.getVectorNumElements() ==
4297             Operand.getValueType().getVectorNumElements()) &&
4298            "Vector element count mismatch!");
4299     assert(Operand.getValueType().bitsLT(VT) &&
4300            "Invalid sext node, dst < src!");
4301     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4302       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4303     else if (OpOpcode == ISD::UNDEF)
4304       // sext(undef) = 0, because the top bits will all be the same.
4305       return getConstant(0, DL, VT);
4306     break;
4307   case ISD::ZERO_EXTEND:
4308     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4309            "Invalid ZERO_EXTEND!");
4310     if (Operand.getValueType() == VT) return Operand;   // noop extension
4311     assert((!VT.isVector() ||
4312             VT.getVectorNumElements() ==
4313             Operand.getValueType().getVectorNumElements()) &&
4314            "Vector element count mismatch!");
4315     assert(Operand.getValueType().bitsLT(VT) &&
4316            "Invalid zext node, dst < src!");
4317     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4318       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4319     else if (OpOpcode == ISD::UNDEF)
4320       // zext(undef) = 0, because the top bits will be zero.
4321       return getConstant(0, DL, VT);
4322     break;
4323   case ISD::ANY_EXTEND:
4324     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4325            "Invalid ANY_EXTEND!");
4326     if (Operand.getValueType() == VT) return Operand;   // noop extension
4327     assert((!VT.isVector() ||
4328             VT.getVectorNumElements() ==
4329             Operand.getValueType().getVectorNumElements()) &&
4330            "Vector element count mismatch!");
4331     assert(Operand.getValueType().bitsLT(VT) &&
4332            "Invalid anyext node, dst < src!");
4333
4334     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4335         OpOpcode == ISD::ANY_EXTEND)
4336       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4337       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4338     else if (OpOpcode == ISD::UNDEF)
4339       return getUNDEF(VT);
4340
4341     // (ext (trunc x)) -> x
4342     if (OpOpcode == ISD::TRUNCATE) {
4343       SDValue OpOp = Operand.getOperand(0);
4344       if (OpOp.getValueType() == VT) {
4345         transferDbgValues(Operand, OpOp);
4346         return OpOp;
4347       }
4348     }
4349     break;
4350   case ISD::TRUNCATE:
4351     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4352            "Invalid TRUNCATE!");
4353     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4354     assert((!VT.isVector() ||
4355             VT.getVectorNumElements() ==
4356             Operand.getValueType().getVectorNumElements()) &&
4357            "Vector element count mismatch!");
4358     assert(Operand.getValueType().bitsGT(VT) &&
4359            "Invalid truncate node, src < dst!");
4360     if (OpOpcode == ISD::TRUNCATE)
4361       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4362     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4363         OpOpcode == ISD::ANY_EXTEND) {
4364       // If the source is smaller than the dest, we still need an extend.
4365       if (Operand.getOperand(0).getValueType().getScalarType()
4366             .bitsLT(VT.getScalarType()))
4367         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4368       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4369         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4370       return Operand.getOperand(0);
4371     }
4372     if (OpOpcode == ISD::UNDEF)
4373       return getUNDEF(VT);
4374     break;
4375   case ISD::ANY_EXTEND_VECTOR_INREG:
4376   case ISD::ZERO_EXTEND_VECTOR_INREG:
4377   case ISD::SIGN_EXTEND_VECTOR_INREG:
4378     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4379     assert(Operand.getValueType().bitsLE(VT) &&
4380            "The input must be the same size or smaller than the result.");
4381     assert(VT.getVectorNumElements() <
4382              Operand.getValueType().getVectorNumElements() &&
4383            "The destination vector type must have fewer lanes than the input.");
4384     break;
4385   case ISD::ABS:
4386     assert(VT.isInteger() && VT == Operand.getValueType() &&
4387            "Invalid ABS!");
4388     if (OpOpcode == ISD::UNDEF)
4389       return getUNDEF(VT);
4390     break;
4391   case ISD::BSWAP:
4392     assert(VT.isInteger() && VT == Operand.getValueType() &&
4393            "Invalid BSWAP!");
4394     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4395            "BSWAP types must be a multiple of 16 bits!");
4396     if (OpOpcode == ISD::UNDEF)
4397       return getUNDEF(VT);
4398     break;
4399   case ISD::BITREVERSE:
4400     assert(VT.isInteger() && VT == Operand.getValueType() &&
4401            "Invalid BITREVERSE!");
4402     if (OpOpcode == ISD::UNDEF)
4403       return getUNDEF(VT);
4404     break;
4405   case ISD::BITCAST:
4406     // Basic sanity checking.
4407     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4408            "Cannot BITCAST between types of different sizes!");
4409     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4410     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4411       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4412     if (OpOpcode == ISD::UNDEF)
4413       return getUNDEF(VT);
4414     break;
4415   case ISD::SCALAR_TO_VECTOR:
4416     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4417            (VT.getVectorElementType() == Operand.getValueType() ||
4418             (VT.getVectorElementType().isInteger() &&
4419              Operand.getValueType().isInteger() &&
4420              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4421            "Illegal SCALAR_TO_VECTOR node!");
4422     if (OpOpcode == ISD::UNDEF)
4423       return getUNDEF(VT);
4424     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4425     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4426         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4427         Operand.getConstantOperandVal(1) == 0 &&
4428         Operand.getOperand(0).getValueType() == VT)
4429       return Operand.getOperand(0);
4430     break;
4431   case ISD::FNEG:
4432     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4433     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4434         OpOpcode == ISD::FSUB)
4435       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4436                      Operand.getOperand(0), Flags);
4437     if (OpOpcode == ISD::FNEG)  // --X -> X
4438       return Operand.getOperand(0);
4439     break;
4440   case ISD::FABS:
4441     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4442       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4443     break;
4444   }
4445
4446   SDNode *N;
4447   SDVTList VTs = getVTList(VT);
4448   SDValue Ops[] = {Operand};
4449   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4450     FoldingSetNodeID ID;
4451     AddNodeIDNode(ID, Opcode, VTs, Ops);
4452     void *IP = nullptr;
4453     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4454       E->intersectFlagsWith(Flags);
4455       return SDValue(E, 0);
4456     }
4457
4458     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4459     N->setFlags(Flags);
4460     createOperands(N, Ops);
4461     CSEMap.InsertNode(N, IP);
4462   } else {
4463     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4464     createOperands(N, Ops);
4465   }
4466
4467   InsertNode(N);
4468   SDValue V = SDValue(N, 0);
4469   NewSDValueDbgMsg(V, "Creating new node: ", this);
4470   return V;
4471 }
4472
4473 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4474                                         const APInt &C2) {
4475   switch (Opcode) {
4476   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4477   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4478   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4479   case ISD::AND:  return std::make_pair(C1 & C2, true);
4480   case ISD::OR:   return std::make_pair(C1 | C2, true);
4481   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4482   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4483   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4484   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4485   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4486   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4487   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4488   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4489   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4490   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4491   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4492   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4493   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4494   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4495   case ISD::UDIV:
4496     if (!C2.getBoolValue())
4497       break;
4498     return std::make_pair(C1.udiv(C2), true);
4499   case ISD::UREM:
4500     if (!C2.getBoolValue())
4501       break;
4502     return std::make_pair(C1.urem(C2), true);
4503   case ISD::SDIV:
4504     if (!C2.getBoolValue())
4505       break;
4506     return std::make_pair(C1.sdiv(C2), true);
4507   case ISD::SREM:
4508     if (!C2.getBoolValue())
4509       break;
4510     return std::make_pair(C1.srem(C2), true);
4511   }
4512   return std::make_pair(APInt(1, 0), false);
4513 }
4514
4515 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4516                                              EVT VT, const ConstantSDNode *Cst1,
4517                                              const ConstantSDNode *Cst2) {
4518   if (Cst1->isOpaque() || Cst2->isOpaque())
4519     return SDValue();
4520
4521   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4522                                             Cst2->getAPIntValue());
4523   if (!Folded.second)
4524     return SDValue();
4525   return getConstant(Folded.first, DL, VT);
4526 }
4527
4528 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4529                                        const GlobalAddressSDNode *GA,
4530                                        const SDNode *N2) {
4531   if (GA->getOpcode() != ISD::GlobalAddress)
4532     return SDValue();
4533   if (!TLI->isOffsetFoldingLegal(GA))
4534     return SDValue();
4535   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4536   if (!Cst2)
4537     return SDValue();
4538   int64_t Offset = Cst2->getSExtValue();
4539   switch (Opcode) {
4540   case ISD::ADD: break;
4541   case ISD::SUB: Offset = -uint64_t(Offset); break;
4542   default: return SDValue();
4543   }
4544   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4545                           GA->getOffset() + uint64_t(Offset));
4546 }
4547
4548 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4549   switch (Opcode) {
4550   case ISD::SDIV:
4551   case ISD::UDIV:
4552   case ISD::SREM:
4553   case ISD::UREM: {
4554     // If a divisor is zero/undef or any element of a divisor vector is
4555     // zero/undef, the whole op is undef.
4556     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4557     SDValue Divisor = Ops[1];
4558     if (Divisor.isUndef() || isNullConstant(Divisor))
4559       return true;
4560
4561     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4562            llvm::any_of(Divisor->op_values(),
4563                         [](SDValue V) { return V.isUndef() ||
4564                                         isNullConstant(V); });
4565     // TODO: Handle signed overflow.
4566   }
4567   // TODO: Handle oversized shifts.
4568   default:
4569     return false;
4570   }
4571 }
4572
4573 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4574                                              EVT VT, SDNode *Cst1,
4575                                              SDNode *Cst2) {
4576   // If the opcode is a target-specific ISD node, there's nothing we can
4577   // do here and the operand rules may not line up with the below, so
4578   // bail early.
4579   if (Opcode >= ISD::BUILTIN_OP_END)
4580     return SDValue();
4581
4582   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4583     return getUNDEF(VT);
4584
4585   // Handle the case of two scalars.
4586   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4587     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4588       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4589       assert((!Folded || !VT.isVector()) &&
4590              "Can't fold vectors ops with scalar operands");
4591       return Folded;
4592     }
4593   }
4594
4595   // fold (add Sym, c) -> Sym+c
4596   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4597     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4598   if (TLI->isCommutativeBinOp(Opcode))
4599     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4600       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4601
4602   // For vectors, extract each constant element and fold them individually.
4603   // Either input may be an undef value.
4604   auto *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4605   if (!BV1 && !Cst1->isUndef())
4606     return SDValue();
4607   auto *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4608   if (!BV2 && !Cst2->isUndef())
4609     return SDValue();
4610   // If both operands are undef, that's handled the same way as scalars.
4611   if (!BV1 && !BV2)
4612     return SDValue();
4613
4614   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4615          "Vector binop with different number of elements in operands?");
4616
4617   EVT SVT = VT.getScalarType();
4618   EVT LegalSVT = SVT;
4619   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4620     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4621     if (LegalSVT.bitsLT(SVT))
4622       return SDValue();
4623   }
4624   SmallVector<SDValue, 4> Outputs;
4625   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4626   for (unsigned I = 0; I != NumOps; ++I) {
4627     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4628     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4629     if (SVT.isInteger()) {
4630       if (V1->getValueType(0).bitsGT(SVT))
4631         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4632       if (V2->getValueType(0).bitsGT(SVT))
4633         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4634     }
4635
4636     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4637       return SDValue();
4638
4639     // Fold one vector element.
4640     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4641     if (LegalSVT != SVT)
4642       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4643
4644     // Scalar folding only succeeded if the result is a constant or UNDEF.
4645     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4646         ScalarResult.getOpcode() != ISD::ConstantFP)
4647       return SDValue();
4648     Outputs.push_back(ScalarResult);
4649   }
4650
4651   assert(VT.getVectorNumElements() == Outputs.size() &&
4652          "Vector size mismatch!");
4653
4654   // We may have a vector type but a scalar result. Create a splat.
4655   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4656
4657   // Build a big vector out of the scalar elements we generated.
4658   return getBuildVector(VT, SDLoc(), Outputs);
4659 }
4660
4661 // TODO: Merge with FoldConstantArithmetic
4662 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4663                                                    const SDLoc &DL, EVT VT,
4664                                                    ArrayRef<SDValue> Ops,
4665                                                    const SDNodeFlags Flags) {
4666   // If the opcode is a target-specific ISD node, there's nothing we can
4667   // do here and the operand rules may not line up with the below, so
4668   // bail early.
4669   if (Opcode >= ISD::BUILTIN_OP_END)
4670     return SDValue();
4671
4672   if (isUndef(Opcode, Ops))
4673     return getUNDEF(VT);
4674
4675   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4676   if (!VT.isVector())
4677     return SDValue();
4678
4679   unsigned NumElts = VT.getVectorNumElements();
4680
4681   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4682     return !Op.getValueType().isVector() ||
4683            Op.getValueType().getVectorNumElements() == NumElts;
4684   };
4685
4686   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4687     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4688     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4689            (BV && BV->isConstant());
4690   };
4691
4692   // All operands must be vector types with the same number of elements as
4693   // the result type and must be either UNDEF or a build vector of constant
4694   // or UNDEF scalars.
4695   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4696       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4697     return SDValue();
4698
4699   // If we are comparing vectors, then the result needs to be a i1 boolean
4700   // that is then sign-extended back to the legal result type.
4701   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4702
4703   // Find legal integer scalar type for constant promotion and
4704   // ensure that its scalar size is at least as large as source.
4705   EVT LegalSVT = VT.getScalarType();
4706   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4707     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4708     if (LegalSVT.bitsLT(VT.getScalarType()))
4709       return SDValue();
4710   }
4711
4712   // Constant fold each scalar lane separately.
4713   SmallVector<SDValue, 4> ScalarResults;
4714   for (unsigned i = 0; i != NumElts; i++) {
4715     SmallVector<SDValue, 4> ScalarOps;
4716     for (SDValue Op : Ops) {
4717       EVT InSVT = Op.getValueType().getScalarType();
4718       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4719       if (!InBV) {
4720         // We've checked that this is UNDEF or a constant of some kind.
4721         if (Op.isUndef())
4722           ScalarOps.push_back(getUNDEF(InSVT));
4723         else
4724           ScalarOps.push_back(Op);
4725         continue;
4726       }
4727
4728       SDValue ScalarOp = InBV->getOperand(i);
4729       EVT ScalarVT = ScalarOp.getValueType();
4730
4731       // Build vector (integer) scalar operands may need implicit
4732       // truncation - do this before constant folding.
4733       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4734         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4735
4736       ScalarOps.push_back(ScalarOp);
4737     }
4738
4739     // Constant fold the scalar operands.
4740     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4741
4742     // Legalize the (integer) scalar constant if necessary.
4743     if (LegalSVT != SVT)
4744       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4745
4746     // Scalar folding only succeeded if the result is a constant or UNDEF.
4747     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4748         ScalarResult.getOpcode() != ISD::ConstantFP)
4749       return SDValue();
4750     ScalarResults.push_back(ScalarResult);
4751   }
4752
4753   SDValue V = getBuildVector(VT, DL, ScalarResults);
4754   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4755   return V;
4756 }
4757
4758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4759                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4760   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4761   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4762   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4763   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4764
4765   // Canonicalize constant to RHS if commutative.
4766   if (TLI->isCommutativeBinOp(Opcode)) {
4767     if (N1C && !N2C) {
4768       std::swap(N1C, N2C);
4769       std::swap(N1, N2);
4770     } else if (N1CFP && !N2CFP) {
4771       std::swap(N1CFP, N2CFP);
4772       std::swap(N1, N2);
4773     }
4774   }
4775
4776   switch (Opcode) {
4777   default: break;
4778   case ISD::TokenFactor:
4779     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4780            N2.getValueType() == MVT::Other && "Invalid token factor!");
4781     // Fold trivial token factors.
4782     if (N1.getOpcode() == ISD::EntryToken) return N2;
4783     if (N2.getOpcode() == ISD::EntryToken) return N1;
4784     if (N1 == N2) return N1;
4785     break;
4786   case ISD::BUILD_VECTOR: {
4787     // Attempt to simplify BUILD_VECTOR.
4788     SDValue Ops[] = {N1, N2};
4789     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4790       return V;
4791     break;
4792   }
4793   case ISD::CONCAT_VECTORS: {
4794     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4795     SDValue Ops[] = {N1, N2};
4796     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4797       return V;
4798     break;
4799   }
4800   case ISD::AND:
4801     assert(VT.isInteger() && "This operator does not apply to FP types!");
4802     assert(N1.getValueType() == N2.getValueType() &&
4803            N1.getValueType() == VT && "Binary operator types must match!");
4804     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4805     // worth handling here.
4806     if (N2C && N2C->isNullValue())
4807       return N2;
4808     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4809       return N1;
4810     break;
4811   case ISD::OR:
4812   case ISD::XOR:
4813   case ISD::ADD:
4814   case ISD::SUB:
4815     assert(VT.isInteger() && "This operator does not apply to FP types!");
4816     assert(N1.getValueType() == N2.getValueType() &&
4817            N1.getValueType() == VT && "Binary operator types must match!");
4818     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4819     // it's worth handling here.
4820     if (N2C && N2C->isNullValue())
4821       return N1;
4822     break;
4823   case ISD::UDIV:
4824   case ISD::UREM:
4825   case ISD::MULHU:
4826   case ISD::MULHS:
4827   case ISD::MUL:
4828   case ISD::SDIV:
4829   case ISD::SREM:
4830   case ISD::SMIN:
4831   case ISD::SMAX:
4832   case ISD::UMIN:
4833   case ISD::UMAX:
4834   case ISD::SADDSAT:
4835   case ISD::SSUBSAT:
4836   case ISD::UADDSAT:
4837   case ISD::USUBSAT:
4838     assert(VT.isInteger() && "This operator does not apply to FP types!");
4839     assert(N1.getValueType() == N2.getValueType() &&
4840            N1.getValueType() == VT && "Binary operator types must match!");
4841     break;
4842   case ISD::FADD:
4843   case ISD::FSUB:
4844   case ISD::FMUL:
4845   case ISD::FDIV:
4846   case ISD::FREM:
4847     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4848     assert(N1.getValueType() == N2.getValueType() &&
4849            N1.getValueType() == VT && "Binary operator types must match!");
4850     break;
4851   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4852     assert(N1.getValueType() == VT &&
4853            N1.getValueType().isFloatingPoint() &&
4854            N2.getValueType().isFloatingPoint() &&
4855            "Invalid FCOPYSIGN!");
4856     break;
4857   case ISD::SHL:
4858   case ISD::SRA:
4859   case ISD::SRL:
4860     if (SDValue V = simplifyShift(N1, N2))
4861       return V;
4862     LLVM_FALLTHROUGH;
4863   case ISD::ROTL:
4864   case ISD::ROTR:
4865     assert(VT == N1.getValueType() &&
4866            "Shift operators return type must be the same as their first arg");
4867     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4868            "Shifts only work on integers");
4869     assert((!VT.isVector() || VT == N2.getValueType()) &&
4870            "Vector shift amounts must be in the same as their first arg");
4871     // Verify that the shift amount VT is big enough to hold valid shift
4872     // amounts.  This catches things like trying to shift an i1024 value by an
4873     // i8, which is easy to fall into in generic code that uses
4874     // TLI.getShiftAmount().
4875     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4876            "Invalid use of small shift amount with oversized value!");
4877
4878     // Always fold shifts of i1 values so the code generator doesn't need to
4879     // handle them.  Since we know the size of the shift has to be less than the
4880     // size of the value, the shift/rotate count is guaranteed to be zero.
4881     if (VT == MVT::i1)
4882       return N1;
4883     if (N2C && N2C->isNullValue())
4884       return N1;
4885     break;
4886   case ISD::FP_ROUND_INREG: {
4887     EVT EVT = cast<VTSDNode>(N2)->getVT();
4888     assert(VT == N1.getValueType() && "Not an inreg round!");
4889     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4890            "Cannot FP_ROUND_INREG integer types");
4891     assert(EVT.isVector() == VT.isVector() &&
4892            "FP_ROUND_INREG type should be vector iff the operand "
4893            "type is vector!");
4894     assert((!EVT.isVector() ||
4895             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4896            "Vector element counts must match in FP_ROUND_INREG");
4897     assert(EVT.bitsLE(VT) && "Not rounding down!");
4898     (void)EVT;
4899     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4900     break;
4901   }
4902   case ISD::FP_ROUND:
4903     assert(VT.isFloatingPoint() &&
4904            N1.getValueType().isFloatingPoint() &&
4905            VT.bitsLE(N1.getValueType()) &&
4906            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4907            "Invalid FP_ROUND!");
4908     if (N1.getValueType() == VT) return N1;  // noop conversion.
4909     break;
4910   case ISD::AssertSext:
4911   case ISD::AssertZext: {
4912     EVT EVT = cast<VTSDNode>(N2)->getVT();
4913     assert(VT == N1.getValueType() && "Not an inreg extend!");
4914     assert(VT.isInteger() && EVT.isInteger() &&
4915            "Cannot *_EXTEND_INREG FP types");
4916     assert(!EVT.isVector() &&
4917            "AssertSExt/AssertZExt type should be the vector element type "
4918            "rather than the vector type!");
4919     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
4920     if (VT.getScalarType() == EVT) return N1; // noop assertion.
4921     break;
4922   }
4923   case ISD::SIGN_EXTEND_INREG: {
4924     EVT EVT = cast<VTSDNode>(N2)->getVT();
4925     assert(VT == N1.getValueType() && "Not an inreg extend!");
4926     assert(VT.isInteger() && EVT.isInteger() &&
4927            "Cannot *_EXTEND_INREG FP types");
4928     assert(EVT.isVector() == VT.isVector() &&
4929            "SIGN_EXTEND_INREG type should be vector iff the operand "
4930            "type is vector!");
4931     assert((!EVT.isVector() ||
4932             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4933            "Vector element counts must match in SIGN_EXTEND_INREG");
4934     assert(EVT.bitsLE(VT) && "Not extending!");
4935     if (EVT == VT) return N1;  // Not actually extending
4936
4937     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4938       unsigned FromBits = EVT.getScalarSizeInBits();
4939       Val <<= Val.getBitWidth() - FromBits;
4940       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4941       return getConstant(Val, DL, ConstantVT);
4942     };
4943
4944     if (N1C) {
4945       const APInt &Val = N1C->getAPIntValue();
4946       return SignExtendInReg(Val, VT);
4947     }
4948     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4949       SmallVector<SDValue, 8> Ops;
4950       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4951       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4952         SDValue Op = N1.getOperand(i);
4953         if (Op.isUndef()) {
4954           Ops.push_back(getUNDEF(OpVT));
4955           continue;
4956         }
4957         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4958         APInt Val = C->getAPIntValue();
4959         Ops.push_back(SignExtendInReg(Val, OpVT));
4960       }
4961       return getBuildVector(VT, DL, Ops);
4962     }
4963     break;
4964   }
4965   case ISD::EXTRACT_VECTOR_ELT:
4966     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4967            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4968              element type of the vector.");
4969
4970     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4971     if (N1.isUndef())
4972       return getUNDEF(VT);
4973
4974     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4975     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4976       return getUNDEF(VT);
4977
4978     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4979     // expanding copies of large vectors from registers.
4980     if (N2C &&
4981         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4982         N1.getNumOperands() > 0) {
4983       unsigned Factor =
4984         N1.getOperand(0).getValueType().getVectorNumElements();
4985       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4986                      N1.getOperand(N2C->getZExtValue() / Factor),
4987                      getConstant(N2C->getZExtValue() % Factor, DL,
4988                                  N2.getValueType()));
4989     }
4990
4991     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4992     // expanding large vector constants.
4993     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4994       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4995
4996       if (VT != Elt.getValueType())
4997         // If the vector element type is not legal, the BUILD_VECTOR operands
4998         // are promoted and implicitly truncated, and the result implicitly
4999         // extended. Make that explicit here.
5000         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5001
5002       return Elt;
5003     }
5004
5005     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5006     // operations are lowered to scalars.
5007     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5008       // If the indices are the same, return the inserted element else
5009       // if the indices are known different, extract the element from
5010       // the original vector.
5011       SDValue N1Op2 = N1.getOperand(2);
5012       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5013
5014       if (N1Op2C && N2C) {
5015         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5016           if (VT == N1.getOperand(1).getValueType())
5017             return N1.getOperand(1);
5018           else
5019             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5020         }
5021
5022         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5023       }
5024     }
5025
5026     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5027     // when vector types are scalarized and v1iX is legal.
5028     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5029     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5030         N1.getValueType().getVectorNumElements() == 1) {
5031       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5032                      N1.getOperand(1));
5033     }
5034     break;
5035   case ISD::EXTRACT_ELEMENT:
5036     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5037     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5038            (N1.getValueType().isInteger() == VT.isInteger()) &&
5039            N1.getValueType() != VT &&
5040            "Wrong types for EXTRACT_ELEMENT!");
5041
5042     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5043     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5044     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5045     if (N1.getOpcode() == ISD::BUILD_PAIR)
5046       return N1.getOperand(N2C->getZExtValue());
5047
5048     // EXTRACT_ELEMENT of a constant int is also very common.
5049     if (N1C) {
5050       unsigned ElementSize = VT.getSizeInBits();
5051       unsigned Shift = ElementSize * N2C->getZExtValue();
5052       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5053       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5054     }
5055     break;
5056   case ISD::EXTRACT_SUBVECTOR:
5057     if (VT.isSimple() && N1.getValueType().isSimple()) {
5058       assert(VT.isVector() && N1.getValueType().isVector() &&
5059              "Extract subvector VTs must be a vectors!");
5060       assert(VT.getVectorElementType() ==
5061              N1.getValueType().getVectorElementType() &&
5062              "Extract subvector VTs must have the same element type!");
5063       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5064              "Extract subvector must be from larger vector to smaller vector!");
5065
5066       if (N2C) {
5067         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5068                 <= N1.getValueType().getVectorNumElements())
5069                && "Extract subvector overflow!");
5070       }
5071
5072       // Trivial extraction.
5073       if (VT.getSimpleVT() == N1.getSimpleValueType())
5074         return N1;
5075
5076       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5077       if (N1.isUndef())
5078         return getUNDEF(VT);
5079
5080       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5081       // the concat have the same type as the extract.
5082       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5083           N1.getNumOperands() > 0 &&
5084           VT == N1.getOperand(0).getValueType()) {
5085         unsigned Factor = VT.getVectorNumElements();
5086         return N1.getOperand(N2C->getZExtValue() / Factor);
5087       }
5088
5089       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5090       // during shuffle legalization.
5091       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5092           VT == N1.getOperand(1).getValueType())
5093         return N1.getOperand(1);
5094     }
5095     break;
5096   }
5097
5098   // Perform trivial constant folding.
5099   if (SDValue SV =
5100           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5101     return SV;
5102
5103   // Constant fold FP operations.
5104   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
5105   if (N1CFP) {
5106     if (N2CFP) {
5107       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
5108       APFloat::opStatus s;
5109       switch (Opcode) {
5110       case ISD::FADD:
5111         s = V1.add(V2, APFloat::rmNearestTiesToEven);
5112         if (!HasFPExceptions || s != APFloat::opInvalidOp)
5113           return getConstantFP(V1, DL, VT);
5114         break;
5115       case ISD::FSUB:
5116         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
5117         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
5118           return getConstantFP(V1, DL, VT);
5119         break;
5120       case ISD::FMUL:
5121         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
5122         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
5123           return getConstantFP(V1, DL, VT);
5124         break;
5125       case ISD::FDIV:
5126         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
5127         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
5128                                  s!=APFloat::opDivByZero)) {
5129           return getConstantFP(V1, DL, VT);
5130         }
5131         break;
5132       case ISD::FREM :
5133         s = V1.mod(V2);
5134         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
5135                                  s!=APFloat::opDivByZero)) {
5136           return getConstantFP(V1, DL, VT);
5137         }
5138         break;
5139       case ISD::FCOPYSIGN:
5140         V1.copySign(V2);
5141         return getConstantFP(V1, DL, VT);
5142       default: break;
5143       }
5144     }
5145
5146     if (Opcode == ISD::FP_ROUND) {
5147       APFloat V = N1CFP->getValueAPF();    // make copy
5148       bool ignored;
5149       // This can return overflow, underflow, or inexact; we don't care.
5150       // FIXME need to be more flexible about rounding mode.
5151       (void)V.convert(EVTToAPFloatSemantics(VT),
5152                       APFloat::rmNearestTiesToEven, &ignored);
5153       return getConstantFP(V, DL, VT);
5154     }
5155   }
5156
5157   switch (Opcode) {
5158   case ISD::FADD:
5159   case ISD::FSUB:
5160   case ISD::FMUL:
5161   case ISD::FDIV:
5162   case ISD::FREM:
5163     // If both operands are undef, the result is undef. If 1 operand is undef,
5164     // the result is NaN. This should match the behavior of the IR optimizer.
5165     if (N1.isUndef() && N2.isUndef())
5166       return getUNDEF(VT);
5167     if (N1.isUndef() || N2.isUndef())
5168       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5169   }
5170
5171   // Canonicalize an UNDEF to the RHS, even over a constant.
5172   if (N1.isUndef()) {
5173     if (TLI->isCommutativeBinOp(Opcode)) {
5174       std::swap(N1, N2);
5175     } else {
5176       switch (Opcode) {
5177       case ISD::FP_ROUND_INREG:
5178       case ISD::SIGN_EXTEND_INREG:
5179       case ISD::SUB:
5180         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5181       case ISD::UDIV:
5182       case ISD::SDIV:
5183       case ISD::UREM:
5184       case ISD::SREM:
5185       case ISD::SSUBSAT:
5186       case ISD::USUBSAT:
5187         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5188       }
5189     }
5190   }
5191
5192   // Fold a bunch of operators when the RHS is undef.
5193   if (N2.isUndef()) {
5194     switch (Opcode) {
5195     case ISD::XOR:
5196       if (N1.isUndef())
5197         // Handle undef ^ undef -> 0 special case. This is a common
5198         // idiom (misuse).
5199         return getConstant(0, DL, VT);
5200       LLVM_FALLTHROUGH;
5201     case ISD::ADD:
5202     case ISD::SUB:
5203     case ISD::UDIV:
5204     case ISD::SDIV:
5205     case ISD::UREM:
5206     case ISD::SREM:
5207       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5208     case ISD::MUL:
5209     case ISD::AND:
5210     case ISD::SSUBSAT:
5211     case ISD::USUBSAT:
5212       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5213     case ISD::OR:
5214     case ISD::SADDSAT:
5215     case ISD::UADDSAT:
5216       return getAllOnesConstant(DL, VT);
5217     }
5218   }
5219
5220   // Memoize this node if possible.
5221   SDNode *N;
5222   SDVTList VTs = getVTList(VT);
5223   SDValue Ops[] = {N1, N2};
5224   if (VT != MVT::Glue) {
5225     FoldingSetNodeID ID;
5226     AddNodeIDNode(ID, Opcode, VTs, Ops);
5227     void *IP = nullptr;
5228     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5229       E->intersectFlagsWith(Flags);
5230       return SDValue(E, 0);
5231     }
5232
5233     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5234     N->setFlags(Flags);
5235     createOperands(N, Ops);
5236     CSEMap.InsertNode(N, IP);
5237   } else {
5238     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5239     createOperands(N, Ops);
5240   }
5241
5242   InsertNode(N);
5243   SDValue V = SDValue(N, 0);
5244   NewSDValueDbgMsg(V, "Creating new node: ", this);
5245   return V;
5246 }
5247
5248 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5249                               SDValue N1, SDValue N2, SDValue N3,
5250                               const SDNodeFlags Flags) {
5251   // Perform various simplifications.
5252   switch (Opcode) {
5253   case ISD::FMA: {
5254     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5255     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5256            N3.getValueType() == VT && "FMA types must match!");
5257     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5258     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5259     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5260     if (N1CFP && N2CFP && N3CFP) {
5261       APFloat  V1 = N1CFP->getValueAPF();
5262       const APFloat &V2 = N2CFP->getValueAPF();
5263       const APFloat &V3 = N3CFP->getValueAPF();
5264       APFloat::opStatus s =
5265         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5266       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5267         return getConstantFP(V1, DL, VT);
5268     }
5269     break;
5270   }
5271   case ISD::BUILD_VECTOR: {
5272     // Attempt to simplify BUILD_VECTOR.
5273     SDValue Ops[] = {N1, N2, N3};
5274     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5275       return V;
5276     break;
5277   }
5278   case ISD::CONCAT_VECTORS: {
5279     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5280     SDValue Ops[] = {N1, N2, N3};
5281     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5282       return V;
5283     break;
5284   }
5285   case ISD::SETCC: {
5286     assert(VT.isInteger() && "SETCC result type must be an integer!");
5287     assert(N1.getValueType() == N2.getValueType() &&
5288            "SETCC operands must have the same type!");
5289     assert(VT.isVector() == N1.getValueType().isVector() &&
5290            "SETCC type should be vector iff the operand type is vector!");
5291     assert((!VT.isVector() ||
5292             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5293            "SETCC vector element counts must match!");
5294     // Use FoldSetCC to simplify SETCC's.
5295     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5296       return V;
5297     // Vector constant folding.
5298     SDValue Ops[] = {N1, N2, N3};
5299     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5300       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5301       return V;
5302     }
5303     break;
5304   }
5305   case ISD::SELECT:
5306   case ISD::VSELECT:
5307     if (SDValue V = simplifySelect(N1, N2, N3))
5308       return V;
5309     break;
5310   case ISD::VECTOR_SHUFFLE:
5311     llvm_unreachable("should use getVectorShuffle constructor!");
5312   case ISD::INSERT_VECTOR_ELT: {
5313     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5314     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5315     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5316       return getUNDEF(VT);
5317     break;
5318   }
5319   case ISD::INSERT_SUBVECTOR: {
5320     SDValue Index = N3;
5321     if (VT.isSimple() && N1.getValueType().isSimple()
5322         && N2.getValueType().isSimple()) {
5323       assert(VT.isVector() && N1.getValueType().isVector() &&
5324              N2.getValueType().isVector() &&
5325              "Insert subvector VTs must be a vectors");
5326       assert(VT == N1.getValueType() &&
5327              "Dest and insert subvector source types must match!");
5328       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5329              "Insert subvector must be from smaller vector to larger vector!");
5330       if (isa<ConstantSDNode>(Index)) {
5331         assert((N2.getValueType().getVectorNumElements() +
5332                 cast<ConstantSDNode>(Index)->getZExtValue()
5333                 <= VT.getVectorNumElements())
5334                && "Insert subvector overflow!");
5335       }
5336
5337       // Trivial insertion.
5338       if (VT.getSimpleVT() == N2.getSimpleValueType())
5339         return N2;
5340     }
5341     break;
5342   }
5343   case ISD::BITCAST:
5344     // Fold bit_convert nodes from a type to themselves.
5345     if (N1.getValueType() == VT)
5346       return N1;
5347     break;
5348   }
5349
5350   // Memoize node if it doesn't produce a flag.
5351   SDNode *N;
5352   SDVTList VTs = getVTList(VT);
5353   SDValue Ops[] = {N1, N2, N3};
5354   if (VT != MVT::Glue) {
5355     FoldingSetNodeID ID;
5356     AddNodeIDNode(ID, Opcode, VTs, Ops);
5357     void *IP = nullptr;
5358     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5359       E->intersectFlagsWith(Flags);
5360       return SDValue(E, 0);
5361     }
5362
5363     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5364     N->setFlags(Flags);
5365     createOperands(N, Ops);
5366     CSEMap.InsertNode(N, IP);
5367   } else {
5368     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5369     createOperands(N, Ops);
5370   }
5371
5372   InsertNode(N);
5373   SDValue V = SDValue(N, 0);
5374   NewSDValueDbgMsg(V, "Creating new node: ", this);
5375   return V;
5376 }
5377
5378 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5379                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5380   SDValue Ops[] = { N1, N2, N3, N4 };
5381   return getNode(Opcode, DL, VT, Ops);
5382 }
5383
5384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5385                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5386                               SDValue N5) {
5387   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5388   return getNode(Opcode, DL, VT, Ops);
5389 }
5390
5391 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5392 /// the incoming stack arguments to be loaded from the stack.
5393 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5394   SmallVector<SDValue, 8> ArgChains;
5395
5396   // Include the original chain at the beginning of the list. When this is
5397   // used by target LowerCall hooks, this helps legalize find the
5398   // CALLSEQ_BEGIN node.
5399   ArgChains.push_back(Chain);
5400
5401   // Add a chain value for each stack argument.
5402   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5403        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5404     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5405       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5406         if (FI->getIndex() < 0)
5407           ArgChains.push_back(SDValue(L, 1));
5408
5409   // Build a tokenfactor for all the chains.
5410   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5411 }
5412
5413 /// getMemsetValue - Vectorized representation of the memset value
5414 /// operand.
5415 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5416                               const SDLoc &dl) {
5417   assert(!Value.isUndef());
5418
5419   unsigned NumBits = VT.getScalarSizeInBits();
5420   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5421     assert(C->getAPIntValue().getBitWidth() == 8);
5422     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5423     if (VT.isInteger()) {
5424       bool IsOpaque = VT.getSizeInBits() > 64 ||
5425           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5426       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5427     }
5428     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5429                              VT);
5430   }
5431
5432   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5433   EVT IntVT = VT.getScalarType();
5434   if (!IntVT.isInteger())
5435     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5436
5437   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5438   if (NumBits > 8) {
5439     // Use a multiplication with 0x010101... to extend the input to the
5440     // required length.
5441     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5442     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5443                         DAG.getConstant(Magic, dl, IntVT));
5444   }
5445
5446   if (VT != Value.getValueType() && !VT.isInteger())
5447     Value = DAG.getBitcast(VT.getScalarType(), Value);
5448   if (VT != Value.getValueType())
5449     Value = DAG.getSplatBuildVector(VT, dl, Value);
5450
5451   return Value;
5452 }
5453
5454 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5455 /// used when a memcpy is turned into a memset when the source is a constant
5456 /// string ptr.
5457 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5458                                   const TargetLowering &TLI,
5459                                   const ConstantDataArraySlice &Slice) {
5460   // Handle vector with all elements zero.
5461   if (Slice.Array == nullptr) {
5462     if (VT.isInteger())
5463       return DAG.getConstant(0, dl, VT);
5464     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5465       return DAG.getConstantFP(0.0, dl, VT);
5466     else if (VT.isVector()) {
5467       unsigned NumElts = VT.getVectorNumElements();
5468       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5469       return DAG.getNode(ISD::BITCAST, dl, VT,
5470                          DAG.getConstant(0, dl,
5471                                          EVT::getVectorVT(*DAG.getContext(),
5472                                                           EltVT, NumElts)));
5473     } else
5474       llvm_unreachable("Expected type!");
5475   }
5476
5477   assert(!VT.isVector() && "Can't handle vector type here!");
5478   unsigned NumVTBits = VT.getSizeInBits();
5479   unsigned NumVTBytes = NumVTBits / 8;
5480   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5481
5482   APInt Val(NumVTBits, 0);
5483   if (DAG.getDataLayout().isLittleEndian()) {
5484     for (unsigned i = 0; i != NumBytes; ++i)
5485       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5486   } else {
5487     for (unsigned i = 0; i != NumBytes; ++i)
5488       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5489   }
5490
5491   // If the "cost" of materializing the integer immediate is less than the cost
5492   // of a load, then it is cost effective to turn the load into the immediate.
5493   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5494   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5495     return DAG.getConstant(Val, dl, VT);
5496   return SDValue(nullptr, 0);
5497 }
5498
5499 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5500                                            const SDLoc &DL) {
5501   EVT VT = Base.getValueType();
5502   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5503 }
5504
5505 /// Returns true if memcpy source is constant data.
5506 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5507   uint64_t SrcDelta = 0;
5508   GlobalAddressSDNode *G = nullptr;
5509   if (Src.getOpcode() == ISD::GlobalAddress)
5510     G = cast<GlobalAddressSDNode>(Src);
5511   else if (Src.getOpcode() == ISD::ADD &&
5512            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5513            Src.getOperand(1).getOpcode() == ISD::Constant) {
5514     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5515     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5516   }
5517   if (!G)
5518     return false;
5519
5520   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5521                                   SrcDelta + G->getOffset());
5522 }
5523
5524 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5525 /// Return true if the number of memory ops is below the threshold (Limit).
5526 /// It returns the types of the sequence of memory ops to perform
5527 /// memset / memcpy by reference.
5528 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5529                                      unsigned Limit, uint64_t Size,
5530                                      unsigned DstAlign, unsigned SrcAlign,
5531                                      bool IsMemset,
5532                                      bool ZeroMemset,
5533                                      bool MemcpyStrSrc,
5534                                      bool AllowOverlap,
5535                                      unsigned DstAS, unsigned SrcAS,
5536                                      SelectionDAG &DAG,
5537                                      const TargetLowering &TLI) {
5538   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5539          "Expecting memcpy / memset source to meet alignment requirement!");
5540   // If 'SrcAlign' is zero, that means the memory operation does not need to
5541   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5542   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5543   // is the specified alignment of the memory operation. If it is zero, that
5544   // means it's possible to change the alignment of the destination.
5545   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5546   // not need to be loaded.
5547   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5548                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5549                                    DAG.getMachineFunction());
5550
5551   if (VT == MVT::Other) {
5552     // Use the largest integer type whose alignment constraints are satisfied.
5553     // We only need to check DstAlign here as SrcAlign is always greater or
5554     // equal to DstAlign (or zero).
5555     VT = MVT::i64;
5556     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5557            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5558       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5559     assert(VT.isInteger());
5560
5561     // Find the largest legal integer type.
5562     MVT LVT = MVT::i64;
5563     while (!TLI.isTypeLegal(LVT))
5564       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5565     assert(LVT.isInteger());
5566
5567     // If the type we've chosen is larger than the largest legal integer type
5568     // then use that instead.
5569     if (VT.bitsGT(LVT))
5570       VT = LVT;
5571   }
5572
5573   unsigned NumMemOps = 0;
5574   while (Size != 0) {
5575     unsigned VTSize = VT.getSizeInBits() / 8;
5576     while (VTSize > Size) {
5577       // For now, only use non-vector load / store's for the left-over pieces.
5578       EVT NewVT = VT;
5579       unsigned NewVTSize;
5580
5581       bool Found = false;
5582       if (VT.isVector() || VT.isFloatingPoint()) {
5583         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5584         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5585             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5586           Found = true;
5587         else if (NewVT == MVT::i64 &&
5588                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5589                  TLI.isSafeMemOpType(MVT::f64)) {
5590           // i64 is usually not legal on 32-bit targets, but f64 may be.
5591           NewVT = MVT::f64;
5592           Found = true;
5593         }
5594       }
5595
5596       if (!Found) {
5597         do {
5598           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5599           if (NewVT == MVT::i8)
5600             break;
5601         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5602       }
5603       NewVTSize = NewVT.getSizeInBits() / 8;
5604
5605       // If the new VT cannot cover all of the remaining bits, then consider
5606       // issuing a (or a pair of) unaligned and overlapping load / store.
5607       bool Fast;
5608       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
5609           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
5610           Fast)
5611         VTSize = Size;
5612       else {
5613         VT = NewVT;
5614         VTSize = NewVTSize;
5615       }
5616     }
5617
5618     if (++NumMemOps > Limit)
5619       return false;
5620
5621     MemOps.push_back(VT);
5622     Size -= VTSize;
5623   }
5624
5625   return true;
5626 }
5627
5628 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5629   // On Darwin, -Os means optimize for size without hurting performance, so
5630   // only really optimize for size when -Oz (MinSize) is used.
5631   if (MF.getTarget().getTargetTriple().isOSDarwin())
5632     return MF.getFunction().optForMinSize();
5633   return MF.getFunction().optForSize();
5634 }
5635
5636 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5637                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5638                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5639                           SmallVector<SDValue, 16> &OutStoreChains) {
5640   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5641   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5642   SmallVector<SDValue, 16> GluedLoadChains;
5643   for (unsigned i = From; i < To; ++i) {
5644     OutChains.push_back(OutLoadChains[i]);
5645     GluedLoadChains.push_back(OutLoadChains[i]);
5646   }
5647
5648   // Chain for all loads.
5649   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5650                                   GluedLoadChains);
5651
5652   for (unsigned i = From; i < To; ++i) {
5653     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5654     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5655                                   ST->getBasePtr(), ST->getMemoryVT(),
5656                                   ST->getMemOperand());
5657     OutChains.push_back(NewStore);
5658   }
5659 }
5660
5661 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5662                                        SDValue Chain, SDValue Dst, SDValue Src,
5663                                        uint64_t Size, unsigned Align,
5664                                        bool isVol, bool AlwaysInline,
5665                                        MachinePointerInfo DstPtrInfo,
5666                                        MachinePointerInfo SrcPtrInfo) {
5667   // Turn a memcpy of undef to nop.
5668   if (Src.isUndef())
5669     return Chain;
5670
5671   // Expand memcpy to a series of load and store ops if the size operand falls
5672   // below a certain threshold.
5673   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5674   // rather than maybe a humongous number of loads and stores.
5675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5676   const DataLayout &DL = DAG.getDataLayout();
5677   LLVMContext &C = *DAG.getContext();
5678   std::vector<EVT> MemOps;
5679   bool DstAlignCanChange = false;
5680   MachineFunction &MF = DAG.getMachineFunction();
5681   MachineFrameInfo &MFI = MF.getFrameInfo();
5682   bool OptSize = shouldLowerMemFuncForSize(MF);
5683   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5684   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5685     DstAlignCanChange = true;
5686   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5687   if (Align > SrcAlign)
5688     SrcAlign = Align;
5689   ConstantDataArraySlice Slice;
5690   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5691   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5692   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5693
5694   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5695                                 (DstAlignCanChange ? 0 : Align),
5696                                 (isZeroConstant ? 0 : SrcAlign),
5697                                 false, false, CopyFromConstant, true,
5698                                 DstPtrInfo.getAddrSpace(),
5699                                 SrcPtrInfo.getAddrSpace(),
5700                                 DAG, TLI))
5701     return SDValue();
5702
5703   if (DstAlignCanChange) {
5704     Type *Ty = MemOps[0].getTypeForEVT(C);
5705     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5706
5707     // Don't promote to an alignment that would require dynamic stack
5708     // realignment.
5709     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5710     if (!TRI->needsStackRealignment(MF))
5711       while (NewAlign > Align &&
5712              DL.exceedsNaturalStackAlignment(NewAlign))
5713           NewAlign /= 2;
5714
5715     if (NewAlign > Align) {
5716       // Give the stack frame object a larger alignment if needed.
5717       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5718         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5719       Align = NewAlign;
5720     }
5721   }
5722
5723   MachineMemOperand::Flags MMOFlags =
5724       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5725   SmallVector<SDValue, 16> OutLoadChains;
5726   SmallVector<SDValue, 16> OutStoreChains;
5727   SmallVector<SDValue, 32> OutChains;
5728   unsigned NumMemOps = MemOps.size();
5729   uint64_t SrcOff = 0, DstOff = 0;
5730   for (unsigned i = 0; i != NumMemOps; ++i) {
5731     EVT VT = MemOps[i];
5732     unsigned VTSize = VT.getSizeInBits() / 8;
5733     SDValue Value, Store;
5734
5735     if (VTSize > Size) {
5736       // Issuing an unaligned load / store pair  that overlaps with the previous
5737       // pair. Adjust the offset accordingly.
5738       assert(i == NumMemOps-1 && i != 0);
5739       SrcOff -= VTSize - Size;
5740       DstOff -= VTSize - Size;
5741     }
5742
5743     if (CopyFromConstant &&
5744         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5745       // It's unlikely a store of a vector immediate can be done in a single
5746       // instruction. It would require a load from a constantpool first.
5747       // We only handle zero vectors here.
5748       // FIXME: Handle other cases where store of vector immediate is done in
5749       // a single instruction.
5750       ConstantDataArraySlice SubSlice;
5751       if (SrcOff < Slice.Length) {
5752         SubSlice = Slice;
5753         SubSlice.move(SrcOff);
5754       } else {
5755         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5756         SubSlice.Array = nullptr;
5757         SubSlice.Offset = 0;
5758         SubSlice.Length = VTSize;
5759       }
5760       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5761       if (Value.getNode()) {
5762         Store = DAG.getStore(Chain, dl, Value,
5763                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5764                              DstPtrInfo.getWithOffset(DstOff), Align,
5765                              MMOFlags);
5766         OutChains.push_back(Store);
5767       }
5768     }
5769
5770     if (!Store.getNode()) {
5771       // The type might not be legal for the target.  This should only happen
5772       // if the type is smaller than a legal type, as on PPC, so the right
5773       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5774       // to Load/Store if NVT==VT.
5775       // FIXME does the case above also need this?
5776       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5777       assert(NVT.bitsGE(VT));
5778
5779       bool isDereferenceable =
5780         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5781       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5782       if (isDereferenceable)
5783         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5784
5785       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5786                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5787                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5788                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5789       OutLoadChains.push_back(Value.getValue(1));
5790
5791       Store = DAG.getTruncStore(
5792           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5793           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5794       OutStoreChains.push_back(Store);
5795     }
5796     SrcOff += VTSize;
5797     DstOff += VTSize;
5798     Size -= VTSize;
5799   }
5800
5801   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5802                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5803   unsigned NumLdStInMemcpy = OutStoreChains.size();
5804
5805   if (NumLdStInMemcpy) {
5806     // It may be that memcpy might be converted to memset if it's memcpy
5807     // of constants. In such a case, we won't have loads and stores, but
5808     // just stores. In the absence of loads, there is nothing to gang up.
5809     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5810       // If target does not care, just leave as it.
5811       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5812         OutChains.push_back(OutLoadChains[i]);
5813         OutChains.push_back(OutStoreChains[i]);
5814       }
5815     } else {
5816       // Ld/St less than/equal limit set by target.
5817       if (NumLdStInMemcpy <= GluedLdStLimit) {
5818           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5819                                         NumLdStInMemcpy, OutLoadChains,
5820                                         OutStoreChains);
5821       } else {
5822         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5823         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5824         unsigned GlueIter = 0;
5825
5826         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5827           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5828           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5829
5830           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5831                                        OutLoadChains, OutStoreChains);
5832           GlueIter += GluedLdStLimit;
5833         }
5834
5835         // Residual ld/st.
5836         if (RemainingLdStInMemcpy) {
5837           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5838                                         RemainingLdStInMemcpy, OutLoadChains,
5839                                         OutStoreChains);
5840         }
5841       }
5842     }
5843   }
5844   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5845 }
5846
5847 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5848                                         SDValue Chain, SDValue Dst, SDValue Src,
5849                                         uint64_t Size, unsigned Align,
5850                                         bool isVol, bool AlwaysInline,
5851                                         MachinePointerInfo DstPtrInfo,
5852                                         MachinePointerInfo SrcPtrInfo) {
5853   // Turn a memmove of undef to nop.
5854   if (Src.isUndef())
5855     return Chain;
5856
5857   // Expand memmove to a series of load and store ops if the size operand falls
5858   // below a certain threshold.
5859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5860   const DataLayout &DL = DAG.getDataLayout();
5861   LLVMContext &C = *DAG.getContext();
5862   std::vector<EVT> MemOps;
5863   bool DstAlignCanChange = false;
5864   MachineFunction &MF = DAG.getMachineFunction();
5865   MachineFrameInfo &MFI = MF.getFrameInfo();
5866   bool OptSize = shouldLowerMemFuncForSize(MF);
5867   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5868   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5869     DstAlignCanChange = true;
5870   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5871   if (Align > SrcAlign)
5872     SrcAlign = Align;
5873   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5874
5875   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5876                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5877                                 false, false, false, false,
5878                                 DstPtrInfo.getAddrSpace(),
5879                                 SrcPtrInfo.getAddrSpace(),
5880                                 DAG, TLI))
5881     return SDValue();
5882
5883   if (DstAlignCanChange) {
5884     Type *Ty = MemOps[0].getTypeForEVT(C);
5885     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5886     if (NewAlign > Align) {
5887       // Give the stack frame object a larger alignment if needed.
5888       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5889         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5890       Align = NewAlign;
5891     }
5892   }
5893
5894   MachineMemOperand::Flags MMOFlags =
5895       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5896   uint64_t SrcOff = 0, DstOff = 0;
5897   SmallVector<SDValue, 8> LoadValues;
5898   SmallVector<SDValue, 8> LoadChains;
5899   SmallVector<SDValue, 8> OutChains;
5900   unsigned NumMemOps = MemOps.size();
5901   for (unsigned i = 0; i < NumMemOps; i++) {
5902     EVT VT = MemOps[i];
5903     unsigned VTSize = VT.getSizeInBits() / 8;
5904     SDValue Value;
5905
5906     bool isDereferenceable =
5907       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5908     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5909     if (isDereferenceable)
5910       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5911
5912     Value =
5913         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5914                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5915     LoadValues.push_back(Value);
5916     LoadChains.push_back(Value.getValue(1));
5917     SrcOff += VTSize;
5918   }
5919   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5920   OutChains.clear();
5921   for (unsigned i = 0; i < NumMemOps; i++) {
5922     EVT VT = MemOps[i];
5923     unsigned VTSize = VT.getSizeInBits() / 8;
5924     SDValue Store;
5925
5926     Store = DAG.getStore(Chain, dl, LoadValues[i],
5927                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5928                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5929     OutChains.push_back(Store);
5930     DstOff += VTSize;
5931   }
5932
5933   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5934 }
5935
5936 /// Lower the call to 'memset' intrinsic function into a series of store
5937 /// operations.
5938 ///
5939 /// \param DAG Selection DAG where lowered code is placed.
5940 /// \param dl Link to corresponding IR location.
5941 /// \param Chain Control flow dependency.
5942 /// \param Dst Pointer to destination memory location.
5943 /// \param Src Value of byte to write into the memory.
5944 /// \param Size Number of bytes to write.
5945 /// \param Align Alignment of the destination in bytes.
5946 /// \param isVol True if destination is volatile.
5947 /// \param DstPtrInfo IR information on the memory pointer.
5948 /// \returns New head in the control flow, if lowering was successful, empty
5949 /// SDValue otherwise.
5950 ///
5951 /// The function tries to replace 'llvm.memset' intrinsic with several store
5952 /// operations and value calculation code. This is usually profitable for small
5953 /// memory size.
5954 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5955                                SDValue Chain, SDValue Dst, SDValue Src,
5956                                uint64_t Size, unsigned Align, bool isVol,
5957                                MachinePointerInfo DstPtrInfo) {
5958   // Turn a memset of undef to nop.
5959   if (Src.isUndef())
5960     return Chain;
5961
5962   // Expand memset to a series of load/store ops if the size operand
5963   // falls below a certain threshold.
5964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5965   std::vector<EVT> MemOps;
5966   bool DstAlignCanChange = false;
5967   MachineFunction &MF = DAG.getMachineFunction();
5968   MachineFrameInfo &MFI = MF.getFrameInfo();
5969   bool OptSize = shouldLowerMemFuncForSize(MF);
5970   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5971   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5972     DstAlignCanChange = true;
5973   bool IsZeroVal =
5974     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5975   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5976                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5977                                 true, IsZeroVal, false, true,
5978                                 DstPtrInfo.getAddrSpace(), ~0u,
5979                                 DAG, TLI))
5980     return SDValue();
5981
5982   if (DstAlignCanChange) {
5983     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5984     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5985     if (NewAlign > Align) {
5986       // Give the stack frame object a larger alignment if needed.
5987       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5988         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5989       Align = NewAlign;
5990     }
5991   }
5992
5993   SmallVector<SDValue, 8> OutChains;
5994   uint64_t DstOff = 0;
5995   unsigned NumMemOps = MemOps.size();
5996
5997   // Find the largest store and generate the bit pattern for it.
5998   EVT LargestVT = MemOps[0];
5999   for (unsigned i = 1; i < NumMemOps; i++)
6000     if (MemOps[i].bitsGT(LargestVT))
6001       LargestVT = MemOps[i];
6002   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6003
6004   for (unsigned i = 0; i < NumMemOps; i++) {
6005     EVT VT = MemOps[i];
6006     unsigned VTSize = VT.getSizeInBits() / 8;
6007     if (VTSize > Size) {
6008       // Issuing an unaligned load / store pair  that overlaps with the previous
6009       // pair. Adjust the offset accordingly.
6010       assert(i == NumMemOps-1 && i != 0);
6011       DstOff -= VTSize - Size;
6012     }
6013
6014     // If this store is smaller than the largest store see whether we can get
6015     // the smaller value for free with a truncate.
6016     SDValue Value = MemSetValue;
6017     if (VT.bitsLT(LargestVT)) {
6018       if (!LargestVT.isVector() && !VT.isVector() &&
6019           TLI.isTruncateFree(LargestVT, VT))
6020         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6021       else
6022         Value = getMemsetValue(Src, VT, DAG, dl);
6023     }
6024     assert(Value.getValueType() == VT && "Value with wrong type.");
6025     SDValue Store = DAG.getStore(
6026         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6027         DstPtrInfo.getWithOffset(DstOff), Align,
6028         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6029     OutChains.push_back(Store);
6030     DstOff += VT.getSizeInBits() / 8;
6031     Size -= VTSize;
6032   }
6033
6034   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6035 }
6036
6037 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6038                                             unsigned AS) {
6039   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6040   // pointer operands can be losslessly bitcasted to pointers of address space 0
6041   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6042     report_fatal_error("cannot lower memory intrinsic in address space " +
6043                        Twine(AS));
6044   }
6045 }
6046
6047 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6048                                 SDValue Src, SDValue Size, unsigned Align,
6049                                 bool isVol, bool AlwaysInline, bool isTailCall,
6050                                 MachinePointerInfo DstPtrInfo,
6051                                 MachinePointerInfo SrcPtrInfo) {
6052   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6053
6054   // Check to see if we should lower the memcpy to loads and stores first.
6055   // For cases within the target-specified limits, this is the best choice.
6056   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6057   if (ConstantSize) {
6058     // Memcpy with size zero? Just return the original chain.
6059     if (ConstantSize->isNullValue())
6060       return Chain;
6061
6062     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6063                                              ConstantSize->getZExtValue(),Align,
6064                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6065     if (Result.getNode())
6066       return Result;
6067   }
6068
6069   // Then check to see if we should lower the memcpy with target-specific
6070   // code. If the target chooses to do this, this is the next best.
6071   if (TSI) {
6072     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6073         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6074         DstPtrInfo, SrcPtrInfo);
6075     if (Result.getNode())
6076       return Result;
6077   }
6078
6079   // If we really need inline code and the target declined to provide it,
6080   // use a (potentially long) sequence of loads and stores.
6081   if (AlwaysInline) {
6082     assert(ConstantSize && "AlwaysInline requires a constant size!");
6083     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6084                                    ConstantSize->getZExtValue(), Align, isVol,
6085                                    true, DstPtrInfo, SrcPtrInfo);
6086   }
6087
6088   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6089   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6090
6091   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6092   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6093   // respect volatile, so they may do things like read or write memory
6094   // beyond the given memory regions. But fixing this isn't easy, and most
6095   // people don't care.
6096
6097   // Emit a library call.
6098   TargetLowering::ArgListTy Args;
6099   TargetLowering::ArgListEntry Entry;
6100   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6101   Entry.Node = Dst; Args.push_back(Entry);
6102   Entry.Node = Src; Args.push_back(Entry);
6103   Entry.Node = Size; Args.push_back(Entry);
6104   // FIXME: pass in SDLoc
6105   TargetLowering::CallLoweringInfo CLI(*this);
6106   CLI.setDebugLoc(dl)
6107       .setChain(Chain)
6108       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6109                     Dst.getValueType().getTypeForEVT(*getContext()),
6110                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6111                                       TLI->getPointerTy(getDataLayout())),
6112                     std::move(Args))
6113       .setDiscardResult()
6114       .setTailCall(isTailCall);
6115
6116   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6117   return CallResult.second;
6118 }
6119
6120 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6121                                       SDValue Dst, unsigned DstAlign,
6122                                       SDValue Src, unsigned SrcAlign,
6123                                       SDValue Size, Type *SizeTy,
6124                                       unsigned ElemSz, bool isTailCall,
6125                                       MachinePointerInfo DstPtrInfo,
6126                                       MachinePointerInfo SrcPtrInfo) {
6127   // Emit a library call.
6128   TargetLowering::ArgListTy Args;
6129   TargetLowering::ArgListEntry Entry;
6130   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6131   Entry.Node = Dst;
6132   Args.push_back(Entry);
6133
6134   Entry.Node = Src;
6135   Args.push_back(Entry);
6136
6137   Entry.Ty = SizeTy;
6138   Entry.Node = Size;
6139   Args.push_back(Entry);
6140
6141   RTLIB::Libcall LibraryCall =
6142       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6143   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6144     report_fatal_error("Unsupported element size");
6145
6146   TargetLowering::CallLoweringInfo CLI(*this);
6147   CLI.setDebugLoc(dl)
6148       .setChain(Chain)
6149       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6150                     Type::getVoidTy(*getContext()),
6151                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6152                                       TLI->getPointerTy(getDataLayout())),
6153                     std::move(Args))
6154       .setDiscardResult()
6155       .setTailCall(isTailCall);
6156
6157   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6158   return CallResult.second;
6159 }
6160
6161 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6162                                  SDValue Src, SDValue Size, unsigned Align,
6163                                  bool isVol, bool isTailCall,
6164                                  MachinePointerInfo DstPtrInfo,
6165                                  MachinePointerInfo SrcPtrInfo) {
6166   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6167
6168   // Check to see if we should lower the memmove to loads and stores first.
6169   // For cases within the target-specified limits, this is the best choice.
6170   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6171   if (ConstantSize) {
6172     // Memmove with size zero? Just return the original chain.
6173     if (ConstantSize->isNullValue())
6174       return Chain;
6175
6176     SDValue Result =
6177       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6178                                ConstantSize->getZExtValue(), Align, isVol,
6179                                false, DstPtrInfo, SrcPtrInfo);
6180     if (Result.getNode())
6181       return Result;
6182   }
6183
6184   // Then check to see if we should lower the memmove with target-specific
6185   // code. If the target chooses to do this, this is the next best.
6186   if (TSI) {
6187     SDValue Result = TSI->EmitTargetCodeForMemmove(
6188         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6189     if (Result.getNode())
6190       return Result;
6191   }
6192
6193   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6194   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6195
6196   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6197   // not be safe.  See memcpy above for more details.
6198
6199   // Emit a library call.
6200   TargetLowering::ArgListTy Args;
6201   TargetLowering::ArgListEntry Entry;
6202   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6203   Entry.Node = Dst; Args.push_back(Entry);
6204   Entry.Node = Src; Args.push_back(Entry);
6205   Entry.Node = Size; Args.push_back(Entry);
6206   // FIXME:  pass in SDLoc
6207   TargetLowering::CallLoweringInfo CLI(*this);
6208   CLI.setDebugLoc(dl)
6209       .setChain(Chain)
6210       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6211                     Dst.getValueType().getTypeForEVT(*getContext()),
6212                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6213                                       TLI->getPointerTy(getDataLayout())),
6214                     std::move(Args))
6215       .setDiscardResult()
6216       .setTailCall(isTailCall);
6217
6218   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6219   return CallResult.second;
6220 }
6221
6222 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6223                                        SDValue Dst, unsigned DstAlign,
6224                                        SDValue Src, unsigned SrcAlign,
6225                                        SDValue Size, Type *SizeTy,
6226                                        unsigned ElemSz, bool isTailCall,
6227                                        MachinePointerInfo DstPtrInfo,
6228                                        MachinePointerInfo SrcPtrInfo) {
6229   // Emit a library call.
6230   TargetLowering::ArgListTy Args;
6231   TargetLowering::ArgListEntry Entry;
6232   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6233   Entry.Node = Dst;
6234   Args.push_back(Entry);
6235
6236   Entry.Node = Src;
6237   Args.push_back(Entry);
6238
6239   Entry.Ty = SizeTy;
6240   Entry.Node = Size;
6241   Args.push_back(Entry);
6242
6243   RTLIB::Libcall LibraryCall =
6244       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6245   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6246     report_fatal_error("Unsupported element size");
6247
6248   TargetLowering::CallLoweringInfo CLI(*this);
6249   CLI.setDebugLoc(dl)
6250       .setChain(Chain)
6251       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6252                     Type::getVoidTy(*getContext()),
6253                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6254                                       TLI->getPointerTy(getDataLayout())),
6255                     std::move(Args))
6256       .setDiscardResult()
6257       .setTailCall(isTailCall);
6258
6259   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6260   return CallResult.second;
6261 }
6262
6263 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6264                                 SDValue Src, SDValue Size, unsigned Align,
6265                                 bool isVol, bool isTailCall,
6266                                 MachinePointerInfo DstPtrInfo) {
6267   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6268
6269   // Check to see if we should lower the memset to stores first.
6270   // For cases within the target-specified limits, this is the best choice.
6271   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6272   if (ConstantSize) {
6273     // Memset with size zero? Just return the original chain.
6274     if (ConstantSize->isNullValue())
6275       return Chain;
6276
6277     SDValue Result =
6278       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6279                       Align, isVol, DstPtrInfo);
6280
6281     if (Result.getNode())
6282       return Result;
6283   }
6284
6285   // Then check to see if we should lower the memset with target-specific
6286   // code. If the target chooses to do this, this is the next best.
6287   if (TSI) {
6288     SDValue Result = TSI->EmitTargetCodeForMemset(
6289         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6290     if (Result.getNode())
6291       return Result;
6292   }
6293
6294   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6295
6296   // Emit a library call.
6297   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6298   TargetLowering::ArgListTy Args;
6299   TargetLowering::ArgListEntry Entry;
6300   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6301   Args.push_back(Entry);
6302   Entry.Node = Src;
6303   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6304   Args.push_back(Entry);
6305   Entry.Node = Size;
6306   Entry.Ty = IntPtrTy;
6307   Args.push_back(Entry);
6308
6309   // FIXME: pass in SDLoc
6310   TargetLowering::CallLoweringInfo CLI(*this);
6311   CLI.setDebugLoc(dl)
6312       .setChain(Chain)
6313       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6314                     Dst.getValueType().getTypeForEVT(*getContext()),
6315                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6316                                       TLI->getPointerTy(getDataLayout())),
6317                     std::move(Args))
6318       .setDiscardResult()
6319       .setTailCall(isTailCall);
6320
6321   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6322   return CallResult.second;
6323 }
6324
6325 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6326                                       SDValue Dst, unsigned DstAlign,
6327                                       SDValue Value, SDValue Size, Type *SizeTy,
6328                                       unsigned ElemSz, bool isTailCall,
6329                                       MachinePointerInfo DstPtrInfo) {
6330   // Emit a library call.
6331   TargetLowering::ArgListTy Args;
6332   TargetLowering::ArgListEntry Entry;
6333   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6334   Entry.Node = Dst;
6335   Args.push_back(Entry);
6336
6337   Entry.Ty = Type::getInt8Ty(*getContext());
6338   Entry.Node = Value;
6339   Args.push_back(Entry);
6340
6341   Entry.Ty = SizeTy;
6342   Entry.Node = Size;
6343   Args.push_back(Entry);
6344
6345   RTLIB::Libcall LibraryCall =
6346       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6347   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6348     report_fatal_error("Unsupported element size");
6349
6350   TargetLowering::CallLoweringInfo CLI(*this);
6351   CLI.setDebugLoc(dl)
6352       .setChain(Chain)
6353       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6354                     Type::getVoidTy(*getContext()),
6355                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6356                                       TLI->getPointerTy(getDataLayout())),
6357                     std::move(Args))
6358       .setDiscardResult()
6359       .setTailCall(isTailCall);
6360
6361   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6362   return CallResult.second;
6363 }
6364
6365 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6366                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6367                                 MachineMemOperand *MMO) {
6368   FoldingSetNodeID ID;
6369   ID.AddInteger(MemVT.getRawBits());
6370   AddNodeIDNode(ID, Opcode, VTList, Ops);
6371   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6372   void* IP = nullptr;
6373   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6374     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6375     return SDValue(E, 0);
6376   }
6377
6378   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6379                                     VTList, MemVT, MMO);
6380   createOperands(N, Ops);
6381
6382   CSEMap.InsertNode(N, IP);
6383   InsertNode(N);
6384   return SDValue(N, 0);
6385 }
6386
6387 SDValue SelectionDAG::getAtomicCmpSwap(
6388     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6389     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6390     unsigned Alignment, AtomicOrdering SuccessOrdering,
6391     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6392   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6393          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6394   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6395
6396   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6397     Alignment = getEVTAlignment(MemVT);
6398
6399   MachineFunction &MF = getMachineFunction();
6400
6401   // FIXME: Volatile isn't really correct; we should keep track of atomic
6402   // orderings in the memoperand.
6403   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6404                MachineMemOperand::MOStore;
6405   MachineMemOperand *MMO =
6406     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6407                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6408                             FailureOrdering);
6409
6410   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6411 }
6412
6413 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6414                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6415                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6416                                        MachineMemOperand *MMO) {
6417   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6418          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6419   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6420
6421   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6422   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6423 }
6424
6425 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6426                                 SDValue Chain, SDValue Ptr, SDValue Val,
6427                                 const Value *PtrVal, unsigned Alignment,
6428                                 AtomicOrdering Ordering,
6429                                 SyncScope::ID SSID) {
6430   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6431     Alignment = getEVTAlignment(MemVT);
6432
6433   MachineFunction &MF = getMachineFunction();
6434   // An atomic store does not load. An atomic load does not store.
6435   // (An atomicrmw obviously both loads and stores.)
6436   // For now, atomics are considered to be volatile always, and they are
6437   // chained as such.
6438   // FIXME: Volatile isn't really correct; we should keep track of atomic
6439   // orderings in the memoperand.
6440   auto Flags = MachineMemOperand::MOVolatile;
6441   if (Opcode != ISD::ATOMIC_STORE)
6442     Flags |= MachineMemOperand::MOLoad;
6443   if (Opcode != ISD::ATOMIC_LOAD)
6444     Flags |= MachineMemOperand::MOStore;
6445
6446   MachineMemOperand *MMO =
6447     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6448                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6449                             nullptr, SSID, Ordering);
6450
6451   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6452 }
6453
6454 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6455                                 SDValue Chain, SDValue Ptr, SDValue Val,
6456                                 MachineMemOperand *MMO) {
6457   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6458           Opcode == ISD::ATOMIC_LOAD_SUB ||
6459           Opcode == ISD::ATOMIC_LOAD_AND ||
6460           Opcode == ISD::ATOMIC_LOAD_CLR ||
6461           Opcode == ISD::ATOMIC_LOAD_OR ||
6462           Opcode == ISD::ATOMIC_LOAD_XOR ||
6463           Opcode == ISD::ATOMIC_LOAD_NAND ||
6464           Opcode == ISD::ATOMIC_LOAD_MIN ||
6465           Opcode == ISD::ATOMIC_LOAD_MAX ||
6466           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6467           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6468           Opcode == ISD::ATOMIC_SWAP ||
6469           Opcode == ISD::ATOMIC_STORE) &&
6470          "Invalid Atomic Op");
6471
6472   EVT VT = Val.getValueType();
6473
6474   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6475                                                getVTList(VT, MVT::Other);
6476   SDValue Ops[] = {Chain, Ptr, Val};
6477   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6478 }
6479
6480 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6481                                 EVT VT, SDValue Chain, SDValue Ptr,
6482                                 MachineMemOperand *MMO) {
6483   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6484
6485   SDVTList VTs = getVTList(VT, MVT::Other);
6486   SDValue Ops[] = {Chain, Ptr};
6487   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6488 }
6489
6490 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6491 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6492   if (Ops.size() == 1)
6493     return Ops[0];
6494
6495   SmallVector<EVT, 4> VTs;
6496   VTs.reserve(Ops.size());
6497   for (unsigned i = 0; i < Ops.size(); ++i)
6498     VTs.push_back(Ops[i].getValueType());
6499   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6500 }
6501
6502 SDValue SelectionDAG::getMemIntrinsicNode(
6503     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6504     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6505     MachineMemOperand::Flags Flags, unsigned Size) {
6506   if (Align == 0)  // Ensure that codegen never sees alignment 0
6507     Align = getEVTAlignment(MemVT);
6508
6509   if (!Size)
6510     Size = MemVT.getStoreSize();
6511
6512   MachineFunction &MF = getMachineFunction();
6513   MachineMemOperand *MMO =
6514     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6515
6516   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6517 }
6518
6519 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6520                                           SDVTList VTList,
6521                                           ArrayRef<SDValue> Ops, EVT MemVT,
6522                                           MachineMemOperand *MMO) {
6523   assert((Opcode == ISD::INTRINSIC_VOID ||
6524           Opcode == ISD::INTRINSIC_W_CHAIN ||
6525           Opcode == ISD::PREFETCH ||
6526           Opcode == ISD::LIFETIME_START ||
6527           Opcode == ISD::LIFETIME_END ||
6528           ((int)Opcode <= std::numeric_limits<int>::max() &&
6529            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6530          "Opcode is not a memory-accessing opcode!");
6531
6532   // Memoize the node unless it returns a flag.
6533   MemIntrinsicSDNode *N;
6534   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6535     FoldingSetNodeID ID;
6536     AddNodeIDNode(ID, Opcode, VTList, Ops);
6537     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6538         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6539     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6540     void *IP = nullptr;
6541     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6542       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6543       return SDValue(E, 0);
6544     }
6545
6546     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6547                                       VTList, MemVT, MMO);
6548     createOperands(N, Ops);
6549
6550   CSEMap.InsertNode(N, IP);
6551   } else {
6552     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6553                                       VTList, MemVT, MMO);
6554     createOperands(N, Ops);
6555   }
6556   InsertNode(N);
6557   return SDValue(N, 0);
6558 }
6559
6560 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6561 /// MachinePointerInfo record from it.  This is particularly useful because the
6562 /// code generator has many cases where it doesn't bother passing in a
6563 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6564 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6565                                            SelectionDAG &DAG, SDValue Ptr,
6566                                            int64_t Offset = 0) {
6567   // If this is FI+Offset, we can model it.
6568   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6569     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6570                                              FI->getIndex(), Offset);
6571
6572   // If this is (FI+Offset1)+Offset2, we can model it.
6573   if (Ptr.getOpcode() != ISD::ADD ||
6574       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6575       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6576     return Info;
6577
6578   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6579   return MachinePointerInfo::getFixedStack(
6580       DAG.getMachineFunction(), FI,
6581       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6582 }
6583
6584 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6585 /// MachinePointerInfo record from it.  This is particularly useful because the
6586 /// code generator has many cases where it doesn't bother passing in a
6587 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6588 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6589                                            SelectionDAG &DAG, SDValue Ptr,
6590                                            SDValue OffsetOp) {
6591   // If the 'Offset' value isn't a constant, we can't handle this.
6592   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6593     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6594   if (OffsetOp.isUndef())
6595     return InferPointerInfo(Info, DAG, Ptr);
6596   return Info;
6597 }
6598
6599 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6600                               EVT VT, const SDLoc &dl, SDValue Chain,
6601                               SDValue Ptr, SDValue Offset,
6602                               MachinePointerInfo PtrInfo, EVT MemVT,
6603                               unsigned Alignment,
6604                               MachineMemOperand::Flags MMOFlags,
6605                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6606   assert(Chain.getValueType() == MVT::Other &&
6607         "Invalid chain type");
6608   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6609     Alignment = getEVTAlignment(MemVT);
6610
6611   MMOFlags |= MachineMemOperand::MOLoad;
6612   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6613   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6614   // clients.
6615   if (PtrInfo.V.isNull())
6616     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6617
6618   MachineFunction &MF = getMachineFunction();
6619   MachineMemOperand *MMO = MF.getMachineMemOperand(
6620       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6621   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6622 }
6623
6624 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6625                               EVT VT, const SDLoc &dl, SDValue Chain,
6626                               SDValue Ptr, SDValue Offset, EVT MemVT,
6627                               MachineMemOperand *MMO) {
6628   if (VT == MemVT) {
6629     ExtType = ISD::NON_EXTLOAD;
6630   } else if (ExtType == ISD::NON_EXTLOAD) {
6631     assert(VT == MemVT && "Non-extending load from different memory type!");
6632   } else {
6633     // Extending load.
6634     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6635            "Should only be an extending load, not truncating!");
6636     assert(VT.isInteger() == MemVT.isInteger() &&
6637            "Cannot convert from FP to Int or Int -> FP!");
6638     assert(VT.isVector() == MemVT.isVector() &&
6639            "Cannot use an ext load to convert to or from a vector!");
6640     assert((!VT.isVector() ||
6641             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6642            "Cannot use an ext load to change the number of vector elements!");
6643   }
6644
6645   bool Indexed = AM != ISD::UNINDEXED;
6646   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6647
6648   SDVTList VTs = Indexed ?
6649     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6650   SDValue Ops[] = { Chain, Ptr, Offset };
6651   FoldingSetNodeID ID;
6652   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6653   ID.AddInteger(MemVT.getRawBits());
6654   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6655       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6656   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6657   void *IP = nullptr;
6658   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6659     cast<LoadSDNode>(E)->refineAlignment(MMO);
6660     return SDValue(E, 0);
6661   }
6662   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6663                                   ExtType, MemVT, MMO);
6664   createOperands(N, Ops);
6665
6666   CSEMap.InsertNode(N, IP);
6667   InsertNode(N);
6668   SDValue V(N, 0);
6669   NewSDValueDbgMsg(V, "Creating new node: ", this);
6670   return V;
6671 }
6672
6673 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6674                               SDValue Ptr, MachinePointerInfo PtrInfo,
6675                               unsigned Alignment,
6676                               MachineMemOperand::Flags MMOFlags,
6677                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6678   SDValue Undef = getUNDEF(Ptr.getValueType());
6679   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6680                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6681 }
6682
6683 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6684                               SDValue Ptr, MachineMemOperand *MMO) {
6685   SDValue Undef = getUNDEF(Ptr.getValueType());
6686   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6687                  VT, MMO);
6688 }
6689
6690 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6691                                  EVT VT, SDValue Chain, SDValue Ptr,
6692                                  MachinePointerInfo PtrInfo, EVT MemVT,
6693                                  unsigned Alignment,
6694                                  MachineMemOperand::Flags MMOFlags,
6695                                  const AAMDNodes &AAInfo) {
6696   SDValue Undef = getUNDEF(Ptr.getValueType());
6697   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6698                  MemVT, Alignment, MMOFlags, AAInfo);
6699 }
6700
6701 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6702                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6703                                  MachineMemOperand *MMO) {
6704   SDValue Undef = getUNDEF(Ptr.getValueType());
6705   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6706                  MemVT, MMO);
6707 }
6708
6709 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6710                                      SDValue Base, SDValue Offset,
6711                                      ISD::MemIndexedMode AM) {
6712   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6713   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6714   // Don't propagate the invariant or dereferenceable flags.
6715   auto MMOFlags =
6716       LD->getMemOperand()->getFlags() &
6717       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6718   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6719                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6720                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6721                  LD->getAAInfo());
6722 }
6723
6724 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6725                                SDValue Ptr, MachinePointerInfo PtrInfo,
6726                                unsigned Alignment,
6727                                MachineMemOperand::Flags MMOFlags,
6728                                const AAMDNodes &AAInfo) {
6729   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6730   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6731     Alignment = getEVTAlignment(Val.getValueType());
6732
6733   MMOFlags |= MachineMemOperand::MOStore;
6734   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6735
6736   if (PtrInfo.V.isNull())
6737     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6738
6739   MachineFunction &MF = getMachineFunction();
6740   MachineMemOperand *MMO = MF.getMachineMemOperand(
6741       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6742   return getStore(Chain, dl, Val, Ptr, MMO);
6743 }
6744
6745 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6746                                SDValue Ptr, MachineMemOperand *MMO) {
6747   assert(Chain.getValueType() == MVT::Other &&
6748         "Invalid chain type");
6749   EVT VT = Val.getValueType();
6750   SDVTList VTs = getVTList(MVT::Other);
6751   SDValue Undef = getUNDEF(Ptr.getValueType());
6752   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6753   FoldingSetNodeID ID;
6754   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6755   ID.AddInteger(VT.getRawBits());
6756   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6757       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6758   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6759   void *IP = nullptr;
6760   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6761     cast<StoreSDNode>(E)->refineAlignment(MMO);
6762     return SDValue(E, 0);
6763   }
6764   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6765                                    ISD::UNINDEXED, false, VT, MMO);
6766   createOperands(N, Ops);
6767
6768   CSEMap.InsertNode(N, IP);
6769   InsertNode(N);
6770   SDValue V(N, 0);
6771   NewSDValueDbgMsg(V, "Creating new node: ", this);
6772   return V;
6773 }
6774
6775 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6776                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6777                                     EVT SVT, unsigned Alignment,
6778                                     MachineMemOperand::Flags MMOFlags,
6779                                     const AAMDNodes &AAInfo) {
6780   assert(Chain.getValueType() == MVT::Other &&
6781         "Invalid chain type");
6782   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6783     Alignment = getEVTAlignment(SVT);
6784
6785   MMOFlags |= MachineMemOperand::MOStore;
6786   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6787
6788   if (PtrInfo.V.isNull())
6789     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6790
6791   MachineFunction &MF = getMachineFunction();
6792   MachineMemOperand *MMO = MF.getMachineMemOperand(
6793       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6794   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6795 }
6796
6797 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6798                                     SDValue Ptr, EVT SVT,
6799                                     MachineMemOperand *MMO) {
6800   EVT VT = Val.getValueType();
6801
6802   assert(Chain.getValueType() == MVT::Other &&
6803         "Invalid chain type");
6804   if (VT == SVT)
6805     return getStore(Chain, dl, Val, Ptr, MMO);
6806
6807   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6808          "Should only be a truncating store, not extending!");
6809   assert(VT.isInteger() == SVT.isInteger() &&
6810          "Can't do FP-INT conversion!");
6811   assert(VT.isVector() == SVT.isVector() &&
6812          "Cannot use trunc store to convert to or from a vector!");
6813   assert((!VT.isVector() ||
6814           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6815          "Cannot use trunc store to change the number of vector elements!");
6816
6817   SDVTList VTs = getVTList(MVT::Other);
6818   SDValue Undef = getUNDEF(Ptr.getValueType());
6819   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6820   FoldingSetNodeID ID;
6821   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6822   ID.AddInteger(SVT.getRawBits());
6823   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6824       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6825   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6826   void *IP = nullptr;
6827   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6828     cast<StoreSDNode>(E)->refineAlignment(MMO);
6829     return SDValue(E, 0);
6830   }
6831   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6832                                    ISD::UNINDEXED, true, SVT, MMO);
6833   createOperands(N, Ops);
6834
6835   CSEMap.InsertNode(N, IP);
6836   InsertNode(N);
6837   SDValue V(N, 0);
6838   NewSDValueDbgMsg(V, "Creating new node: ", this);
6839   return V;
6840 }
6841
6842 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6843                                       SDValue Base, SDValue Offset,
6844                                       ISD::MemIndexedMode AM) {
6845   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6846   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6847   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6848   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6849   FoldingSetNodeID ID;
6850   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6851   ID.AddInteger(ST->getMemoryVT().getRawBits());
6852   ID.AddInteger(ST->getRawSubclassData());
6853   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6854   void *IP = nullptr;
6855   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6856     return SDValue(E, 0);
6857
6858   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6859                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6860                                    ST->getMemOperand());
6861   createOperands(N, Ops);
6862
6863   CSEMap.InsertNode(N, IP);
6864   InsertNode(N);
6865   SDValue V(N, 0);
6866   NewSDValueDbgMsg(V, "Creating new node: ", this);
6867   return V;
6868 }
6869
6870 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6871                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6872                                     EVT MemVT, MachineMemOperand *MMO,
6873                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6874   SDVTList VTs = getVTList(VT, MVT::Other);
6875   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6876   FoldingSetNodeID ID;
6877   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6878   ID.AddInteger(VT.getRawBits());
6879   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6880       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6881   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6882   void *IP = nullptr;
6883   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6884     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6885     return SDValue(E, 0);
6886   }
6887   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6888                                         ExtTy, isExpanding, MemVT, MMO);
6889   createOperands(N, Ops);
6890
6891   CSEMap.InsertNode(N, IP);
6892   InsertNode(N);
6893   SDValue V(N, 0);
6894   NewSDValueDbgMsg(V, "Creating new node: ", this);
6895   return V;
6896 }
6897
6898 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6899                                      SDValue Val, SDValue Ptr, SDValue Mask,
6900                                      EVT MemVT, MachineMemOperand *MMO,
6901                                      bool IsTruncating, bool IsCompressing) {
6902   assert(Chain.getValueType() == MVT::Other &&
6903         "Invalid chain type");
6904   EVT VT = Val.getValueType();
6905   SDVTList VTs = getVTList(MVT::Other);
6906   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6907   FoldingSetNodeID ID;
6908   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6909   ID.AddInteger(VT.getRawBits());
6910   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6911       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6912   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6913   void *IP = nullptr;
6914   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6915     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6916     return SDValue(E, 0);
6917   }
6918   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6919                                          IsTruncating, IsCompressing, MemVT, MMO);
6920   createOperands(N, Ops);
6921
6922   CSEMap.InsertNode(N, IP);
6923   InsertNode(N);
6924   SDValue V(N, 0);
6925   NewSDValueDbgMsg(V, "Creating new node: ", this);
6926   return V;
6927 }
6928
6929 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6930                                       ArrayRef<SDValue> Ops,
6931                                       MachineMemOperand *MMO) {
6932   assert(Ops.size() == 6 && "Incompatible number of operands");
6933
6934   FoldingSetNodeID ID;
6935   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6936   ID.AddInteger(VT.getRawBits());
6937   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6938       dl.getIROrder(), VTs, VT, MMO));
6939   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6940   void *IP = nullptr;
6941   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6942     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6943     return SDValue(E, 0);
6944   }
6945
6946   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6947                                           VTs, VT, MMO);
6948   createOperands(N, Ops);
6949
6950   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6951          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6952   assert(N->getMask().getValueType().getVectorNumElements() ==
6953              N->getValueType(0).getVectorNumElements() &&
6954          "Vector width mismatch between mask and data");
6955   assert(N->getIndex().getValueType().getVectorNumElements() >=
6956              N->getValueType(0).getVectorNumElements() &&
6957          "Vector width mismatch between index and data");
6958   assert(isa<ConstantSDNode>(N->getScale()) &&
6959          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6960          "Scale should be a constant power of 2");
6961
6962   CSEMap.InsertNode(N, IP);
6963   InsertNode(N);
6964   SDValue V(N, 0);
6965   NewSDValueDbgMsg(V, "Creating new node: ", this);
6966   return V;
6967 }
6968
6969 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6970                                        ArrayRef<SDValue> Ops,
6971                                        MachineMemOperand *MMO) {
6972   assert(Ops.size() == 6 && "Incompatible number of operands");
6973
6974   FoldingSetNodeID ID;
6975   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6976   ID.AddInteger(VT.getRawBits());
6977   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6978       dl.getIROrder(), VTs, VT, MMO));
6979   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6980   void *IP = nullptr;
6981   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6982     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6983     return SDValue(E, 0);
6984   }
6985   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6986                                            VTs, VT, MMO);
6987   createOperands(N, Ops);
6988
6989   assert(N->getMask().getValueType().getVectorNumElements() ==
6990              N->getValue().getValueType().getVectorNumElements() &&
6991          "Vector width mismatch between mask and data");
6992   assert(N->getIndex().getValueType().getVectorNumElements() >=
6993              N->getValue().getValueType().getVectorNumElements() &&
6994          "Vector width mismatch between index and data");
6995   assert(isa<ConstantSDNode>(N->getScale()) &&
6996          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6997          "Scale should be a constant power of 2");
6998
6999   CSEMap.InsertNode(N, IP);
7000   InsertNode(N);
7001   SDValue V(N, 0);
7002   NewSDValueDbgMsg(V, "Creating new node: ", this);
7003   return V;
7004 }
7005
7006 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7007   // select undef, T, F --> T (if T is a constant), otherwise F
7008   // select, ?, undef, F --> F
7009   // select, ?, T, undef --> T
7010   if (Cond.isUndef())
7011     return isConstantValueOfAnyType(T) ? T : F;
7012   if (T.isUndef())
7013     return F;
7014   if (F.isUndef())
7015     return T;
7016
7017   // select true, T, F --> T
7018   // select false, T, F --> F
7019   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7020     return CondC->isNullValue() ? F : T;
7021
7022   // TODO: This should simplify VSELECT with constant condition using something
7023   // like this (but check boolean contents to be complete?):
7024   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7025   //    return T;
7026   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7027   //    return F;
7028
7029   // select ?, T, T --> T
7030   if (T == F)
7031     return T;
7032
7033   return SDValue();
7034 }
7035
7036 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7037   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7038   if (X.isUndef())
7039     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7040   // shift X, undef --> undef (because it may shift by the bitwidth)
7041   if (Y.isUndef())
7042     return getUNDEF(X.getValueType());
7043
7044   // shift 0, Y --> 0
7045   // shift X, 0 --> X
7046   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7047     return X;
7048
7049   // shift X, C >= bitwidth(X) --> undef
7050   // All vector elements must be too big (or undef) to avoid partial undefs.
7051   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7052     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7053   };
7054   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7055     return getUNDEF(X.getValueType());
7056
7057   return SDValue();
7058 }
7059
7060 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7061                                SDValue Ptr, SDValue SV, unsigned Align) {
7062   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7063   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7064 }
7065
7066 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7067                               ArrayRef<SDUse> Ops) {
7068   switch (Ops.size()) {
7069   case 0: return getNode(Opcode, DL, VT);
7070   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7071   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7072   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7073   default: break;
7074   }
7075
7076   // Copy from an SDUse array into an SDValue array for use with
7077   // the regular getNode logic.
7078   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7079   return getNode(Opcode, DL, VT, NewOps);
7080 }
7081
7082 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7083                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7084   unsigned NumOps = Ops.size();
7085   switch (NumOps) {
7086   case 0: return getNode(Opcode, DL, VT);
7087   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7088   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7089   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7090   default: break;
7091   }
7092
7093   switch (Opcode) {
7094   default: break;
7095   case ISD::BUILD_VECTOR:
7096     // Attempt to simplify BUILD_VECTOR.
7097     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7098       return V;
7099     break;
7100   case ISD::CONCAT_VECTORS:
7101     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7102     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7103       return V;
7104     break;
7105   case ISD::SELECT_CC:
7106     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7107     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7108            "LHS and RHS of condition must have same type!");
7109     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7110            "True and False arms of SelectCC must have same type!");
7111     assert(Ops[2].getValueType() == VT &&
7112            "select_cc node must be of same type as true and false value!");
7113     break;
7114   case ISD::BR_CC:
7115     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7116     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7117            "LHS/RHS of comparison should match types!");
7118     break;
7119   }
7120
7121   // Memoize nodes.
7122   SDNode *N;
7123   SDVTList VTs = getVTList(VT);
7124
7125   if (VT != MVT::Glue) {
7126     FoldingSetNodeID ID;
7127     AddNodeIDNode(ID, Opcode, VTs, Ops);
7128     void *IP = nullptr;
7129
7130     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7131       return SDValue(E, 0);
7132
7133     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7134     createOperands(N, Ops);
7135
7136     CSEMap.InsertNode(N, IP);
7137   } else {
7138     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7139     createOperands(N, Ops);
7140   }
7141
7142   InsertNode(N);
7143   SDValue V(N, 0);
7144   NewSDValueDbgMsg(V, "Creating new node: ", this);
7145   return V;
7146 }
7147
7148 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7149                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7150   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7151 }
7152
7153 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7154                               ArrayRef<SDValue> Ops) {
7155   if (VTList.NumVTs == 1)
7156     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7157
7158 #if 0
7159   switch (Opcode) {
7160   // FIXME: figure out how to safely handle things like
7161   // int foo(int x) { return 1 << (x & 255); }
7162   // int bar() { return foo(256); }
7163   case ISD::SRA_PARTS:
7164   case ISD::SRL_PARTS:
7165   case ISD::SHL_PARTS:
7166     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7167         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7168       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7169     else if (N3.getOpcode() == ISD::AND)
7170       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7171         // If the and is only masking out bits that cannot effect the shift,
7172         // eliminate the and.
7173         unsigned NumBits = VT.getScalarSizeInBits()*2;
7174         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7175           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7176       }
7177     break;
7178   }
7179 #endif
7180
7181   // Memoize the node unless it returns a flag.
7182   SDNode *N;
7183   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7184     FoldingSetNodeID ID;
7185     AddNodeIDNode(ID, Opcode, VTList, Ops);
7186     void *IP = nullptr;
7187     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7188       return SDValue(E, 0);
7189
7190     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7191     createOperands(N, Ops);
7192     CSEMap.InsertNode(N, IP);
7193   } else {
7194     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7195     createOperands(N, Ops);
7196   }
7197   InsertNode(N);
7198   SDValue V(N, 0);
7199   NewSDValueDbgMsg(V, "Creating new node: ", this);
7200   return V;
7201 }
7202
7203 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7204                               SDVTList VTList) {
7205   return getNode(Opcode, DL, VTList, None);
7206 }
7207
7208 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7209                               SDValue N1) {
7210   SDValue Ops[] = { N1 };
7211   return getNode(Opcode, DL, VTList, Ops);
7212 }
7213
7214 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7215                               SDValue N1, SDValue N2) {
7216   SDValue Ops[] = { N1, N2 };
7217   return getNode(Opcode, DL, VTList, Ops);
7218 }
7219
7220 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7221                               SDValue N1, SDValue N2, SDValue N3) {
7222   SDValue Ops[] = { N1, N2, N3 };
7223   return getNode(Opcode, DL, VTList, Ops);
7224 }
7225
7226 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7227                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7228   SDValue Ops[] = { N1, N2, N3, N4 };
7229   return getNode(Opcode, DL, VTList, Ops);
7230 }
7231
7232 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7233                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7234                               SDValue N5) {
7235   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7236   return getNode(Opcode, DL, VTList, Ops);
7237 }
7238
7239 SDVTList SelectionDAG::getVTList(EVT VT) {
7240   return makeVTList(SDNode::getValueTypeList(VT), 1);
7241 }
7242
7243 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7244   FoldingSetNodeID ID;
7245   ID.AddInteger(2U);
7246   ID.AddInteger(VT1.getRawBits());
7247   ID.AddInteger(VT2.getRawBits());
7248
7249   void *IP = nullptr;
7250   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7251   if (!Result) {
7252     EVT *Array = Allocator.Allocate<EVT>(2);
7253     Array[0] = VT1;
7254     Array[1] = VT2;
7255     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7256     VTListMap.InsertNode(Result, IP);
7257   }
7258   return Result->getSDVTList();
7259 }
7260
7261 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7262   FoldingSetNodeID ID;
7263   ID.AddInteger(3U);
7264   ID.AddInteger(VT1.getRawBits());
7265   ID.AddInteger(VT2.getRawBits());
7266   ID.AddInteger(VT3.getRawBits());
7267
7268   void *IP = nullptr;
7269   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7270   if (!Result) {
7271     EVT *Array = Allocator.Allocate<EVT>(3);
7272     Array[0] = VT1;
7273     Array[1] = VT2;
7274     Array[2] = VT3;
7275     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7276     VTListMap.InsertNode(Result, IP);
7277   }
7278   return Result->getSDVTList();
7279 }
7280
7281 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7282   FoldingSetNodeID ID;
7283   ID.AddInteger(4U);
7284   ID.AddInteger(VT1.getRawBits());
7285   ID.AddInteger(VT2.getRawBits());
7286   ID.AddInteger(VT3.getRawBits());
7287   ID.AddInteger(VT4.getRawBits());
7288
7289   void *IP = nullptr;
7290   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7291   if (!Result) {
7292     EVT *Array = Allocator.Allocate<EVT>(4);
7293     Array[0] = VT1;
7294     Array[1] = VT2;
7295     Array[2] = VT3;
7296     Array[3] = VT4;
7297     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7298     VTListMap.InsertNode(Result, IP);
7299   }
7300   return Result->getSDVTList();
7301 }
7302
7303 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7304   unsigned NumVTs = VTs.size();
7305   FoldingSetNodeID ID;
7306   ID.AddInteger(NumVTs);
7307   for (unsigned index = 0; index < NumVTs; index++) {
7308     ID.AddInteger(VTs[index].getRawBits());
7309   }
7310
7311   void *IP = nullptr;
7312   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7313   if (!Result) {
7314     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7315     llvm::copy(VTs, Array);
7316     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7317     VTListMap.InsertNode(Result, IP);
7318   }
7319   return Result->getSDVTList();
7320 }
7321
7322
7323 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7324 /// specified operands.  If the resultant node already exists in the DAG,
7325 /// this does not modify the specified node, instead it returns the node that
7326 /// already exists.  If the resultant node does not exist in the DAG, the
7327 /// input node is returned.  As a degenerate case, if you specify the same
7328 /// input operands as the node already has, the input node is returned.
7329 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7330   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7331
7332   // Check to see if there is no change.
7333   if (Op == N->getOperand(0)) return N;
7334
7335   // See if the modified node already exists.
7336   void *InsertPos = nullptr;
7337   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7338     return Existing;
7339
7340   // Nope it doesn't.  Remove the node from its current place in the maps.
7341   if (InsertPos)
7342     if (!RemoveNodeFromCSEMaps(N))
7343       InsertPos = nullptr;
7344
7345   // Now we update the operands.
7346   N->OperandList[0].set(Op);
7347
7348   updateDivergence(N);
7349   // If this gets put into a CSE map, add it.
7350   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7351   return N;
7352 }
7353
7354 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7355   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7356
7357   // Check to see if there is no change.
7358   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7359     return N;   // No operands changed, just return the input node.
7360
7361   // See if the modified node already exists.
7362   void *InsertPos = nullptr;
7363   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7364     return Existing;
7365
7366   // Nope it doesn't.  Remove the node from its current place in the maps.
7367   if (InsertPos)
7368     if (!RemoveNodeFromCSEMaps(N))
7369       InsertPos = nullptr;
7370
7371   // Now we update the operands.
7372   if (N->OperandList[0] != Op1)
7373     N->OperandList[0].set(Op1);
7374   if (N->OperandList[1] != Op2)
7375     N->OperandList[1].set(Op2);
7376
7377   updateDivergence(N);
7378   // If this gets put into a CSE map, add it.
7379   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7380   return N;
7381 }
7382
7383 SDNode *SelectionDAG::
7384 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7385   SDValue Ops[] = { Op1, Op2, Op3 };
7386   return UpdateNodeOperands(N, Ops);
7387 }
7388
7389 SDNode *SelectionDAG::
7390 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7391                    SDValue Op3, SDValue Op4) {
7392   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7393   return UpdateNodeOperands(N, Ops);
7394 }
7395
7396 SDNode *SelectionDAG::
7397 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7398                    SDValue Op3, SDValue Op4, SDValue Op5) {
7399   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7400   return UpdateNodeOperands(N, Ops);
7401 }
7402
7403 SDNode *SelectionDAG::
7404 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7405   unsigned NumOps = Ops.size();
7406   assert(N->getNumOperands() == NumOps &&
7407          "Update with wrong number of operands");
7408
7409   // If no operands changed just return the input node.
7410   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7411     return N;
7412
7413   // See if the modified node already exists.
7414   void *InsertPos = nullptr;
7415   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7416     return Existing;
7417
7418   // Nope it doesn't.  Remove the node from its current place in the maps.
7419   if (InsertPos)
7420     if (!RemoveNodeFromCSEMaps(N))
7421       InsertPos = nullptr;
7422
7423   // Now we update the operands.
7424   for (unsigned i = 0; i != NumOps; ++i)
7425     if (N->OperandList[i] != Ops[i])
7426       N->OperandList[i].set(Ops[i]);
7427
7428   updateDivergence(N);
7429   // If this gets put into a CSE map, add it.
7430   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7431   return N;
7432 }
7433
7434 /// DropOperands - Release the operands and set this node to have
7435 /// zero operands.
7436 void SDNode::DropOperands() {
7437   // Unlike the code in MorphNodeTo that does this, we don't need to
7438   // watch for dead nodes here.
7439   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7440     SDUse &Use = *I++;
7441     Use.set(SDValue());
7442   }
7443 }
7444
7445 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7446                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7447   if (NewMemRefs.empty()) {
7448     N->clearMemRefs();
7449     return;
7450   }
7451
7452   // Check if we can avoid allocating by storing a single reference directly.
7453   if (NewMemRefs.size() == 1) {
7454     N->MemRefs = NewMemRefs[0];
7455     N->NumMemRefs = 1;
7456     return;
7457   }
7458
7459   MachineMemOperand **MemRefsBuffer =
7460       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7461   llvm::copy(NewMemRefs, MemRefsBuffer);
7462   N->MemRefs = MemRefsBuffer;
7463   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7464 }
7465
7466 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7467 /// machine opcode.
7468 ///
7469 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7470                                    EVT VT) {
7471   SDVTList VTs = getVTList(VT);
7472   return SelectNodeTo(N, MachineOpc, VTs, None);
7473 }
7474
7475 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7476                                    EVT VT, SDValue Op1) {
7477   SDVTList VTs = getVTList(VT);
7478   SDValue Ops[] = { Op1 };
7479   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7480 }
7481
7482 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7483                                    EVT VT, SDValue Op1,
7484                                    SDValue Op2) {
7485   SDVTList VTs = getVTList(VT);
7486   SDValue Ops[] = { Op1, Op2 };
7487   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7488 }
7489
7490 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7491                                    EVT VT, SDValue Op1,
7492                                    SDValue Op2, SDValue Op3) {
7493   SDVTList VTs = getVTList(VT);
7494   SDValue Ops[] = { Op1, Op2, Op3 };
7495   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7496 }
7497
7498 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7499                                    EVT VT, ArrayRef<SDValue> Ops) {
7500   SDVTList VTs = getVTList(VT);
7501   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7502 }
7503
7504 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7505                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7506   SDVTList VTs = getVTList(VT1, VT2);
7507   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7508 }
7509
7510 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7511                                    EVT VT1, EVT VT2) {
7512   SDVTList VTs = getVTList(VT1, VT2);
7513   return SelectNodeTo(N, MachineOpc, VTs, None);
7514 }
7515
7516 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7517                                    EVT VT1, EVT VT2, EVT VT3,
7518                                    ArrayRef<SDValue> Ops) {
7519   SDVTList VTs = getVTList(VT1, VT2, VT3);
7520   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7521 }
7522
7523 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7524                                    EVT VT1, EVT VT2,
7525                                    SDValue Op1, SDValue Op2) {
7526   SDVTList VTs = getVTList(VT1, VT2);
7527   SDValue Ops[] = { Op1, Op2 };
7528   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7529 }
7530
7531 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7532                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7533   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7534   // Reset the NodeID to -1.
7535   New->setNodeId(-1);
7536   if (New != N) {
7537     ReplaceAllUsesWith(N, New);
7538     RemoveDeadNode(N);
7539   }
7540   return New;
7541 }
7542
7543 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7544 /// the line number information on the merged node since it is not possible to
7545 /// preserve the information that operation is associated with multiple lines.
7546 /// This will make the debugger working better at -O0, were there is a higher
7547 /// probability having other instructions associated with that line.
7548 ///
7549 /// For IROrder, we keep the smaller of the two
7550 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7551   DebugLoc NLoc = N->getDebugLoc();
7552   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7553     N->setDebugLoc(DebugLoc());
7554   }
7555   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7556   N->setIROrder(Order);
7557   return N;
7558 }
7559
7560 /// MorphNodeTo - This *mutates* the specified node to have the specified
7561 /// return type, opcode, and operands.
7562 ///
7563 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7564 /// node of the specified opcode and operands, it returns that node instead of
7565 /// the current one.  Note that the SDLoc need not be the same.
7566 ///
7567 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7568 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7569 /// node, and because it doesn't require CSE recalculation for any of
7570 /// the node's users.
7571 ///
7572 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7573 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7574 /// the legalizer which maintain worklists that would need to be updated when
7575 /// deleting things.
7576 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7577                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7578   // If an identical node already exists, use it.
7579   void *IP = nullptr;
7580   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7581     FoldingSetNodeID ID;
7582     AddNodeIDNode(ID, Opc, VTs, Ops);
7583     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7584       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7585   }
7586
7587   if (!RemoveNodeFromCSEMaps(N))
7588     IP = nullptr;
7589
7590   // Start the morphing.
7591   N->NodeType = Opc;
7592   N->ValueList = VTs.VTs;
7593   N->NumValues = VTs.NumVTs;
7594
7595   // Clear the operands list, updating used nodes to remove this from their
7596   // use list.  Keep track of any operands that become dead as a result.
7597   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7598   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7599     SDUse &Use = *I++;
7600     SDNode *Used = Use.getNode();
7601     Use.set(SDValue());
7602     if (Used->use_empty())
7603       DeadNodeSet.insert(Used);
7604   }
7605
7606   // For MachineNode, initialize the memory references information.
7607   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7608     MN->clearMemRefs();
7609
7610   // Swap for an appropriately sized array from the recycler.
7611   removeOperands(N);
7612   createOperands(N, Ops);
7613
7614   // Delete any nodes that are still dead after adding the uses for the
7615   // new operands.
7616   if (!DeadNodeSet.empty()) {
7617     SmallVector<SDNode *, 16> DeadNodes;
7618     for (SDNode *N : DeadNodeSet)
7619       if (N->use_empty())
7620         DeadNodes.push_back(N);
7621     RemoveDeadNodes(DeadNodes);
7622   }
7623
7624   if (IP)
7625     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7626   return N;
7627 }
7628
7629 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7630   unsigned OrigOpc = Node->getOpcode();
7631   unsigned NewOpc;
7632   bool IsUnary = false;
7633   bool IsTernary = false;
7634   switch (OrigOpc) {
7635   default:
7636     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7637   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7638   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7639   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7640   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7641   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7642   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7643   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7644   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7645   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7646   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7647   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7648   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7649   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7650   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7651   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7652   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7653   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7654   case ISD::STRICT_FNEARBYINT:
7655     NewOpc = ISD::FNEARBYINT;
7656     IsUnary = true;
7657     break;
7658   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7659   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7660   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7661   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7662   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7663   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7664   }
7665
7666   // We're taking this node out of the chain, so we need to re-link things.
7667   SDValue InputChain = Node->getOperand(0);
7668   SDValue OutputChain = SDValue(Node, 1);
7669   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7670
7671   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7672   SDNode *Res = nullptr;
7673   if (IsUnary)
7674     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7675   else if (IsTernary)
7676     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7677                                            Node->getOperand(2),
7678                                            Node->getOperand(3)});
7679   else
7680     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7681                                            Node->getOperand(2) });
7682
7683   // MorphNodeTo can operate in two ways: if an existing node with the
7684   // specified operands exists, it can just return it.  Otherwise, it
7685   // updates the node in place to have the requested operands.
7686   if (Res == Node) {
7687     // If we updated the node in place, reset the node ID.  To the isel,
7688     // this should be just like a newly allocated machine node.
7689     Res->setNodeId(-1);
7690   } else {
7691     ReplaceAllUsesWith(Node, Res);
7692     RemoveDeadNode(Node);
7693   }
7694
7695   return Res;
7696 }
7697
7698 /// getMachineNode - These are used for target selectors to create a new node
7699 /// with specified return type(s), MachineInstr opcode, and operands.
7700 ///
7701 /// Note that getMachineNode returns the resultant node.  If there is already a
7702 /// node of the specified opcode and operands, it returns that node instead of
7703 /// the current one.
7704 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7705                                             EVT VT) {
7706   SDVTList VTs = getVTList(VT);
7707   return getMachineNode(Opcode, dl, VTs, None);
7708 }
7709
7710 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7711                                             EVT VT, SDValue Op1) {
7712   SDVTList VTs = getVTList(VT);
7713   SDValue Ops[] = { Op1 };
7714   return getMachineNode(Opcode, dl, VTs, Ops);
7715 }
7716
7717 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7718                                             EVT VT, SDValue Op1, SDValue Op2) {
7719   SDVTList VTs = getVTList(VT);
7720   SDValue Ops[] = { Op1, Op2 };
7721   return getMachineNode(Opcode, dl, VTs, Ops);
7722 }
7723
7724 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7725                                             EVT VT, SDValue Op1, SDValue Op2,
7726                                             SDValue Op3) {
7727   SDVTList VTs = getVTList(VT);
7728   SDValue Ops[] = { Op1, Op2, Op3 };
7729   return getMachineNode(Opcode, dl, VTs, Ops);
7730 }
7731
7732 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7733                                             EVT VT, ArrayRef<SDValue> Ops) {
7734   SDVTList VTs = getVTList(VT);
7735   return getMachineNode(Opcode, dl, VTs, Ops);
7736 }
7737
7738 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7739                                             EVT VT1, EVT VT2, SDValue Op1,
7740                                             SDValue Op2) {
7741   SDVTList VTs = getVTList(VT1, VT2);
7742   SDValue Ops[] = { Op1, Op2 };
7743   return getMachineNode(Opcode, dl, VTs, Ops);
7744 }
7745
7746 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7747                                             EVT VT1, EVT VT2, SDValue Op1,
7748                                             SDValue Op2, SDValue Op3) {
7749   SDVTList VTs = getVTList(VT1, VT2);
7750   SDValue Ops[] = { Op1, Op2, Op3 };
7751   return getMachineNode(Opcode, dl, VTs, Ops);
7752 }
7753
7754 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7755                                             EVT VT1, EVT VT2,
7756                                             ArrayRef<SDValue> Ops) {
7757   SDVTList VTs = getVTList(VT1, VT2);
7758   return getMachineNode(Opcode, dl, VTs, Ops);
7759 }
7760
7761 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7762                                             EVT VT1, EVT VT2, EVT VT3,
7763                                             SDValue Op1, SDValue Op2) {
7764   SDVTList VTs = getVTList(VT1, VT2, VT3);
7765   SDValue Ops[] = { Op1, Op2 };
7766   return getMachineNode(Opcode, dl, VTs, Ops);
7767 }
7768
7769 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7770                                             EVT VT1, EVT VT2, EVT VT3,
7771                                             SDValue Op1, SDValue Op2,
7772                                             SDValue Op3) {
7773   SDVTList VTs = getVTList(VT1, VT2, VT3);
7774   SDValue Ops[] = { Op1, Op2, Op3 };
7775   return getMachineNode(Opcode, dl, VTs, Ops);
7776 }
7777
7778 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7779                                             EVT VT1, EVT VT2, EVT VT3,
7780                                             ArrayRef<SDValue> Ops) {
7781   SDVTList VTs = getVTList(VT1, VT2, VT3);
7782   return getMachineNode(Opcode, dl, VTs, Ops);
7783 }
7784
7785 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7786                                             ArrayRef<EVT> ResultTys,
7787                                             ArrayRef<SDValue> Ops) {
7788   SDVTList VTs = getVTList(ResultTys);
7789   return getMachineNode(Opcode, dl, VTs, Ops);
7790 }
7791
7792 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7793                                             SDVTList VTs,
7794                                             ArrayRef<SDValue> Ops) {
7795   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7796   MachineSDNode *N;
7797   void *IP = nullptr;
7798
7799   if (DoCSE) {
7800     FoldingSetNodeID ID;
7801     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7802     IP = nullptr;
7803     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7804       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7805     }
7806   }
7807
7808   // Allocate a new MachineSDNode.
7809   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7810   createOperands(N, Ops);
7811
7812   if (DoCSE)
7813     CSEMap.InsertNode(N, IP);
7814
7815   InsertNode(N);
7816   return N;
7817 }
7818
7819 /// getTargetExtractSubreg - A convenience function for creating
7820 /// TargetOpcode::EXTRACT_SUBREG nodes.
7821 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7822                                              SDValue Operand) {
7823   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7824   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7825                                   VT, Operand, SRIdxVal);
7826   return SDValue(Subreg, 0);
7827 }
7828
7829 /// getTargetInsertSubreg - A convenience function for creating
7830 /// TargetOpcode::INSERT_SUBREG nodes.
7831 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7832                                             SDValue Operand, SDValue Subreg) {
7833   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7834   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7835                                   VT, Operand, Subreg, SRIdxVal);
7836   return SDValue(Result, 0);
7837 }
7838
7839 /// getNodeIfExists - Get the specified node if it's already available, or
7840 /// else return NULL.
7841 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7842                                       ArrayRef<SDValue> Ops,
7843                                       const SDNodeFlags Flags) {
7844   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7845     FoldingSetNodeID ID;
7846     AddNodeIDNode(ID, Opcode, VTList, Ops);
7847     void *IP = nullptr;
7848     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7849       E->intersectFlagsWith(Flags);
7850       return E;
7851     }
7852   }
7853   return nullptr;
7854 }
7855
7856 /// getDbgValue - Creates a SDDbgValue node.
7857 ///
7858 /// SDNode
7859 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7860                                       SDNode *N, unsigned R, bool IsIndirect,
7861                                       const DebugLoc &DL, unsigned O) {
7862   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7863          "Expected inlined-at fields to agree");
7864   return new (DbgInfo->getAlloc())
7865       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7866 }
7867
7868 /// Constant
7869 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7870                                               DIExpression *Expr,
7871                                               const Value *C,
7872                                               const DebugLoc &DL, unsigned O) {
7873   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7874          "Expected inlined-at fields to agree");
7875   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7876 }
7877
7878 /// FrameIndex
7879 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7880                                                 DIExpression *Expr, unsigned FI,
7881                                                 bool IsIndirect,
7882                                                 const DebugLoc &DL,
7883                                                 unsigned O) {
7884   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7885          "Expected inlined-at fields to agree");
7886   return new (DbgInfo->getAlloc())
7887       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7888 }
7889
7890 /// VReg
7891 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7892                                           DIExpression *Expr,
7893                                           unsigned VReg, bool IsIndirect,
7894                                           const DebugLoc &DL, unsigned O) {
7895   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7896          "Expected inlined-at fields to agree");
7897   return new (DbgInfo->getAlloc())
7898       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7899 }
7900
7901 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7902                                      unsigned OffsetInBits, unsigned SizeInBits,
7903                                      bool InvalidateDbg) {
7904   SDNode *FromNode = From.getNode();
7905   SDNode *ToNode = To.getNode();
7906   assert(FromNode && ToNode && "Can't modify dbg values");
7907
7908   // PR35338
7909   // TODO: assert(From != To && "Redundant dbg value transfer");
7910   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7911   if (From == To || FromNode == ToNode)
7912     return;
7913
7914   if (!FromNode->getHasDebugValue())
7915     return;
7916
7917   SmallVector<SDDbgValue *, 2> ClonedDVs;
7918   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7919     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7920       continue;
7921
7922     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7923
7924     // Just transfer the dbg value attached to From.
7925     if (Dbg->getResNo() != From.getResNo())
7926       continue;
7927
7928     DIVariable *Var = Dbg->getVariable();
7929     auto *Expr = Dbg->getExpression();
7930     // If a fragment is requested, update the expression.
7931     if (SizeInBits) {
7932       // When splitting a larger (e.g., sign-extended) value whose
7933       // lower bits are described with an SDDbgValue, do not attempt
7934       // to transfer the SDDbgValue to the upper bits.
7935       if (auto FI = Expr->getFragmentInfo())
7936         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7937           continue;
7938       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7939                                                              SizeInBits);
7940       if (!Fragment)
7941         continue;
7942       Expr = *Fragment;
7943     }
7944     // Clone the SDDbgValue and move it to To.
7945     SDDbgValue *Clone =
7946         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7947                     Dbg->getDebugLoc(), Dbg->getOrder());
7948     ClonedDVs.push_back(Clone);
7949
7950     if (InvalidateDbg) {
7951       // Invalidate value and indicate the SDDbgValue should not be emitted.
7952       Dbg->setIsInvalidated();
7953       Dbg->setIsEmitted();
7954     }
7955   }
7956
7957   for (SDDbgValue *Dbg : ClonedDVs)
7958     AddDbgValue(Dbg, ToNode, false);
7959 }
7960
7961 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7962   if (!N.getHasDebugValue())
7963     return;
7964
7965   SmallVector<SDDbgValue *, 2> ClonedDVs;
7966   for (auto DV : GetDbgValues(&N)) {
7967     if (DV->isInvalidated())
7968       continue;
7969     switch (N.getOpcode()) {
7970     default:
7971       break;
7972     case ISD::ADD:
7973       SDValue N0 = N.getOperand(0);
7974       SDValue N1 = N.getOperand(1);
7975       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7976           isConstantIntBuildVectorOrConstantInt(N1)) {
7977         uint64_t Offset = N.getConstantOperandVal(1);
7978         // Rewrite an ADD constant node into a DIExpression. Since we are
7979         // performing arithmetic to compute the variable's *value* in the
7980         // DIExpression, we need to mark the expression with a
7981         // DW_OP_stack_value.
7982         auto *DIExpr = DV->getExpression();
7983         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7984                                        DIExpression::NoDeref,
7985                                        DIExpression::WithStackValue);
7986         SDDbgValue *Clone =
7987             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7988                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7989         ClonedDVs.push_back(Clone);
7990         DV->setIsInvalidated();
7991         DV->setIsEmitted();
7992         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7993                    N0.getNode()->dumprFull(this);
7994                    dbgs() << " into " << *DIExpr << '\n');
7995       }
7996     }
7997   }
7998
7999   for (SDDbgValue *Dbg : ClonedDVs)
8000     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8001 }
8002
8003 /// Creates a SDDbgLabel node.
8004 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8005                                       const DebugLoc &DL, unsigned O) {
8006   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8007          "Expected inlined-at fields to agree");
8008   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8009 }
8010
8011 namespace {
8012
8013 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8014 /// pointed to by a use iterator is deleted, increment the use iterator
8015 /// so that it doesn't dangle.
8016 ///
8017 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8018   SDNode::use_iterator &UI;
8019   SDNode::use_iterator &UE;
8020
8021   void NodeDeleted(SDNode *N, SDNode *E) override {
8022     // Increment the iterator as needed.
8023     while (UI != UE && N == *UI)
8024       ++UI;
8025   }
8026
8027 public:
8028   RAUWUpdateListener(SelectionDAG &d,
8029                      SDNode::use_iterator &ui,
8030                      SDNode::use_iterator &ue)
8031     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8032 };
8033
8034 } // end anonymous namespace
8035
8036 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8037 /// This can cause recursive merging of nodes in the DAG.
8038 ///
8039 /// This version assumes From has a single result value.
8040 ///
8041 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8042   SDNode *From = FromN.getNode();
8043   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8044          "Cannot replace with this method!");
8045   assert(From != To.getNode() && "Cannot replace uses of with self");
8046
8047   // Preserve Debug Values
8048   transferDbgValues(FromN, To);
8049
8050   // Iterate over all the existing uses of From. New uses will be added
8051   // to the beginning of the use list, which we avoid visiting.
8052   // This specifically avoids visiting uses of From that arise while the
8053   // replacement is happening, because any such uses would be the result
8054   // of CSE: If an existing node looks like From after one of its operands
8055   // is replaced by To, we don't want to replace of all its users with To
8056   // too. See PR3018 for more info.
8057   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8058   RAUWUpdateListener Listener(*this, UI, UE);
8059   while (UI != UE) {
8060     SDNode *User = *UI;
8061
8062     // This node is about to morph, remove its old self from the CSE maps.
8063     RemoveNodeFromCSEMaps(User);
8064
8065     // A user can appear in a use list multiple times, and when this
8066     // happens the uses are usually next to each other in the list.
8067     // To help reduce the number of CSE recomputations, process all
8068     // the uses of this user that we can find this way.
8069     do {
8070       SDUse &Use = UI.getUse();
8071       ++UI;
8072       Use.set(To);
8073       if (To->isDivergent() != From->isDivergent())
8074         updateDivergence(User);
8075     } while (UI != UE && *UI == User);
8076     // Now that we have modified User, add it back to the CSE maps.  If it
8077     // already exists there, recursively merge the results together.
8078     AddModifiedNodeToCSEMaps(User);
8079   }
8080
8081   // If we just RAUW'd the root, take note.
8082   if (FromN == getRoot())
8083     setRoot(To);
8084 }
8085
8086 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8087 /// This can cause recursive merging of nodes in the DAG.
8088 ///
8089 /// This version assumes that for each value of From, there is a
8090 /// corresponding value in To in the same position with the same type.
8091 ///
8092 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8093 #ifndef NDEBUG
8094   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8095     assert((!From->hasAnyUseOfValue(i) ||
8096             From->getValueType(i) == To->getValueType(i)) &&
8097            "Cannot use this version of ReplaceAllUsesWith!");
8098 #endif
8099
8100   // Handle the trivial case.
8101   if (From == To)
8102     return;
8103
8104   // Preserve Debug Info. Only do this if there's a use.
8105   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8106     if (From->hasAnyUseOfValue(i)) {
8107       assert((i < To->getNumValues()) && "Invalid To location");
8108       transferDbgValues(SDValue(From, i), SDValue(To, i));
8109     }
8110
8111   // Iterate over just the existing users of From. See the comments in
8112   // the ReplaceAllUsesWith above.
8113   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8114   RAUWUpdateListener Listener(*this, UI, UE);
8115   while (UI != UE) {
8116     SDNode *User = *UI;
8117
8118     // This node is about to morph, remove its old self from the CSE maps.
8119     RemoveNodeFromCSEMaps(User);
8120
8121     // A user can appear in a use list multiple times, and when this
8122     // happens the uses are usually next to each other in the list.
8123     // To help reduce the number of CSE recomputations, process all
8124     // the uses of this user that we can find this way.
8125     do {
8126       SDUse &Use = UI.getUse();
8127       ++UI;
8128       Use.setNode(To);
8129       if (To->isDivergent() != From->isDivergent())
8130         updateDivergence(User);
8131     } while (UI != UE && *UI == User);
8132
8133     // Now that we have modified User, add it back to the CSE maps.  If it
8134     // already exists there, recursively merge the results together.
8135     AddModifiedNodeToCSEMaps(User);
8136   }
8137
8138   // If we just RAUW'd the root, take note.
8139   if (From == getRoot().getNode())
8140     setRoot(SDValue(To, getRoot().getResNo()));
8141 }
8142
8143 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8144 /// This can cause recursive merging of nodes in the DAG.
8145 ///
8146 /// This version can replace From with any result values.  To must match the
8147 /// number and types of values returned by From.
8148 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8149   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8150     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8151
8152   // Preserve Debug Info.
8153   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8154     transferDbgValues(SDValue(From, i), To[i]);
8155
8156   // Iterate over just the existing users of From. See the comments in
8157   // the ReplaceAllUsesWith above.
8158   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8159   RAUWUpdateListener Listener(*this, UI, UE);
8160   while (UI != UE) {
8161     SDNode *User = *UI;
8162
8163     // This node is about to morph, remove its old self from the CSE maps.
8164     RemoveNodeFromCSEMaps(User);
8165
8166     // A user can appear in a use list multiple times, and when this happens the
8167     // uses are usually next to each other in the list.  To help reduce the
8168     // number of CSE and divergence recomputations, process all the uses of this
8169     // user that we can find this way.
8170     bool To_IsDivergent = false;
8171     do {
8172       SDUse &Use = UI.getUse();
8173       const SDValue &ToOp = To[Use.getResNo()];
8174       ++UI;
8175       Use.set(ToOp);
8176       To_IsDivergent |= ToOp->isDivergent();
8177     } while (UI != UE && *UI == User);
8178
8179     if (To_IsDivergent != From->isDivergent())
8180       updateDivergence(User);
8181
8182     // Now that we have modified User, add it back to the CSE maps.  If it
8183     // already exists there, recursively merge the results together.
8184     AddModifiedNodeToCSEMaps(User);
8185   }
8186
8187   // If we just RAUW'd the root, take note.
8188   if (From == getRoot().getNode())
8189     setRoot(SDValue(To[getRoot().getResNo()]));
8190 }
8191
8192 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8193 /// uses of other values produced by From.getNode() alone.  The Deleted
8194 /// vector is handled the same way as for ReplaceAllUsesWith.
8195 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8196   // Handle the really simple, really trivial case efficiently.
8197   if (From == To) return;
8198
8199   // Handle the simple, trivial, case efficiently.
8200   if (From.getNode()->getNumValues() == 1) {
8201     ReplaceAllUsesWith(From, To);
8202     return;
8203   }
8204
8205   // Preserve Debug Info.
8206   transferDbgValues(From, To);
8207
8208   // Iterate over just the existing users of From. See the comments in
8209   // the ReplaceAllUsesWith above.
8210   SDNode::use_iterator UI = From.getNode()->use_begin(),
8211                        UE = From.getNode()->use_end();
8212   RAUWUpdateListener Listener(*this, UI, UE);
8213   while (UI != UE) {
8214     SDNode *User = *UI;
8215     bool UserRemovedFromCSEMaps = false;
8216
8217     // A user can appear in a use list multiple times, and when this
8218     // happens the uses are usually next to each other in the list.
8219     // To help reduce the number of CSE recomputations, process all
8220     // the uses of this user that we can find this way.
8221     do {
8222       SDUse &Use = UI.getUse();
8223
8224       // Skip uses of different values from the same node.
8225       if (Use.getResNo() != From.getResNo()) {
8226         ++UI;
8227         continue;
8228       }
8229
8230       // If this node hasn't been modified yet, it's still in the CSE maps,
8231       // so remove its old self from the CSE maps.
8232       if (!UserRemovedFromCSEMaps) {
8233         RemoveNodeFromCSEMaps(User);
8234         UserRemovedFromCSEMaps = true;
8235       }
8236
8237       ++UI;
8238       Use.set(To);
8239       if (To->isDivergent() != From->isDivergent())
8240         updateDivergence(User);
8241     } while (UI != UE && *UI == User);
8242     // We are iterating over all uses of the From node, so if a use
8243     // doesn't use the specific value, no changes are made.
8244     if (!UserRemovedFromCSEMaps)
8245       continue;
8246
8247     // Now that we have modified User, add it back to the CSE maps.  If it
8248     // already exists there, recursively merge the results together.
8249     AddModifiedNodeToCSEMaps(User);
8250   }
8251
8252   // If we just RAUW'd the root, take note.
8253   if (From == getRoot())
8254     setRoot(To);
8255 }
8256
8257 namespace {
8258
8259   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8260   /// to record information about a use.
8261   struct UseMemo {
8262     SDNode *User;
8263     unsigned Index;
8264     SDUse *Use;
8265   };
8266
8267   /// operator< - Sort Memos by User.
8268   bool operator<(const UseMemo &L, const UseMemo &R) {
8269     return (intptr_t)L.User < (intptr_t)R.User;
8270   }
8271
8272 } // end anonymous namespace
8273
8274 void SelectionDAG::updateDivergence(SDNode * N)
8275 {
8276   if (TLI->isSDNodeAlwaysUniform(N))
8277     return;
8278   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8279   for (auto &Op : N->ops()) {
8280     if (Op.Val.getValueType() != MVT::Other)
8281       IsDivergent |= Op.getNode()->isDivergent();
8282   }
8283   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8284     N->SDNodeBits.IsDivergent = IsDivergent;
8285     for (auto U : N->uses()) {
8286       updateDivergence(U);
8287     }
8288   }
8289 }
8290
8291
8292 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8293   DenseMap<SDNode *, unsigned> Degree;
8294   Order.reserve(AllNodes.size());
8295   for (auto & N : allnodes()) {
8296     unsigned NOps = N.getNumOperands();
8297     Degree[&N] = NOps;
8298     if (0 == NOps)
8299       Order.push_back(&N);
8300   }
8301   for (std::vector<SDNode *>::iterator I = Order.begin();
8302   I!=Order.end();++I) {
8303     SDNode * N = *I;
8304     for (auto U : N->uses()) {
8305       unsigned &UnsortedOps = Degree[U];
8306       if (0 == --UnsortedOps)
8307         Order.push_back(U);
8308     }
8309   }
8310 }
8311
8312 #ifndef NDEBUG
8313 void SelectionDAG::VerifyDAGDiverence()
8314 {
8315   std::vector<SDNode*> TopoOrder;
8316   CreateTopologicalOrder(TopoOrder);
8317   const TargetLowering &TLI = getTargetLoweringInfo();
8318   DenseMap<const SDNode *, bool> DivergenceMap;
8319   for (auto &N : allnodes()) {
8320     DivergenceMap[&N] = false;
8321   }
8322   for (auto N : TopoOrder) {
8323     bool IsDivergent = DivergenceMap[N];
8324     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8325     for (auto &Op : N->ops()) {
8326       if (Op.Val.getValueType() != MVT::Other)
8327         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8328     }
8329     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8330       DivergenceMap[N] = true;
8331     }
8332   }
8333   for (auto &N : allnodes()) {
8334     (void)N;
8335     assert(DivergenceMap[&N] == N.isDivergent() &&
8336            "Divergence bit inconsistency detected\n");
8337   }
8338 }
8339 #endif
8340
8341
8342 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8343 /// uses of other values produced by From.getNode() alone.  The same value
8344 /// may appear in both the From and To list.  The Deleted vector is
8345 /// handled the same way as for ReplaceAllUsesWith.
8346 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8347                                               const SDValue *To,
8348                                               unsigned Num){
8349   // Handle the simple, trivial case efficiently.
8350   if (Num == 1)
8351     return ReplaceAllUsesOfValueWith(*From, *To);
8352
8353   transferDbgValues(*From, *To);
8354
8355   // Read up all the uses and make records of them. This helps
8356   // processing new uses that are introduced during the
8357   // replacement process.
8358   SmallVector<UseMemo, 4> Uses;
8359   for (unsigned i = 0; i != Num; ++i) {
8360     unsigned FromResNo = From[i].getResNo();
8361     SDNode *FromNode = From[i].getNode();
8362     for (SDNode::use_iterator UI = FromNode->use_begin(),
8363          E = FromNode->use_end(); UI != E; ++UI) {
8364       SDUse &Use = UI.getUse();
8365       if (Use.getResNo() == FromResNo) {
8366         UseMemo Memo = { *UI, i, &Use };
8367         Uses.push_back(Memo);
8368       }
8369     }
8370   }
8371
8372   // Sort the uses, so that all the uses from a given User are together.
8373   llvm::sort(Uses);
8374
8375   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8376        UseIndex != UseIndexEnd; ) {
8377     // We know that this user uses some value of From.  If it is the right
8378     // value, update it.
8379     SDNode *User = Uses[UseIndex].User;
8380
8381     // This node is about to morph, remove its old self from the CSE maps.
8382     RemoveNodeFromCSEMaps(User);
8383
8384     // The Uses array is sorted, so all the uses for a given User
8385     // are next to each other in the list.
8386     // To help reduce the number of CSE recomputations, process all
8387     // the uses of this user that we can find this way.
8388     do {
8389       unsigned i = Uses[UseIndex].Index;
8390       SDUse &Use = *Uses[UseIndex].Use;
8391       ++UseIndex;
8392
8393       Use.set(To[i]);
8394     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8395
8396     // Now that we have modified User, add it back to the CSE maps.  If it
8397     // already exists there, recursively merge the results together.
8398     AddModifiedNodeToCSEMaps(User);
8399   }
8400 }
8401
8402 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8403 /// based on their topological order. It returns the maximum id and a vector
8404 /// of the SDNodes* in assigned order by reference.
8405 unsigned SelectionDAG::AssignTopologicalOrder() {
8406   unsigned DAGSize = 0;
8407
8408   // SortedPos tracks the progress of the algorithm. Nodes before it are
8409   // sorted, nodes after it are unsorted. When the algorithm completes
8410   // it is at the end of the list.
8411   allnodes_iterator SortedPos = allnodes_begin();
8412
8413   // Visit all the nodes. Move nodes with no operands to the front of
8414   // the list immediately. Annotate nodes that do have operands with their
8415   // operand count. Before we do this, the Node Id fields of the nodes
8416   // may contain arbitrary values. After, the Node Id fields for nodes
8417   // before SortedPos will contain the topological sort index, and the
8418   // Node Id fields for nodes At SortedPos and after will contain the
8419   // count of outstanding operands.
8420   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8421     SDNode *N = &*I++;
8422     checkForCycles(N, this);
8423     unsigned Degree = N->getNumOperands();
8424     if (Degree == 0) {
8425       // A node with no uses, add it to the result array immediately.
8426       N->setNodeId(DAGSize++);
8427       allnodes_iterator Q(N);
8428       if (Q != SortedPos)
8429         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8430       assert(SortedPos != AllNodes.end() && "Overran node list");
8431       ++SortedPos;
8432     } else {
8433       // Temporarily use the Node Id as scratch space for the degree count.
8434       N->setNodeId(Degree);
8435     }
8436   }
8437
8438   // Visit all the nodes. As we iterate, move nodes into sorted order,
8439   // such that by the time the end is reached all nodes will be sorted.
8440   for (SDNode &Node : allnodes()) {
8441     SDNode *N = &Node;
8442     checkForCycles(N, this);
8443     // N is in sorted position, so all its uses have one less operand
8444     // that needs to be sorted.
8445     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8446          UI != UE; ++UI) {
8447       SDNode *P = *UI;
8448       unsigned Degree = P->getNodeId();
8449       assert(Degree != 0 && "Invalid node degree");
8450       --Degree;
8451       if (Degree == 0) {
8452         // All of P's operands are sorted, so P may sorted now.
8453         P->setNodeId(DAGSize++);
8454         if (P->getIterator() != SortedPos)
8455           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8456         assert(SortedPos != AllNodes.end() && "Overran node list");
8457         ++SortedPos;
8458       } else {
8459         // Update P's outstanding operand count.
8460         P->setNodeId(Degree);
8461       }
8462     }
8463     if (Node.getIterator() == SortedPos) {
8464 #ifndef NDEBUG
8465       allnodes_iterator I(N);
8466       SDNode *S = &*++I;
8467       dbgs() << "Overran sorted position:\n";
8468       S->dumprFull(this); dbgs() << "\n";
8469       dbgs() << "Checking if this is due to cycles\n";
8470       checkForCycles(this, true);
8471 #endif
8472       llvm_unreachable(nullptr);
8473     }
8474   }
8475
8476   assert(SortedPos == AllNodes.end() &&
8477          "Topological sort incomplete!");
8478   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8479          "First node in topological sort is not the entry token!");
8480   assert(AllNodes.front().getNodeId() == 0 &&
8481          "First node in topological sort has non-zero id!");
8482   assert(AllNodes.front().getNumOperands() == 0 &&
8483          "First node in topological sort has operands!");
8484   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8485          "Last node in topologic sort has unexpected id!");
8486   assert(AllNodes.back().use_empty() &&
8487          "Last node in topologic sort has users!");
8488   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8489   return DAGSize;
8490 }
8491
8492 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8493 /// value is produced by SD.
8494 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8495   if (SD) {
8496     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8497     SD->setHasDebugValue(true);
8498   }
8499   DbgInfo->add(DB, SD, isParameter);
8500 }
8501
8502 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8503   DbgInfo->add(DB);
8504 }
8505
8506 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8507                                                    SDValue NewMemOp) {
8508   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8509   // The new memory operation must have the same position as the old load in
8510   // terms of memory dependency. Create a TokenFactor for the old load and new
8511   // memory operation and update uses of the old load's output chain to use that
8512   // TokenFactor.
8513   SDValue OldChain = SDValue(OldLoad, 1);
8514   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8515   if (!OldLoad->hasAnyUseOfValue(1))
8516     return NewChain;
8517
8518   SDValue TokenFactor =
8519       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8520   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8521   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8522   return TokenFactor;
8523 }
8524
8525 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8526                                                      Function **OutFunction) {
8527   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8528
8529   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8530   auto *Module = MF->getFunction().getParent();
8531   auto *Function = Module->getFunction(Symbol);
8532
8533   if (OutFunction != nullptr)
8534       *OutFunction = Function;
8535
8536   if (Function != nullptr) {
8537     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8538     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8539   }
8540
8541   std::string ErrorStr;
8542   raw_string_ostream ErrorFormatter(ErrorStr);
8543
8544   ErrorFormatter << "Undefined external symbol ";
8545   ErrorFormatter << '"' << Symbol << '"';
8546   ErrorFormatter.flush();
8547
8548   report_fatal_error(ErrorStr);
8549 }
8550
8551 //===----------------------------------------------------------------------===//
8552 //                              SDNode Class
8553 //===----------------------------------------------------------------------===//
8554
8555 bool llvm::isNullConstant(SDValue V) {
8556   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8557   return Const != nullptr && Const->isNullValue();
8558 }
8559
8560 bool llvm::isNullFPConstant(SDValue V) {
8561   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8562   return Const != nullptr && Const->isZero() && !Const->isNegative();
8563 }
8564
8565 bool llvm::isAllOnesConstant(SDValue V) {
8566   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8567   return Const != nullptr && Const->isAllOnesValue();
8568 }
8569
8570 bool llvm::isOneConstant(SDValue V) {
8571   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8572   return Const != nullptr && Const->isOne();
8573 }
8574
8575 SDValue llvm::peekThroughBitcasts(SDValue V) {
8576   while (V.getOpcode() == ISD::BITCAST)
8577     V = V.getOperand(0);
8578   return V;
8579 }
8580
8581 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8582   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8583     V = V.getOperand(0);
8584   return V;
8585 }
8586
8587 bool llvm::isBitwiseNot(SDValue V) {
8588   if (V.getOpcode() != ISD::XOR)
8589     return false;
8590   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8591   return C && C->isAllOnesValue();
8592 }
8593
8594 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8595   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8596     return CN;
8597
8598   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8599     BitVector UndefElements;
8600     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8601
8602     // BuildVectors can truncate their operands. Ignore that case here.
8603     if (CN && (UndefElements.none() || AllowUndefs) &&
8604         CN->getValueType(0) == N.getValueType().getScalarType())
8605       return CN;
8606   }
8607
8608   return nullptr;
8609 }
8610
8611 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8612   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8613     return CN;
8614
8615   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8616     BitVector UndefElements;
8617     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8618     if (CN && (UndefElements.none() || AllowUndefs))
8619       return CN;
8620   }
8621
8622   return nullptr;
8623 }
8624
8625 bool llvm::isNullOrNullSplat(SDValue N) {
8626   // TODO: may want to use peekThroughBitcast() here.
8627   ConstantSDNode *C = isConstOrConstSplat(N);
8628   return C && C->isNullValue();
8629 }
8630
8631 bool llvm::isOneOrOneSplat(SDValue N) {
8632   // TODO: may want to use peekThroughBitcast() here.
8633   unsigned BitWidth = N.getScalarValueSizeInBits();
8634   ConstantSDNode *C = isConstOrConstSplat(N);
8635   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8636 }
8637
8638 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8639   N = peekThroughBitcasts(N);
8640   unsigned BitWidth = N.getScalarValueSizeInBits();
8641   ConstantSDNode *C = isConstOrConstSplat(N);
8642   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8643 }
8644
8645 HandleSDNode::~HandleSDNode() {
8646   DropOperands();
8647 }
8648
8649 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8650                                          const DebugLoc &DL,
8651                                          const GlobalValue *GA, EVT VT,
8652                                          int64_t o, unsigned char TF)
8653     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8654   TheGlobal = GA;
8655 }
8656
8657 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8658                                          EVT VT, unsigned SrcAS,
8659                                          unsigned DestAS)
8660     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8661       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8662
8663 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8664                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8665     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8666   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8667   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8668   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8669   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8670
8671   // We check here that the size of the memory operand fits within the size of
8672   // the MMO. This is because the MMO might indicate only a possible address
8673   // range instead of specifying the affected memory addresses precisely.
8674   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8675 }
8676
8677 /// Profile - Gather unique data for the node.
8678 ///
8679 void SDNode::Profile(FoldingSetNodeID &ID) const {
8680   AddNodeIDNode(ID, this);
8681 }
8682
8683 namespace {
8684
8685   struct EVTArray {
8686     std::vector<EVT> VTs;
8687
8688     EVTArray() {
8689       VTs.reserve(MVT::LAST_VALUETYPE);
8690       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8691         VTs.push_back(MVT((MVT::SimpleValueType)i));
8692     }
8693   };
8694
8695 } // end anonymous namespace
8696
8697 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8698 static ManagedStatic<EVTArray> SimpleVTArray;
8699 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8700
8701 /// getValueTypeList - Return a pointer to the specified value type.
8702 ///
8703 const EVT *SDNode::getValueTypeList(EVT VT) {
8704   if (VT.isExtended()) {
8705     sys::SmartScopedLock<true> Lock(*VTMutex);
8706     return &(*EVTs->insert(VT).first);
8707   } else {
8708     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8709            "Value type out of range!");
8710     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8711   }
8712 }
8713
8714 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8715 /// indicated value.  This method ignores uses of other values defined by this
8716 /// operation.
8717 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8718   assert(Value < getNumValues() && "Bad value!");
8719
8720   // TODO: Only iterate over uses of a given value of the node
8721   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8722     if (UI.getUse().getResNo() == Value) {
8723       if (NUses == 0)
8724         return false;
8725       --NUses;
8726     }
8727   }
8728
8729   // Found exactly the right number of uses?
8730   return NUses == 0;
8731 }
8732
8733 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8734 /// value. This method ignores uses of other values defined by this operation.
8735 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8736   assert(Value < getNumValues() && "Bad value!");
8737
8738   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8739     if (UI.getUse().getResNo() == Value)
8740       return true;
8741
8742   return false;
8743 }
8744
8745 /// isOnlyUserOf - Return true if this node is the only use of N.
8746 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8747   bool Seen = false;
8748   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8749     SDNode *User = *I;
8750     if (User == this)
8751       Seen = true;
8752     else
8753       return false;
8754   }
8755
8756   return Seen;
8757 }
8758
8759 /// Return true if the only users of N are contained in Nodes.
8760 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8761   bool Seen = false;
8762   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8763     SDNode *User = *I;
8764     if (llvm::any_of(Nodes,
8765                      [&User](const SDNode *Node) { return User == Node; }))
8766       Seen = true;
8767     else
8768       return false;
8769   }
8770
8771   return Seen;
8772 }
8773
8774 /// isOperand - Return true if this node is an operand of N.
8775 bool SDValue::isOperandOf(const SDNode *N) const {
8776   for (const SDValue &Op : N->op_values())
8777     if (*this == Op)
8778       return true;
8779   return false;
8780 }
8781
8782 bool SDNode::isOperandOf(const SDNode *N) const {
8783   for (const SDValue &Op : N->op_values())
8784     if (this == Op.getNode())
8785       return true;
8786   return false;
8787 }
8788
8789 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8790 /// be a chain) reaches the specified operand without crossing any
8791 /// side-effecting instructions on any chain path.  In practice, this looks
8792 /// through token factors and non-volatile loads.  In order to remain efficient,
8793 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8794 ///
8795 /// Note that we only need to examine chains when we're searching for
8796 /// side-effects; SelectionDAG requires that all side-effects are represented
8797 /// by chains, even if another operand would force a specific ordering. This
8798 /// constraint is necessary to allow transformations like splitting loads.
8799 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8800                                              unsigned Depth) const {
8801   if (*this == Dest) return true;
8802
8803   // Don't search too deeply, we just want to be able to see through
8804   // TokenFactor's etc.
8805   if (Depth == 0) return false;
8806
8807   // If this is a token factor, all inputs to the TF happen in parallel.
8808   if (getOpcode() == ISD::TokenFactor) {
8809     // First, try a shallow search.
8810     if (is_contained((*this)->ops(), Dest)) {
8811       // We found the chain we want as an operand of this TokenFactor.
8812       // Essentially, we reach the chain without side-effects if we could
8813       // serialize the TokenFactor into a simple chain of operations with
8814       // Dest as the last operation. This is automatically true if the
8815       // chain has one use: there are no other ordering constraints.
8816       // If the chain has more than one use, we give up: some other
8817       // use of Dest might force a side-effect between Dest and the current
8818       // node.
8819       if (Dest.hasOneUse())
8820         return true;
8821     }
8822     // Next, try a deep search: check whether every operand of the TokenFactor
8823     // reaches Dest.
8824     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8825       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8826     });
8827   }
8828
8829   // Loads don't have side effects, look through them.
8830   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8831     if (!Ld->isVolatile())
8832       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8833   }
8834   return false;
8835 }
8836
8837 bool SDNode::hasPredecessor(const SDNode *N) const {
8838   SmallPtrSet<const SDNode *, 32> Visited;
8839   SmallVector<const SDNode *, 16> Worklist;
8840   Worklist.push_back(this);
8841   return hasPredecessorHelper(N, Visited, Worklist);
8842 }
8843
8844 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8845   this->Flags.intersectWith(Flags);
8846 }
8847
8848 SDValue
8849 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8850                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8851   // The pattern must end in an extract from index 0.
8852   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8853       !isNullConstant(Extract->getOperand(1)))
8854     return SDValue();
8855
8856   SDValue Op = Extract->getOperand(0);
8857   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8858
8859   // Match against one of the candidate binary ops.
8860   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8861         return Op.getOpcode() == unsigned(BinOp);
8862       }))
8863     return SDValue();
8864
8865   // At each stage, we're looking for something that looks like:
8866   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8867   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8868   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8869   // %a = binop <8 x i32> %op, %s
8870   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8871   // we expect something like:
8872   // <4,5,6,7,u,u,u,u>
8873   // <2,3,u,u,u,u,u,u>
8874   // <1,u,u,u,u,u,u,u>
8875   unsigned CandidateBinOp = Op.getOpcode();
8876   for (unsigned i = 0; i < Stages; ++i) {
8877     if (Op.getOpcode() != CandidateBinOp)
8878       return SDValue();
8879
8880     SDValue Op0 = Op.getOperand(0);
8881     SDValue Op1 = Op.getOperand(1);
8882
8883     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8884     if (Shuffle) {
8885       Op = Op1;
8886     } else {
8887       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8888       Op = Op0;
8889     }
8890
8891     // The first operand of the shuffle should be the same as the other operand
8892     // of the binop.
8893     if (!Shuffle || Shuffle->getOperand(0) != Op)
8894       return SDValue();
8895
8896     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8897     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8898       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8899         return SDValue();
8900   }
8901
8902   BinOp = (ISD::NodeType)CandidateBinOp;
8903   return Op;
8904 }
8905
8906 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8907   assert(N->getNumValues() == 1 &&
8908          "Can't unroll a vector with multiple results!");
8909
8910   EVT VT = N->getValueType(0);
8911   unsigned NE = VT.getVectorNumElements();
8912   EVT EltVT = VT.getVectorElementType();
8913   SDLoc dl(N);
8914
8915   SmallVector<SDValue, 8> Scalars;
8916   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8917
8918   // If ResNE is 0, fully unroll the vector op.
8919   if (ResNE == 0)
8920     ResNE = NE;
8921   else if (NE > ResNE)
8922     NE = ResNE;
8923
8924   unsigned i;
8925   for (i= 0; i != NE; ++i) {
8926     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8927       SDValue Operand = N->getOperand(j);
8928       EVT OperandVT = Operand.getValueType();
8929       if (OperandVT.isVector()) {
8930         // A vector operand; extract a single element.
8931         EVT OperandEltVT = OperandVT.getVectorElementType();
8932         Operands[j] =
8933             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8934                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8935       } else {
8936         // A scalar operand; just use it as is.
8937         Operands[j] = Operand;
8938       }
8939     }
8940
8941     switch (N->getOpcode()) {
8942     default: {
8943       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8944                                 N->getFlags()));
8945       break;
8946     }
8947     case ISD::VSELECT:
8948       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8949       break;
8950     case ISD::SHL:
8951     case ISD::SRA:
8952     case ISD::SRL:
8953     case ISD::ROTL:
8954     case ISD::ROTR:
8955       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8956                                getShiftAmountOperand(Operands[0].getValueType(),
8957                                                      Operands[1])));
8958       break;
8959     case ISD::SIGN_EXTEND_INREG:
8960     case ISD::FP_ROUND_INREG: {
8961       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8962       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8963                                 Operands[0],
8964                                 getValueType(ExtVT)));
8965     }
8966     }
8967   }
8968
8969   for (; i < ResNE; ++i)
8970     Scalars.push_back(getUNDEF(EltVT));
8971
8972   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8973   return getBuildVector(VecVT, dl, Scalars);
8974 }
8975
8976 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8977                                                   LoadSDNode *Base,
8978                                                   unsigned Bytes,
8979                                                   int Dist) const {
8980   if (LD->isVolatile() || Base->isVolatile())
8981     return false;
8982   if (LD->isIndexed() || Base->isIndexed())
8983     return false;
8984   if (LD->getChain() != Base->getChain())
8985     return false;
8986   EVT VT = LD->getValueType(0);
8987   if (VT.getSizeInBits() / 8 != Bytes)
8988     return false;
8989
8990   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8991   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8992
8993   int64_t Offset = 0;
8994   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8995     return (Dist * Bytes == Offset);
8996   return false;
8997 }
8998
8999 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9000 /// it cannot be inferred.
9001 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9002   // If this is a GlobalAddress + cst, return the alignment.
9003   const GlobalValue *GV;
9004   int64_t GVOffset = 0;
9005   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9006     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9007     KnownBits Known(IdxWidth);
9008     llvm::computeKnownBits(GV, Known, getDataLayout());
9009     unsigned AlignBits = Known.countMinTrailingZeros();
9010     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9011     if (Align)
9012       return MinAlign(Align, GVOffset);
9013   }
9014
9015   // If this is a direct reference to a stack slot, use information about the
9016   // stack slot's alignment.
9017   int FrameIdx = 1 << 31;
9018   int64_t FrameOffset = 0;
9019   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9020     FrameIdx = FI->getIndex();
9021   } else if (isBaseWithConstantOffset(Ptr) &&
9022              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9023     // Handle FI+Cst
9024     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9025     FrameOffset = Ptr.getConstantOperandVal(1);
9026   }
9027
9028   if (FrameIdx != (1 << 31)) {
9029     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9030     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9031                                     FrameOffset);
9032     return FIInfoAlign;
9033   }
9034
9035   return 0;
9036 }
9037
9038 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9039 /// which is split (or expanded) into two not necessarily identical pieces.
9040 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9041   // Currently all types are split in half.
9042   EVT LoVT, HiVT;
9043   if (!VT.isVector())
9044     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9045   else
9046     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9047
9048   return std::make_pair(LoVT, HiVT);
9049 }
9050
9051 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9052 /// low/high part.
9053 std::pair<SDValue, SDValue>
9054 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9055                           const EVT &HiVT) {
9056   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9057          N.getValueType().getVectorNumElements() &&
9058          "More vector elements requested than available!");
9059   SDValue Lo, Hi;
9060   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9061                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9062   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9063                getConstant(LoVT.getVectorNumElements(), DL,
9064                            TLI->getVectorIdxTy(getDataLayout())));
9065   return std::make_pair(Lo, Hi);
9066 }
9067
9068 void SelectionDAG::ExtractVectorElements(SDValue Op,
9069                                          SmallVectorImpl<SDValue> &Args,
9070                                          unsigned Start, unsigned Count) {
9071   EVT VT = Op.getValueType();
9072   if (Count == 0)
9073     Count = VT.getVectorNumElements();
9074
9075   EVT EltVT = VT.getVectorElementType();
9076   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9077   SDLoc SL(Op);
9078   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9079     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9080                            Op, getConstant(i, SL, IdxTy)));
9081   }
9082 }
9083
9084 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9085 unsigned GlobalAddressSDNode::getAddressSpace() const {
9086   return getGlobal()->getType()->getAddressSpace();
9087 }
9088
9089 Type *ConstantPoolSDNode::getType() const {
9090   if (isMachineConstantPoolEntry())
9091     return Val.MachineCPVal->getType();
9092   return Val.ConstVal->getType();
9093 }
9094
9095 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9096                                         unsigned &SplatBitSize,
9097                                         bool &HasAnyUndefs,
9098                                         unsigned MinSplatBits,
9099                                         bool IsBigEndian) const {
9100   EVT VT = getValueType(0);
9101   assert(VT.isVector() && "Expected a vector type");
9102   unsigned VecWidth = VT.getSizeInBits();
9103   if (MinSplatBits > VecWidth)
9104     return false;
9105
9106   // FIXME: The widths are based on this node's type, but build vectors can
9107   // truncate their operands.
9108   SplatValue = APInt(VecWidth, 0);
9109   SplatUndef = APInt(VecWidth, 0);
9110
9111   // Get the bits. Bits with undefined values (when the corresponding element
9112   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9113   // in SplatValue. If any of the values are not constant, give up and return
9114   // false.
9115   unsigned int NumOps = getNumOperands();
9116   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9117   unsigned EltWidth = VT.getScalarSizeInBits();
9118
9119   for (unsigned j = 0; j < NumOps; ++j) {
9120     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9121     SDValue OpVal = getOperand(i);
9122     unsigned BitPos = j * EltWidth;
9123
9124     if (OpVal.isUndef())
9125       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9126     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9127       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9128     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9129       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9130     else
9131       return false;
9132   }
9133
9134   // The build_vector is all constants or undefs. Find the smallest element
9135   // size that splats the vector.
9136   HasAnyUndefs = (SplatUndef != 0);
9137
9138   // FIXME: This does not work for vectors with elements less than 8 bits.
9139   while (VecWidth > 8) {
9140     unsigned HalfSize = VecWidth / 2;
9141     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9142     APInt LowValue = SplatValue.trunc(HalfSize);
9143     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9144     APInt LowUndef = SplatUndef.trunc(HalfSize);
9145
9146     // If the two halves do not match (ignoring undef bits), stop here.
9147     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9148         MinSplatBits > HalfSize)
9149       break;
9150
9151     SplatValue = HighValue | LowValue;
9152     SplatUndef = HighUndef & LowUndef;
9153
9154     VecWidth = HalfSize;
9155   }
9156
9157   SplatBitSize = VecWidth;
9158   return true;
9159 }
9160
9161 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9162   if (UndefElements) {
9163     UndefElements->clear();
9164     UndefElements->resize(getNumOperands());
9165   }
9166   SDValue Splatted;
9167   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9168     SDValue Op = getOperand(i);
9169     if (Op.isUndef()) {
9170       if (UndefElements)
9171         (*UndefElements)[i] = true;
9172     } else if (!Splatted) {
9173       Splatted = Op;
9174     } else if (Splatted != Op) {
9175       return SDValue();
9176     }
9177   }
9178
9179   if (!Splatted) {
9180     assert(getOperand(0).isUndef() &&
9181            "Can only have a splat without a constant for all undefs.");
9182     return getOperand(0);
9183   }
9184
9185   return Splatted;
9186 }
9187
9188 ConstantSDNode *
9189 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9190   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9191 }
9192
9193 ConstantFPSDNode *
9194 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9195   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9196 }
9197
9198 int32_t
9199 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9200                                                    uint32_t BitWidth) const {
9201   if (ConstantFPSDNode *CN =
9202           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9203     bool IsExact;
9204     APSInt IntVal(BitWidth);
9205     const APFloat &APF = CN->getValueAPF();
9206     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9207             APFloat::opOK ||
9208         !IsExact)
9209       return -1;
9210
9211     return IntVal.exactLogBase2();
9212   }
9213   return -1;
9214 }
9215
9216 bool BuildVectorSDNode::isConstant() const {
9217   for (const SDValue &Op : op_values()) {
9218     unsigned Opc = Op.getOpcode();
9219     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9220       return false;
9221   }
9222   return true;
9223 }
9224
9225 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9226   // Find the first non-undef value in the shuffle mask.
9227   unsigned i, e;
9228   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9229     /* search */;
9230
9231   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
9232
9233   // Make sure all remaining elements are either undef or the same as the first
9234   // non-undef value.
9235   for (int Idx = Mask[i]; i != e; ++i)
9236     if (Mask[i] >= 0 && Mask[i] != Idx)
9237       return false;
9238   return true;
9239 }
9240
9241 // Returns the SDNode if it is a constant integer BuildVector
9242 // or constant integer.
9243 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9244   if (isa<ConstantSDNode>(N))
9245     return N.getNode();
9246   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9247     return N.getNode();
9248   // Treat a GlobalAddress supporting constant offset folding as a
9249   // constant integer.
9250   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9251     if (GA->getOpcode() == ISD::GlobalAddress &&
9252         TLI->isOffsetFoldingLegal(GA))
9253       return GA;
9254   return nullptr;
9255 }
9256
9257 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9258   if (isa<ConstantFPSDNode>(N))
9259     return N.getNode();
9260
9261   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9262     return N.getNode();
9263
9264   return nullptr;
9265 }
9266
9267 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9268   assert(!Node->OperandList && "Node already has operands");
9269   assert(std::numeric_limits<decltype(SDNode::NumOperands)>::max() >=
9270              Vals.size() &&
9271          "too many operands to fit into SDNode");
9272   SDUse *Ops = OperandRecycler.allocate(
9273       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9274
9275   bool IsDivergent = false;
9276   for (unsigned I = 0; I != Vals.size(); ++I) {
9277     Ops[I].setUser(Node);
9278     Ops[I].setInitial(Vals[I]);
9279     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9280       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9281   }
9282   Node->NumOperands = Vals.size();
9283   Node->OperandList = Ops;
9284   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9285   if (!TLI->isSDNodeAlwaysUniform(Node))
9286     Node->SDNodeBits.IsDivergent = IsDivergent;
9287   checkForCycles(Node);
9288 }
9289
9290 #ifndef NDEBUG
9291 static void checkForCyclesHelper(const SDNode *N,
9292                                  SmallPtrSetImpl<const SDNode*> &Visited,
9293                                  SmallPtrSetImpl<const SDNode*> &Checked,
9294                                  const llvm::SelectionDAG *DAG) {
9295   // If this node has already been checked, don't check it again.
9296   if (Checked.count(N))
9297     return;
9298
9299   // If a node has already been visited on this depth-first walk, reject it as
9300   // a cycle.
9301   if (!Visited.insert(N).second) {
9302     errs() << "Detected cycle in SelectionDAG\n";
9303     dbgs() << "Offending node:\n";
9304     N->dumprFull(DAG); dbgs() << "\n";
9305     abort();
9306   }
9307
9308   for (const SDValue &Op : N->op_values())
9309     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9310
9311   Checked.insert(N);
9312   Visited.erase(N);
9313 }
9314 #endif
9315
9316 void llvm::checkForCycles(const llvm::SDNode *N,
9317                           const llvm::SelectionDAG *DAG,
9318                           bool force) {
9319 #ifndef NDEBUG
9320   bool check = force;
9321 #ifdef EXPENSIVE_CHECKS
9322   check = true;
9323 #endif  // EXPENSIVE_CHECKS
9324   if (check) {
9325     assert(N && "Checking nonexistent SDNode");
9326     SmallPtrSet<const SDNode*, 32> visited;
9327     SmallPtrSet<const SDNode*, 32> checked;
9328     checkForCyclesHelper(N, visited, checked, DAG);
9329   }
9330 #endif  // !NDEBUG
9331 }
9332
9333 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9334   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9335 }