]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/RuntimeLibcalls.h"
36 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/KnownBits.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/ManagedStatic.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/Mutex.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <cstdlib>
71 #include <limits>
72 #include <set>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78
79 /// makeVTList - Return an instance of the SDVTList struct initialized with the
80 /// specified members.
81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
82   SDVTList Res = {VTs, NumVTs};
83   return Res;
84 }
85
86 // Default null implementations of the callbacks.
87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
89
90 #define DEBUG_TYPE "selectiondag"
91
92 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
93        cl::Hidden, cl::init(true),
94        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
95
96 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
97        cl::desc("Number limit for gluing ld/st of memcpy."),
98        cl::Hidden, cl::init(0));
99
100 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
101   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
102 }
103
104 //===----------------------------------------------------------------------===//
105 //                              ConstantFPSDNode Class
106 //===----------------------------------------------------------------------===//
107
108 /// isExactlyValue - We don't rely on operator== working on double values, as
109 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
110 /// As such, this method can be used to do an exact bit-for-bit comparison of
111 /// two floating point values.
112 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
113   return getValueAPF().bitwiseIsEqual(V);
114 }
115
116 bool ConstantFPSDNode::isValueValidForType(EVT VT,
117                                            const APFloat& Val) {
118   assert(VT.isFloatingPoint() && "Can only convert between FP types");
119
120   // convert modifies in place, so make a copy.
121   APFloat Val2 = APFloat(Val);
122   bool losesInfo;
123   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
124                       APFloat::rmNearestTiesToEven,
125                       &losesInfo);
126   return !losesInfo;
127 }
128
129 //===----------------------------------------------------------------------===//
130 //                              ISD Namespace
131 //===----------------------------------------------------------------------===//
132
133 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
134   auto *BV = dyn_cast<BuildVectorSDNode>(N);
135   if (!BV)
136     return false;
137
138   APInt SplatUndef;
139   unsigned SplatBitSize;
140   bool HasUndefs;
141   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
142   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
143                              EltSize) &&
144          EltSize == SplatBitSize;
145 }
146
147 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
148 // specializations of the more general isConstantSplatVector()?
149
150 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
151   // Look through a bit convert.
152   while (N->getOpcode() == ISD::BITCAST)
153     N = N->getOperand(0).getNode();
154
155   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157   unsigned i = 0, e = N->getNumOperands();
158
159   // Skip over all of the undef values.
160   while (i != e && N->getOperand(i).isUndef())
161     ++i;
162
163   // Do not accept an all-undef vector.
164   if (i == e) return false;
165
166   // Do not accept build_vectors that aren't all constants or which have non-~0
167   // elements. We have to be a bit careful here, as the type of the constant
168   // may not be the same as the type of the vector elements due to type
169   // legalization (the elements are promoted to a legal type for the target and
170   // a vector of a type may be legal when the base element type is not).
171   // We only want to check enough bits to cover the vector elements, because
172   // we care if the resultant vector is all ones, not whether the individual
173   // constants are.
174   SDValue NotZero = N->getOperand(i);
175   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
176   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
177     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
178       return false;
179   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
180     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
181       return false;
182   } else
183     return false;
184
185   // Okay, we have at least one ~0 value, check to see if the rest match or are
186   // undefs. Even with the above element type twiddling, this should be OK, as
187   // the same type legalization should have applied to all the elements.
188   for (++i; i != e; ++i)
189     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
190       return false;
191   return true;
192 }
193
194 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
195   // Look through a bit convert.
196   while (N->getOpcode() == ISD::BITCAST)
197     N = N->getOperand(0).getNode();
198
199   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200
201   bool IsAllUndef = true;
202   for (const SDValue &Op : N->op_values()) {
203     if (Op.isUndef())
204       continue;
205     IsAllUndef = false;
206     // Do not accept build_vectors that aren't all constants or which have non-0
207     // elements. We have to be a bit careful here, as the type of the constant
208     // may not be the same as the type of the vector elements due to type
209     // legalization (the elements are promoted to a legal type for the target
210     // and a vector of a type may be legal when the base element type is not).
211     // We only want to check enough bits to cover the vector elements, because
212     // we care if the resultant vector is all zeros, not whether the individual
213     // constants are.
214     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
215     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
216       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
217         return false;
218     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
219       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
220         return false;
221     } else
222       return false;
223   }
224
225   // Do not accept an all-undef vector.
226   if (IsAllUndef)
227     return false;
228   return true;
229 }
230
231 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
232   if (N->getOpcode() != ISD::BUILD_VECTOR)
233     return false;
234
235   for (const SDValue &Op : N->op_values()) {
236     if (Op.isUndef())
237       continue;
238     if (!isa<ConstantSDNode>(Op))
239       return false;
240   }
241   return true;
242 }
243
244 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
245   if (N->getOpcode() != ISD::BUILD_VECTOR)
246     return false;
247
248   for (const SDValue &Op : N->op_values()) {
249     if (Op.isUndef())
250       continue;
251     if (!isa<ConstantFPSDNode>(Op))
252       return false;
253   }
254   return true;
255 }
256
257 bool ISD::allOperandsUndef(const SDNode *N) {
258   // Return false if the node has no operands.
259   // This is "logically inconsistent" with the definition of "all" but
260   // is probably the desired behavior.
261   if (N->getNumOperands() == 0)
262     return false;
263
264   for (const SDValue &Op : N->op_values())
265     if (!Op.isUndef())
266       return false;
267
268   return true;
269 }
270
271 bool ISD::matchUnaryPredicate(SDValue Op,
272                               std::function<bool(ConstantSDNode *)> Match) {
273   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
274     return Match(Cst);
275
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
282     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
283       return false;
284   }
285   return true;
286 }
287
288 bool ISD::matchBinaryPredicate(
289     SDValue LHS, SDValue RHS,
290     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match) {
291   if (LHS.getValueType() != RHS.getValueType())
292     return false;
293
294   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
295     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
296       return Match(LHSCst, RHSCst);
297
298   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
299       ISD::BUILD_VECTOR != RHS.getOpcode())
300     return false;
301
302   EVT SVT = LHS.getValueType().getScalarType();
303   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
304     auto *LHSCst = dyn_cast<ConstantSDNode>(LHS.getOperand(i));
305     auto *RHSCst = dyn_cast<ConstantSDNode>(RHS.getOperand(i));
306     if (!LHSCst || !RHSCst)
307       return false;
308     if (LHSCst->getValueType(0) != SVT ||
309         LHSCst->getValueType(0) != RHSCst->getValueType(0))
310       return false;
311     if (!Match(LHSCst, RHSCst))
312       return false;
313   }
314   return true;
315 }
316
317 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
318   switch (ExtType) {
319   case ISD::EXTLOAD:
320     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
321   case ISD::SEXTLOAD:
322     return ISD::SIGN_EXTEND;
323   case ISD::ZEXTLOAD:
324     return ISD::ZERO_EXTEND;
325   default:
326     break;
327   }
328
329   llvm_unreachable("Invalid LoadExtType");
330 }
331
332 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
333   // To perform this operation, we just need to swap the L and G bits of the
334   // operation.
335   unsigned OldL = (Operation >> 2) & 1;
336   unsigned OldG = (Operation >> 1) & 1;
337   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
338                        (OldL << 1) |       // New G bit
339                        (OldG << 2));       // New L bit.
340 }
341
342 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
343   unsigned Operation = Op;
344   if (isInteger)
345     Operation ^= 7;   // Flip L, G, E bits, but not U.
346   else
347     Operation ^= 15;  // Flip all of the condition bits.
348
349   if (Operation > ISD::SETTRUE2)
350     Operation &= ~8;  // Don't let N and U bits get set.
351
352   return ISD::CondCode(Operation);
353 }
354
355 /// For an integer comparison, return 1 if the comparison is a signed operation
356 /// and 2 if the result is an unsigned comparison. Return zero if the operation
357 /// does not depend on the sign of the input (setne and seteq).
358 static int isSignedOp(ISD::CondCode Opcode) {
359   switch (Opcode) {
360   default: llvm_unreachable("Illegal integer setcc operation!");
361   case ISD::SETEQ:
362   case ISD::SETNE: return 0;
363   case ISD::SETLT:
364   case ISD::SETLE:
365   case ISD::SETGT:
366   case ISD::SETGE: return 1;
367   case ISD::SETULT:
368   case ISD::SETULE:
369   case ISD::SETUGT:
370   case ISD::SETUGE: return 2;
371   }
372 }
373
374 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
375                                        bool IsInteger) {
376   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
377     // Cannot fold a signed integer setcc with an unsigned integer setcc.
378     return ISD::SETCC_INVALID;
379
380   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
381
382   // If the N and U bits get set, then the resultant comparison DOES suddenly
383   // care about orderedness, and it is true when ordered.
384   if (Op > ISD::SETTRUE2)
385     Op &= ~16;     // Clear the U bit if the N bit is set.
386
387   // Canonicalize illegal integer setcc's.
388   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
389     Op = ISD::SETNE;
390
391   return ISD::CondCode(Op);
392 }
393
394 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
395                                         bool IsInteger) {
396   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
397     // Cannot fold a signed setcc with an unsigned setcc.
398     return ISD::SETCC_INVALID;
399
400   // Combine all of the condition bits.
401   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
402
403   // Canonicalize illegal integer setcc's.
404   if (IsInteger) {
405     switch (Result) {
406     default: break;
407     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
408     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
409     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
410     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
411     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
412     }
413   }
414
415   return Result;
416 }
417
418 //===----------------------------------------------------------------------===//
419 //                           SDNode Profile Support
420 //===----------------------------------------------------------------------===//
421
422 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
423 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
424   ID.AddInteger(OpC);
425 }
426
427 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
428 /// solely with their pointer.
429 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
430   ID.AddPointer(VTList.VTs);
431 }
432
433 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
434 static void AddNodeIDOperands(FoldingSetNodeID &ID,
435                               ArrayRef<SDValue> Ops) {
436   for (auto& Op : Ops) {
437     ID.AddPointer(Op.getNode());
438     ID.AddInteger(Op.getResNo());
439   }
440 }
441
442 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
443 static void AddNodeIDOperands(FoldingSetNodeID &ID,
444                               ArrayRef<SDUse> Ops) {
445   for (auto& Op : Ops) {
446     ID.AddPointer(Op.getNode());
447     ID.AddInteger(Op.getResNo());
448   }
449 }
450
451 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
452                           SDVTList VTList, ArrayRef<SDValue> OpList) {
453   AddNodeIDOpcode(ID, OpC);
454   AddNodeIDValueTypes(ID, VTList);
455   AddNodeIDOperands(ID, OpList);
456 }
457
458 /// If this is an SDNode with special info, add this info to the NodeID data.
459 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
460   switch (N->getOpcode()) {
461   case ISD::TargetExternalSymbol:
462   case ISD::ExternalSymbol:
463   case ISD::MCSymbol:
464     llvm_unreachable("Should only be used on nodes with operands");
465   default: break;  // Normal nodes don't need extra info.
466   case ISD::TargetConstant:
467   case ISD::Constant: {
468     const ConstantSDNode *C = cast<ConstantSDNode>(N);
469     ID.AddPointer(C->getConstantIntValue());
470     ID.AddBoolean(C->isOpaque());
471     break;
472   }
473   case ISD::TargetConstantFP:
474   case ISD::ConstantFP:
475     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
476     break;
477   case ISD::TargetGlobalAddress:
478   case ISD::GlobalAddress:
479   case ISD::TargetGlobalTLSAddress:
480   case ISD::GlobalTLSAddress: {
481     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
482     ID.AddPointer(GA->getGlobal());
483     ID.AddInteger(GA->getOffset());
484     ID.AddInteger(GA->getTargetFlags());
485     break;
486   }
487   case ISD::BasicBlock:
488     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
489     break;
490   case ISD::Register:
491     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
492     break;
493   case ISD::RegisterMask:
494     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
495     break;
496   case ISD::SRCVALUE:
497     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
498     break;
499   case ISD::FrameIndex:
500   case ISD::TargetFrameIndex:
501     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
502     break;
503   case ISD::JumpTable:
504   case ISD::TargetJumpTable:
505     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
506     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
507     break;
508   case ISD::ConstantPool:
509   case ISD::TargetConstantPool: {
510     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
511     ID.AddInteger(CP->getAlignment());
512     ID.AddInteger(CP->getOffset());
513     if (CP->isMachineConstantPoolEntry())
514       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
515     else
516       ID.AddPointer(CP->getConstVal());
517     ID.AddInteger(CP->getTargetFlags());
518     break;
519   }
520   case ISD::TargetIndex: {
521     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
522     ID.AddInteger(TI->getIndex());
523     ID.AddInteger(TI->getOffset());
524     ID.AddInteger(TI->getTargetFlags());
525     break;
526   }
527   case ISD::LOAD: {
528     const LoadSDNode *LD = cast<LoadSDNode>(N);
529     ID.AddInteger(LD->getMemoryVT().getRawBits());
530     ID.AddInteger(LD->getRawSubclassData());
531     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
532     break;
533   }
534   case ISD::STORE: {
535     const StoreSDNode *ST = cast<StoreSDNode>(N);
536     ID.AddInteger(ST->getMemoryVT().getRawBits());
537     ID.AddInteger(ST->getRawSubclassData());
538     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
539     break;
540   }
541   case ISD::MLOAD: {
542     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
543     ID.AddInteger(MLD->getMemoryVT().getRawBits());
544     ID.AddInteger(MLD->getRawSubclassData());
545     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
546     break;
547   }
548   case ISD::MSTORE: {
549     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
550     ID.AddInteger(MST->getMemoryVT().getRawBits());
551     ID.AddInteger(MST->getRawSubclassData());
552     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
553     break;
554   }
555   case ISD::MGATHER: {
556     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
557     ID.AddInteger(MG->getMemoryVT().getRawBits());
558     ID.AddInteger(MG->getRawSubclassData());
559     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
560     break;
561   }
562   case ISD::MSCATTER: {
563     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
564     ID.AddInteger(MS->getMemoryVT().getRawBits());
565     ID.AddInteger(MS->getRawSubclassData());
566     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::ATOMIC_CMP_SWAP:
570   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
571   case ISD::ATOMIC_SWAP:
572   case ISD::ATOMIC_LOAD_ADD:
573   case ISD::ATOMIC_LOAD_SUB:
574   case ISD::ATOMIC_LOAD_AND:
575   case ISD::ATOMIC_LOAD_CLR:
576   case ISD::ATOMIC_LOAD_OR:
577   case ISD::ATOMIC_LOAD_XOR:
578   case ISD::ATOMIC_LOAD_NAND:
579   case ISD::ATOMIC_LOAD_MIN:
580   case ISD::ATOMIC_LOAD_MAX:
581   case ISD::ATOMIC_LOAD_UMIN:
582   case ISD::ATOMIC_LOAD_UMAX:
583   case ISD::ATOMIC_LOAD:
584   case ISD::ATOMIC_STORE: {
585     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
586     ID.AddInteger(AT->getMemoryVT().getRawBits());
587     ID.AddInteger(AT->getRawSubclassData());
588     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::PREFETCH: {
592     const MemSDNode *PF = cast<MemSDNode>(N);
593     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
594     break;
595   }
596   case ISD::VECTOR_SHUFFLE: {
597     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
598     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
599          i != e; ++i)
600       ID.AddInteger(SVN->getMaskElt(i));
601     break;
602   }
603   case ISD::TargetBlockAddress:
604   case ISD::BlockAddress: {
605     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
606     ID.AddPointer(BA->getBlockAddress());
607     ID.AddInteger(BA->getOffset());
608     ID.AddInteger(BA->getTargetFlags());
609     break;
610   }
611   } // end switch (N->getOpcode())
612
613   // Target specific memory nodes could also have address spaces to check.
614   if (N->isTargetMemoryOpcode())
615     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
616 }
617
618 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
619 /// data.
620 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
621   AddNodeIDOpcode(ID, N->getOpcode());
622   // Add the return value info.
623   AddNodeIDValueTypes(ID, N->getVTList());
624   // Add the operand info.
625   AddNodeIDOperands(ID, N->ops());
626
627   // Handle SDNode leafs with special info.
628   AddNodeIDCustom(ID, N);
629 }
630
631 //===----------------------------------------------------------------------===//
632 //                              SelectionDAG Class
633 //===----------------------------------------------------------------------===//
634
635 /// doNotCSE - Return true if CSE should not be performed for this node.
636 static bool doNotCSE(SDNode *N) {
637   if (N->getValueType(0) == MVT::Glue)
638     return true; // Never CSE anything that produces a flag.
639
640   switch (N->getOpcode()) {
641   default: break;
642   case ISD::HANDLENODE:
643   case ISD::EH_LABEL:
644     return true;   // Never CSE these nodes.
645   }
646
647   // Check that remaining values produced are not flags.
648   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
649     if (N->getValueType(i) == MVT::Glue)
650       return true; // Never CSE anything that produces a flag.
651
652   return false;
653 }
654
655 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
656 /// SelectionDAG.
657 void SelectionDAG::RemoveDeadNodes() {
658   // Create a dummy node (which is not added to allnodes), that adds a reference
659   // to the root node, preventing it from being deleted.
660   HandleSDNode Dummy(getRoot());
661
662   SmallVector<SDNode*, 128> DeadNodes;
663
664   // Add all obviously-dead nodes to the DeadNodes worklist.
665   for (SDNode &Node : allnodes())
666     if (Node.use_empty())
667       DeadNodes.push_back(&Node);
668
669   RemoveDeadNodes(DeadNodes);
670
671   // If the root changed (e.g. it was a dead load, update the root).
672   setRoot(Dummy.getValue());
673 }
674
675 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
676 /// given list, and any nodes that become unreachable as a result.
677 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
678
679   // Process the worklist, deleting the nodes and adding their uses to the
680   // worklist.
681   while (!DeadNodes.empty()) {
682     SDNode *N = DeadNodes.pop_back_val();
683     // Skip to next node if we've already managed to delete the node. This could
684     // happen if replacing a node causes a node previously added to the node to
685     // be deleted.
686     if (N->getOpcode() == ISD::DELETED_NODE)
687       continue;
688
689     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
690       DUL->NodeDeleted(N, nullptr);
691
692     // Take the node out of the appropriate CSE map.
693     RemoveNodeFromCSEMaps(N);
694
695     // Next, brutally remove the operand list.  This is safe to do, as there are
696     // no cycles in the graph.
697     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
698       SDUse &Use = *I++;
699       SDNode *Operand = Use.getNode();
700       Use.set(SDValue());
701
702       // Now that we removed this operand, see if there are no uses of it left.
703       if (Operand->use_empty())
704         DeadNodes.push_back(Operand);
705     }
706
707     DeallocateNode(N);
708   }
709 }
710
711 void SelectionDAG::RemoveDeadNode(SDNode *N){
712   SmallVector<SDNode*, 16> DeadNodes(1, N);
713
714   // Create a dummy node that adds a reference to the root node, preventing
715   // it from being deleted.  (This matters if the root is an operand of the
716   // dead node.)
717   HandleSDNode Dummy(getRoot());
718
719   RemoveDeadNodes(DeadNodes);
720 }
721
722 void SelectionDAG::DeleteNode(SDNode *N) {
723   // First take this out of the appropriate CSE map.
724   RemoveNodeFromCSEMaps(N);
725
726   // Finally, remove uses due to operands of this node, remove from the
727   // AllNodes list, and delete the node.
728   DeleteNodeNotInCSEMaps(N);
729 }
730
731 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
732   assert(N->getIterator() != AllNodes.begin() &&
733          "Cannot delete the entry node!");
734   assert(N->use_empty() && "Cannot delete a node that is not dead!");
735
736   // Drop all of the operands and decrement used node's use counts.
737   N->DropOperands();
738
739   DeallocateNode(N);
740 }
741
742 void SDDbgInfo::erase(const SDNode *Node) {
743   DbgValMapType::iterator I = DbgValMap.find(Node);
744   if (I == DbgValMap.end())
745     return;
746   for (auto &Val: I->second)
747     Val->setIsInvalidated();
748   DbgValMap.erase(I);
749 }
750
751 void SelectionDAG::DeallocateNode(SDNode *N) {
752   // If we have operands, deallocate them.
753   removeOperands(N);
754
755   NodeAllocator.Deallocate(AllNodes.remove(N));
756
757   // Set the opcode to DELETED_NODE to help catch bugs when node
758   // memory is reallocated.
759   // FIXME: There are places in SDag that have grown a dependency on the opcode
760   // value in the released node.
761   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
762   N->NodeType = ISD::DELETED_NODE;
763
764   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
765   // them and forget about that node.
766   DbgInfo->erase(N);
767 }
768
769 #ifndef NDEBUG
770 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
771 static void VerifySDNode(SDNode *N) {
772   switch (N->getOpcode()) {
773   default:
774     break;
775   case ISD::BUILD_PAIR: {
776     EVT VT = N->getValueType(0);
777     assert(N->getNumValues() == 1 && "Too many results!");
778     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
779            "Wrong return type!");
780     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
781     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
782            "Mismatched operand types!");
783     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
784            "Wrong operand type!");
785     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
786            "Wrong return type size");
787     break;
788   }
789   case ISD::BUILD_VECTOR: {
790     assert(N->getNumValues() == 1 && "Too many results!");
791     assert(N->getValueType(0).isVector() && "Wrong return type!");
792     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
793            "Wrong number of operands!");
794     EVT EltVT = N->getValueType(0).getVectorElementType();
795     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
796       assert((I->getValueType() == EltVT ||
797              (EltVT.isInteger() && I->getValueType().isInteger() &&
798               EltVT.bitsLE(I->getValueType()))) &&
799             "Wrong operand type!");
800       assert(I->getValueType() == N->getOperand(0).getValueType() &&
801              "Operands must all have the same type");
802     }
803     break;
804   }
805   }
806 }
807 #endif // NDEBUG
808
809 /// Insert a newly allocated node into the DAG.
810 ///
811 /// Handles insertion into the all nodes list and CSE map, as well as
812 /// verification and other common operations when a new node is allocated.
813 void SelectionDAG::InsertNode(SDNode *N) {
814   AllNodes.push_back(N);
815 #ifndef NDEBUG
816   N->PersistentId = NextPersistentId++;
817   VerifySDNode(N);
818 #endif
819 }
820
821 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
822 /// correspond to it.  This is useful when we're about to delete or repurpose
823 /// the node.  We don't want future request for structurally identical nodes
824 /// to return N anymore.
825 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
826   bool Erased = false;
827   switch (N->getOpcode()) {
828   case ISD::HANDLENODE: return false;  // noop.
829   case ISD::CONDCODE:
830     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
831            "Cond code doesn't exist!");
832     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
833     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
834     break;
835   case ISD::ExternalSymbol:
836     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
837     break;
838   case ISD::TargetExternalSymbol: {
839     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
840     Erased = TargetExternalSymbols.erase(
841                std::pair<std::string,unsigned char>(ESN->getSymbol(),
842                                                     ESN->getTargetFlags()));
843     break;
844   }
845   case ISD::MCSymbol: {
846     auto *MCSN = cast<MCSymbolSDNode>(N);
847     Erased = MCSymbols.erase(MCSN->getMCSymbol());
848     break;
849   }
850   case ISD::VALUETYPE: {
851     EVT VT = cast<VTSDNode>(N)->getVT();
852     if (VT.isExtended()) {
853       Erased = ExtendedValueTypeNodes.erase(VT);
854     } else {
855       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
856       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
857     }
858     break;
859   }
860   default:
861     // Remove it from the CSE Map.
862     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
863     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
864     Erased = CSEMap.RemoveNode(N);
865     break;
866   }
867 #ifndef NDEBUG
868   // Verify that the node was actually in one of the CSE maps, unless it has a
869   // flag result (which cannot be CSE'd) or is one of the special cases that are
870   // not subject to CSE.
871   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
872       !N->isMachineOpcode() && !doNotCSE(N)) {
873     N->dump(this);
874     dbgs() << "\n";
875     llvm_unreachable("Node is not in map!");
876   }
877 #endif
878   return Erased;
879 }
880
881 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
882 /// maps and modified in place. Add it back to the CSE maps, unless an identical
883 /// node already exists, in which case transfer all its users to the existing
884 /// node. This transfer can potentially trigger recursive merging.
885 void
886 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
887   // For node types that aren't CSE'd, just act as if no identical node
888   // already exists.
889   if (!doNotCSE(N)) {
890     SDNode *Existing = CSEMap.GetOrInsertNode(N);
891     if (Existing != N) {
892       // If there was already an existing matching node, use ReplaceAllUsesWith
893       // to replace the dead one with the existing one.  This can cause
894       // recursive merging of other unrelated nodes down the line.
895       ReplaceAllUsesWith(N, Existing);
896
897       // N is now dead. Inform the listeners and delete it.
898       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
899         DUL->NodeDeleted(N, Existing);
900       DeleteNodeNotInCSEMaps(N);
901       return;
902     }
903   }
904
905   // If the node doesn't already exist, we updated it.  Inform listeners.
906   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
907     DUL->NodeUpdated(N);
908 }
909
910 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
911 /// were replaced with those specified.  If this node is never memoized,
912 /// return null, otherwise return a pointer to the slot it would take.  If a
913 /// node already exists with these operands, the slot will be non-null.
914 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
915                                            void *&InsertPos) {
916   if (doNotCSE(N))
917     return nullptr;
918
919   SDValue Ops[] = { Op };
920   FoldingSetNodeID ID;
921   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
922   AddNodeIDCustom(ID, N);
923   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
924   if (Node)
925     Node->intersectFlagsWith(N->getFlags());
926   return Node;
927 }
928
929 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
930 /// were replaced with those specified.  If this node is never memoized,
931 /// return null, otherwise return a pointer to the slot it would take.  If a
932 /// node already exists with these operands, the slot will be non-null.
933 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
934                                            SDValue Op1, SDValue Op2,
935                                            void *&InsertPos) {
936   if (doNotCSE(N))
937     return nullptr;
938
939   SDValue Ops[] = { Op1, Op2 };
940   FoldingSetNodeID ID;
941   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
942   AddNodeIDCustom(ID, N);
943   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
944   if (Node)
945     Node->intersectFlagsWith(N->getFlags());
946   return Node;
947 }
948
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified.  If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take.  If a
952 /// node already exists with these operands, the slot will be non-null.
953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
954                                            void *&InsertPos) {
955   if (doNotCSE(N))
956     return nullptr;
957
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966
967 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
968   Type *Ty = VT == MVT::iPTR ?
969                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
970                    VT.getTypeForEVT(*getContext());
971
972   return getDataLayout().getABITypeAlignment(Ty);
973 }
974
975 // EntryNode could meaningfully have debug info if we can find it...
976 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
977     : TM(tm), OptLevel(OL),
978       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
979       Root(getEntryNode()) {
980   InsertNode(&EntryNode);
981   DbgInfo = new SDDbgInfo();
982 }
983
984 void SelectionDAG::init(MachineFunction &NewMF,
985                         OptimizationRemarkEmitter &NewORE,
986                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
987                         DivergenceAnalysis * Divergence) {
988   MF = &NewMF;
989   SDAGISelPass = PassPtr;
990   ORE = &NewORE;
991   TLI = getSubtarget().getTargetLowering();
992   TSI = getSubtarget().getSelectionDAGInfo();
993   LibInfo = LibraryInfo;
994   Context = &MF->getFunction().getContext();
995   DA = Divergence;
996 }
997
998 SelectionDAG::~SelectionDAG() {
999   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1000   allnodes_clear();
1001   OperandRecycler.clear(OperandAllocator);
1002   delete DbgInfo;
1003 }
1004
1005 void SelectionDAG::allnodes_clear() {
1006   assert(&*AllNodes.begin() == &EntryNode);
1007   AllNodes.remove(AllNodes.begin());
1008   while (!AllNodes.empty())
1009     DeallocateNode(&AllNodes.front());
1010 #ifndef NDEBUG
1011   NextPersistentId = 0;
1012 #endif
1013 }
1014
1015 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1016                                           void *&InsertPos) {
1017   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1018   if (N) {
1019     switch (N->getOpcode()) {
1020     default: break;
1021     case ISD::Constant:
1022     case ISD::ConstantFP:
1023       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1024                        "debug location.  Use another overload.");
1025     }
1026   }
1027   return N;
1028 }
1029
1030 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1031                                           const SDLoc &DL, void *&InsertPos) {
1032   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1033   if (N) {
1034     switch (N->getOpcode()) {
1035     case ISD::Constant:
1036     case ISD::ConstantFP:
1037       // Erase debug location from the node if the node is used at several
1038       // different places. Do not propagate one location to all uses as it
1039       // will cause a worse single stepping debugging experience.
1040       if (N->getDebugLoc() != DL.getDebugLoc())
1041         N->setDebugLoc(DebugLoc());
1042       break;
1043     default:
1044       // When the node's point of use is located earlier in the instruction
1045       // sequence than its prior point of use, update its debug info to the
1046       // earlier location.
1047       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1048         N->setDebugLoc(DL.getDebugLoc());
1049       break;
1050     }
1051   }
1052   return N;
1053 }
1054
1055 void SelectionDAG::clear() {
1056   allnodes_clear();
1057   OperandRecycler.clear(OperandAllocator);
1058   OperandAllocator.Reset();
1059   CSEMap.clear();
1060
1061   ExtendedValueTypeNodes.clear();
1062   ExternalSymbols.clear();
1063   TargetExternalSymbols.clear();
1064   MCSymbols.clear();
1065   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1066             static_cast<CondCodeSDNode*>(nullptr));
1067   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1068             static_cast<SDNode*>(nullptr));
1069
1070   EntryNode.UseList = nullptr;
1071   InsertNode(&EntryNode);
1072   Root = getEntryNode();
1073   DbgInfo->clear();
1074 }
1075
1076 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1077   return VT.bitsGT(Op.getValueType())
1078              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1079              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1080 }
1081
1082 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1083   return VT.bitsGT(Op.getValueType()) ?
1084     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1085     getNode(ISD::TRUNCATE, DL, VT, Op);
1086 }
1087
1088 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1089   return VT.bitsGT(Op.getValueType()) ?
1090     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1091     getNode(ISD::TRUNCATE, DL, VT, Op);
1092 }
1093
1094 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1095   return VT.bitsGT(Op.getValueType()) ?
1096     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1097     getNode(ISD::TRUNCATE, DL, VT, Op);
1098 }
1099
1100 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1101                                         EVT OpVT) {
1102   if (VT.bitsLE(Op.getValueType()))
1103     return getNode(ISD::TRUNCATE, SL, VT, Op);
1104
1105   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1106   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1107 }
1108
1109 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1110   assert(!VT.isVector() &&
1111          "getZeroExtendInReg should use the vector element type instead of "
1112          "the vector type!");
1113   if (Op.getValueType().getScalarType() == VT) return Op;
1114   unsigned BitWidth = Op.getScalarValueSizeInBits();
1115   APInt Imm = APInt::getLowBitsSet(BitWidth,
1116                                    VT.getSizeInBits());
1117   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1118                  getConstant(Imm, DL, Op.getValueType()));
1119 }
1120
1121 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1122                                               EVT VT) {
1123   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1124   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1125          "The sizes of the input and result must match in order to perform the "
1126          "extend in-register.");
1127   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1128          "The destination vector type must have fewer lanes than the input.");
1129   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1130 }
1131
1132 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1133                                                EVT VT) {
1134   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1135   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1136          "The sizes of the input and result must match in order to perform the "
1137          "extend in-register.");
1138   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1139          "The destination vector type must have fewer lanes than the input.");
1140   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1141 }
1142
1143 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1144                                                EVT VT) {
1145   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1146   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1147          "The sizes of the input and result must match in order to perform the "
1148          "extend in-register.");
1149   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1150          "The destination vector type must have fewer lanes than the input.");
1151   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1152 }
1153
1154 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1155 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1156   EVT EltVT = VT.getScalarType();
1157   SDValue NegOne =
1158     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1159   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1160 }
1161
1162 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1163   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1164   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1165 }
1166
1167 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1168                                       EVT OpVT) {
1169   if (!V)
1170     return getConstant(0, DL, VT);
1171
1172   switch (TLI->getBooleanContents(OpVT)) {
1173   case TargetLowering::ZeroOrOneBooleanContent:
1174   case TargetLowering::UndefinedBooleanContent:
1175     return getConstant(1, DL, VT);
1176   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1177     return getAllOnesConstant(DL, VT);
1178   }
1179   llvm_unreachable("Unexpected boolean content enum!");
1180 }
1181
1182 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1183                                   bool isT, bool isO) {
1184   EVT EltVT = VT.getScalarType();
1185   assert((EltVT.getSizeInBits() >= 64 ||
1186          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1187          "getConstant with a uint64_t value that doesn't fit in the type!");
1188   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1189 }
1190
1191 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1192                                   bool isT, bool isO) {
1193   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1194 }
1195
1196 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1197                                   EVT VT, bool isT, bool isO) {
1198   assert(VT.isInteger() && "Cannot create FP integer constant!");
1199
1200   EVT EltVT = VT.getScalarType();
1201   const ConstantInt *Elt = &Val;
1202
1203   // In some cases the vector type is legal but the element type is illegal and
1204   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1205   // inserted value (the type does not need to match the vector element type).
1206   // Any extra bits introduced will be truncated away.
1207   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1208       TargetLowering::TypePromoteInteger) {
1209    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1210    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1211    Elt = ConstantInt::get(*getContext(), NewVal);
1212   }
1213   // In other cases the element type is illegal and needs to be expanded, for
1214   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1215   // the value into n parts and use a vector type with n-times the elements.
1216   // Then bitcast to the type requested.
1217   // Legalizing constants too early makes the DAGCombiner's job harder so we
1218   // only legalize if the DAG tells us we must produce legal types.
1219   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1220            TLI->getTypeAction(*getContext(), EltVT) ==
1221            TargetLowering::TypeExpandInteger) {
1222     const APInt &NewVal = Elt->getValue();
1223     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1224     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1225     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1226     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1227
1228     // Check the temporary vector is the correct size. If this fails then
1229     // getTypeToTransformTo() probably returned a type whose size (in bits)
1230     // isn't a power-of-2 factor of the requested type size.
1231     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1232
1233     SmallVector<SDValue, 2> EltParts;
1234     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1235       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1236                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1237                                      ViaEltVT, isT, isO));
1238     }
1239
1240     // EltParts is currently in little endian order. If we actually want
1241     // big-endian order then reverse it now.
1242     if (getDataLayout().isBigEndian())
1243       std::reverse(EltParts.begin(), EltParts.end());
1244
1245     // The elements must be reversed when the element order is different
1246     // to the endianness of the elements (because the BITCAST is itself a
1247     // vector shuffle in this situation). However, we do not need any code to
1248     // perform this reversal because getConstant() is producing a vector
1249     // splat.
1250     // This situation occurs in MIPS MSA.
1251
1252     SmallVector<SDValue, 8> Ops;
1253     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1254       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1255
1256     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1257     return V;
1258   }
1259
1260   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1261          "APInt size does not match type size!");
1262   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1263   FoldingSetNodeID ID;
1264   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1265   ID.AddPointer(Elt);
1266   ID.AddBoolean(isO);
1267   void *IP = nullptr;
1268   SDNode *N = nullptr;
1269   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1270     if (!VT.isVector())
1271       return SDValue(N, 0);
1272
1273   if (!N) {
1274     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1275     CSEMap.InsertNode(N, IP);
1276     InsertNode(N);
1277     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1278   }
1279
1280   SDValue Result(N, 0);
1281   if (VT.isVector())
1282     Result = getSplatBuildVector(VT, DL, Result);
1283
1284   return Result;
1285 }
1286
1287 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1288                                         bool isTarget) {
1289   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1290 }
1291
1292 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1293                                     bool isTarget) {
1294   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1295 }
1296
1297 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1298                                     EVT VT, bool isTarget) {
1299   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1300
1301   EVT EltVT = VT.getScalarType();
1302
1303   // Do the map lookup using the actual bit pattern for the floating point
1304   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1305   // we don't have issues with SNANs.
1306   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1307   FoldingSetNodeID ID;
1308   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1309   ID.AddPointer(&V);
1310   void *IP = nullptr;
1311   SDNode *N = nullptr;
1312   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1313     if (!VT.isVector())
1314       return SDValue(N, 0);
1315
1316   if (!N) {
1317     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1318     CSEMap.InsertNode(N, IP);
1319     InsertNode(N);
1320   }
1321
1322   SDValue Result(N, 0);
1323   if (VT.isVector())
1324     Result = getSplatBuildVector(VT, DL, Result);
1325   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1326   return Result;
1327 }
1328
1329 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1330                                     bool isTarget) {
1331   EVT EltVT = VT.getScalarType();
1332   if (EltVT == MVT::f32)
1333     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1334   else if (EltVT == MVT::f64)
1335     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1336   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1337            EltVT == MVT::f16) {
1338     bool Ignored;
1339     APFloat APF = APFloat(Val);
1340     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1341                 &Ignored);
1342     return getConstantFP(APF, DL, VT, isTarget);
1343   } else
1344     llvm_unreachable("Unsupported type in getConstantFP");
1345 }
1346
1347 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1348                                        EVT VT, int64_t Offset, bool isTargetGA,
1349                                        unsigned char TargetFlags) {
1350   assert((TargetFlags == 0 || isTargetGA) &&
1351          "Cannot set target flags on target-independent globals");
1352
1353   // Truncate (with sign-extension) the offset value to the pointer size.
1354   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1355   if (BitWidth < 64)
1356     Offset = SignExtend64(Offset, BitWidth);
1357
1358   unsigned Opc;
1359   if (GV->isThreadLocal())
1360     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1361   else
1362     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1363
1364   FoldingSetNodeID ID;
1365   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1366   ID.AddPointer(GV);
1367   ID.AddInteger(Offset);
1368   ID.AddInteger(TargetFlags);
1369   void *IP = nullptr;
1370   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1371     return SDValue(E, 0);
1372
1373   auto *N = newSDNode<GlobalAddressSDNode>(
1374       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1375   CSEMap.InsertNode(N, IP);
1376     InsertNode(N);
1377   return SDValue(N, 0);
1378 }
1379
1380 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1381   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1382   FoldingSetNodeID ID;
1383   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1384   ID.AddInteger(FI);
1385   void *IP = nullptr;
1386   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1387     return SDValue(E, 0);
1388
1389   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1390   CSEMap.InsertNode(N, IP);
1391   InsertNode(N);
1392   return SDValue(N, 0);
1393 }
1394
1395 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1396                                    unsigned char TargetFlags) {
1397   assert((TargetFlags == 0 || isTarget) &&
1398          "Cannot set target flags on target-independent jump tables");
1399   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1402   ID.AddInteger(JTI);
1403   ID.AddInteger(TargetFlags);
1404   void *IP = nullptr;
1405   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1406     return SDValue(E, 0);
1407
1408   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1409   CSEMap.InsertNode(N, IP);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413
1414 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1415                                       unsigned Alignment, int Offset,
1416                                       bool isTarget,
1417                                       unsigned char TargetFlags) {
1418   assert((TargetFlags == 0 || isTarget) &&
1419          "Cannot set target flags on target-independent globals");
1420   if (Alignment == 0)
1421     Alignment = MF->getFunction().optForSize()
1422                     ? getDataLayout().getABITypeAlignment(C->getType())
1423                     : getDataLayout().getPrefTypeAlignment(C->getType());
1424   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1425   FoldingSetNodeID ID;
1426   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1427   ID.AddInteger(Alignment);
1428   ID.AddInteger(Offset);
1429   ID.AddPointer(C);
1430   ID.AddInteger(TargetFlags);
1431   void *IP = nullptr;
1432   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1433     return SDValue(E, 0);
1434
1435   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1436                                           TargetFlags);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441
1442 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1443                                       unsigned Alignment, int Offset,
1444                                       bool isTarget,
1445                                       unsigned char TargetFlags) {
1446   assert((TargetFlags == 0 || isTarget) &&
1447          "Cannot set target flags on target-independent globals");
1448   if (Alignment == 0)
1449     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1450   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1451   FoldingSetNodeID ID;
1452   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1453   ID.AddInteger(Alignment);
1454   ID.AddInteger(Offset);
1455   C->addSelectionDAGCSEId(ID);
1456   ID.AddInteger(TargetFlags);
1457   void *IP = nullptr;
1458   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1459     return SDValue(E, 0);
1460
1461   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1462                                           TargetFlags);
1463   CSEMap.InsertNode(N, IP);
1464   InsertNode(N);
1465   return SDValue(N, 0);
1466 }
1467
1468 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1469                                      unsigned char TargetFlags) {
1470   FoldingSetNodeID ID;
1471   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1472   ID.AddInteger(Index);
1473   ID.AddInteger(Offset);
1474   ID.AddInteger(TargetFlags);
1475   void *IP = nullptr;
1476   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1477     return SDValue(E, 0);
1478
1479   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1480   CSEMap.InsertNode(N, IP);
1481   InsertNode(N);
1482   return SDValue(N, 0);
1483 }
1484
1485 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1486   FoldingSetNodeID ID;
1487   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1488   ID.AddPointer(MBB);
1489   void *IP = nullptr;
1490   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1491     return SDValue(E, 0);
1492
1493   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1494   CSEMap.InsertNode(N, IP);
1495   InsertNode(N);
1496   return SDValue(N, 0);
1497 }
1498
1499 SDValue SelectionDAG::getValueType(EVT VT) {
1500   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1501       ValueTypeNodes.size())
1502     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1503
1504   SDNode *&N = VT.isExtended() ?
1505     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1506
1507   if (N) return SDValue(N, 0);
1508   N = newSDNode<VTSDNode>(VT);
1509   InsertNode(N);
1510   return SDValue(N, 0);
1511 }
1512
1513 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1514   SDNode *&N = ExternalSymbols[Sym];
1515   if (N) return SDValue(N, 0);
1516   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1517   InsertNode(N);
1518   return SDValue(N, 0);
1519 }
1520
1521 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1522   SDNode *&N = MCSymbols[Sym];
1523   if (N)
1524     return SDValue(N, 0);
1525   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1526   InsertNode(N);
1527   return SDValue(N, 0);
1528 }
1529
1530 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1531                                               unsigned char TargetFlags) {
1532   SDNode *&N =
1533     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1534                                                                TargetFlags)];
1535   if (N) return SDValue(N, 0);
1536   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1537   InsertNode(N);
1538   return SDValue(N, 0);
1539 }
1540
1541 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1542   if ((unsigned)Cond >= CondCodeNodes.size())
1543     CondCodeNodes.resize(Cond+1);
1544
1545   if (!CondCodeNodes[Cond]) {
1546     auto *N = newSDNode<CondCodeSDNode>(Cond);
1547     CondCodeNodes[Cond] = N;
1548     InsertNode(N);
1549   }
1550
1551   return SDValue(CondCodeNodes[Cond], 0);
1552 }
1553
1554 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1555 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1556 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1557   std::swap(N1, N2);
1558   ShuffleVectorSDNode::commuteMask(M);
1559 }
1560
1561 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1562                                        SDValue N2, ArrayRef<int> Mask) {
1563   assert(VT.getVectorNumElements() == Mask.size() &&
1564            "Must have the same number of vector elements as mask elements!");
1565   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1566          "Invalid VECTOR_SHUFFLE");
1567
1568   // Canonicalize shuffle undef, undef -> undef
1569   if (N1.isUndef() && N2.isUndef())
1570     return getUNDEF(VT);
1571
1572   // Validate that all indices in Mask are within the range of the elements
1573   // input to the shuffle.
1574   int NElts = Mask.size();
1575   assert(llvm::all_of(Mask,
1576                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1577          "Index out of range");
1578
1579   // Copy the mask so we can do any needed cleanup.
1580   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1581
1582   // Canonicalize shuffle v, v -> v, undef
1583   if (N1 == N2) {
1584     N2 = getUNDEF(VT);
1585     for (int i = 0; i != NElts; ++i)
1586       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1587   }
1588
1589   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1590   if (N1.isUndef())
1591     commuteShuffle(N1, N2, MaskVec);
1592
1593   if (TLI->hasVectorBlend()) {
1594     // If shuffling a splat, try to blend the splat instead. We do this here so
1595     // that even when this arises during lowering we don't have to re-handle it.
1596     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1597       BitVector UndefElements;
1598       SDValue Splat = BV->getSplatValue(&UndefElements);
1599       if (!Splat)
1600         return;
1601
1602       for (int i = 0; i < NElts; ++i) {
1603         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1604           continue;
1605
1606         // If this input comes from undef, mark it as such.
1607         if (UndefElements[MaskVec[i] - Offset]) {
1608           MaskVec[i] = -1;
1609           continue;
1610         }
1611
1612         // If we can blend a non-undef lane, use that instead.
1613         if (!UndefElements[i])
1614           MaskVec[i] = i + Offset;
1615       }
1616     };
1617     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1618       BlendSplat(N1BV, 0);
1619     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1620       BlendSplat(N2BV, NElts);
1621   }
1622
1623   // Canonicalize all index into lhs, -> shuffle lhs, undef
1624   // Canonicalize all index into rhs, -> shuffle rhs, undef
1625   bool AllLHS = true, AllRHS = true;
1626   bool N2Undef = N2.isUndef();
1627   for (int i = 0; i != NElts; ++i) {
1628     if (MaskVec[i] >= NElts) {
1629       if (N2Undef)
1630         MaskVec[i] = -1;
1631       else
1632         AllLHS = false;
1633     } else if (MaskVec[i] >= 0) {
1634       AllRHS = false;
1635     }
1636   }
1637   if (AllLHS && AllRHS)
1638     return getUNDEF(VT);
1639   if (AllLHS && !N2Undef)
1640     N2 = getUNDEF(VT);
1641   if (AllRHS) {
1642     N1 = getUNDEF(VT);
1643     commuteShuffle(N1, N2, MaskVec);
1644   }
1645   // Reset our undef status after accounting for the mask.
1646   N2Undef = N2.isUndef();
1647   // Re-check whether both sides ended up undef.
1648   if (N1.isUndef() && N2Undef)
1649     return getUNDEF(VT);
1650
1651   // If Identity shuffle return that node.
1652   bool Identity = true, AllSame = true;
1653   for (int i = 0; i != NElts; ++i) {
1654     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1655     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1656   }
1657   if (Identity && NElts)
1658     return N1;
1659
1660   // Shuffling a constant splat doesn't change the result.
1661   if (N2Undef) {
1662     SDValue V = N1;
1663
1664     // Look through any bitcasts. We check that these don't change the number
1665     // (and size) of elements and just changes their types.
1666     while (V.getOpcode() == ISD::BITCAST)
1667       V = V->getOperand(0);
1668
1669     // A splat should always show up as a build vector node.
1670     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1671       BitVector UndefElements;
1672       SDValue Splat = BV->getSplatValue(&UndefElements);
1673       // If this is a splat of an undef, shuffling it is also undef.
1674       if (Splat && Splat.isUndef())
1675         return getUNDEF(VT);
1676
1677       bool SameNumElts =
1678           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1679
1680       // We only have a splat which can skip shuffles if there is a splatted
1681       // value and no undef lanes rearranged by the shuffle.
1682       if (Splat && UndefElements.none()) {
1683         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1684         // number of elements match or the value splatted is a zero constant.
1685         if (SameNumElts)
1686           return N1;
1687         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1688           if (C->isNullValue())
1689             return N1;
1690       }
1691
1692       // If the shuffle itself creates a splat, build the vector directly.
1693       if (AllSame && SameNumElts) {
1694         EVT BuildVT = BV->getValueType(0);
1695         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1696         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1697
1698         // We may have jumped through bitcasts, so the type of the
1699         // BUILD_VECTOR may not match the type of the shuffle.
1700         if (BuildVT != VT)
1701           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1702         return NewBV;
1703       }
1704     }
1705   }
1706
1707   FoldingSetNodeID ID;
1708   SDValue Ops[2] = { N1, N2 };
1709   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1710   for (int i = 0; i != NElts; ++i)
1711     ID.AddInteger(MaskVec[i]);
1712
1713   void* IP = nullptr;
1714   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1715     return SDValue(E, 0);
1716
1717   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1718   // SDNode doesn't have access to it.  This memory will be "leaked" when
1719   // the node is deallocated, but recovered when the NodeAllocator is released.
1720   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1721   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1722
1723   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1724                                            dl.getDebugLoc(), MaskAlloc);
1725   createOperands(N, Ops);
1726
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   SDValue V = SDValue(N, 0);
1730   NewSDValueDbgMsg(V, "Creating new node: ", this);
1731   return V;
1732 }
1733
1734 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1735   EVT VT = SV.getValueType(0);
1736   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1737   ShuffleVectorSDNode::commuteMask(MaskVec);
1738
1739   SDValue Op0 = SV.getOperand(0);
1740   SDValue Op1 = SV.getOperand(1);
1741   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1742 }
1743
1744 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1745   FoldingSetNodeID ID;
1746   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1747   ID.AddInteger(RegNo);
1748   void *IP = nullptr;
1749   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1750     return SDValue(E, 0);
1751
1752   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1753   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1754   CSEMap.InsertNode(N, IP);
1755   InsertNode(N);
1756   return SDValue(N, 0);
1757 }
1758
1759 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1760   FoldingSetNodeID ID;
1761   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1762   ID.AddPointer(RegMask);
1763   void *IP = nullptr;
1764   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1765     return SDValue(E, 0);
1766
1767   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1768   CSEMap.InsertNode(N, IP);
1769   InsertNode(N);
1770   return SDValue(N, 0);
1771 }
1772
1773 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1774                                  MCSymbol *Label) {
1775   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1776 }
1777
1778 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1779                                    SDValue Root, MCSymbol *Label) {
1780   FoldingSetNodeID ID;
1781   SDValue Ops[] = { Root };
1782   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1783   ID.AddPointer(Label);
1784   void *IP = nullptr;
1785   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1786     return SDValue(E, 0);
1787
1788   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1789   createOperands(N, Ops);
1790
1791   CSEMap.InsertNode(N, IP);
1792   InsertNode(N);
1793   return SDValue(N, 0);
1794 }
1795
1796 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1797                                       int64_t Offset,
1798                                       bool isTarget,
1799                                       unsigned char TargetFlags) {
1800   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1801
1802   FoldingSetNodeID ID;
1803   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1804   ID.AddPointer(BA);
1805   ID.AddInteger(Offset);
1806   ID.AddInteger(TargetFlags);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810
1811   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1812   CSEMap.InsertNode(N, IP);
1813   InsertNode(N);
1814   return SDValue(N, 0);
1815 }
1816
1817 SDValue SelectionDAG::getSrcValue(const Value *V) {
1818   assert((!V || V->getType()->isPointerTy()) &&
1819          "SrcValue is not a pointer?");
1820
1821   FoldingSetNodeID ID;
1822   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1823   ID.AddPointer(V);
1824
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828
1829   auto *N = newSDNode<SrcValueSDNode>(V);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834
1835 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1836   FoldingSetNodeID ID;
1837   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1838   ID.AddPointer(MD);
1839
1840   void *IP = nullptr;
1841   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1842     return SDValue(E, 0);
1843
1844   auto *N = newSDNode<MDNodeSDNode>(MD);
1845   CSEMap.InsertNode(N, IP);
1846   InsertNode(N);
1847   return SDValue(N, 0);
1848 }
1849
1850 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1851   if (VT == V.getValueType())
1852     return V;
1853
1854   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1855 }
1856
1857 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1858                                        unsigned SrcAS, unsigned DestAS) {
1859   SDValue Ops[] = {Ptr};
1860   FoldingSetNodeID ID;
1861   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1862   ID.AddInteger(SrcAS);
1863   ID.AddInteger(DestAS);
1864
1865   void *IP = nullptr;
1866   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1867     return SDValue(E, 0);
1868
1869   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1870                                            VT, SrcAS, DestAS);
1871   createOperands(N, Ops);
1872
1873   CSEMap.InsertNode(N, IP);
1874   InsertNode(N);
1875   return SDValue(N, 0);
1876 }
1877
1878 /// getShiftAmountOperand - Return the specified value casted to
1879 /// the target's desired shift amount type.
1880 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1881   EVT OpTy = Op.getValueType();
1882   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1883   if (OpTy == ShTy || OpTy.isVector()) return Op;
1884
1885   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1886 }
1887
1888 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1889   SDLoc dl(Node);
1890   const TargetLowering &TLI = getTargetLoweringInfo();
1891   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1892   EVT VT = Node->getValueType(0);
1893   SDValue Tmp1 = Node->getOperand(0);
1894   SDValue Tmp2 = Node->getOperand(1);
1895   unsigned Align = Node->getConstantOperandVal(3);
1896
1897   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1898                                Tmp2, MachinePointerInfo(V));
1899   SDValue VAList = VAListLoad;
1900
1901   if (Align > TLI.getMinStackArgumentAlignment()) {
1902     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1903
1904     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1905                      getConstant(Align - 1, dl, VAList.getValueType()));
1906
1907     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1908                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1909   }
1910
1911   // Increment the pointer, VAList, to the next vaarg
1912   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1913                  getConstant(getDataLayout().getTypeAllocSize(
1914                                                VT.getTypeForEVT(*getContext())),
1915                              dl, VAList.getValueType()));
1916   // Store the incremented VAList to the legalized pointer
1917   Tmp1 =
1918       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1919   // Load the actual argument out of the pointer VAList
1920   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1921 }
1922
1923 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1924   SDLoc dl(Node);
1925   const TargetLowering &TLI = getTargetLoweringInfo();
1926   // This defaults to loading a pointer from the input and storing it to the
1927   // output, returning the chain.
1928   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1929   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1930   SDValue Tmp1 =
1931       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1932               Node->getOperand(2), MachinePointerInfo(VS));
1933   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1934                   MachinePointerInfo(VD));
1935 }
1936
1937 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1938   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1939   unsigned ByteSize = VT.getStoreSize();
1940   Type *Ty = VT.getTypeForEVT(*getContext());
1941   unsigned StackAlign =
1942       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1943
1944   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1945   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1946 }
1947
1948 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1949   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1950   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1951   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1952   const DataLayout &DL = getDataLayout();
1953   unsigned Align =
1954       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1955
1956   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1957   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1958   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1959 }
1960
1961 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1962                                 ISD::CondCode Cond, const SDLoc &dl) {
1963   EVT OpVT = N1.getValueType();
1964
1965   // These setcc operations always fold.
1966   switch (Cond) {
1967   default: break;
1968   case ISD::SETFALSE:
1969   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1970   case ISD::SETTRUE:
1971   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1972
1973   case ISD::SETOEQ:
1974   case ISD::SETOGT:
1975   case ISD::SETOGE:
1976   case ISD::SETOLT:
1977   case ISD::SETOLE:
1978   case ISD::SETONE:
1979   case ISD::SETO:
1980   case ISD::SETUO:
1981   case ISD::SETUEQ:
1982   case ISD::SETUNE:
1983     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1984     break;
1985   }
1986
1987   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1988     const APInt &C2 = N2C->getAPIntValue();
1989     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1990       const APInt &C1 = N1C->getAPIntValue();
1991
1992       switch (Cond) {
1993       default: llvm_unreachable("Unknown integer setcc!");
1994       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1995       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1996       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1997       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1998       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1999       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2000       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2001       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2002       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2003       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2004       }
2005     }
2006   }
2007   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
2008     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
2009       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
2010       switch (Cond) {
2011       default: break;
2012       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2013                           return getUNDEF(VT);
2014                         LLVM_FALLTHROUGH;
2015       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2016                                                OpVT);
2017       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2018                           return getUNDEF(VT);
2019                         LLVM_FALLTHROUGH;
2020       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2021                                                R==APFloat::cmpLessThan, dl, VT,
2022                                                OpVT);
2023       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2024                           return getUNDEF(VT);
2025                         LLVM_FALLTHROUGH;
2026       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2027                                                OpVT);
2028       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2029                           return getUNDEF(VT);
2030                         LLVM_FALLTHROUGH;
2031       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2032                                                VT, OpVT);
2033       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2034                           return getUNDEF(VT);
2035                         LLVM_FALLTHROUGH;
2036       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2037                                                R==APFloat::cmpEqual, dl, VT,
2038                                                OpVT);
2039       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2040                           return getUNDEF(VT);
2041                         LLVM_FALLTHROUGH;
2042       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2043                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2044       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2045                                                OpVT);
2046       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2047                                                OpVT);
2048       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2049                                                R==APFloat::cmpEqual, dl, VT,
2050                                                OpVT);
2051       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2052                                                OpVT);
2053       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2054                                                R==APFloat::cmpLessThan, dl, VT,
2055                                                OpVT);
2056       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2057                                                R==APFloat::cmpUnordered, dl, VT,
2058                                                OpVT);
2059       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2060                                                VT, OpVT);
2061       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2062                                                OpVT);
2063       }
2064     } else {
2065       // Ensure that the constant occurs on the RHS.
2066       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2067       MVT CompVT = N1.getValueType().getSimpleVT();
2068       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2069         return SDValue();
2070
2071       return getSetCC(dl, VT, N2, N1, SwappedCond);
2072     }
2073   }
2074
2075   // Could not fold it.
2076   return SDValue();
2077 }
2078
2079 /// See if the specified operand can be simplified with the knowledge that only
2080 /// the bits specified by Mask are used.
2081 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2082   switch (V.getOpcode()) {
2083   default:
2084     break;
2085   case ISD::Constant: {
2086     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2087     assert(CV && "Const value should be ConstSDNode.");
2088     const APInt &CVal = CV->getAPIntValue();
2089     APInt NewVal = CVal & Mask;
2090     if (NewVal != CVal)
2091       return getConstant(NewVal, SDLoc(V), V.getValueType());
2092     break;
2093   }
2094   case ISD::OR:
2095   case ISD::XOR:
2096     // If the LHS or RHS don't contribute bits to the or, drop them.
2097     if (MaskedValueIsZero(V.getOperand(0), Mask))
2098       return V.getOperand(1);
2099     if (MaskedValueIsZero(V.getOperand(1), Mask))
2100       return V.getOperand(0);
2101     break;
2102   case ISD::SRL:
2103     // Only look at single-use SRLs.
2104     if (!V.getNode()->hasOneUse())
2105       break;
2106     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2107       // See if we can recursively simplify the LHS.
2108       unsigned Amt = RHSC->getZExtValue();
2109
2110       // Watch out for shift count overflow though.
2111       if (Amt >= Mask.getBitWidth())
2112         break;
2113       APInt NewMask = Mask << Amt;
2114       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2115         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2116                        V.getOperand(1));
2117     }
2118     break;
2119   case ISD::AND: {
2120     // X & -1 -> X (ignoring bits which aren't demanded).
2121     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
2122     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
2123       return V.getOperand(0);
2124     break;
2125   }
2126   case ISD::ANY_EXTEND: {
2127     SDValue Src = V.getOperand(0);
2128     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2129     // Being conservative here - only peek through if we only demand bits in the
2130     // non-extended source (even though the extended bits are technically undef).
2131     if (Mask.getActiveBits() > SrcBitWidth)
2132       break;
2133     APInt SrcMask = Mask.trunc(SrcBitWidth);
2134     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2135       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2136     break;
2137   }
2138   }
2139   return SDValue();
2140 }
2141
2142 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2143 /// use this predicate to simplify operations downstream.
2144 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2145   unsigned BitWidth = Op.getScalarValueSizeInBits();
2146   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2147 }
2148
2149 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2150 /// this predicate to simplify operations downstream.  Mask is known to be zero
2151 /// for bits that V cannot have.
2152 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2153                                      unsigned Depth) const {
2154   KnownBits Known;
2155   computeKnownBits(Op, Known, Depth);
2156   return Mask.isSubsetOf(Known.Zero);
2157 }
2158
2159 /// Helper function that checks to see if a node is a constant or a
2160 /// build vector of splat constants at least within the demanded elts.
2161 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N,
2162                                                    const APInt &DemandedElts) {
2163   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
2164     return CN;
2165   if (N.getOpcode() != ISD::BUILD_VECTOR)
2166     return nullptr;
2167   EVT VT = N.getValueType();
2168   ConstantSDNode *Cst = nullptr;
2169   unsigned NumElts = VT.getVectorNumElements();
2170   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size");
2171   for (unsigned i = 0; i != NumElts; ++i) {
2172     if (!DemandedElts[i])
2173       continue;
2174     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i));
2175     if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) ||
2176         C->getValueType(0) != VT.getScalarType())
2177       return nullptr;
2178     Cst = C;
2179   }
2180   return Cst;
2181 }
2182
2183 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2184 /// is less than the element bit-width of the shift node, return it.
2185 static const APInt *getValidShiftAmountConstant(SDValue V) {
2186   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2187     // Shifting more than the bitwidth is not valid.
2188     const APInt &ShAmt = SA->getAPIntValue();
2189     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2190       return &ShAmt;
2191   }
2192   return nullptr;
2193 }
2194
2195 /// Determine which bits of Op are known to be either zero or one and return
2196 /// them in Known. For vectors, the known bits are those that are shared by
2197 /// every vector element.
2198 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2199                                     unsigned Depth) const {
2200   EVT VT = Op.getValueType();
2201   APInt DemandedElts = VT.isVector()
2202                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2203                            : APInt(1, 1);
2204   computeKnownBits(Op, Known, DemandedElts, Depth);
2205 }
2206
2207 /// Determine which bits of Op are known to be either zero or one and return
2208 /// them in Known. The DemandedElts argument allows us to only collect the known
2209 /// bits that are shared by the requested vector elements.
2210 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
2211                                     const APInt &DemandedElts,
2212                                     unsigned Depth) const {
2213   unsigned BitWidth = Op.getScalarValueSizeInBits();
2214
2215   Known = KnownBits(BitWidth);   // Don't know anything.
2216
2217   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2218     // We know all of the bits for a constant!
2219     Known.One = C->getAPIntValue();
2220     Known.Zero = ~Known.One;
2221     return;
2222   }
2223   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2224     // We know all of the bits for a constant fp!
2225     Known.One = C->getValueAPF().bitcastToAPInt();
2226     Known.Zero = ~Known.One;
2227     return;
2228   }
2229
2230   if (Depth == 6)
2231     return;  // Limit search depth.
2232
2233   KnownBits Known2;
2234   unsigned NumElts = DemandedElts.getBitWidth();
2235
2236   if (!DemandedElts)
2237     return;  // No demanded elts, better to assume we don't know anything.
2238
2239   unsigned Opcode = Op.getOpcode();
2240   switch (Opcode) {
2241   case ISD::BUILD_VECTOR:
2242     // Collect the known bits that are shared by every demanded vector element.
2243     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2244            "Unexpected vector size");
2245     Known.Zero.setAllBits(); Known.One.setAllBits();
2246     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2247       if (!DemandedElts[i])
2248         continue;
2249
2250       SDValue SrcOp = Op.getOperand(i);
2251       computeKnownBits(SrcOp, Known2, Depth + 1);
2252
2253       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2254       if (SrcOp.getValueSizeInBits() != BitWidth) {
2255         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2256                "Expected BUILD_VECTOR implicit truncation");
2257         Known2 = Known2.trunc(BitWidth);
2258       }
2259
2260       // Known bits are the values that are shared by every demanded element.
2261       Known.One &= Known2.One;
2262       Known.Zero &= Known2.Zero;
2263
2264       // If we don't know any bits, early out.
2265       if (Known.isUnknown())
2266         break;
2267     }
2268     break;
2269   case ISD::VECTOR_SHUFFLE: {
2270     // Collect the known bits that are shared by every vector element referenced
2271     // by the shuffle.
2272     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2273     Known.Zero.setAllBits(); Known.One.setAllBits();
2274     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2275     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2276     for (unsigned i = 0; i != NumElts; ++i) {
2277       if (!DemandedElts[i])
2278         continue;
2279
2280       int M = SVN->getMaskElt(i);
2281       if (M < 0) {
2282         // For UNDEF elements, we don't know anything about the common state of
2283         // the shuffle result.
2284         Known.resetAll();
2285         DemandedLHS.clearAllBits();
2286         DemandedRHS.clearAllBits();
2287         break;
2288       }
2289
2290       if ((unsigned)M < NumElts)
2291         DemandedLHS.setBit((unsigned)M % NumElts);
2292       else
2293         DemandedRHS.setBit((unsigned)M % NumElts);
2294     }
2295     // Known bits are the values that are shared by every demanded element.
2296     if (!!DemandedLHS) {
2297       SDValue LHS = Op.getOperand(0);
2298       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
2299       Known.One &= Known2.One;
2300       Known.Zero &= Known2.Zero;
2301     }
2302     // If we don't know any bits, early out.
2303     if (Known.isUnknown())
2304       break;
2305     if (!!DemandedRHS) {
2306       SDValue RHS = Op.getOperand(1);
2307       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
2308       Known.One &= Known2.One;
2309       Known.Zero &= Known2.Zero;
2310     }
2311     break;
2312   }
2313   case ISD::CONCAT_VECTORS: {
2314     // Split DemandedElts and test each of the demanded subvectors.
2315     Known.Zero.setAllBits(); Known.One.setAllBits();
2316     EVT SubVectorVT = Op.getOperand(0).getValueType();
2317     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2318     unsigned NumSubVectors = Op.getNumOperands();
2319     for (unsigned i = 0; i != NumSubVectors; ++i) {
2320       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2321       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2322       if (!!DemandedSub) {
2323         SDValue Sub = Op.getOperand(i);
2324         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
2325         Known.One &= Known2.One;
2326         Known.Zero &= Known2.Zero;
2327       }
2328       // If we don't know any bits, early out.
2329       if (Known.isUnknown())
2330         break;
2331     }
2332     break;
2333   }
2334   case ISD::INSERT_SUBVECTOR: {
2335     // If we know the element index, demand any elements from the subvector and
2336     // the remainder from the src its inserted into, otherwise demand them all.
2337     SDValue Src = Op.getOperand(0);
2338     SDValue Sub = Op.getOperand(1);
2339     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2340     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2341     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2342       Known.One.setAllBits();
2343       Known.Zero.setAllBits();
2344       uint64_t Idx = SubIdx->getZExtValue();
2345       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2346       if (!!DemandedSubElts) {
2347         computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1);
2348         if (Known.isUnknown())
2349           break; // early-out.
2350       }
2351       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2352       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2353       if (!!DemandedSrcElts) {
2354         computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1);
2355         Known.One &= Known2.One;
2356         Known.Zero &= Known2.Zero;
2357       }
2358     } else {
2359       computeKnownBits(Sub, Known, Depth + 1);
2360       if (Known.isUnknown())
2361         break; // early-out.
2362       computeKnownBits(Src, Known2, Depth + 1);
2363       Known.One &= Known2.One;
2364       Known.Zero &= Known2.Zero;
2365     }
2366     break;
2367   }
2368   case ISD::EXTRACT_SUBVECTOR: {
2369     // If we know the element index, just demand that subvector elements,
2370     // otherwise demand them all.
2371     SDValue Src = Op.getOperand(0);
2372     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2373     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2374     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2375       // Offset the demanded elts by the subvector index.
2376       uint64_t Idx = SubIdx->getZExtValue();
2377       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2378       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
2379     } else {
2380       computeKnownBits(Src, Known, Depth + 1);
2381     }
2382     break;
2383   }
2384   case ISD::BITCAST: {
2385     SDValue N0 = Op.getOperand(0);
2386     EVT SubVT = N0.getValueType();
2387     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2388
2389     // Ignore bitcasts from unsupported types.
2390     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2391       break;
2392
2393     // Fast handling of 'identity' bitcasts.
2394     if (BitWidth == SubBitWidth) {
2395       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
2396       break;
2397     }
2398
2399     bool IsLE = getDataLayout().isLittleEndian();
2400
2401     // Bitcast 'small element' vector to 'large element' scalar/vector.
2402     if ((BitWidth % SubBitWidth) == 0) {
2403       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2404
2405       // Collect known bits for the (larger) output by collecting the known
2406       // bits from each set of sub elements and shift these into place.
2407       // We need to separately call computeKnownBits for each set of
2408       // sub elements as the knownbits for each is likely to be different.
2409       unsigned SubScale = BitWidth / SubBitWidth;
2410       APInt SubDemandedElts(NumElts * SubScale, 0);
2411       for (unsigned i = 0; i != NumElts; ++i)
2412         if (DemandedElts[i])
2413           SubDemandedElts.setBit(i * SubScale);
2414
2415       for (unsigned i = 0; i != SubScale; ++i) {
2416         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
2417                          Depth + 1);
2418         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2419         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2420         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2421       }
2422     }
2423
2424     // Bitcast 'large element' scalar/vector to 'small element' vector.
2425     if ((SubBitWidth % BitWidth) == 0) {
2426       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2427
2428       // Collect known bits for the (smaller) output by collecting the known
2429       // bits from the overlapping larger input elements and extracting the
2430       // sub sections we actually care about.
2431       unsigned SubScale = SubBitWidth / BitWidth;
2432       APInt SubDemandedElts(NumElts / SubScale, 0);
2433       for (unsigned i = 0; i != NumElts; ++i)
2434         if (DemandedElts[i])
2435           SubDemandedElts.setBit(i / SubScale);
2436
2437       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
2438
2439       Known.Zero.setAllBits(); Known.One.setAllBits();
2440       for (unsigned i = 0; i != NumElts; ++i)
2441         if (DemandedElts[i]) {
2442           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2443           unsigned Offset = (Shifts % SubScale) * BitWidth;
2444           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2445           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2446           // If we don't know any bits, early out.
2447           if (Known.isUnknown())
2448             break;
2449         }
2450     }
2451     break;
2452   }
2453   case ISD::AND:
2454     // If either the LHS or the RHS are Zero, the result is zero.
2455     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2456     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2457
2458     // Output known-1 bits are only known if set in both the LHS & RHS.
2459     Known.One &= Known2.One;
2460     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2461     Known.Zero |= Known2.Zero;
2462     break;
2463   case ISD::OR:
2464     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2465     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2466
2467     // Output known-0 bits are only known if clear in both the LHS & RHS.
2468     Known.Zero &= Known2.Zero;
2469     // Output known-1 are known to be set if set in either the LHS | RHS.
2470     Known.One |= Known2.One;
2471     break;
2472   case ISD::XOR: {
2473     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2474     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2475
2476     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2477     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2478     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2479     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2480     Known.Zero = KnownZeroOut;
2481     break;
2482   }
2483   case ISD::MUL: {
2484     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
2485     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2486
2487     // If low bits are zero in either operand, output low known-0 bits.
2488     // Also compute a conservative estimate for high known-0 bits.
2489     // More trickiness is possible, but this is sufficient for the
2490     // interesting case of alignment computation.
2491     unsigned TrailZ = Known.countMinTrailingZeros() +
2492                       Known2.countMinTrailingZeros();
2493     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2494                                Known2.countMinLeadingZeros(),
2495                                BitWidth) - BitWidth;
2496
2497     Known.resetAll();
2498     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2499     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2500     break;
2501   }
2502   case ISD::UDIV: {
2503     // For the purposes of computing leading zeros we can conservatively
2504     // treat a udiv as a logical right shift by the power of 2 known to
2505     // be less than the denominator.
2506     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2507     unsigned LeadZ = Known2.countMinLeadingZeros();
2508
2509     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2510     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2511     if (RHSMaxLeadingZeros != BitWidth)
2512       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2513
2514     Known.Zero.setHighBits(LeadZ);
2515     break;
2516   }
2517   case ISD::SELECT:
2518   case ISD::VSELECT:
2519     computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1);
2520     // If we don't know any bits, early out.
2521     if (Known.isUnknown())
2522       break;
2523     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1);
2524
2525     // Only known if known in both the LHS and RHS.
2526     Known.One &= Known2.One;
2527     Known.Zero &= Known2.Zero;
2528     break;
2529   case ISD::SELECT_CC:
2530     computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1);
2531     // If we don't know any bits, early out.
2532     if (Known.isUnknown())
2533       break;
2534     computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1);
2535
2536     // Only known if known in both the LHS and RHS.
2537     Known.One &= Known2.One;
2538     Known.Zero &= Known2.Zero;
2539     break;
2540   case ISD::SMULO:
2541   case ISD::UMULO:
2542   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2543     if (Op.getResNo() != 1)
2544       break;
2545     // The boolean result conforms to getBooleanContents.
2546     // If we know the result of a setcc has the top bits zero, use this info.
2547     // We know that we have an integer-based boolean since these operations
2548     // are only available for integer.
2549     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2550             TargetLowering::ZeroOrOneBooleanContent &&
2551         BitWidth > 1)
2552       Known.Zero.setBitsFrom(1);
2553     break;
2554   case ISD::SETCC:
2555     // If we know the result of a setcc has the top bits zero, use this info.
2556     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2557             TargetLowering::ZeroOrOneBooleanContent &&
2558         BitWidth > 1)
2559       Known.Zero.setBitsFrom(1);
2560     break;
2561   case ISD::SHL:
2562     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2563       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2564       unsigned Shift = ShAmt->getZExtValue();
2565       Known.Zero <<= Shift;
2566       Known.One <<= Shift;
2567       // Low bits are known zero.
2568       Known.Zero.setLowBits(Shift);
2569     }
2570     break;
2571   case ISD::SRL:
2572     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2573       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2574       unsigned Shift = ShAmt->getZExtValue();
2575       Known.Zero.lshrInPlace(Shift);
2576       Known.One.lshrInPlace(Shift);
2577       // High bits are known zero.
2578       Known.Zero.setHighBits(Shift);
2579     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2580       // If the shift amount is a vector of constants see if we can bound
2581       // the number of upper zero bits.
2582       unsigned ShiftAmountMin = BitWidth;
2583       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2584         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2585           const APInt &ShAmt = C->getAPIntValue();
2586           if (ShAmt.ult(BitWidth)) {
2587             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2588                                                 ShAmt.getZExtValue());
2589             continue;
2590           }
2591         }
2592         // Don't know anything.
2593         ShiftAmountMin = 0;
2594         break;
2595       }
2596
2597       Known.Zero.setHighBits(ShiftAmountMin);
2598     }
2599     break;
2600   case ISD::SRA:
2601     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2602       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2603       unsigned Shift = ShAmt->getZExtValue();
2604       // Sign extend known zero/one bit (else is unknown).
2605       Known.Zero.ashrInPlace(Shift);
2606       Known.One.ashrInPlace(Shift);
2607     }
2608     break;
2609   case ISD::SIGN_EXTEND_INREG: {
2610     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2611     unsigned EBits = EVT.getScalarSizeInBits();
2612
2613     // Sign extension.  Compute the demanded bits in the result that are not
2614     // present in the input.
2615     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2616
2617     APInt InSignMask = APInt::getSignMask(EBits);
2618     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2619
2620     // If the sign extended bits are demanded, we know that the sign
2621     // bit is demanded.
2622     InSignMask = InSignMask.zext(BitWidth);
2623     if (NewBits.getBoolValue())
2624       InputDemandedBits |= InSignMask;
2625
2626     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2627     Known.One &= InputDemandedBits;
2628     Known.Zero &= InputDemandedBits;
2629
2630     // If the sign bit of the input is known set or clear, then we know the
2631     // top bits of the result.
2632     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2633       Known.Zero |= NewBits;
2634       Known.One  &= ~NewBits;
2635     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2636       Known.One  |= NewBits;
2637       Known.Zero &= ~NewBits;
2638     } else {                              // Input sign bit unknown
2639       Known.Zero &= ~NewBits;
2640       Known.One  &= ~NewBits;
2641     }
2642     break;
2643   }
2644   case ISD::CTTZ:
2645   case ISD::CTTZ_ZERO_UNDEF: {
2646     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2647     // If we have a known 1, its position is our upper bound.
2648     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2649     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2650     Known.Zero.setBitsFrom(LowBits);
2651     break;
2652   }
2653   case ISD::CTLZ:
2654   case ISD::CTLZ_ZERO_UNDEF: {
2655     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2656     // If we have a known 1, its position is our upper bound.
2657     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2658     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2659     Known.Zero.setBitsFrom(LowBits);
2660     break;
2661   }
2662   case ISD::CTPOP: {
2663     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2664     // If we know some of the bits are zero, they can't be one.
2665     unsigned PossibleOnes = Known2.countMaxPopulation();
2666     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2667     break;
2668   }
2669   case ISD::LOAD: {
2670     LoadSDNode *LD = cast<LoadSDNode>(Op);
2671     // If this is a ZEXTLoad and we are looking at the loaded value.
2672     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2673       EVT VT = LD->getMemoryVT();
2674       unsigned MemBits = VT.getScalarSizeInBits();
2675       Known.Zero.setBitsFrom(MemBits);
2676     } else if (const MDNode *Ranges = LD->getRanges()) {
2677       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2678         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2679     }
2680     break;
2681   }
2682   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2683     EVT InVT = Op.getOperand(0).getValueType();
2684     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
2685     computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1);
2686     Known = Known.zext(BitWidth);
2687     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2688     break;
2689   }
2690   case ISD::ZERO_EXTEND: {
2691     EVT InVT = Op.getOperand(0).getValueType();
2692     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2693     Known = Known.zext(BitWidth);
2694     Known.Zero.setBitsFrom(InVT.getScalarSizeInBits());
2695     break;
2696   }
2697   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2698   case ISD::SIGN_EXTEND: {
2699     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2700     // If the sign bit is known to be zero or one, then sext will extend
2701     // it to the top bits, else it will just zext.
2702     Known = Known.sext(BitWidth);
2703     break;
2704   }
2705   case ISD::ANY_EXTEND: {
2706     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2707     Known = Known.zext(BitWidth);
2708     break;
2709   }
2710   case ISD::TRUNCATE: {
2711     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2712     Known = Known.trunc(BitWidth);
2713     break;
2714   }
2715   case ISD::AssertZext: {
2716     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2717     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2718     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2719     Known.Zero |= (~InMask);
2720     Known.One  &= (~Known.Zero);
2721     break;
2722   }
2723   case ISD::FGETSIGN:
2724     // All bits are zero except the low bit.
2725     Known.Zero.setBitsFrom(1);
2726     break;
2727   case ISD::USUBO:
2728   case ISD::SSUBO:
2729     if (Op.getResNo() == 1) {
2730       // If we know the result of a setcc has the top bits zero, use this info.
2731       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2732               TargetLowering::ZeroOrOneBooleanContent &&
2733           BitWidth > 1)
2734         Known.Zero.setBitsFrom(1);
2735       break;
2736     }
2737     LLVM_FALLTHROUGH;
2738   case ISD::SUB:
2739   case ISD::SUBC: {
2740     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2741       // We know that the top bits of C-X are clear if X contains less bits
2742       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2743       // positive if we can prove that X is >= 0 and < 16.
2744       if (CLHS->getAPIntValue().isNonNegative()) {
2745         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2746         // NLZ can't be BitWidth with no sign bit
2747         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2748         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2749                          Depth + 1);
2750
2751         // If all of the MaskV bits are known to be zero, then we know the
2752         // output top bits are zero, because we now know that the output is
2753         // from [0-C].
2754         if ((Known2.Zero & MaskV) == MaskV) {
2755           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2756           // Top bits known zero.
2757           Known.Zero.setHighBits(NLZ2);
2758         }
2759       }
2760     }
2761
2762     // If low bits are know to be zero in both operands, then we know they are
2763     // going to be 0 in the result. Both addition and complement operations
2764     // preserve the low zero bits.
2765     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2766     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2767     if (KnownZeroLow == 0)
2768       break;
2769
2770     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2771     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2772     Known.Zero.setLowBits(KnownZeroLow);
2773     break;
2774   }
2775   case ISD::UADDO:
2776   case ISD::SADDO:
2777   case ISD::ADDCARRY:
2778     if (Op.getResNo() == 1) {
2779       // If we know the result of a setcc has the top bits zero, use this info.
2780       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2781               TargetLowering::ZeroOrOneBooleanContent &&
2782           BitWidth > 1)
2783         Known.Zero.setBitsFrom(1);
2784       break;
2785     }
2786     LLVM_FALLTHROUGH;
2787   case ISD::ADD:
2788   case ISD::ADDC:
2789   case ISD::ADDE: {
2790     // Output known-0 bits are known if clear or set in both the low clear bits
2791     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2792     // low 3 bits clear.
2793     // Output known-0 bits are also known if the top bits of each input are
2794     // known to be clear. For example, if one input has the top 10 bits clear
2795     // and the other has the top 8 bits clear, we know the top 7 bits of the
2796     // output must be clear.
2797     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2798     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2799     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2800
2801     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
2802                      Depth + 1);
2803     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2804     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2805
2806     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2807       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2808       // use this information if we know (at least) that the low two bits are
2809       // clear. We then return to the caller that the low bit is unknown but
2810       // that other bits are known zero.
2811       if (KnownZeroLow >= 2)
2812         Known.Zero.setBits(1, KnownZeroLow);
2813       break;
2814     }
2815
2816     Known.Zero.setLowBits(KnownZeroLow);
2817     if (KnownZeroHigh > 1)
2818       Known.Zero.setHighBits(KnownZeroHigh - 1);
2819     break;
2820   }
2821   case ISD::SREM:
2822     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2823       const APInt &RA = Rem->getAPIntValue().abs();
2824       if (RA.isPowerOf2()) {
2825         APInt LowBits = RA - 1;
2826         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2827
2828         // The low bits of the first operand are unchanged by the srem.
2829         Known.Zero = Known2.Zero & LowBits;
2830         Known.One = Known2.One & LowBits;
2831
2832         // If the first operand is non-negative or has all low bits zero, then
2833         // the upper bits are all zero.
2834         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2835           Known.Zero |= ~LowBits;
2836
2837         // If the first operand is negative and not all low bits are zero, then
2838         // the upper bits are all one.
2839         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2840           Known.One |= ~LowBits;
2841         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2842       }
2843     }
2844     break;
2845   case ISD::UREM: {
2846     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2847       const APInt &RA = Rem->getAPIntValue();
2848       if (RA.isPowerOf2()) {
2849         APInt LowBits = (RA - 1);
2850         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2851
2852         // The upper bits are all zero, the lower ones are unchanged.
2853         Known.Zero = Known2.Zero | ~LowBits;
2854         Known.One = Known2.One & LowBits;
2855         break;
2856       }
2857     }
2858
2859     // Since the result is less than or equal to either operand, any leading
2860     // zero bits in either operand must also exist in the result.
2861     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2862     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2863
2864     uint32_t Leaders =
2865         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2866     Known.resetAll();
2867     Known.Zero.setHighBits(Leaders);
2868     break;
2869   }
2870   case ISD::EXTRACT_ELEMENT: {
2871     computeKnownBits(Op.getOperand(0), Known, Depth+1);
2872     const unsigned Index = Op.getConstantOperandVal(1);
2873     const unsigned BitWidth = Op.getValueSizeInBits();
2874
2875     // Remove low part of known bits mask
2876     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2877     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2878
2879     // Remove high part of known bit mask
2880     Known = Known.trunc(BitWidth);
2881     break;
2882   }
2883   case ISD::EXTRACT_VECTOR_ELT: {
2884     SDValue InVec = Op.getOperand(0);
2885     SDValue EltNo = Op.getOperand(1);
2886     EVT VecVT = InVec.getValueType();
2887     const unsigned BitWidth = Op.getValueSizeInBits();
2888     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2889     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2890     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2891     // anything about the extended bits.
2892     if (BitWidth > EltBitWidth)
2893       Known = Known.trunc(EltBitWidth);
2894     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2895     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2896       // If we know the element index, just demand that vector element.
2897       unsigned Idx = ConstEltNo->getZExtValue();
2898       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2899       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
2900     } else {
2901       // Unknown element index, so ignore DemandedElts and demand them all.
2902       computeKnownBits(InVec, Known, Depth + 1);
2903     }
2904     if (BitWidth > EltBitWidth)
2905       Known = Known.zext(BitWidth);
2906     break;
2907   }
2908   case ISD::INSERT_VECTOR_ELT: {
2909     SDValue InVec = Op.getOperand(0);
2910     SDValue InVal = Op.getOperand(1);
2911     SDValue EltNo = Op.getOperand(2);
2912
2913     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2914     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2915       // If we know the element index, split the demand between the
2916       // source vector and the inserted element.
2917       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
2918       unsigned EltIdx = CEltNo->getZExtValue();
2919
2920       // If we demand the inserted element then add its common known bits.
2921       if (DemandedElts[EltIdx]) {
2922         computeKnownBits(InVal, Known2, Depth + 1);
2923         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2924         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2925       }
2926
2927       // If we demand the source vector then add its common known bits, ensuring
2928       // that we don't demand the inserted element.
2929       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2930       if (!!VectorElts) {
2931         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
2932         Known.One &= Known2.One;
2933         Known.Zero &= Known2.Zero;
2934       }
2935     } else {
2936       // Unknown element index, so ignore DemandedElts and demand them all.
2937       computeKnownBits(InVec, Known, Depth + 1);
2938       computeKnownBits(InVal, Known2, Depth + 1);
2939       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
2940       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
2941     }
2942     break;
2943   }
2944   case ISD::BITREVERSE: {
2945     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2946     Known.Zero = Known2.Zero.reverseBits();
2947     Known.One = Known2.One.reverseBits();
2948     break;
2949   }
2950   case ISD::BSWAP: {
2951     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2952     Known.Zero = Known2.Zero.byteSwap();
2953     Known.One = Known2.One.byteSwap();
2954     break;
2955   }
2956   case ISD::ABS: {
2957     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
2958
2959     // If the source's MSB is zero then we know the rest of the bits already.
2960     if (Known2.isNonNegative()) {
2961       Known.Zero = Known2.Zero;
2962       Known.One = Known2.One;
2963       break;
2964     }
2965
2966     // We only know that the absolute values's MSB will be zero iff there is
2967     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
2968     Known2.One.clearSignBit();
2969     if (Known2.One.getBoolValue()) {
2970       Known.Zero = APInt::getSignMask(BitWidth);
2971       break;
2972     }
2973     break;
2974   }
2975   case ISD::UMIN: {
2976     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
2977     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2978
2979     // UMIN - we know that the result will have the maximum of the
2980     // known zero leading bits of the inputs.
2981     unsigned LeadZero = Known.countMinLeadingZeros();
2982     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
2983
2984     Known.Zero &= Known2.Zero;
2985     Known.One &= Known2.One;
2986     Known.Zero.setHighBits(LeadZero);
2987     break;
2988   }
2989   case ISD::UMAX: {
2990     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
2991                      Depth + 1);
2992     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
2993
2994     // UMAX - we know that the result will have the maximum of the
2995     // known one leading bits of the inputs.
2996     unsigned LeadOne = Known.countMinLeadingOnes();
2997     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
2998
2999     Known.Zero &= Known2.Zero;
3000     Known.One &= Known2.One;
3001     Known.One.setHighBits(LeadOne);
3002     break;
3003   }
3004   case ISD::SMIN:
3005   case ISD::SMAX: {
3006     // If we have a clamp pattern, we know that the number of sign bits will be
3007     // the minimum of the clamp min/max range.
3008     bool IsMax = (Opcode == ISD::SMAX);
3009     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3010     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3011       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3012         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3013                                               DemandedElts);
3014     if (CstLow && CstHigh) {
3015       if (!IsMax)
3016         std::swap(CstLow, CstHigh);
3017
3018       const APInt &ValueLow = CstLow->getAPIntValue();
3019       const APInt &ValueHigh = CstHigh->getAPIntValue();
3020       if (ValueLow.sle(ValueHigh)) {
3021         unsigned LowSignBits = ValueLow.getNumSignBits();
3022         unsigned HighSignBits = ValueHigh.getNumSignBits();
3023         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3024         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3025           Known.One.setHighBits(MinSignBits);
3026           break;
3027         }
3028         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3029           Known.Zero.setHighBits(MinSignBits);
3030           break;
3031         }
3032       }
3033     }
3034
3035     // Fallback - just get the shared known bits of the operands.
3036     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
3037     if (Known.isUnknown()) break; // Early-out
3038     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
3039     Known.Zero &= Known2.Zero;
3040     Known.One &= Known2.One;
3041     break;
3042   }
3043   case ISD::FrameIndex:
3044   case ISD::TargetFrameIndex:
3045     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3046     break;
3047
3048   default:
3049     if (Opcode < ISD::BUILTIN_OP_END)
3050       break;
3051     LLVM_FALLTHROUGH;
3052   case ISD::INTRINSIC_WO_CHAIN:
3053   case ISD::INTRINSIC_W_CHAIN:
3054   case ISD::INTRINSIC_VOID:
3055     // Allow the target to implement this method for its nodes.
3056     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3057     break;
3058   }
3059
3060   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3061 }
3062
3063 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3064                                                              SDValue N1) const {
3065   // X + 0 never overflow
3066   if (isNullConstant(N1))
3067     return OFK_Never;
3068
3069   KnownBits N1Known;
3070   computeKnownBits(N1, N1Known);
3071   if (N1Known.Zero.getBoolValue()) {
3072     KnownBits N0Known;
3073     computeKnownBits(N0, N0Known);
3074
3075     bool overflow;
3076     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3077     if (!overflow)
3078       return OFK_Never;
3079   }
3080
3081   // mulhi + 1 never overflow
3082   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3083       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3084     return OFK_Never;
3085
3086   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3087     KnownBits N0Known;
3088     computeKnownBits(N0, N0Known);
3089
3090     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3091       return OFK_Never;
3092   }
3093
3094   return OFK_Sometime;
3095 }
3096
3097 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3098   EVT OpVT = Val.getValueType();
3099   unsigned BitWidth = OpVT.getScalarSizeInBits();
3100
3101   // Is the constant a known power of 2?
3102   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3103     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3104
3105   // A left-shift of a constant one will have exactly one bit set because
3106   // shifting the bit off the end is undefined.
3107   if (Val.getOpcode() == ISD::SHL) {
3108     auto *C = isConstOrConstSplat(Val.getOperand(0));
3109     if (C && C->getAPIntValue() == 1)
3110       return true;
3111   }
3112
3113   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3114   // one bit set.
3115   if (Val.getOpcode() == ISD::SRL) {
3116     auto *C = isConstOrConstSplat(Val.getOperand(0));
3117     if (C && C->getAPIntValue().isSignMask())
3118       return true;
3119   }
3120
3121   // Are all operands of a build vector constant powers of two?
3122   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3123     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3124           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3125             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3126           return false;
3127         }))
3128       return true;
3129
3130   // More could be done here, though the above checks are enough
3131   // to handle some common cases.
3132
3133   // Fall back to computeKnownBits to catch other known cases.
3134   KnownBits Known;
3135   computeKnownBits(Val, Known);
3136   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3137 }
3138
3139 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3140   EVT VT = Op.getValueType();
3141   APInt DemandedElts = VT.isVector()
3142                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3143                            : APInt(1, 1);
3144   return ComputeNumSignBits(Op, DemandedElts, Depth);
3145 }
3146
3147 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3148                                           unsigned Depth) const {
3149   EVT VT = Op.getValueType();
3150   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3151   unsigned VTBits = VT.getScalarSizeInBits();
3152   unsigned NumElts = DemandedElts.getBitWidth();
3153   unsigned Tmp, Tmp2;
3154   unsigned FirstAnswer = 1;
3155
3156   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3157     const APInt &Val = C->getAPIntValue();
3158     return Val.getNumSignBits();
3159   }
3160
3161   if (Depth == 6)
3162     return 1;  // Limit search depth.
3163
3164   if (!DemandedElts)
3165     return 1;  // No demanded elts, better to assume we don't know anything.
3166
3167   unsigned Opcode = Op.getOpcode();
3168   switch (Opcode) {
3169   default: break;
3170   case ISD::AssertSext:
3171     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3172     return VTBits-Tmp+1;
3173   case ISD::AssertZext:
3174     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3175     return VTBits-Tmp;
3176
3177   case ISD::BUILD_VECTOR:
3178     Tmp = VTBits;
3179     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3180       if (!DemandedElts[i])
3181         continue;
3182
3183       SDValue SrcOp = Op.getOperand(i);
3184       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3185
3186       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3187       if (SrcOp.getValueSizeInBits() != VTBits) {
3188         assert(SrcOp.getValueSizeInBits() > VTBits &&
3189                "Expected BUILD_VECTOR implicit truncation");
3190         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3191         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3192       }
3193       Tmp = std::min(Tmp, Tmp2);
3194     }
3195     return Tmp;
3196
3197   case ISD::VECTOR_SHUFFLE: {
3198     // Collect the minimum number of sign bits that are shared by every vector
3199     // element referenced by the shuffle.
3200     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3201     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3202     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3203     for (unsigned i = 0; i != NumElts; ++i) {
3204       int M = SVN->getMaskElt(i);
3205       if (!DemandedElts[i])
3206         continue;
3207       // For UNDEF elements, we don't know anything about the common state of
3208       // the shuffle result.
3209       if (M < 0)
3210         return 1;
3211       if ((unsigned)M < NumElts)
3212         DemandedLHS.setBit((unsigned)M % NumElts);
3213       else
3214         DemandedRHS.setBit((unsigned)M % NumElts);
3215     }
3216     Tmp = std::numeric_limits<unsigned>::max();
3217     if (!!DemandedLHS)
3218       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3219     if (!!DemandedRHS) {
3220       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3221       Tmp = std::min(Tmp, Tmp2);
3222     }
3223     // If we don't know anything, early out and try computeKnownBits fall-back.
3224     if (Tmp == 1)
3225       break;
3226     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3227     return Tmp;
3228   }
3229
3230   case ISD::BITCAST: {
3231     SDValue N0 = Op.getOperand(0);
3232     EVT SrcVT = N0.getValueType();
3233     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3234
3235     // Ignore bitcasts from unsupported types..
3236     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3237       break;
3238
3239     // Fast handling of 'identity' bitcasts.
3240     if (VTBits == SrcBits)
3241       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3242
3243     // Bitcast 'large element' scalar/vector to 'small element' vector.
3244     // TODO: Handle cases other than 'sign splat' when we have a use case.
3245     // Requires handling of DemandedElts and Endianness.
3246     if ((SrcBits % VTBits) == 0) {
3247       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3248       Tmp = ComputeNumSignBits(N0, Depth + 1);
3249       if (Tmp == SrcBits)
3250         return VTBits;
3251     }
3252     break;
3253   }
3254
3255   case ISD::SIGN_EXTEND:
3256     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3257     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3258   case ISD::SIGN_EXTEND_INREG:
3259     // Max of the input and what this extends.
3260     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3261     Tmp = VTBits-Tmp+1;
3262     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3263     return std::max(Tmp, Tmp2);
3264   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3265     SDValue Src = Op.getOperand(0);
3266     EVT SrcVT = Src.getValueType();
3267     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
3268     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3269     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3270   }
3271
3272   case ISD::SRA:
3273     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3274     // SRA X, C   -> adds C sign bits.
3275     if (ConstantSDNode *C =
3276             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3277       APInt ShiftVal = C->getAPIntValue();
3278       ShiftVal += Tmp;
3279       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3280     }
3281     return Tmp;
3282   case ISD::SHL:
3283     if (ConstantSDNode *C =
3284             isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) {
3285       // shl destroys sign bits.
3286       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3287       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3288           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3289       return Tmp - C->getZExtValue();
3290     }
3291     break;
3292   case ISD::AND:
3293   case ISD::OR:
3294   case ISD::XOR:    // NOT is handled here.
3295     // Logical binary ops preserve the number of sign bits at the worst.
3296     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3297     if (Tmp != 1) {
3298       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3299       FirstAnswer = std::min(Tmp, Tmp2);
3300       // We computed what we know about the sign bits as our first
3301       // answer. Now proceed to the generic code that uses
3302       // computeKnownBits, and pick whichever answer is better.
3303     }
3304     break;
3305
3306   case ISD::SELECT:
3307   case ISD::VSELECT:
3308     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3309     if (Tmp == 1) return 1;  // Early out.
3310     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3311     return std::min(Tmp, Tmp2);
3312   case ISD::SELECT_CC:
3313     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3314     if (Tmp == 1) return 1;  // Early out.
3315     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3316     return std::min(Tmp, Tmp2);
3317
3318   case ISD::SMIN:
3319   case ISD::SMAX: {
3320     // If we have a clamp pattern, we know that the number of sign bits will be
3321     // the minimum of the clamp min/max range.
3322     bool IsMax = (Opcode == ISD::SMAX);
3323     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3324     if ((CstLow = isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)))
3325       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3326         CstHigh = isConstOrDemandedConstSplat(Op.getOperand(0).getOperand(1),
3327                                               DemandedElts);
3328     if (CstLow && CstHigh) {
3329       if (!IsMax)
3330         std::swap(CstLow, CstHigh);
3331       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3332         Tmp = CstLow->getAPIntValue().getNumSignBits();
3333         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3334         return std::min(Tmp, Tmp2);
3335       }
3336     }
3337
3338     // Fallback - just get the minimum number of sign bits of the operands.
3339     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3340     if (Tmp == 1)
3341       return 1;  // Early out.
3342     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3343     return std::min(Tmp, Tmp2);
3344   }
3345   case ISD::UMIN:
3346   case ISD::UMAX:
3347     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3348     if (Tmp == 1)
3349       return 1;  // Early out.
3350     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3351     return std::min(Tmp, Tmp2);
3352   case ISD::SADDO:
3353   case ISD::UADDO:
3354   case ISD::SSUBO:
3355   case ISD::USUBO:
3356   case ISD::SMULO:
3357   case ISD::UMULO:
3358     if (Op.getResNo() != 1)
3359       break;
3360     // The boolean result conforms to getBooleanContents.  Fall through.
3361     // If setcc returns 0/-1, all bits are sign bits.
3362     // We know that we have an integer-based boolean since these operations
3363     // are only available for integer.
3364     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3365         TargetLowering::ZeroOrNegativeOneBooleanContent)
3366       return VTBits;
3367     break;
3368   case ISD::SETCC:
3369     // If setcc returns 0/-1, all bits are sign bits.
3370     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3371         TargetLowering::ZeroOrNegativeOneBooleanContent)
3372       return VTBits;
3373     break;
3374   case ISD::ROTL:
3375   case ISD::ROTR:
3376     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3377       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3378
3379       // Handle rotate right by N like a rotate left by 32-N.
3380       if (Opcode == ISD::ROTR)
3381         RotAmt = (VTBits - RotAmt) % VTBits;
3382
3383       // If we aren't rotating out all of the known-in sign bits, return the
3384       // number that are left.  This handles rotl(sext(x), 1) for example.
3385       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3386       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3387     }
3388     break;
3389   case ISD::ADD:
3390   case ISD::ADDC:
3391     // Add can have at most one carry bit.  Thus we know that the output
3392     // is, at worst, one more bit than the inputs.
3393     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3394     if (Tmp == 1) return 1;  // Early out.
3395
3396     // Special case decrementing a value (ADD X, -1):
3397     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3398       if (CRHS->isAllOnesValue()) {
3399         KnownBits Known;
3400         computeKnownBits(Op.getOperand(0), Known, Depth+1);
3401
3402         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3403         // sign bits set.
3404         if ((Known.Zero | 1).isAllOnesValue())
3405           return VTBits;
3406
3407         // If we are subtracting one from a positive number, there is no carry
3408         // out of the result.
3409         if (Known.isNonNegative())
3410           return Tmp;
3411       }
3412
3413     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3414     if (Tmp2 == 1) return 1;
3415     return std::min(Tmp, Tmp2)-1;
3416
3417   case ISD::SUB:
3418     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3419     if (Tmp2 == 1) return 1;
3420
3421     // Handle NEG.
3422     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3423       if (CLHS->isNullValue()) {
3424         KnownBits Known;
3425         computeKnownBits(Op.getOperand(1), Known, Depth+1);
3426         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3427         // sign bits set.
3428         if ((Known.Zero | 1).isAllOnesValue())
3429           return VTBits;
3430
3431         // If the input is known to be positive (the sign bit is known clear),
3432         // the output of the NEG has the same number of sign bits as the input.
3433         if (Known.isNonNegative())
3434           return Tmp2;
3435
3436         // Otherwise, we treat this like a SUB.
3437       }
3438
3439     // Sub can have at most one carry bit.  Thus we know that the output
3440     // is, at worst, one more bit than the inputs.
3441     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3442     if (Tmp == 1) return 1;  // Early out.
3443     return std::min(Tmp, Tmp2)-1;
3444   case ISD::TRUNCATE: {
3445     // Check if the sign bits of source go down as far as the truncated value.
3446     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3447     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3448     if (NumSrcSignBits > (NumSrcBits - VTBits))
3449       return NumSrcSignBits - (NumSrcBits - VTBits);
3450     break;
3451   }
3452   case ISD::EXTRACT_ELEMENT: {
3453     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3454     const int BitWidth = Op.getValueSizeInBits();
3455     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3456
3457     // Get reverse index (starting from 1), Op1 value indexes elements from
3458     // little end. Sign starts at big end.
3459     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3460
3461     // If the sign portion ends in our element the subtraction gives correct
3462     // result. Otherwise it gives either negative or > bitwidth result
3463     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3464   }
3465   case ISD::INSERT_VECTOR_ELT: {
3466     SDValue InVec = Op.getOperand(0);
3467     SDValue InVal = Op.getOperand(1);
3468     SDValue EltNo = Op.getOperand(2);
3469     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3470
3471     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3472     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3473       // If we know the element index, split the demand between the
3474       // source vector and the inserted element.
3475       unsigned EltIdx = CEltNo->getZExtValue();
3476
3477       // If we demand the inserted element then get its sign bits.
3478       Tmp = std::numeric_limits<unsigned>::max();
3479       if (DemandedElts[EltIdx]) {
3480         // TODO - handle implicit truncation of inserted elements.
3481         if (InVal.getScalarValueSizeInBits() != VTBits)
3482           break;
3483         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3484       }
3485
3486       // If we demand the source vector then get its sign bits, and determine
3487       // the minimum.
3488       APInt VectorElts = DemandedElts;
3489       VectorElts.clearBit(EltIdx);
3490       if (!!VectorElts) {
3491         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3492         Tmp = std::min(Tmp, Tmp2);
3493       }
3494     } else {
3495       // Unknown element index, so ignore DemandedElts and demand them all.
3496       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3497       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3498       Tmp = std::min(Tmp, Tmp2);
3499     }
3500     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3501     return Tmp;
3502   }
3503   case ISD::EXTRACT_VECTOR_ELT: {
3504     SDValue InVec = Op.getOperand(0);
3505     SDValue EltNo = Op.getOperand(1);
3506     EVT VecVT = InVec.getValueType();
3507     const unsigned BitWidth = Op.getValueSizeInBits();
3508     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3509     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3510
3511     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3512     // anything about sign bits. But if the sizes match we can derive knowledge
3513     // about sign bits from the vector operand.
3514     if (BitWidth != EltBitWidth)
3515       break;
3516
3517     // If we know the element index, just demand that vector element, else for
3518     // an unknown element index, ignore DemandedElts and demand them all.
3519     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3520     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3521     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3522       DemandedSrcElts =
3523           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3524
3525     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3526   }
3527   case ISD::EXTRACT_SUBVECTOR: {
3528     // If we know the element index, just demand that subvector elements,
3529     // otherwise demand them all.
3530     SDValue Src = Op.getOperand(0);
3531     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3532     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3533     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3534       // Offset the demanded elts by the subvector index.
3535       uint64_t Idx = SubIdx->getZExtValue();
3536       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3537       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3538     }
3539     return ComputeNumSignBits(Src, Depth + 1);
3540   }
3541   case ISD::CONCAT_VECTORS:
3542     // Determine the minimum number of sign bits across all demanded
3543     // elts of the input vectors. Early out if the result is already 1.
3544     Tmp = std::numeric_limits<unsigned>::max();
3545     EVT SubVectorVT = Op.getOperand(0).getValueType();
3546     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3547     unsigned NumSubVectors = Op.getNumOperands();
3548     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3549       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3550       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3551       if (!DemandedSub)
3552         continue;
3553       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3554       Tmp = std::min(Tmp, Tmp2);
3555     }
3556     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3557     return Tmp;
3558   }
3559
3560   // If we are looking at the loaded value of the SDNode.
3561   if (Op.getResNo() == 0) {
3562     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3563     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3564       unsigned ExtType = LD->getExtensionType();
3565       switch (ExtType) {
3566         default: break;
3567         case ISD::SEXTLOAD:    // '17' bits known
3568           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3569           return VTBits-Tmp+1;
3570         case ISD::ZEXTLOAD:    // '16' bits known
3571           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3572           return VTBits-Tmp;
3573       }
3574     }
3575   }
3576
3577   // Allow the target to implement this method for its nodes.
3578   if (Opcode >= ISD::BUILTIN_OP_END ||
3579       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3580       Opcode == ISD::INTRINSIC_W_CHAIN ||
3581       Opcode == ISD::INTRINSIC_VOID) {
3582     unsigned NumBits =
3583         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3584     if (NumBits > 1)
3585       FirstAnswer = std::max(FirstAnswer, NumBits);
3586   }
3587
3588   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3589   // use this information.
3590   KnownBits Known;
3591   computeKnownBits(Op, Known, DemandedElts, Depth);
3592
3593   APInt Mask;
3594   if (Known.isNonNegative()) {        // sign bit is 0
3595     Mask = Known.Zero;
3596   } else if (Known.isNegative()) {  // sign bit is 1;
3597     Mask = Known.One;
3598   } else {
3599     // Nothing known.
3600     return FirstAnswer;
3601   }
3602
3603   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3604   // the number of identical bits in the top of the input value.
3605   Mask = ~Mask;
3606   Mask <<= Mask.getBitWidth()-VTBits;
3607   // Return # leading zeros.  We use 'min' here in case Val was zero before
3608   // shifting.  We don't want to return '64' as for an i32 "0".
3609   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3610 }
3611
3612 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3613   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3614       !isa<ConstantSDNode>(Op.getOperand(1)))
3615     return false;
3616
3617   if (Op.getOpcode() == ISD::OR &&
3618       !MaskedValueIsZero(Op.getOperand(0),
3619                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3620     return false;
3621
3622   return true;
3623 }
3624
3625 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3626   // If we're told that NaNs won't happen, assume they won't.
3627   if (getTarget().Options.NoNaNsFPMath)
3628     return true;
3629
3630   if (Op->getFlags().hasNoNaNs())
3631     return true;
3632
3633   // If the value is a constant, we can obviously see if it is a NaN or not.
3634   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3635     return !C->getValueAPF().isNaN();
3636
3637   // TODO: Recognize more cases here.
3638
3639   return false;
3640 }
3641
3642 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3643   assert(Op.getValueType().isFloatingPoint() &&
3644          "Floating point type expected");
3645
3646   // If the value is a constant, we can obviously see if it is a zero or not.
3647   // TODO: Add BuildVector support.
3648   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3649     return !C->isZero();
3650   return false;
3651 }
3652
3653 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3654   assert(!Op.getValueType().isFloatingPoint() &&
3655          "Floating point types unsupported - use isKnownNeverZeroFloat");
3656
3657   // If the value is a constant, we can obviously see if it is a zero or not.
3658   if (ISD::matchUnaryPredicate(
3659           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3660     return true;
3661
3662   // TODO: Recognize more cases here.
3663   switch (Op.getOpcode()) {
3664   default: break;
3665   case ISD::OR:
3666     if (isKnownNeverZero(Op.getOperand(1)) ||
3667         isKnownNeverZero(Op.getOperand(0)))
3668       return true;
3669     break;
3670   }
3671
3672   return false;
3673 }
3674
3675 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3676   // Check the obvious case.
3677   if (A == B) return true;
3678
3679   // For for negative and positive zero.
3680   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3681     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3682       if (CA->isZero() && CB->isZero()) return true;
3683
3684   // Otherwise they may not be equal.
3685   return false;
3686 }
3687
3688 // FIXME: unify with llvm::haveNoCommonBitsSet.
3689 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3690 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3691   assert(A.getValueType() == B.getValueType() &&
3692          "Values must have the same type");
3693   KnownBits AKnown, BKnown;
3694   computeKnownBits(A, AKnown);
3695   computeKnownBits(B, BKnown);
3696   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
3697 }
3698
3699 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3700                                   ArrayRef<SDValue> Ops,
3701                                   SelectionDAG &DAG) {
3702   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3703   assert(llvm::all_of(Ops,
3704                       [Ops](SDValue Op) {
3705                         return Ops[0].getValueType() == Op.getValueType();
3706                       }) &&
3707          "Concatenation of vectors with inconsistent value types!");
3708   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3709              VT.getVectorNumElements() &&
3710          "Incorrect element count in vector concatenation!");
3711
3712   if (Ops.size() == 1)
3713     return Ops[0];
3714
3715   // Concat of UNDEFs is UNDEF.
3716   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3717     return DAG.getUNDEF(VT);
3718
3719   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3720   // simplified to one big BUILD_VECTOR.
3721   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3722   EVT SVT = VT.getScalarType();
3723   SmallVector<SDValue, 16> Elts;
3724   for (SDValue Op : Ops) {
3725     EVT OpVT = Op.getValueType();
3726     if (Op.isUndef())
3727       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3728     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3729       Elts.append(Op->op_begin(), Op->op_end());
3730     else
3731       return SDValue();
3732   }
3733
3734   // BUILD_VECTOR requires all inputs to be of the same type, find the
3735   // maximum type and extend them all.
3736   for (SDValue Op : Elts)
3737     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3738
3739   if (SVT.bitsGT(VT.getScalarType()))
3740     for (SDValue &Op : Elts)
3741       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3742                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3743                : DAG.getSExtOrTrunc(Op, DL, SVT);
3744
3745   SDValue V = DAG.getBuildVector(VT, DL, Elts);
3746   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
3747   return V;
3748 }
3749
3750 /// Gets or creates the specified node.
3751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3752   FoldingSetNodeID ID;
3753   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3754   void *IP = nullptr;
3755   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3756     return SDValue(E, 0);
3757
3758   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3759                               getVTList(VT));
3760   CSEMap.InsertNode(N, IP);
3761
3762   InsertNode(N);
3763   SDValue V = SDValue(N, 0);
3764   NewSDValueDbgMsg(V, "Creating new node: ", this);
3765   return V;
3766 }
3767
3768 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3769                               SDValue Operand, const SDNodeFlags Flags) {
3770   // Constant fold unary operations with an integer constant operand. Even
3771   // opaque constant will be folded, because the folding of unary operations
3772   // doesn't create new constants with different values. Nevertheless, the
3773   // opaque flag is preserved during folding to prevent future folding with
3774   // other constants.
3775   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3776     const APInt &Val = C->getAPIntValue();
3777     switch (Opcode) {
3778     default: break;
3779     case ISD::SIGN_EXTEND:
3780       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3781                          C->isTargetOpcode(), C->isOpaque());
3782     case ISD::ANY_EXTEND:
3783     case ISD::ZERO_EXTEND:
3784     case ISD::TRUNCATE:
3785       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3786                          C->isTargetOpcode(), C->isOpaque());
3787     case ISD::UINT_TO_FP:
3788     case ISD::SINT_TO_FP: {
3789       APFloat apf(EVTToAPFloatSemantics(VT),
3790                   APInt::getNullValue(VT.getSizeInBits()));
3791       (void)apf.convertFromAPInt(Val,
3792                                  Opcode==ISD::SINT_TO_FP,
3793                                  APFloat::rmNearestTiesToEven);
3794       return getConstantFP(apf, DL, VT);
3795     }
3796     case ISD::BITCAST:
3797       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3798         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3799       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3800         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3801       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3802         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3803       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3804         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3805       break;
3806     case ISD::ABS:
3807       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3808                          C->isOpaque());
3809     case ISD::BITREVERSE:
3810       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3811                          C->isOpaque());
3812     case ISD::BSWAP:
3813       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3814                          C->isOpaque());
3815     case ISD::CTPOP:
3816       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3817                          C->isOpaque());
3818     case ISD::CTLZ:
3819     case ISD::CTLZ_ZERO_UNDEF:
3820       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3821                          C->isOpaque());
3822     case ISD::CTTZ:
3823     case ISD::CTTZ_ZERO_UNDEF:
3824       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3825                          C->isOpaque());
3826     case ISD::FP16_TO_FP: {
3827       bool Ignored;
3828       APFloat FPV(APFloat::IEEEhalf(),
3829                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3830
3831       // This can return overflow, underflow, or inexact; we don't care.
3832       // FIXME need to be more flexible about rounding mode.
3833       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3834                         APFloat::rmNearestTiesToEven, &Ignored);
3835       return getConstantFP(FPV, DL, VT);
3836     }
3837     }
3838   }
3839
3840   // Constant fold unary operations with a floating point constant operand.
3841   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3842     APFloat V = C->getValueAPF();    // make copy
3843     switch (Opcode) {
3844     case ISD::FNEG:
3845       V.changeSign();
3846       return getConstantFP(V, DL, VT);
3847     case ISD::FABS:
3848       V.clearSign();
3849       return getConstantFP(V, DL, VT);
3850     case ISD::FCEIL: {
3851       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3852       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3853         return getConstantFP(V, DL, VT);
3854       break;
3855     }
3856     case ISD::FTRUNC: {
3857       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3858       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3859         return getConstantFP(V, DL, VT);
3860       break;
3861     }
3862     case ISD::FFLOOR: {
3863       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3864       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3865         return getConstantFP(V, DL, VT);
3866       break;
3867     }
3868     case ISD::FP_EXTEND: {
3869       bool ignored;
3870       // This can return overflow, underflow, or inexact; we don't care.
3871       // FIXME need to be more flexible about rounding mode.
3872       (void)V.convert(EVTToAPFloatSemantics(VT),
3873                       APFloat::rmNearestTiesToEven, &ignored);
3874       return getConstantFP(V, DL, VT);
3875     }
3876     case ISD::FP_TO_SINT:
3877     case ISD::FP_TO_UINT: {
3878       bool ignored;
3879       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
3880       // FIXME need to be more flexible about rounding mode.
3881       APFloat::opStatus s =
3882           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
3883       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
3884         break;
3885       return getConstant(IntVal, DL, VT);
3886     }
3887     case ISD::BITCAST:
3888       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3889         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3890       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3891         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3892       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3893         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3894       break;
3895     case ISD::FP_TO_FP16: {
3896       bool Ignored;
3897       // This can return overflow, underflow, or inexact; we don't care.
3898       // FIXME need to be more flexible about rounding mode.
3899       (void)V.convert(APFloat::IEEEhalf(),
3900                       APFloat::rmNearestTiesToEven, &Ignored);
3901       return getConstant(V.bitcastToAPInt(), DL, VT);
3902     }
3903     }
3904   }
3905
3906   // Constant fold unary operations with a vector integer or float operand.
3907   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3908     if (BV->isConstant()) {
3909       switch (Opcode) {
3910       default:
3911         // FIXME: Entirely reasonable to perform folding of other unary
3912         // operations here as the need arises.
3913         break;
3914       case ISD::FNEG:
3915       case ISD::FABS:
3916       case ISD::FCEIL:
3917       case ISD::FTRUNC:
3918       case ISD::FFLOOR:
3919       case ISD::FP_EXTEND:
3920       case ISD::FP_TO_SINT:
3921       case ISD::FP_TO_UINT:
3922       case ISD::TRUNCATE:
3923       case ISD::ANY_EXTEND:
3924       case ISD::ZERO_EXTEND:
3925       case ISD::SIGN_EXTEND:
3926       case ISD::UINT_TO_FP:
3927       case ISD::SINT_TO_FP:
3928       case ISD::ABS:
3929       case ISD::BITREVERSE:
3930       case ISD::BSWAP:
3931       case ISD::CTLZ:
3932       case ISD::CTLZ_ZERO_UNDEF:
3933       case ISD::CTTZ:
3934       case ISD::CTTZ_ZERO_UNDEF:
3935       case ISD::CTPOP: {
3936         SDValue Ops = { Operand };
3937         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3938           return Fold;
3939       }
3940       }
3941     }
3942   }
3943
3944   unsigned OpOpcode = Operand.getNode()->getOpcode();
3945   switch (Opcode) {
3946   case ISD::TokenFactor:
3947   case ISD::MERGE_VALUES:
3948   case ISD::CONCAT_VECTORS:
3949     return Operand;         // Factor, merge or concat of one node?  No need.
3950   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3951   case ISD::FP_EXTEND:
3952     assert(VT.isFloatingPoint() &&
3953            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3954     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3955     assert((!VT.isVector() ||
3956             VT.getVectorNumElements() ==
3957             Operand.getValueType().getVectorNumElements()) &&
3958            "Vector element count mismatch!");
3959     assert(Operand.getValueType().bitsLT(VT) &&
3960            "Invalid fpext node, dst < src!");
3961     if (Operand.isUndef())
3962       return getUNDEF(VT);
3963     break;
3964   case ISD::SIGN_EXTEND:
3965     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3966            "Invalid SIGN_EXTEND!");
3967     if (Operand.getValueType() == VT) return Operand;   // noop extension
3968     assert((!VT.isVector() ||
3969             VT.getVectorNumElements() ==
3970             Operand.getValueType().getVectorNumElements()) &&
3971            "Vector element count mismatch!");
3972     assert(Operand.getValueType().bitsLT(VT) &&
3973            "Invalid sext node, dst < src!");
3974     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3975       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
3976     else if (OpOpcode == ISD::UNDEF)
3977       // sext(undef) = 0, because the top bits will all be the same.
3978       return getConstant(0, DL, VT);
3979     break;
3980   case ISD::ZERO_EXTEND:
3981     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3982            "Invalid ZERO_EXTEND!");
3983     if (Operand.getValueType() == VT) return Operand;   // noop extension
3984     assert((!VT.isVector() ||
3985             VT.getVectorNumElements() ==
3986             Operand.getValueType().getVectorNumElements()) &&
3987            "Vector element count mismatch!");
3988     assert(Operand.getValueType().bitsLT(VT) &&
3989            "Invalid zext node, dst < src!");
3990     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3991       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
3992     else if (OpOpcode == ISD::UNDEF)
3993       // zext(undef) = 0, because the top bits will be zero.
3994       return getConstant(0, DL, VT);
3995     break;
3996   case ISD::ANY_EXTEND:
3997     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3998            "Invalid ANY_EXTEND!");
3999     if (Operand.getValueType() == VT) return Operand;   // noop extension
4000     assert((!VT.isVector() ||
4001             VT.getVectorNumElements() ==
4002             Operand.getValueType().getVectorNumElements()) &&
4003            "Vector element count mismatch!");
4004     assert(Operand.getValueType().bitsLT(VT) &&
4005            "Invalid anyext node, dst < src!");
4006
4007     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4008         OpOpcode == ISD::ANY_EXTEND)
4009       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4010       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4011     else if (OpOpcode == ISD::UNDEF)
4012       return getUNDEF(VT);
4013
4014     // (ext (trunc x)) -> x
4015     if (OpOpcode == ISD::TRUNCATE) {
4016       SDValue OpOp = Operand.getOperand(0);
4017       if (OpOp.getValueType() == VT) {
4018         transferDbgValues(Operand, OpOp);
4019         return OpOp;
4020       }
4021     }
4022     break;
4023   case ISD::TRUNCATE:
4024     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4025            "Invalid TRUNCATE!");
4026     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4027     assert((!VT.isVector() ||
4028             VT.getVectorNumElements() ==
4029             Operand.getValueType().getVectorNumElements()) &&
4030            "Vector element count mismatch!");
4031     assert(Operand.getValueType().bitsGT(VT) &&
4032            "Invalid truncate node, src < dst!");
4033     if (OpOpcode == ISD::TRUNCATE)
4034       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4035     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4036         OpOpcode == ISD::ANY_EXTEND) {
4037       // If the source is smaller than the dest, we still need an extend.
4038       if (Operand.getOperand(0).getValueType().getScalarType()
4039             .bitsLT(VT.getScalarType()))
4040         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4041       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4042         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4043       return Operand.getOperand(0);
4044     }
4045     if (OpOpcode == ISD::UNDEF)
4046       return getUNDEF(VT);
4047     break;
4048   case ISD::ABS:
4049     assert(VT.isInteger() && VT == Operand.getValueType() &&
4050            "Invalid ABS!");
4051     if (OpOpcode == ISD::UNDEF)
4052       return getUNDEF(VT);
4053     break;
4054   case ISD::BSWAP:
4055     assert(VT.isInteger() && VT == Operand.getValueType() &&
4056            "Invalid BSWAP!");
4057     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4058            "BSWAP types must be a multiple of 16 bits!");
4059     if (OpOpcode == ISD::UNDEF)
4060       return getUNDEF(VT);
4061     break;
4062   case ISD::BITREVERSE:
4063     assert(VT.isInteger() && VT == Operand.getValueType() &&
4064            "Invalid BITREVERSE!");
4065     if (OpOpcode == ISD::UNDEF)
4066       return getUNDEF(VT);
4067     break;
4068   case ISD::BITCAST:
4069     // Basic sanity checking.
4070     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4071            "Cannot BITCAST between types of different sizes!");
4072     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4073     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4074       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4075     if (OpOpcode == ISD::UNDEF)
4076       return getUNDEF(VT);
4077     break;
4078   case ISD::SCALAR_TO_VECTOR:
4079     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4080            (VT.getVectorElementType() == Operand.getValueType() ||
4081             (VT.getVectorElementType().isInteger() &&
4082              Operand.getValueType().isInteger() &&
4083              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4084            "Illegal SCALAR_TO_VECTOR node!");
4085     if (OpOpcode == ISD::UNDEF)
4086       return getUNDEF(VT);
4087     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4088     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4089         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4090         Operand.getConstantOperandVal(1) == 0 &&
4091         Operand.getOperand(0).getValueType() == VT)
4092       return Operand.getOperand(0);
4093     break;
4094   case ISD::FNEG:
4095     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4096     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4097         OpOpcode == ISD::FSUB)
4098       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4099                      Operand.getOperand(0), Flags);
4100     if (OpOpcode == ISD::FNEG)  // --X -> X
4101       return Operand.getOperand(0);
4102     break;
4103   case ISD::FABS:
4104     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4105       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4106     break;
4107   }
4108
4109   SDNode *N;
4110   SDVTList VTs = getVTList(VT);
4111   SDValue Ops[] = {Operand};
4112   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4113     FoldingSetNodeID ID;
4114     AddNodeIDNode(ID, Opcode, VTs, Ops);
4115     void *IP = nullptr;
4116     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4117       E->intersectFlagsWith(Flags);
4118       return SDValue(E, 0);
4119     }
4120
4121     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4122     N->setFlags(Flags);
4123     createOperands(N, Ops);
4124     CSEMap.InsertNode(N, IP);
4125   } else {
4126     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4127     createOperands(N, Ops);
4128   }
4129
4130   InsertNode(N);
4131   SDValue V = SDValue(N, 0);
4132   NewSDValueDbgMsg(V, "Creating new node: ", this);
4133   return V;
4134 }
4135
4136 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4137                                         const APInt &C2) {
4138   switch (Opcode) {
4139   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4140   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4141   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4142   case ISD::AND:  return std::make_pair(C1 & C2, true);
4143   case ISD::OR:   return std::make_pair(C1 | C2, true);
4144   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4145   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4146   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4147   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4148   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4149   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4150   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4151   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4152   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4153   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4154   case ISD::UDIV:
4155     if (!C2.getBoolValue())
4156       break;
4157     return std::make_pair(C1.udiv(C2), true);
4158   case ISD::UREM:
4159     if (!C2.getBoolValue())
4160       break;
4161     return std::make_pair(C1.urem(C2), true);
4162   case ISD::SDIV:
4163     if (!C2.getBoolValue())
4164       break;
4165     return std::make_pair(C1.sdiv(C2), true);
4166   case ISD::SREM:
4167     if (!C2.getBoolValue())
4168       break;
4169     return std::make_pair(C1.srem(C2), true);
4170   }
4171   return std::make_pair(APInt(1, 0), false);
4172 }
4173
4174 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4175                                              EVT VT, const ConstantSDNode *Cst1,
4176                                              const ConstantSDNode *Cst2) {
4177   if (Cst1->isOpaque() || Cst2->isOpaque())
4178     return SDValue();
4179
4180   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
4181                                             Cst2->getAPIntValue());
4182   if (!Folded.second)
4183     return SDValue();
4184   return getConstant(Folded.first, DL, VT);
4185 }
4186
4187 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4188                                        const GlobalAddressSDNode *GA,
4189                                        const SDNode *N2) {
4190   if (GA->getOpcode() != ISD::GlobalAddress)
4191     return SDValue();
4192   if (!TLI->isOffsetFoldingLegal(GA))
4193     return SDValue();
4194   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
4195   if (!Cst2)
4196     return SDValue();
4197   int64_t Offset = Cst2->getSExtValue();
4198   switch (Opcode) {
4199   case ISD::ADD: break;
4200   case ISD::SUB: Offset = -uint64_t(Offset); break;
4201   default: return SDValue();
4202   }
4203   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
4204                           GA->getOffset() + uint64_t(Offset));
4205 }
4206
4207 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4208   switch (Opcode) {
4209   case ISD::SDIV:
4210   case ISD::UDIV:
4211   case ISD::SREM:
4212   case ISD::UREM: {
4213     // If a divisor is zero/undef or any element of a divisor vector is
4214     // zero/undef, the whole op is undef.
4215     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4216     SDValue Divisor = Ops[1];
4217     if (Divisor.isUndef() || isNullConstant(Divisor))
4218       return true;
4219
4220     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4221            llvm::any_of(Divisor->op_values(),
4222                         [](SDValue V) { return V.isUndef() ||
4223                                         isNullConstant(V); });
4224     // TODO: Handle signed overflow.
4225   }
4226   // TODO: Handle oversized shifts.
4227   default:
4228     return false;
4229   }
4230 }
4231
4232 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4233                                              EVT VT, SDNode *Cst1,
4234                                              SDNode *Cst2) {
4235   // If the opcode is a target-specific ISD node, there's nothing we can
4236   // do here and the operand rules may not line up with the below, so
4237   // bail early.
4238   if (Opcode >= ISD::BUILTIN_OP_END)
4239     return SDValue();
4240
4241   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
4242     return getUNDEF(VT);
4243
4244   // Handle the case of two scalars.
4245   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
4246     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
4247       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
4248       assert((!Folded || !VT.isVector()) &&
4249              "Can't fold vectors ops with scalar operands");
4250       return Folded;
4251     }
4252   }
4253
4254   // fold (add Sym, c) -> Sym+c
4255   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
4256     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
4257   if (TLI->isCommutativeBinOp(Opcode))
4258     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
4259       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
4260
4261   // For vectors extract each constant element into Inputs so we can constant
4262   // fold them individually.
4263   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
4264   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
4265   if (!BV1 || !BV2)
4266     return SDValue();
4267
4268   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
4269
4270   EVT SVT = VT.getScalarType();
4271   EVT LegalSVT = SVT;
4272   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4273     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4274     if (LegalSVT.bitsLT(SVT))
4275       return SDValue();
4276   }
4277   SmallVector<SDValue, 4> Outputs;
4278   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
4279     SDValue V1 = BV1->getOperand(I);
4280     SDValue V2 = BV2->getOperand(I);
4281
4282     if (SVT.isInteger()) {
4283         if (V1->getValueType(0).bitsGT(SVT))
4284           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4285         if (V2->getValueType(0).bitsGT(SVT))
4286           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4287     }
4288
4289     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4290       return SDValue();
4291
4292     // Fold one vector element.
4293     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4294     if (LegalSVT != SVT)
4295       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4296
4297     // Scalar folding only succeeded if the result is a constant or UNDEF.
4298     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4299         ScalarResult.getOpcode() != ISD::ConstantFP)
4300       return SDValue();
4301     Outputs.push_back(ScalarResult);
4302   }
4303
4304   assert(VT.getVectorNumElements() == Outputs.size() &&
4305          "Vector size mismatch!");
4306
4307   // We may have a vector type but a scalar result. Create a splat.
4308   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4309
4310   // Build a big vector out of the scalar elements we generated.
4311   return getBuildVector(VT, SDLoc(), Outputs);
4312 }
4313
4314 // TODO: Merge with FoldConstantArithmetic
4315 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4316                                                    const SDLoc &DL, EVT VT,
4317                                                    ArrayRef<SDValue> Ops,
4318                                                    const SDNodeFlags Flags) {
4319   // If the opcode is a target-specific ISD node, there's nothing we can
4320   // do here and the operand rules may not line up with the below, so
4321   // bail early.
4322   if (Opcode >= ISD::BUILTIN_OP_END)
4323     return SDValue();
4324
4325   if (isUndef(Opcode, Ops))
4326     return getUNDEF(VT);
4327
4328   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4329   if (!VT.isVector())
4330     return SDValue();
4331
4332   unsigned NumElts = VT.getVectorNumElements();
4333
4334   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4335     return !Op.getValueType().isVector() ||
4336            Op.getValueType().getVectorNumElements() == NumElts;
4337   };
4338
4339   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4340     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4341     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4342            (BV && BV->isConstant());
4343   };
4344
4345   // All operands must be vector types with the same number of elements as
4346   // the result type and must be either UNDEF or a build vector of constant
4347   // or UNDEF scalars.
4348   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4349       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4350     return SDValue();
4351
4352   // If we are comparing vectors, then the result needs to be a i1 boolean
4353   // that is then sign-extended back to the legal result type.
4354   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4355
4356   // Find legal integer scalar type for constant promotion and
4357   // ensure that its scalar size is at least as large as source.
4358   EVT LegalSVT = VT.getScalarType();
4359   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4360     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4361     if (LegalSVT.bitsLT(VT.getScalarType()))
4362       return SDValue();
4363   }
4364
4365   // Constant fold each scalar lane separately.
4366   SmallVector<SDValue, 4> ScalarResults;
4367   for (unsigned i = 0; i != NumElts; i++) {
4368     SmallVector<SDValue, 4> ScalarOps;
4369     for (SDValue Op : Ops) {
4370       EVT InSVT = Op.getValueType().getScalarType();
4371       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4372       if (!InBV) {
4373         // We've checked that this is UNDEF or a constant of some kind.
4374         if (Op.isUndef())
4375           ScalarOps.push_back(getUNDEF(InSVT));
4376         else
4377           ScalarOps.push_back(Op);
4378         continue;
4379       }
4380
4381       SDValue ScalarOp = InBV->getOperand(i);
4382       EVT ScalarVT = ScalarOp.getValueType();
4383
4384       // Build vector (integer) scalar operands may need implicit
4385       // truncation - do this before constant folding.
4386       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4387         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4388
4389       ScalarOps.push_back(ScalarOp);
4390     }
4391
4392     // Constant fold the scalar operands.
4393     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4394
4395     // Legalize the (integer) scalar constant if necessary.
4396     if (LegalSVT != SVT)
4397       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4398
4399     // Scalar folding only succeeded if the result is a constant or UNDEF.
4400     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4401         ScalarResult.getOpcode() != ISD::ConstantFP)
4402       return SDValue();
4403     ScalarResults.push_back(ScalarResult);
4404   }
4405
4406   SDValue V = getBuildVector(VT, DL, ScalarResults);
4407   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4408   return V;
4409 }
4410
4411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4412                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4413   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4414   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4415   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4416   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4417
4418   // Canonicalize constant to RHS if commutative.
4419   if (TLI->isCommutativeBinOp(Opcode)) {
4420     if (N1C && !N2C) {
4421       std::swap(N1C, N2C);
4422       std::swap(N1, N2);
4423     } else if (N1CFP && !N2CFP) {
4424       std::swap(N1CFP, N2CFP);
4425       std::swap(N1, N2);
4426     }
4427   }
4428
4429   switch (Opcode) {
4430   default: break;
4431   case ISD::TokenFactor:
4432     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4433            N2.getValueType() == MVT::Other && "Invalid token factor!");
4434     // Fold trivial token factors.
4435     if (N1.getOpcode() == ISD::EntryToken) return N2;
4436     if (N2.getOpcode() == ISD::EntryToken) return N1;
4437     if (N1 == N2) return N1;
4438     break;
4439   case ISD::CONCAT_VECTORS: {
4440     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4441     SDValue Ops[] = {N1, N2};
4442     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4443       return V;
4444     break;
4445   }
4446   case ISD::AND:
4447     assert(VT.isInteger() && "This operator does not apply to FP types!");
4448     assert(N1.getValueType() == N2.getValueType() &&
4449            N1.getValueType() == VT && "Binary operator types must match!");
4450     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4451     // worth handling here.
4452     if (N2C && N2C->isNullValue())
4453       return N2;
4454     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4455       return N1;
4456     break;
4457   case ISD::OR:
4458   case ISD::XOR:
4459   case ISD::ADD:
4460   case ISD::SUB:
4461     assert(VT.isInteger() && "This operator does not apply to FP types!");
4462     assert(N1.getValueType() == N2.getValueType() &&
4463            N1.getValueType() == VT && "Binary operator types must match!");
4464     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4465     // it's worth handling here.
4466     if (N2C && N2C->isNullValue())
4467       return N1;
4468     break;
4469   case ISD::UDIV:
4470   case ISD::UREM:
4471   case ISD::MULHU:
4472   case ISD::MULHS:
4473   case ISD::MUL:
4474   case ISD::SDIV:
4475   case ISD::SREM:
4476   case ISD::SMIN:
4477   case ISD::SMAX:
4478   case ISD::UMIN:
4479   case ISD::UMAX:
4480     assert(VT.isInteger() && "This operator does not apply to FP types!");
4481     assert(N1.getValueType() == N2.getValueType() &&
4482            N1.getValueType() == VT && "Binary operator types must match!");
4483     break;
4484   case ISD::FADD:
4485   case ISD::FSUB:
4486   case ISD::FMUL:
4487   case ISD::FDIV:
4488   case ISD::FREM:
4489     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4490     assert(N1.getValueType() == N2.getValueType() &&
4491            N1.getValueType() == VT && "Binary operator types must match!");
4492     break;
4493   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4494     assert(N1.getValueType() == VT &&
4495            N1.getValueType().isFloatingPoint() &&
4496            N2.getValueType().isFloatingPoint() &&
4497            "Invalid FCOPYSIGN!");
4498     break;
4499   case ISD::SHL:
4500   case ISD::SRA:
4501   case ISD::SRL:
4502   case ISD::ROTL:
4503   case ISD::ROTR:
4504     assert(VT == N1.getValueType() &&
4505            "Shift operators return type must be the same as their first arg");
4506     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4507            "Shifts only work on integers");
4508     assert((!VT.isVector() || VT == N2.getValueType()) &&
4509            "Vector shift amounts must be in the same as their first arg");
4510     // Verify that the shift amount VT is bit enough to hold valid shift
4511     // amounts.  This catches things like trying to shift an i1024 value by an
4512     // i8, which is easy to fall into in generic code that uses
4513     // TLI.getShiftAmount().
4514     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4515            "Invalid use of small shift amount with oversized value!");
4516
4517     // Always fold shifts of i1 values so the code generator doesn't need to
4518     // handle them.  Since we know the size of the shift has to be less than the
4519     // size of the value, the shift/rotate count is guaranteed to be zero.
4520     if (VT == MVT::i1)
4521       return N1;
4522     if (N2C && N2C->isNullValue())
4523       return N1;
4524     break;
4525   case ISD::FP_ROUND_INREG: {
4526     EVT EVT = cast<VTSDNode>(N2)->getVT();
4527     assert(VT == N1.getValueType() && "Not an inreg round!");
4528     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4529            "Cannot FP_ROUND_INREG integer types");
4530     assert(EVT.isVector() == VT.isVector() &&
4531            "FP_ROUND_INREG type should be vector iff the operand "
4532            "type is vector!");
4533     assert((!EVT.isVector() ||
4534             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4535            "Vector element counts must match in FP_ROUND_INREG");
4536     assert(EVT.bitsLE(VT) && "Not rounding down!");
4537     (void)EVT;
4538     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4539     break;
4540   }
4541   case ISD::FP_ROUND:
4542     assert(VT.isFloatingPoint() &&
4543            N1.getValueType().isFloatingPoint() &&
4544            VT.bitsLE(N1.getValueType()) &&
4545            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4546            "Invalid FP_ROUND!");
4547     if (N1.getValueType() == VT) return N1;  // noop conversion.
4548     break;
4549   case ISD::AssertSext:
4550   case ISD::AssertZext: {
4551     EVT EVT = cast<VTSDNode>(N2)->getVT();
4552     assert(VT == N1.getValueType() && "Not an inreg extend!");
4553     assert(VT.isInteger() && EVT.isInteger() &&
4554            "Cannot *_EXTEND_INREG FP types");
4555     assert(!EVT.isVector() &&
4556            "AssertSExt/AssertZExt type should be the vector element type "
4557            "rather than the vector type!");
4558     assert(EVT.bitsLE(VT) && "Not extending!");
4559     if (VT == EVT) return N1; // noop assertion.
4560     break;
4561   }
4562   case ISD::SIGN_EXTEND_INREG: {
4563     EVT EVT = cast<VTSDNode>(N2)->getVT();
4564     assert(VT == N1.getValueType() && "Not an inreg extend!");
4565     assert(VT.isInteger() && EVT.isInteger() &&
4566            "Cannot *_EXTEND_INREG FP types");
4567     assert(EVT.isVector() == VT.isVector() &&
4568            "SIGN_EXTEND_INREG type should be vector iff the operand "
4569            "type is vector!");
4570     assert((!EVT.isVector() ||
4571             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4572            "Vector element counts must match in SIGN_EXTEND_INREG");
4573     assert(EVT.bitsLE(VT) && "Not extending!");
4574     if (EVT == VT) return N1;  // Not actually extending
4575
4576     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4577       unsigned FromBits = EVT.getScalarSizeInBits();
4578       Val <<= Val.getBitWidth() - FromBits;
4579       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4580       return getConstant(Val, DL, ConstantVT);
4581     };
4582
4583     if (N1C) {
4584       const APInt &Val = N1C->getAPIntValue();
4585       return SignExtendInReg(Val, VT);
4586     }
4587     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4588       SmallVector<SDValue, 8> Ops;
4589       llvm::EVT OpVT = N1.getOperand(0).getValueType();
4590       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4591         SDValue Op = N1.getOperand(i);
4592         if (Op.isUndef()) {
4593           Ops.push_back(getUNDEF(OpVT));
4594           continue;
4595         }
4596         ConstantSDNode *C = cast<ConstantSDNode>(Op);
4597         APInt Val = C->getAPIntValue();
4598         Ops.push_back(SignExtendInReg(Val, OpVT));
4599       }
4600       return getBuildVector(VT, DL, Ops);
4601     }
4602     break;
4603   }
4604   case ISD::EXTRACT_VECTOR_ELT:
4605     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
4606            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4607              element type of the vector.");
4608
4609     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4610     if (N1.isUndef())
4611       return getUNDEF(VT);
4612
4613     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4614     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
4615       return getUNDEF(VT);
4616
4617     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4618     // expanding copies of large vectors from registers.
4619     if (N2C &&
4620         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4621         N1.getNumOperands() > 0) {
4622       unsigned Factor =
4623         N1.getOperand(0).getValueType().getVectorNumElements();
4624       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4625                      N1.getOperand(N2C->getZExtValue() / Factor),
4626                      getConstant(N2C->getZExtValue() % Factor, DL,
4627                                  N2.getValueType()));
4628     }
4629
4630     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4631     // expanding large vector constants.
4632     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4633       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4634
4635       if (VT != Elt.getValueType())
4636         // If the vector element type is not legal, the BUILD_VECTOR operands
4637         // are promoted and implicitly truncated, and the result implicitly
4638         // extended. Make that explicit here.
4639         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4640
4641       return Elt;
4642     }
4643
4644     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4645     // operations are lowered to scalars.
4646     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4647       // If the indices are the same, return the inserted element else
4648       // if the indices are known different, extract the element from
4649       // the original vector.
4650       SDValue N1Op2 = N1.getOperand(2);
4651       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4652
4653       if (N1Op2C && N2C) {
4654         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4655           if (VT == N1.getOperand(1).getValueType())
4656             return N1.getOperand(1);
4657           else
4658             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4659         }
4660
4661         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4662       }
4663     }
4664
4665     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
4666     // when vector types are scalarized and v1iX is legal.
4667     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
4668     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4669         N1.getValueType().getVectorNumElements() == 1) {
4670       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
4671                      N1.getOperand(1));
4672     }
4673     break;
4674   case ISD::EXTRACT_ELEMENT:
4675     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4676     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4677            (N1.getValueType().isInteger() == VT.isInteger()) &&
4678            N1.getValueType() != VT &&
4679            "Wrong types for EXTRACT_ELEMENT!");
4680
4681     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4682     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4683     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4684     if (N1.getOpcode() == ISD::BUILD_PAIR)
4685       return N1.getOperand(N2C->getZExtValue());
4686
4687     // EXTRACT_ELEMENT of a constant int is also very common.
4688     if (N1C) {
4689       unsigned ElementSize = VT.getSizeInBits();
4690       unsigned Shift = ElementSize * N2C->getZExtValue();
4691       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4692       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4693     }
4694     break;
4695   case ISD::EXTRACT_SUBVECTOR:
4696     if (VT.isSimple() && N1.getValueType().isSimple()) {
4697       assert(VT.isVector() && N1.getValueType().isVector() &&
4698              "Extract subvector VTs must be a vectors!");
4699       assert(VT.getVectorElementType() ==
4700              N1.getValueType().getVectorElementType() &&
4701              "Extract subvector VTs must have the same element type!");
4702       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4703              "Extract subvector must be from larger vector to smaller vector!");
4704
4705       if (N2C) {
4706         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4707                 <= N1.getValueType().getVectorNumElements())
4708                && "Extract subvector overflow!");
4709       }
4710
4711       // Trivial extraction.
4712       if (VT.getSimpleVT() == N1.getSimpleValueType())
4713         return N1;
4714
4715       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4716       if (N1.isUndef())
4717         return getUNDEF(VT);
4718
4719       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4720       // the concat have the same type as the extract.
4721       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4722           N1.getNumOperands() > 0 &&
4723           VT == N1.getOperand(0).getValueType()) {
4724         unsigned Factor = VT.getVectorNumElements();
4725         return N1.getOperand(N2C->getZExtValue() / Factor);
4726       }
4727
4728       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4729       // during shuffle legalization.
4730       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4731           VT == N1.getOperand(1).getValueType())
4732         return N1.getOperand(1);
4733     }
4734     break;
4735   }
4736
4737   // Perform trivial constant folding.
4738   if (SDValue SV =
4739           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4740     return SV;
4741
4742   // Constant fold FP operations.
4743   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4744   if (N1CFP) {
4745     if (N2CFP) {
4746       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4747       APFloat::opStatus s;
4748       switch (Opcode) {
4749       case ISD::FADD:
4750         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4751         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4752           return getConstantFP(V1, DL, VT);
4753         break;
4754       case ISD::FSUB:
4755         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4756         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4757           return getConstantFP(V1, DL, VT);
4758         break;
4759       case ISD::FMUL:
4760         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4761         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4762           return getConstantFP(V1, DL, VT);
4763         break;
4764       case ISD::FDIV:
4765         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4766         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4767                                  s!=APFloat::opDivByZero)) {
4768           return getConstantFP(V1, DL, VT);
4769         }
4770         break;
4771       case ISD::FREM :
4772         s = V1.mod(V2);
4773         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4774                                  s!=APFloat::opDivByZero)) {
4775           return getConstantFP(V1, DL, VT);
4776         }
4777         break;
4778       case ISD::FCOPYSIGN:
4779         V1.copySign(V2);
4780         return getConstantFP(V1, DL, VT);
4781       default: break;
4782       }
4783     }
4784
4785     if (Opcode == ISD::FP_ROUND) {
4786       APFloat V = N1CFP->getValueAPF();    // make copy
4787       bool ignored;
4788       // This can return overflow, underflow, or inexact; we don't care.
4789       // FIXME need to be more flexible about rounding mode.
4790       (void)V.convert(EVTToAPFloatSemantics(VT),
4791                       APFloat::rmNearestTiesToEven, &ignored);
4792       return getConstantFP(V, DL, VT);
4793     }
4794   }
4795
4796   // Any FP binop with an undef operand is folded to NaN. This matches the
4797   // behavior of the IR optimizer.
4798   switch (Opcode) {
4799   case ISD::FADD:
4800   case ISD::FSUB:
4801   case ISD::FMUL:
4802   case ISD::FDIV:
4803   case ISD::FREM:
4804     if (N1.isUndef() || N2.isUndef())
4805       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4806   }
4807
4808   // Canonicalize an UNDEF to the RHS, even over a constant.
4809   if (N1.isUndef()) {
4810     if (TLI->isCommutativeBinOp(Opcode)) {
4811       std::swap(N1, N2);
4812     } else {
4813       switch (Opcode) {
4814       case ISD::FP_ROUND_INREG:
4815       case ISD::SIGN_EXTEND_INREG:
4816       case ISD::SUB:
4817         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
4818       case ISD::UDIV:
4819       case ISD::SDIV:
4820       case ISD::UREM:
4821       case ISD::SREM:
4822       case ISD::SRA:
4823       case ISD::SRL:
4824       case ISD::SHL:
4825         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4826       }
4827     }
4828   }
4829
4830   // Fold a bunch of operators when the RHS is undef.
4831   if (N2.isUndef()) {
4832     switch (Opcode) {
4833     case ISD::XOR:
4834       if (N1.isUndef())
4835         // Handle undef ^ undef -> 0 special case. This is a common
4836         // idiom (misuse).
4837         return getConstant(0, DL, VT);
4838       LLVM_FALLTHROUGH;
4839     case ISD::ADD:
4840     case ISD::ADDC:
4841     case ISD::ADDE:
4842     case ISD::SUB:
4843     case ISD::UDIV:
4844     case ISD::SDIV:
4845     case ISD::UREM:
4846     case ISD::SREM:
4847     case ISD::SRA:
4848     case ISD::SRL:
4849     case ISD::SHL:
4850       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
4851     case ISD::MUL:
4852     case ISD::AND:
4853       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4854     case ISD::OR:
4855       return getAllOnesConstant(DL, VT);
4856     }
4857   }
4858
4859   // Memoize this node if possible.
4860   SDNode *N;
4861   SDVTList VTs = getVTList(VT);
4862   SDValue Ops[] = {N1, N2};
4863   if (VT != MVT::Glue) {
4864     FoldingSetNodeID ID;
4865     AddNodeIDNode(ID, Opcode, VTs, Ops);
4866     void *IP = nullptr;
4867     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4868       E->intersectFlagsWith(Flags);
4869       return SDValue(E, 0);
4870     }
4871
4872     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4873     N->setFlags(Flags);
4874     createOperands(N, Ops);
4875     CSEMap.InsertNode(N, IP);
4876   } else {
4877     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4878     createOperands(N, Ops);
4879   }
4880
4881   InsertNode(N);
4882   SDValue V = SDValue(N, 0);
4883   NewSDValueDbgMsg(V, "Creating new node: ", this);
4884   return V;
4885 }
4886
4887 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4888                               SDValue N1, SDValue N2, SDValue N3,
4889                               const SDNodeFlags Flags) {
4890   // Perform various simplifications.
4891   switch (Opcode) {
4892   case ISD::FMA: {
4893     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4894     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
4895            N3.getValueType() == VT && "FMA types must match!");
4896     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4897     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4898     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4899     if (N1CFP && N2CFP && N3CFP) {
4900       APFloat  V1 = N1CFP->getValueAPF();
4901       const APFloat &V2 = N2CFP->getValueAPF();
4902       const APFloat &V3 = N3CFP->getValueAPF();
4903       APFloat::opStatus s =
4904         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4905       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4906         return getConstantFP(V1, DL, VT);
4907     }
4908     break;
4909   }
4910   case ISD::CONCAT_VECTORS: {
4911     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4912     SDValue Ops[] = {N1, N2, N3};
4913     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4914       return V;
4915     break;
4916   }
4917   case ISD::SETCC: {
4918     // Use FoldSetCC to simplify SETCC's.
4919     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4920       return V;
4921     // Vector constant folding.
4922     SDValue Ops[] = {N1, N2, N3};
4923     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
4924       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
4925       return V;
4926     }
4927     break;
4928   }
4929   case ISD::SELECT:
4930     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4931      if (N1C->getZExtValue())
4932        return N2;             // select true, X, Y -> X
4933      return N3;             // select false, X, Y -> Y
4934     }
4935
4936     if (N2 == N3) return N2;   // select C, X, X -> X
4937     break;
4938   case ISD::VECTOR_SHUFFLE:
4939     llvm_unreachable("should use getVectorShuffle constructor!");
4940   case ISD::INSERT_VECTOR_ELT: {
4941     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4942     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4943     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4944       return getUNDEF(VT);
4945     break;
4946   }
4947   case ISD::INSERT_SUBVECTOR: {
4948     SDValue Index = N3;
4949     if (VT.isSimple() && N1.getValueType().isSimple()
4950         && N2.getValueType().isSimple()) {
4951       assert(VT.isVector() && N1.getValueType().isVector() &&
4952              N2.getValueType().isVector() &&
4953              "Insert subvector VTs must be a vectors");
4954       assert(VT == N1.getValueType() &&
4955              "Dest and insert subvector source types must match!");
4956       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4957              "Insert subvector must be from smaller vector to larger vector!");
4958       if (isa<ConstantSDNode>(Index)) {
4959         assert((N2.getValueType().getVectorNumElements() +
4960                 cast<ConstantSDNode>(Index)->getZExtValue()
4961                 <= VT.getVectorNumElements())
4962                && "Insert subvector overflow!");
4963       }
4964
4965       // Trivial insertion.
4966       if (VT.getSimpleVT() == N2.getSimpleValueType())
4967         return N2;
4968     }
4969     break;
4970   }
4971   case ISD::BITCAST:
4972     // Fold bit_convert nodes from a type to themselves.
4973     if (N1.getValueType() == VT)
4974       return N1;
4975     break;
4976   }
4977
4978   // Memoize node if it doesn't produce a flag.
4979   SDNode *N;
4980   SDVTList VTs = getVTList(VT);
4981   SDValue Ops[] = {N1, N2, N3};
4982   if (VT != MVT::Glue) {
4983     FoldingSetNodeID ID;
4984     AddNodeIDNode(ID, Opcode, VTs, Ops);
4985     void *IP = nullptr;
4986     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4987       E->intersectFlagsWith(Flags);
4988       return SDValue(E, 0);
4989     }
4990
4991     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4992     N->setFlags(Flags);
4993     createOperands(N, Ops);
4994     CSEMap.InsertNode(N, IP);
4995   } else {
4996     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4997     createOperands(N, Ops);
4998   }
4999
5000   InsertNode(N);
5001   SDValue V = SDValue(N, 0);
5002   NewSDValueDbgMsg(V, "Creating new node: ", this);
5003   return V;
5004 }
5005
5006 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5007                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5008   SDValue Ops[] = { N1, N2, N3, N4 };
5009   return getNode(Opcode, DL, VT, Ops);
5010 }
5011
5012 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5013                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5014                               SDValue N5) {
5015   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5016   return getNode(Opcode, DL, VT, Ops);
5017 }
5018
5019 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5020 /// the incoming stack arguments to be loaded from the stack.
5021 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5022   SmallVector<SDValue, 8> ArgChains;
5023
5024   // Include the original chain at the beginning of the list. When this is
5025   // used by target LowerCall hooks, this helps legalize find the
5026   // CALLSEQ_BEGIN node.
5027   ArgChains.push_back(Chain);
5028
5029   // Add a chain value for each stack argument.
5030   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5031        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5032     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5033       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5034         if (FI->getIndex() < 0)
5035           ArgChains.push_back(SDValue(L, 1));
5036
5037   // Build a tokenfactor for all the chains.
5038   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5039 }
5040
5041 /// getMemsetValue - Vectorized representation of the memset value
5042 /// operand.
5043 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5044                               const SDLoc &dl) {
5045   assert(!Value.isUndef());
5046
5047   unsigned NumBits = VT.getScalarSizeInBits();
5048   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5049     assert(C->getAPIntValue().getBitWidth() == 8);
5050     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5051     if (VT.isInteger())
5052       return DAG.getConstant(Val, dl, VT);
5053     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5054                              VT);
5055   }
5056
5057   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5058   EVT IntVT = VT.getScalarType();
5059   if (!IntVT.isInteger())
5060     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5061
5062   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5063   if (NumBits > 8) {
5064     // Use a multiplication with 0x010101... to extend the input to the
5065     // required length.
5066     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5067     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5068                         DAG.getConstant(Magic, dl, IntVT));
5069   }
5070
5071   if (VT != Value.getValueType() && !VT.isInteger())
5072     Value = DAG.getBitcast(VT.getScalarType(), Value);
5073   if (VT != Value.getValueType())
5074     Value = DAG.getSplatBuildVector(VT, dl, Value);
5075
5076   return Value;
5077 }
5078
5079 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5080 /// used when a memcpy is turned into a memset when the source is a constant
5081 /// string ptr.
5082 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5083                                   const TargetLowering &TLI,
5084                                   const ConstantDataArraySlice &Slice) {
5085   // Handle vector with all elements zero.
5086   if (Slice.Array == nullptr) {
5087     if (VT.isInteger())
5088       return DAG.getConstant(0, dl, VT);
5089     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5090       return DAG.getConstantFP(0.0, dl, VT);
5091     else if (VT.isVector()) {
5092       unsigned NumElts = VT.getVectorNumElements();
5093       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5094       return DAG.getNode(ISD::BITCAST, dl, VT,
5095                          DAG.getConstant(0, dl,
5096                                          EVT::getVectorVT(*DAG.getContext(),
5097                                                           EltVT, NumElts)));
5098     } else
5099       llvm_unreachable("Expected type!");
5100   }
5101
5102   assert(!VT.isVector() && "Can't handle vector type here!");
5103   unsigned NumVTBits = VT.getSizeInBits();
5104   unsigned NumVTBytes = NumVTBits / 8;
5105   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5106
5107   APInt Val(NumVTBits, 0);
5108   if (DAG.getDataLayout().isLittleEndian()) {
5109     for (unsigned i = 0; i != NumBytes; ++i)
5110       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5111   } else {
5112     for (unsigned i = 0; i != NumBytes; ++i)
5113       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5114   }
5115
5116   // If the "cost" of materializing the integer immediate is less than the cost
5117   // of a load, then it is cost effective to turn the load into the immediate.
5118   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5119   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5120     return DAG.getConstant(Val, dl, VT);
5121   return SDValue(nullptr, 0);
5122 }
5123
5124 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5125                                            const SDLoc &DL) {
5126   EVT VT = Base.getValueType();
5127   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5128 }
5129
5130 /// Returns true if memcpy source is constant data.
5131 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5132   uint64_t SrcDelta = 0;
5133   GlobalAddressSDNode *G = nullptr;
5134   if (Src.getOpcode() == ISD::GlobalAddress)
5135     G = cast<GlobalAddressSDNode>(Src);
5136   else if (Src.getOpcode() == ISD::ADD &&
5137            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5138            Src.getOperand(1).getOpcode() == ISD::Constant) {
5139     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5140     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5141   }
5142   if (!G)
5143     return false;
5144
5145   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5146                                   SrcDelta + G->getOffset());
5147 }
5148
5149 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5150 /// Return true if the number of memory ops is below the threshold (Limit).
5151 /// It returns the types of the sequence of memory ops to perform
5152 /// memset / memcpy by reference.
5153 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5154                                      unsigned Limit, uint64_t Size,
5155                                      unsigned DstAlign, unsigned SrcAlign,
5156                                      bool IsMemset,
5157                                      bool ZeroMemset,
5158                                      bool MemcpyStrSrc,
5159                                      bool AllowOverlap,
5160                                      unsigned DstAS, unsigned SrcAS,
5161                                      SelectionDAG &DAG,
5162                                      const TargetLowering &TLI) {
5163   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5164          "Expecting memcpy / memset source to meet alignment requirement!");
5165   // If 'SrcAlign' is zero, that means the memory operation does not need to
5166   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5167   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5168   // is the specified alignment of the memory operation. If it is zero, that
5169   // means it's possible to change the alignment of the destination.
5170   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5171   // not need to be loaded.
5172   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5173                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5174                                    DAG.getMachineFunction());
5175
5176   if (VT == MVT::Other) {
5177     // Use the largest integer type whose alignment constraints are satisfied.
5178     // We only need to check DstAlign here as SrcAlign is always greater or
5179     // equal to DstAlign (or zero).
5180     VT = MVT::i64;
5181     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5182            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5183       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5184     assert(VT.isInteger());
5185
5186     // Find the largest legal integer type.
5187     MVT LVT = MVT::i64;
5188     while (!TLI.isTypeLegal(LVT))
5189       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5190     assert(LVT.isInteger());
5191
5192     // If the type we've chosen is larger than the largest legal integer type
5193     // then use that instead.
5194     if (VT.bitsGT(LVT))
5195       VT = LVT;
5196   }
5197
5198   unsigned NumMemOps = 0;
5199   while (Size != 0) {
5200     unsigned VTSize = VT.getSizeInBits() / 8;
5201     while (VTSize > Size) {
5202       // For now, only use non-vector load / store's for the left-over pieces.
5203       EVT NewVT = VT;
5204       unsigned NewVTSize;
5205
5206       bool Found = false;
5207       if (VT.isVector() || VT.isFloatingPoint()) {
5208         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5209         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5210             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5211           Found = true;
5212         else if (NewVT == MVT::i64 &&
5213                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5214                  TLI.isSafeMemOpType(MVT::f64)) {
5215           // i64 is usually not legal on 32-bit targets, but f64 may be.
5216           NewVT = MVT::f64;
5217           Found = true;
5218         }
5219       }
5220
5221       if (!Found) {
5222         do {
5223           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5224           if (NewVT == MVT::i8)
5225             break;
5226         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5227       }
5228       NewVTSize = NewVT.getSizeInBits() / 8;
5229
5230       // If the new VT cannot cover all of the remaining bits, then consider
5231       // issuing a (or a pair of) unaligned and overlapping load / store.
5232       // FIXME: Only does this for 64-bit or more since we don't have proper
5233       // cost model for unaligned load / store.
5234       bool Fast;
5235       if (NumMemOps && AllowOverlap &&
5236           VTSize >= 8 && NewVTSize < Size &&
5237           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
5238         VTSize = Size;
5239       else {
5240         VT = NewVT;
5241         VTSize = NewVTSize;
5242       }
5243     }
5244
5245     if (++NumMemOps > Limit)
5246       return false;
5247
5248     MemOps.push_back(VT);
5249     Size -= VTSize;
5250   }
5251
5252   return true;
5253 }
5254
5255 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5256   // On Darwin, -Os means optimize for size without hurting performance, so
5257   // only really optimize for size when -Oz (MinSize) is used.
5258   if (MF.getTarget().getTargetTriple().isOSDarwin())
5259     return MF.getFunction().optForMinSize();
5260   return MF.getFunction().optForSize();
5261 }
5262
5263 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5264                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5265                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5266                           SmallVector<SDValue, 16> &OutStoreChains) {
5267   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5268   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5269   SmallVector<SDValue, 16> GluedLoadChains;
5270   for (unsigned i = From; i < To; ++i) {
5271     OutChains.push_back(OutLoadChains[i]);
5272     GluedLoadChains.push_back(OutLoadChains[i]);
5273   }
5274
5275   // Chain for all loads.
5276   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5277                                   GluedLoadChains);
5278
5279   for (unsigned i = From; i < To; ++i) {
5280     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5281     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5282                                   ST->getBasePtr(), ST->getMemoryVT(),
5283                                   ST->getMemOperand());
5284     OutChains.push_back(NewStore);
5285   }
5286 }
5287
5288 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5289                                        SDValue Chain, SDValue Dst, SDValue Src,
5290                                        uint64_t Size, unsigned Align,
5291                                        bool isVol, bool AlwaysInline,
5292                                        MachinePointerInfo DstPtrInfo,
5293                                        MachinePointerInfo SrcPtrInfo) {
5294   // Turn a memcpy of undef to nop.
5295   if (Src.isUndef())
5296     return Chain;
5297
5298   // Expand memcpy to a series of load and store ops if the size operand falls
5299   // below a certain threshold.
5300   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5301   // rather than maybe a humongous number of loads and stores.
5302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5303   const DataLayout &DL = DAG.getDataLayout();
5304   LLVMContext &C = *DAG.getContext();
5305   std::vector<EVT> MemOps;
5306   bool DstAlignCanChange = false;
5307   MachineFunction &MF = DAG.getMachineFunction();
5308   MachineFrameInfo &MFI = MF.getFrameInfo();
5309   bool OptSize = shouldLowerMemFuncForSize(MF);
5310   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5311   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5312     DstAlignCanChange = true;
5313   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5314   if (Align > SrcAlign)
5315     SrcAlign = Align;
5316   ConstantDataArraySlice Slice;
5317   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5318   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5319   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5320
5321   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5322                                 (DstAlignCanChange ? 0 : Align),
5323                                 (isZeroConstant ? 0 : SrcAlign),
5324                                 false, false, CopyFromConstant, true,
5325                                 DstPtrInfo.getAddrSpace(),
5326                                 SrcPtrInfo.getAddrSpace(),
5327                                 DAG, TLI))
5328     return SDValue();
5329
5330   if (DstAlignCanChange) {
5331     Type *Ty = MemOps[0].getTypeForEVT(C);
5332     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5333
5334     // Don't promote to an alignment that would require dynamic stack
5335     // realignment.
5336     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5337     if (!TRI->needsStackRealignment(MF))
5338       while (NewAlign > Align &&
5339              DL.exceedsNaturalStackAlignment(NewAlign))
5340           NewAlign /= 2;
5341
5342     if (NewAlign > Align) {
5343       // Give the stack frame object a larger alignment if needed.
5344       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5345         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5346       Align = NewAlign;
5347     }
5348   }
5349
5350   MachineMemOperand::Flags MMOFlags =
5351       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5352   SmallVector<SDValue, 16> OutLoadChains;
5353   SmallVector<SDValue, 16> OutStoreChains;
5354   SmallVector<SDValue, 32> OutChains;
5355   unsigned NumMemOps = MemOps.size();
5356   uint64_t SrcOff = 0, DstOff = 0;
5357   for (unsigned i = 0; i != NumMemOps; ++i) {
5358     EVT VT = MemOps[i];
5359     unsigned VTSize = VT.getSizeInBits() / 8;
5360     SDValue Value, Store;
5361
5362     if (VTSize > Size) {
5363       // Issuing an unaligned load / store pair  that overlaps with the previous
5364       // pair. Adjust the offset accordingly.
5365       assert(i == NumMemOps-1 && i != 0);
5366       SrcOff -= VTSize - Size;
5367       DstOff -= VTSize - Size;
5368     }
5369
5370     if (CopyFromConstant &&
5371         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5372       // It's unlikely a store of a vector immediate can be done in a single
5373       // instruction. It would require a load from a constantpool first.
5374       // We only handle zero vectors here.
5375       // FIXME: Handle other cases where store of vector immediate is done in
5376       // a single instruction.
5377       ConstantDataArraySlice SubSlice;
5378       if (SrcOff < Slice.Length) {
5379         SubSlice = Slice;
5380         SubSlice.move(SrcOff);
5381       } else {
5382         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5383         SubSlice.Array = nullptr;
5384         SubSlice.Offset = 0;
5385         SubSlice.Length = VTSize;
5386       }
5387       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5388       if (Value.getNode()) {
5389         Store = DAG.getStore(Chain, dl, Value,
5390                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5391                              DstPtrInfo.getWithOffset(DstOff), Align,
5392                              MMOFlags);
5393         OutChains.push_back(Store);
5394       }
5395     }
5396
5397     if (!Store.getNode()) {
5398       // The type might not be legal for the target.  This should only happen
5399       // if the type is smaller than a legal type, as on PPC, so the right
5400       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5401       // to Load/Store if NVT==VT.
5402       // FIXME does the case above also need this?
5403       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5404       assert(NVT.bitsGE(VT));
5405
5406       bool isDereferenceable =
5407         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5408       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5409       if (isDereferenceable)
5410         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5411
5412       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5413                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5414                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5415                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5416       OutLoadChains.push_back(Value.getValue(1));
5417
5418       Store = DAG.getTruncStore(
5419           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5420           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5421       OutStoreChains.push_back(Store);
5422     }
5423     SrcOff += VTSize;
5424     DstOff += VTSize;
5425     Size -= VTSize;
5426   }
5427
5428   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5429                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5430   unsigned NumLdStInMemcpy = OutStoreChains.size();
5431
5432   if (NumLdStInMemcpy) {
5433     // It may be that memcpy might be converted to memset if it's memcpy
5434     // of constants. In such a case, we won't have loads and stores, but
5435     // just stores. In the absence of loads, there is nothing to gang up.
5436     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5437       // If target does not care, just leave as it.
5438       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5439         OutChains.push_back(OutLoadChains[i]);
5440         OutChains.push_back(OutStoreChains[i]);
5441       }
5442     } else {
5443       // Ld/St less than/equal limit set by target.
5444       if (NumLdStInMemcpy <= GluedLdStLimit) {
5445           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5446                                         NumLdStInMemcpy, OutLoadChains,
5447                                         OutStoreChains);
5448       } else {
5449         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5450         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5451         unsigned GlueIter = 0;
5452
5453         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5454           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5455           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5456
5457           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5458                                        OutLoadChains, OutStoreChains);
5459           GlueIter += GluedLdStLimit;
5460         }
5461
5462         // Residual ld/st.
5463         if (RemainingLdStInMemcpy) {
5464           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5465                                         RemainingLdStInMemcpy, OutLoadChains,
5466                                         OutStoreChains);
5467         }
5468       }
5469     }
5470   }
5471   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5472 }
5473
5474 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5475                                         SDValue Chain, SDValue Dst, SDValue Src,
5476                                         uint64_t Size, unsigned Align,
5477                                         bool isVol, bool AlwaysInline,
5478                                         MachinePointerInfo DstPtrInfo,
5479                                         MachinePointerInfo SrcPtrInfo) {
5480   // Turn a memmove of undef to nop.
5481   if (Src.isUndef())
5482     return Chain;
5483
5484   // Expand memmove to a series of load and store ops if the size operand falls
5485   // below a certain threshold.
5486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5487   const DataLayout &DL = DAG.getDataLayout();
5488   LLVMContext &C = *DAG.getContext();
5489   std::vector<EVT> MemOps;
5490   bool DstAlignCanChange = false;
5491   MachineFunction &MF = DAG.getMachineFunction();
5492   MachineFrameInfo &MFI = MF.getFrameInfo();
5493   bool OptSize = shouldLowerMemFuncForSize(MF);
5494   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5495   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5496     DstAlignCanChange = true;
5497   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5498   if (Align > SrcAlign)
5499     SrcAlign = Align;
5500   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5501
5502   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5503                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5504                                 false, false, false, false,
5505                                 DstPtrInfo.getAddrSpace(),
5506                                 SrcPtrInfo.getAddrSpace(),
5507                                 DAG, TLI))
5508     return SDValue();
5509
5510   if (DstAlignCanChange) {
5511     Type *Ty = MemOps[0].getTypeForEVT(C);
5512     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5513     if (NewAlign > Align) {
5514       // Give the stack frame object a larger alignment if needed.
5515       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5516         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5517       Align = NewAlign;
5518     }
5519   }
5520
5521   MachineMemOperand::Flags MMOFlags =
5522       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5523   uint64_t SrcOff = 0, DstOff = 0;
5524   SmallVector<SDValue, 8> LoadValues;
5525   SmallVector<SDValue, 8> LoadChains;
5526   SmallVector<SDValue, 8> OutChains;
5527   unsigned NumMemOps = MemOps.size();
5528   for (unsigned i = 0; i < NumMemOps; i++) {
5529     EVT VT = MemOps[i];
5530     unsigned VTSize = VT.getSizeInBits() / 8;
5531     SDValue Value;
5532
5533     bool isDereferenceable =
5534       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5535     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5536     if (isDereferenceable)
5537       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5538
5539     Value =
5540         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5541                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5542     LoadValues.push_back(Value);
5543     LoadChains.push_back(Value.getValue(1));
5544     SrcOff += VTSize;
5545   }
5546   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5547   OutChains.clear();
5548   for (unsigned i = 0; i < NumMemOps; i++) {
5549     EVT VT = MemOps[i];
5550     unsigned VTSize = VT.getSizeInBits() / 8;
5551     SDValue Store;
5552
5553     Store = DAG.getStore(Chain, dl, LoadValues[i],
5554                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5555                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5556     OutChains.push_back(Store);
5557     DstOff += VTSize;
5558   }
5559
5560   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5561 }
5562
5563 /// Lower the call to 'memset' intrinsic function into a series of store
5564 /// operations.
5565 ///
5566 /// \param DAG Selection DAG where lowered code is placed.
5567 /// \param dl Link to corresponding IR location.
5568 /// \param Chain Control flow dependency.
5569 /// \param Dst Pointer to destination memory location.
5570 /// \param Src Value of byte to write into the memory.
5571 /// \param Size Number of bytes to write.
5572 /// \param Align Alignment of the destination in bytes.
5573 /// \param isVol True if destination is volatile.
5574 /// \param DstPtrInfo IR information on the memory pointer.
5575 /// \returns New head in the control flow, if lowering was successful, empty
5576 /// SDValue otherwise.
5577 ///
5578 /// The function tries to replace 'llvm.memset' intrinsic with several store
5579 /// operations and value calculation code. This is usually profitable for small
5580 /// memory size.
5581 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5582                                SDValue Chain, SDValue Dst, SDValue Src,
5583                                uint64_t Size, unsigned Align, bool isVol,
5584                                MachinePointerInfo DstPtrInfo) {
5585   // Turn a memset of undef to nop.
5586   if (Src.isUndef())
5587     return Chain;
5588
5589   // Expand memset to a series of load/store ops if the size operand
5590   // falls below a certain threshold.
5591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5592   std::vector<EVT> MemOps;
5593   bool DstAlignCanChange = false;
5594   MachineFunction &MF = DAG.getMachineFunction();
5595   MachineFrameInfo &MFI = MF.getFrameInfo();
5596   bool OptSize = shouldLowerMemFuncForSize(MF);
5597   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5598   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5599     DstAlignCanChange = true;
5600   bool IsZeroVal =
5601     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5602   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5603                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5604                                 true, IsZeroVal, false, true,
5605                                 DstPtrInfo.getAddrSpace(), ~0u,
5606                                 DAG, TLI))
5607     return SDValue();
5608
5609   if (DstAlignCanChange) {
5610     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5611     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5612     if (NewAlign > Align) {
5613       // Give the stack frame object a larger alignment if needed.
5614       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5615         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5616       Align = NewAlign;
5617     }
5618   }
5619
5620   SmallVector<SDValue, 8> OutChains;
5621   uint64_t DstOff = 0;
5622   unsigned NumMemOps = MemOps.size();
5623
5624   // Find the largest store and generate the bit pattern for it.
5625   EVT LargestVT = MemOps[0];
5626   for (unsigned i = 1; i < NumMemOps; i++)
5627     if (MemOps[i].bitsGT(LargestVT))
5628       LargestVT = MemOps[i];
5629   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5630
5631   for (unsigned i = 0; i < NumMemOps; i++) {
5632     EVT VT = MemOps[i];
5633     unsigned VTSize = VT.getSizeInBits() / 8;
5634     if (VTSize > Size) {
5635       // Issuing an unaligned load / store pair  that overlaps with the previous
5636       // pair. Adjust the offset accordingly.
5637       assert(i == NumMemOps-1 && i != 0);
5638       DstOff -= VTSize - Size;
5639     }
5640
5641     // If this store is smaller than the largest store see whether we can get
5642     // the smaller value for free with a truncate.
5643     SDValue Value = MemSetValue;
5644     if (VT.bitsLT(LargestVT)) {
5645       if (!LargestVT.isVector() && !VT.isVector() &&
5646           TLI.isTruncateFree(LargestVT, VT))
5647         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5648       else
5649         Value = getMemsetValue(Src, VT, DAG, dl);
5650     }
5651     assert(Value.getValueType() == VT && "Value with wrong type.");
5652     SDValue Store = DAG.getStore(
5653         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5654         DstPtrInfo.getWithOffset(DstOff), Align,
5655         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5656     OutChains.push_back(Store);
5657     DstOff += VT.getSizeInBits() / 8;
5658     Size -= VTSize;
5659   }
5660
5661   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5662 }
5663
5664 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5665                                             unsigned AS) {
5666   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5667   // pointer operands can be losslessly bitcasted to pointers of address space 0
5668   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5669     report_fatal_error("cannot lower memory intrinsic in address space " +
5670                        Twine(AS));
5671   }
5672 }
5673
5674 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5675                                 SDValue Src, SDValue Size, unsigned Align,
5676                                 bool isVol, bool AlwaysInline, bool isTailCall,
5677                                 MachinePointerInfo DstPtrInfo,
5678                                 MachinePointerInfo SrcPtrInfo) {
5679   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5680
5681   // Check to see if we should lower the memcpy to loads and stores first.
5682   // For cases within the target-specified limits, this is the best choice.
5683   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5684   if (ConstantSize) {
5685     // Memcpy with size zero? Just return the original chain.
5686     if (ConstantSize->isNullValue())
5687       return Chain;
5688
5689     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5690                                              ConstantSize->getZExtValue(),Align,
5691                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5692     if (Result.getNode())
5693       return Result;
5694   }
5695
5696   // Then check to see if we should lower the memcpy with target-specific
5697   // code. If the target chooses to do this, this is the next best.
5698   if (TSI) {
5699     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5700         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5701         DstPtrInfo, SrcPtrInfo);
5702     if (Result.getNode())
5703       return Result;
5704   }
5705
5706   // If we really need inline code and the target declined to provide it,
5707   // use a (potentially long) sequence of loads and stores.
5708   if (AlwaysInline) {
5709     assert(ConstantSize && "AlwaysInline requires a constant size!");
5710     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5711                                    ConstantSize->getZExtValue(), Align, isVol,
5712                                    true, DstPtrInfo, SrcPtrInfo);
5713   }
5714
5715   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5716   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5717
5718   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5719   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5720   // respect volatile, so they may do things like read or write memory
5721   // beyond the given memory regions. But fixing this isn't easy, and most
5722   // people don't care.
5723
5724   // Emit a library call.
5725   TargetLowering::ArgListTy Args;
5726   TargetLowering::ArgListEntry Entry;
5727   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5728   Entry.Node = Dst; Args.push_back(Entry);
5729   Entry.Node = Src; Args.push_back(Entry);
5730   Entry.Node = Size; Args.push_back(Entry);
5731   // FIXME: pass in SDLoc
5732   TargetLowering::CallLoweringInfo CLI(*this);
5733   CLI.setDebugLoc(dl)
5734       .setChain(Chain)
5735       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5736                     Dst.getValueType().getTypeForEVT(*getContext()),
5737                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5738                                       TLI->getPointerTy(getDataLayout())),
5739                     std::move(Args))
5740       .setDiscardResult()
5741       .setTailCall(isTailCall);
5742
5743   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5744   return CallResult.second;
5745 }
5746
5747 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
5748                                       SDValue Dst, unsigned DstAlign,
5749                                       SDValue Src, unsigned SrcAlign,
5750                                       SDValue Size, Type *SizeTy,
5751                                       unsigned ElemSz, bool isTailCall,
5752                                       MachinePointerInfo DstPtrInfo,
5753                                       MachinePointerInfo SrcPtrInfo) {
5754   // Emit a library call.
5755   TargetLowering::ArgListTy Args;
5756   TargetLowering::ArgListEntry Entry;
5757   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5758   Entry.Node = Dst;
5759   Args.push_back(Entry);
5760
5761   Entry.Node = Src;
5762   Args.push_back(Entry);
5763
5764   Entry.Ty = SizeTy;
5765   Entry.Node = Size;
5766   Args.push_back(Entry);
5767
5768   RTLIB::Libcall LibraryCall =
5769       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5770   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5771     report_fatal_error("Unsupported element size");
5772
5773   TargetLowering::CallLoweringInfo CLI(*this);
5774   CLI.setDebugLoc(dl)
5775       .setChain(Chain)
5776       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5777                     Type::getVoidTy(*getContext()),
5778                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5779                                       TLI->getPointerTy(getDataLayout())),
5780                     std::move(Args))
5781       .setDiscardResult()
5782       .setTailCall(isTailCall);
5783
5784   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5785   return CallResult.second;
5786 }
5787
5788 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5789                                  SDValue Src, SDValue Size, unsigned Align,
5790                                  bool isVol, bool isTailCall,
5791                                  MachinePointerInfo DstPtrInfo,
5792                                  MachinePointerInfo SrcPtrInfo) {
5793   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5794
5795   // Check to see if we should lower the memmove to loads and stores first.
5796   // For cases within the target-specified limits, this is the best choice.
5797   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5798   if (ConstantSize) {
5799     // Memmove with size zero? Just return the original chain.
5800     if (ConstantSize->isNullValue())
5801       return Chain;
5802
5803     SDValue Result =
5804       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5805                                ConstantSize->getZExtValue(), Align, isVol,
5806                                false, DstPtrInfo, SrcPtrInfo);
5807     if (Result.getNode())
5808       return Result;
5809   }
5810
5811   // Then check to see if we should lower the memmove with target-specific
5812   // code. If the target chooses to do this, this is the next best.
5813   if (TSI) {
5814     SDValue Result = TSI->EmitTargetCodeForMemmove(
5815         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5816     if (Result.getNode())
5817       return Result;
5818   }
5819
5820   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5821   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5822
5823   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5824   // not be safe.  See memcpy above for more details.
5825
5826   // Emit a library call.
5827   TargetLowering::ArgListTy Args;
5828   TargetLowering::ArgListEntry Entry;
5829   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5830   Entry.Node = Dst; Args.push_back(Entry);
5831   Entry.Node = Src; Args.push_back(Entry);
5832   Entry.Node = Size; Args.push_back(Entry);
5833   // FIXME:  pass in SDLoc
5834   TargetLowering::CallLoweringInfo CLI(*this);
5835   CLI.setDebugLoc(dl)
5836       .setChain(Chain)
5837       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5838                     Dst.getValueType().getTypeForEVT(*getContext()),
5839                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5840                                       TLI->getPointerTy(getDataLayout())),
5841                     std::move(Args))
5842       .setDiscardResult()
5843       .setTailCall(isTailCall);
5844
5845   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5846   return CallResult.second;
5847 }
5848
5849 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
5850                                        SDValue Dst, unsigned DstAlign,
5851                                        SDValue Src, unsigned SrcAlign,
5852                                        SDValue Size, Type *SizeTy,
5853                                        unsigned ElemSz, bool isTailCall,
5854                                        MachinePointerInfo DstPtrInfo,
5855                                        MachinePointerInfo SrcPtrInfo) {
5856   // Emit a library call.
5857   TargetLowering::ArgListTy Args;
5858   TargetLowering::ArgListEntry Entry;
5859   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5860   Entry.Node = Dst;
5861   Args.push_back(Entry);
5862
5863   Entry.Node = Src;
5864   Args.push_back(Entry);
5865
5866   Entry.Ty = SizeTy;
5867   Entry.Node = Size;
5868   Args.push_back(Entry);
5869
5870   RTLIB::Libcall LibraryCall =
5871       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5872   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5873     report_fatal_error("Unsupported element size");
5874
5875   TargetLowering::CallLoweringInfo CLI(*this);
5876   CLI.setDebugLoc(dl)
5877       .setChain(Chain)
5878       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5879                     Type::getVoidTy(*getContext()),
5880                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5881                                       TLI->getPointerTy(getDataLayout())),
5882                     std::move(Args))
5883       .setDiscardResult()
5884       .setTailCall(isTailCall);
5885
5886   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5887   return CallResult.second;
5888 }
5889
5890 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5891                                 SDValue Src, SDValue Size, unsigned Align,
5892                                 bool isVol, bool isTailCall,
5893                                 MachinePointerInfo DstPtrInfo) {
5894   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5895
5896   // Check to see if we should lower the memset to stores first.
5897   // For cases within the target-specified limits, this is the best choice.
5898   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5899   if (ConstantSize) {
5900     // Memset with size zero? Just return the original chain.
5901     if (ConstantSize->isNullValue())
5902       return Chain;
5903
5904     SDValue Result =
5905       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5906                       Align, isVol, DstPtrInfo);
5907
5908     if (Result.getNode())
5909       return Result;
5910   }
5911
5912   // Then check to see if we should lower the memset with target-specific
5913   // code. If the target chooses to do this, this is the next best.
5914   if (TSI) {
5915     SDValue Result = TSI->EmitTargetCodeForMemset(
5916         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5917     if (Result.getNode())
5918       return Result;
5919   }
5920
5921   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5922
5923   // Emit a library call.
5924   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5925   TargetLowering::ArgListTy Args;
5926   TargetLowering::ArgListEntry Entry;
5927   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5928   Args.push_back(Entry);
5929   Entry.Node = Src;
5930   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5931   Args.push_back(Entry);
5932   Entry.Node = Size;
5933   Entry.Ty = IntPtrTy;
5934   Args.push_back(Entry);
5935
5936   // FIXME: pass in SDLoc
5937   TargetLowering::CallLoweringInfo CLI(*this);
5938   CLI.setDebugLoc(dl)
5939       .setChain(Chain)
5940       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5941                     Dst.getValueType().getTypeForEVT(*getContext()),
5942                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5943                                       TLI->getPointerTy(getDataLayout())),
5944                     std::move(Args))
5945       .setDiscardResult()
5946       .setTailCall(isTailCall);
5947
5948   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5949   return CallResult.second;
5950 }
5951
5952 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
5953                                       SDValue Dst, unsigned DstAlign,
5954                                       SDValue Value, SDValue Size, Type *SizeTy,
5955                                       unsigned ElemSz, bool isTailCall,
5956                                       MachinePointerInfo DstPtrInfo) {
5957   // Emit a library call.
5958   TargetLowering::ArgListTy Args;
5959   TargetLowering::ArgListEntry Entry;
5960   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5961   Entry.Node = Dst;
5962   Args.push_back(Entry);
5963
5964   Entry.Ty = Type::getInt8Ty(*getContext());
5965   Entry.Node = Value;
5966   Args.push_back(Entry);
5967
5968   Entry.Ty = SizeTy;
5969   Entry.Node = Size;
5970   Args.push_back(Entry);
5971
5972   RTLIB::Libcall LibraryCall =
5973       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
5974   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5975     report_fatal_error("Unsupported element size");
5976
5977   TargetLowering::CallLoweringInfo CLI(*this);
5978   CLI.setDebugLoc(dl)
5979       .setChain(Chain)
5980       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
5981                     Type::getVoidTy(*getContext()),
5982                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
5983                                       TLI->getPointerTy(getDataLayout())),
5984                     std::move(Args))
5985       .setDiscardResult()
5986       .setTailCall(isTailCall);
5987
5988   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
5989   return CallResult.second;
5990 }
5991
5992 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5993                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5994                                 MachineMemOperand *MMO) {
5995   FoldingSetNodeID ID;
5996   ID.AddInteger(MemVT.getRawBits());
5997   AddNodeIDNode(ID, Opcode, VTList, Ops);
5998   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5999   void* IP = nullptr;
6000   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6001     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6002     return SDValue(E, 0);
6003   }
6004
6005   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6006                                     VTList, MemVT, MMO);
6007   createOperands(N, Ops);
6008
6009   CSEMap.InsertNode(N, IP);
6010   InsertNode(N);
6011   return SDValue(N, 0);
6012 }
6013
6014 SDValue SelectionDAG::getAtomicCmpSwap(
6015     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
6016     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
6017     unsigned Alignment, AtomicOrdering SuccessOrdering,
6018     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
6019   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6020          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6021   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6022
6023   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6024     Alignment = getEVTAlignment(MemVT);
6025
6026   MachineFunction &MF = getMachineFunction();
6027
6028   // FIXME: Volatile isn't really correct; we should keep track of atomic
6029   // orderings in the memoperand.
6030   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
6031                MachineMemOperand::MOStore;
6032   MachineMemOperand *MMO =
6033     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
6034                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
6035                             FailureOrdering);
6036
6037   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
6038 }
6039
6040 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6041                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6042                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6043                                        MachineMemOperand *MMO) {
6044   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6045          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6046   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6047
6048   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6049   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6050 }
6051
6052 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6053                                 SDValue Chain, SDValue Ptr, SDValue Val,
6054                                 const Value *PtrVal, unsigned Alignment,
6055                                 AtomicOrdering Ordering,
6056                                 SyncScope::ID SSID) {
6057   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6058     Alignment = getEVTAlignment(MemVT);
6059
6060   MachineFunction &MF = getMachineFunction();
6061   // An atomic store does not load. An atomic load does not store.
6062   // (An atomicrmw obviously both loads and stores.)
6063   // For now, atomics are considered to be volatile always, and they are
6064   // chained as such.
6065   // FIXME: Volatile isn't really correct; we should keep track of atomic
6066   // orderings in the memoperand.
6067   auto Flags = MachineMemOperand::MOVolatile;
6068   if (Opcode != ISD::ATOMIC_STORE)
6069     Flags |= MachineMemOperand::MOLoad;
6070   if (Opcode != ISD::ATOMIC_LOAD)
6071     Flags |= MachineMemOperand::MOStore;
6072
6073   MachineMemOperand *MMO =
6074     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
6075                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
6076                             nullptr, SSID, Ordering);
6077
6078   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
6079 }
6080
6081 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6082                                 SDValue Chain, SDValue Ptr, SDValue Val,
6083                                 MachineMemOperand *MMO) {
6084   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6085           Opcode == ISD::ATOMIC_LOAD_SUB ||
6086           Opcode == ISD::ATOMIC_LOAD_AND ||
6087           Opcode == ISD::ATOMIC_LOAD_CLR ||
6088           Opcode == ISD::ATOMIC_LOAD_OR ||
6089           Opcode == ISD::ATOMIC_LOAD_XOR ||
6090           Opcode == ISD::ATOMIC_LOAD_NAND ||
6091           Opcode == ISD::ATOMIC_LOAD_MIN ||
6092           Opcode == ISD::ATOMIC_LOAD_MAX ||
6093           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6094           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6095           Opcode == ISD::ATOMIC_SWAP ||
6096           Opcode == ISD::ATOMIC_STORE) &&
6097          "Invalid Atomic Op");
6098
6099   EVT VT = Val.getValueType();
6100
6101   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6102                                                getVTList(VT, MVT::Other);
6103   SDValue Ops[] = {Chain, Ptr, Val};
6104   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6105 }
6106
6107 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6108                                 EVT VT, SDValue Chain, SDValue Ptr,
6109                                 MachineMemOperand *MMO) {
6110   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6111
6112   SDVTList VTs = getVTList(VT, MVT::Other);
6113   SDValue Ops[] = {Chain, Ptr};
6114   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6115 }
6116
6117 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6118 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6119   if (Ops.size() == 1)
6120     return Ops[0];
6121
6122   SmallVector<EVT, 4> VTs;
6123   VTs.reserve(Ops.size());
6124   for (unsigned i = 0; i < Ops.size(); ++i)
6125     VTs.push_back(Ops[i].getValueType());
6126   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6127 }
6128
6129 SDValue SelectionDAG::getMemIntrinsicNode(
6130     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6131     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6132     MachineMemOperand::Flags Flags, unsigned Size) {
6133   if (Align == 0)  // Ensure that codegen never sees alignment 0
6134     Align = getEVTAlignment(MemVT);
6135
6136   if (!Size)
6137     Size = MemVT.getStoreSize();
6138
6139   MachineFunction &MF = getMachineFunction();
6140   MachineMemOperand *MMO =
6141     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6142
6143   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6144 }
6145
6146 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6147                                           SDVTList VTList,
6148                                           ArrayRef<SDValue> Ops, EVT MemVT,
6149                                           MachineMemOperand *MMO) {
6150   assert((Opcode == ISD::INTRINSIC_VOID ||
6151           Opcode == ISD::INTRINSIC_W_CHAIN ||
6152           Opcode == ISD::PREFETCH ||
6153           Opcode == ISD::LIFETIME_START ||
6154           Opcode == ISD::LIFETIME_END ||
6155           ((int)Opcode <= std::numeric_limits<int>::max() &&
6156            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6157          "Opcode is not a memory-accessing opcode!");
6158
6159   // Memoize the node unless it returns a flag.
6160   MemIntrinsicSDNode *N;
6161   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6162     FoldingSetNodeID ID;
6163     AddNodeIDNode(ID, Opcode, VTList, Ops);
6164     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6165         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6166     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6167     void *IP = nullptr;
6168     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6169       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6170       return SDValue(E, 0);
6171     }
6172
6173     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6174                                       VTList, MemVT, MMO);
6175     createOperands(N, Ops);
6176
6177   CSEMap.InsertNode(N, IP);
6178   } else {
6179     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6180                                       VTList, MemVT, MMO);
6181     createOperands(N, Ops);
6182   }
6183   InsertNode(N);
6184   return SDValue(N, 0);
6185 }
6186
6187 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6188 /// MachinePointerInfo record from it.  This is particularly useful because the
6189 /// code generator has many cases where it doesn't bother passing in a
6190 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6191 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6192                                            SelectionDAG &DAG, SDValue Ptr,
6193                                            int64_t Offset = 0) {
6194   // If this is FI+Offset, we can model it.
6195   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6196     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6197                                              FI->getIndex(), Offset);
6198
6199   // If this is (FI+Offset1)+Offset2, we can model it.
6200   if (Ptr.getOpcode() != ISD::ADD ||
6201       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6202       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6203     return Info;
6204
6205   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6206   return MachinePointerInfo::getFixedStack(
6207       DAG.getMachineFunction(), FI,
6208       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6209 }
6210
6211 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6212 /// MachinePointerInfo record from it.  This is particularly useful because the
6213 /// code generator has many cases where it doesn't bother passing in a
6214 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6215 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6216                                            SelectionDAG &DAG, SDValue Ptr,
6217                                            SDValue OffsetOp) {
6218   // If the 'Offset' value isn't a constant, we can't handle this.
6219   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6220     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6221   if (OffsetOp.isUndef())
6222     return InferPointerInfo(Info, DAG, Ptr);
6223   return Info;
6224 }
6225
6226 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6227                               EVT VT, const SDLoc &dl, SDValue Chain,
6228                               SDValue Ptr, SDValue Offset,
6229                               MachinePointerInfo PtrInfo, EVT MemVT,
6230                               unsigned Alignment,
6231                               MachineMemOperand::Flags MMOFlags,
6232                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6233   assert(Chain.getValueType() == MVT::Other &&
6234         "Invalid chain type");
6235   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6236     Alignment = getEVTAlignment(MemVT);
6237
6238   MMOFlags |= MachineMemOperand::MOLoad;
6239   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6240   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6241   // clients.
6242   if (PtrInfo.V.isNull())
6243     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6244
6245   MachineFunction &MF = getMachineFunction();
6246   MachineMemOperand *MMO = MF.getMachineMemOperand(
6247       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6248   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6249 }
6250
6251 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6252                               EVT VT, const SDLoc &dl, SDValue Chain,
6253                               SDValue Ptr, SDValue Offset, EVT MemVT,
6254                               MachineMemOperand *MMO) {
6255   if (VT == MemVT) {
6256     ExtType = ISD::NON_EXTLOAD;
6257   } else if (ExtType == ISD::NON_EXTLOAD) {
6258     assert(VT == MemVT && "Non-extending load from different memory type!");
6259   } else {
6260     // Extending load.
6261     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6262            "Should only be an extending load, not truncating!");
6263     assert(VT.isInteger() == MemVT.isInteger() &&
6264            "Cannot convert from FP to Int or Int -> FP!");
6265     assert(VT.isVector() == MemVT.isVector() &&
6266            "Cannot use an ext load to convert to or from a vector!");
6267     assert((!VT.isVector() ||
6268             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6269            "Cannot use an ext load to change the number of vector elements!");
6270   }
6271
6272   bool Indexed = AM != ISD::UNINDEXED;
6273   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6274
6275   SDVTList VTs = Indexed ?
6276     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6277   SDValue Ops[] = { Chain, Ptr, Offset };
6278   FoldingSetNodeID ID;
6279   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6280   ID.AddInteger(MemVT.getRawBits());
6281   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6282       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6283   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6284   void *IP = nullptr;
6285   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6286     cast<LoadSDNode>(E)->refineAlignment(MMO);
6287     return SDValue(E, 0);
6288   }
6289   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6290                                   ExtType, MemVT, MMO);
6291   createOperands(N, Ops);
6292
6293   CSEMap.InsertNode(N, IP);
6294   InsertNode(N);
6295   SDValue V(N, 0);
6296   NewSDValueDbgMsg(V, "Creating new node: ", this);
6297   return V;
6298 }
6299
6300 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6301                               SDValue Ptr, MachinePointerInfo PtrInfo,
6302                               unsigned Alignment,
6303                               MachineMemOperand::Flags MMOFlags,
6304                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6305   SDValue Undef = getUNDEF(Ptr.getValueType());
6306   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6307                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6308 }
6309
6310 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6311                               SDValue Ptr, MachineMemOperand *MMO) {
6312   SDValue Undef = getUNDEF(Ptr.getValueType());
6313   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6314                  VT, MMO);
6315 }
6316
6317 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6318                                  EVT VT, SDValue Chain, SDValue Ptr,
6319                                  MachinePointerInfo PtrInfo, EVT MemVT,
6320                                  unsigned Alignment,
6321                                  MachineMemOperand::Flags MMOFlags,
6322                                  const AAMDNodes &AAInfo) {
6323   SDValue Undef = getUNDEF(Ptr.getValueType());
6324   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6325                  MemVT, Alignment, MMOFlags, AAInfo);
6326 }
6327
6328 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6329                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6330                                  MachineMemOperand *MMO) {
6331   SDValue Undef = getUNDEF(Ptr.getValueType());
6332   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6333                  MemVT, MMO);
6334 }
6335
6336 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6337                                      SDValue Base, SDValue Offset,
6338                                      ISD::MemIndexedMode AM) {
6339   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6340   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6341   // Don't propagate the invariant or dereferenceable flags.
6342   auto MMOFlags =
6343       LD->getMemOperand()->getFlags() &
6344       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6345   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6346                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6347                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6348                  LD->getAAInfo());
6349 }
6350
6351 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6352                                SDValue Ptr, MachinePointerInfo PtrInfo,
6353                                unsigned Alignment,
6354                                MachineMemOperand::Flags MMOFlags,
6355                                const AAMDNodes &AAInfo) {
6356   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6357   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6358     Alignment = getEVTAlignment(Val.getValueType());
6359
6360   MMOFlags |= MachineMemOperand::MOStore;
6361   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6362
6363   if (PtrInfo.V.isNull())
6364     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6365
6366   MachineFunction &MF = getMachineFunction();
6367   MachineMemOperand *MMO = MF.getMachineMemOperand(
6368       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6369   return getStore(Chain, dl, Val, Ptr, MMO);
6370 }
6371
6372 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6373                                SDValue Ptr, MachineMemOperand *MMO) {
6374   assert(Chain.getValueType() == MVT::Other &&
6375         "Invalid chain type");
6376   EVT VT = Val.getValueType();
6377   SDVTList VTs = getVTList(MVT::Other);
6378   SDValue Undef = getUNDEF(Ptr.getValueType());
6379   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6380   FoldingSetNodeID ID;
6381   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6382   ID.AddInteger(VT.getRawBits());
6383   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6384       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6385   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6386   void *IP = nullptr;
6387   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6388     cast<StoreSDNode>(E)->refineAlignment(MMO);
6389     return SDValue(E, 0);
6390   }
6391   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6392                                    ISD::UNINDEXED, false, VT, MMO);
6393   createOperands(N, Ops);
6394
6395   CSEMap.InsertNode(N, IP);
6396   InsertNode(N);
6397   SDValue V(N, 0);
6398   NewSDValueDbgMsg(V, "Creating new node: ", this);
6399   return V;
6400 }
6401
6402 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6403                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6404                                     EVT SVT, unsigned Alignment,
6405                                     MachineMemOperand::Flags MMOFlags,
6406                                     const AAMDNodes &AAInfo) {
6407   assert(Chain.getValueType() == MVT::Other &&
6408         "Invalid chain type");
6409   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6410     Alignment = getEVTAlignment(SVT);
6411
6412   MMOFlags |= MachineMemOperand::MOStore;
6413   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6414
6415   if (PtrInfo.V.isNull())
6416     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6417
6418   MachineFunction &MF = getMachineFunction();
6419   MachineMemOperand *MMO = MF.getMachineMemOperand(
6420       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6421   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6422 }
6423
6424 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6425                                     SDValue Ptr, EVT SVT,
6426                                     MachineMemOperand *MMO) {
6427   EVT VT = Val.getValueType();
6428
6429   assert(Chain.getValueType() == MVT::Other &&
6430         "Invalid chain type");
6431   if (VT == SVT)
6432     return getStore(Chain, dl, Val, Ptr, MMO);
6433
6434   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6435          "Should only be a truncating store, not extending!");
6436   assert(VT.isInteger() == SVT.isInteger() &&
6437          "Can't do FP-INT conversion!");
6438   assert(VT.isVector() == SVT.isVector() &&
6439          "Cannot use trunc store to convert to or from a vector!");
6440   assert((!VT.isVector() ||
6441           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6442          "Cannot use trunc store to change the number of vector elements!");
6443
6444   SDVTList VTs = getVTList(MVT::Other);
6445   SDValue Undef = getUNDEF(Ptr.getValueType());
6446   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6447   FoldingSetNodeID ID;
6448   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6449   ID.AddInteger(SVT.getRawBits());
6450   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6451       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6452   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6453   void *IP = nullptr;
6454   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6455     cast<StoreSDNode>(E)->refineAlignment(MMO);
6456     return SDValue(E, 0);
6457   }
6458   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6459                                    ISD::UNINDEXED, true, SVT, MMO);
6460   createOperands(N, Ops);
6461
6462   CSEMap.InsertNode(N, IP);
6463   InsertNode(N);
6464   SDValue V(N, 0);
6465   NewSDValueDbgMsg(V, "Creating new node: ", this);
6466   return V;
6467 }
6468
6469 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6470                                       SDValue Base, SDValue Offset,
6471                                       ISD::MemIndexedMode AM) {
6472   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6473   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6474   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6475   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6476   FoldingSetNodeID ID;
6477   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6478   ID.AddInteger(ST->getMemoryVT().getRawBits());
6479   ID.AddInteger(ST->getRawSubclassData());
6480   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6481   void *IP = nullptr;
6482   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6483     return SDValue(E, 0);
6484
6485   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6486                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6487                                    ST->getMemOperand());
6488   createOperands(N, Ops);
6489
6490   CSEMap.InsertNode(N, IP);
6491   InsertNode(N);
6492   SDValue V(N, 0);
6493   NewSDValueDbgMsg(V, "Creating new node: ", this);
6494   return V;
6495 }
6496
6497 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6498                                     SDValue Ptr, SDValue Mask, SDValue Src0,
6499                                     EVT MemVT, MachineMemOperand *MMO,
6500                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6501   SDVTList VTs = getVTList(VT, MVT::Other);
6502   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
6503   FoldingSetNodeID ID;
6504   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6505   ID.AddInteger(VT.getRawBits());
6506   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6507       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6508   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6509   void *IP = nullptr;
6510   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6511     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6512     return SDValue(E, 0);
6513   }
6514   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6515                                         ExtTy, isExpanding, MemVT, MMO);
6516   createOperands(N, Ops);
6517
6518   CSEMap.InsertNode(N, IP);
6519   InsertNode(N);
6520   SDValue V(N, 0);
6521   NewSDValueDbgMsg(V, "Creating new node: ", this);
6522   return V;
6523 }
6524
6525 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6526                                      SDValue Val, SDValue Ptr, SDValue Mask,
6527                                      EVT MemVT, MachineMemOperand *MMO,
6528                                      bool IsTruncating, bool IsCompressing) {
6529   assert(Chain.getValueType() == MVT::Other &&
6530         "Invalid chain type");
6531   EVT VT = Val.getValueType();
6532   SDVTList VTs = getVTList(MVT::Other);
6533   SDValue Ops[] = { Chain, Ptr, Mask, Val };
6534   FoldingSetNodeID ID;
6535   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6536   ID.AddInteger(VT.getRawBits());
6537   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6538       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6539   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6540   void *IP = nullptr;
6541   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6542     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6543     return SDValue(E, 0);
6544   }
6545   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6546                                          IsTruncating, IsCompressing, MemVT, MMO);
6547   createOperands(N, Ops);
6548
6549   CSEMap.InsertNode(N, IP);
6550   InsertNode(N);
6551   SDValue V(N, 0);
6552   NewSDValueDbgMsg(V, "Creating new node: ", this);
6553   return V;
6554 }
6555
6556 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6557                                       ArrayRef<SDValue> Ops,
6558                                       MachineMemOperand *MMO) {
6559   assert(Ops.size() == 6 && "Incompatible number of operands");
6560
6561   FoldingSetNodeID ID;
6562   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6563   ID.AddInteger(VT.getRawBits());
6564   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6565       dl.getIROrder(), VTs, VT, MMO));
6566   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6567   void *IP = nullptr;
6568   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6569     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6570     return SDValue(E, 0);
6571   }
6572
6573   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6574                                           VTs, VT, MMO);
6575   createOperands(N, Ops);
6576
6577   assert(N->getValue().getValueType() == N->getValueType(0) &&
6578          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6579   assert(N->getMask().getValueType().getVectorNumElements() ==
6580              N->getValueType(0).getVectorNumElements() &&
6581          "Vector width mismatch between mask and data");
6582   assert(N->getIndex().getValueType().getVectorNumElements() ==
6583              N->getValueType(0).getVectorNumElements() &&
6584          "Vector width mismatch between index and data");
6585   assert(isa<ConstantSDNode>(N->getScale()) &&
6586          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6587          "Scale should be a constant power of 2");
6588
6589   CSEMap.InsertNode(N, IP);
6590   InsertNode(N);
6591   SDValue V(N, 0);
6592   NewSDValueDbgMsg(V, "Creating new node: ", this);
6593   return V;
6594 }
6595
6596 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6597                                        ArrayRef<SDValue> Ops,
6598                                        MachineMemOperand *MMO) {
6599   assert(Ops.size() == 6 && "Incompatible number of operands");
6600
6601   FoldingSetNodeID ID;
6602   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6603   ID.AddInteger(VT.getRawBits());
6604   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6605       dl.getIROrder(), VTs, VT, MMO));
6606   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6607   void *IP = nullptr;
6608   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6609     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6610     return SDValue(E, 0);
6611   }
6612   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6613                                            VTs, VT, MMO);
6614   createOperands(N, Ops);
6615
6616   assert(N->getMask().getValueType().getVectorNumElements() ==
6617              N->getValue().getValueType().getVectorNumElements() &&
6618          "Vector width mismatch between mask and data");
6619   assert(N->getIndex().getValueType().getVectorNumElements() ==
6620              N->getValue().getValueType().getVectorNumElements() &&
6621          "Vector width mismatch between index and data");
6622   assert(isa<ConstantSDNode>(N->getScale()) &&
6623          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6624          "Scale should be a constant power of 2");
6625
6626   CSEMap.InsertNode(N, IP);
6627   InsertNode(N);
6628   SDValue V(N, 0);
6629   NewSDValueDbgMsg(V, "Creating new node: ", this);
6630   return V;
6631 }
6632
6633 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
6634                                SDValue Ptr, SDValue SV, unsigned Align) {
6635   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
6636   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
6637 }
6638
6639 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6640                               ArrayRef<SDUse> Ops) {
6641   switch (Ops.size()) {
6642   case 0: return getNode(Opcode, DL, VT);
6643   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
6644   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
6645   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6646   default: break;
6647   }
6648
6649   // Copy from an SDUse array into an SDValue array for use with
6650   // the regular getNode logic.
6651   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
6652   return getNode(Opcode, DL, VT, NewOps);
6653 }
6654
6655 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6656                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
6657   unsigned NumOps = Ops.size();
6658   switch (NumOps) {
6659   case 0: return getNode(Opcode, DL, VT);
6660   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
6661   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
6662   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
6663   default: break;
6664   }
6665
6666   switch (Opcode) {
6667   default: break;
6668   case ISD::CONCAT_VECTORS:
6669     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
6670     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
6671       return V;
6672     break;
6673   case ISD::SELECT_CC:
6674     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
6675     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
6676            "LHS and RHS of condition must have same type!");
6677     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6678            "True and False arms of SelectCC must have same type!");
6679     assert(Ops[2].getValueType() == VT &&
6680            "select_cc node must be of same type as true and false value!");
6681     break;
6682   case ISD::BR_CC:
6683     assert(NumOps == 5 && "BR_CC takes 5 operands!");
6684     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
6685            "LHS/RHS of comparison should match types!");
6686     break;
6687   }
6688
6689   // Memoize nodes.
6690   SDNode *N;
6691   SDVTList VTs = getVTList(VT);
6692
6693   if (VT != MVT::Glue) {
6694     FoldingSetNodeID ID;
6695     AddNodeIDNode(ID, Opcode, VTs, Ops);
6696     void *IP = nullptr;
6697
6698     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6699       return SDValue(E, 0);
6700
6701     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6702     createOperands(N, Ops);
6703
6704     CSEMap.InsertNode(N, IP);
6705   } else {
6706     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6707     createOperands(N, Ops);
6708   }
6709
6710   InsertNode(N);
6711   SDValue V(N, 0);
6712   NewSDValueDbgMsg(V, "Creating new node: ", this);
6713   return V;
6714 }
6715
6716 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6717                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
6718   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
6719 }
6720
6721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6722                               ArrayRef<SDValue> Ops) {
6723   if (VTList.NumVTs == 1)
6724     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6725
6726 #if 0
6727   switch (Opcode) {
6728   // FIXME: figure out how to safely handle things like
6729   // int foo(int x) { return 1 << (x & 255); }
6730   // int bar() { return foo(256); }
6731   case ISD::SRA_PARTS:
6732   case ISD::SRL_PARTS:
6733   case ISD::SHL_PARTS:
6734     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6735         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6736       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6737     else if (N3.getOpcode() == ISD::AND)
6738       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6739         // If the and is only masking out bits that cannot effect the shift,
6740         // eliminate the and.
6741         unsigned NumBits = VT.getScalarSizeInBits()*2;
6742         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6743           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6744       }
6745     break;
6746   }
6747 #endif
6748
6749   // Memoize the node unless it returns a flag.
6750   SDNode *N;
6751   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6752     FoldingSetNodeID ID;
6753     AddNodeIDNode(ID, Opcode, VTList, Ops);
6754     void *IP = nullptr;
6755     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6756       return SDValue(E, 0);
6757
6758     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6759     createOperands(N, Ops);
6760     CSEMap.InsertNode(N, IP);
6761   } else {
6762     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6763     createOperands(N, Ops);
6764   }
6765   InsertNode(N);
6766   SDValue V(N, 0);
6767   NewSDValueDbgMsg(V, "Creating new node: ", this);
6768   return V;
6769 }
6770
6771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6772                               SDVTList VTList) {
6773   return getNode(Opcode, DL, VTList, None);
6774 }
6775
6776 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6777                               SDValue N1) {
6778   SDValue Ops[] = { N1 };
6779   return getNode(Opcode, DL, VTList, Ops);
6780 }
6781
6782 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6783                               SDValue N1, SDValue N2) {
6784   SDValue Ops[] = { N1, N2 };
6785   return getNode(Opcode, DL, VTList, Ops);
6786 }
6787
6788 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6789                               SDValue N1, SDValue N2, SDValue N3) {
6790   SDValue Ops[] = { N1, N2, N3 };
6791   return getNode(Opcode, DL, VTList, Ops);
6792 }
6793
6794 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6795                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6796   SDValue Ops[] = { N1, N2, N3, N4 };
6797   return getNode(Opcode, DL, VTList, Ops);
6798 }
6799
6800 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6801                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6802                               SDValue N5) {
6803   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6804   return getNode(Opcode, DL, VTList, Ops);
6805 }
6806
6807 SDVTList SelectionDAG::getVTList(EVT VT) {
6808   return makeVTList(SDNode::getValueTypeList(VT), 1);
6809 }
6810
6811 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6812   FoldingSetNodeID ID;
6813   ID.AddInteger(2U);
6814   ID.AddInteger(VT1.getRawBits());
6815   ID.AddInteger(VT2.getRawBits());
6816
6817   void *IP = nullptr;
6818   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6819   if (!Result) {
6820     EVT *Array = Allocator.Allocate<EVT>(2);
6821     Array[0] = VT1;
6822     Array[1] = VT2;
6823     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6824     VTListMap.InsertNode(Result, IP);
6825   }
6826   return Result->getSDVTList();
6827 }
6828
6829 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6830   FoldingSetNodeID ID;
6831   ID.AddInteger(3U);
6832   ID.AddInteger(VT1.getRawBits());
6833   ID.AddInteger(VT2.getRawBits());
6834   ID.AddInteger(VT3.getRawBits());
6835
6836   void *IP = nullptr;
6837   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6838   if (!Result) {
6839     EVT *Array = Allocator.Allocate<EVT>(3);
6840     Array[0] = VT1;
6841     Array[1] = VT2;
6842     Array[2] = VT3;
6843     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6844     VTListMap.InsertNode(Result, IP);
6845   }
6846   return Result->getSDVTList();
6847 }
6848
6849 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6850   FoldingSetNodeID ID;
6851   ID.AddInteger(4U);
6852   ID.AddInteger(VT1.getRawBits());
6853   ID.AddInteger(VT2.getRawBits());
6854   ID.AddInteger(VT3.getRawBits());
6855   ID.AddInteger(VT4.getRawBits());
6856
6857   void *IP = nullptr;
6858   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6859   if (!Result) {
6860     EVT *Array = Allocator.Allocate<EVT>(4);
6861     Array[0] = VT1;
6862     Array[1] = VT2;
6863     Array[2] = VT3;
6864     Array[3] = VT4;
6865     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6866     VTListMap.InsertNode(Result, IP);
6867   }
6868   return Result->getSDVTList();
6869 }
6870
6871 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6872   unsigned NumVTs = VTs.size();
6873   FoldingSetNodeID ID;
6874   ID.AddInteger(NumVTs);
6875   for (unsigned index = 0; index < NumVTs; index++) {
6876     ID.AddInteger(VTs[index].getRawBits());
6877   }
6878
6879   void *IP = nullptr;
6880   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6881   if (!Result) {
6882     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6883     std::copy(VTs.begin(), VTs.end(), Array);
6884     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6885     VTListMap.InsertNode(Result, IP);
6886   }
6887   return Result->getSDVTList();
6888 }
6889
6890
6891 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6892 /// specified operands.  If the resultant node already exists in the DAG,
6893 /// this does not modify the specified node, instead it returns the node that
6894 /// already exists.  If the resultant node does not exist in the DAG, the
6895 /// input node is returned.  As a degenerate case, if you specify the same
6896 /// input operands as the node already has, the input node is returned.
6897 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6898   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6899
6900   // Check to see if there is no change.
6901   if (Op == N->getOperand(0)) return N;
6902
6903   // See if the modified node already exists.
6904   void *InsertPos = nullptr;
6905   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6906     return Existing;
6907
6908   // Nope it doesn't.  Remove the node from its current place in the maps.
6909   if (InsertPos)
6910     if (!RemoveNodeFromCSEMaps(N))
6911       InsertPos = nullptr;
6912
6913   // Now we update the operands.
6914   N->OperandList[0].set(Op);
6915
6916   updateDivergence(N);
6917   // If this gets put into a CSE map, add it.
6918   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6919   return N;
6920 }
6921
6922 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6923   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6924
6925   // Check to see if there is no change.
6926   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6927     return N;   // No operands changed, just return the input node.
6928
6929   // See if the modified node already exists.
6930   void *InsertPos = nullptr;
6931   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6932     return Existing;
6933
6934   // Nope it doesn't.  Remove the node from its current place in the maps.
6935   if (InsertPos)
6936     if (!RemoveNodeFromCSEMaps(N))
6937       InsertPos = nullptr;
6938
6939   // Now we update the operands.
6940   if (N->OperandList[0] != Op1)
6941     N->OperandList[0].set(Op1);
6942   if (N->OperandList[1] != Op2)
6943     N->OperandList[1].set(Op2);
6944
6945   updateDivergence(N);
6946   // If this gets put into a CSE map, add it.
6947   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6948   return N;
6949 }
6950
6951 SDNode *SelectionDAG::
6952 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6953   SDValue Ops[] = { Op1, Op2, Op3 };
6954   return UpdateNodeOperands(N, Ops);
6955 }
6956
6957 SDNode *SelectionDAG::
6958 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6959                    SDValue Op3, SDValue Op4) {
6960   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6961   return UpdateNodeOperands(N, Ops);
6962 }
6963
6964 SDNode *SelectionDAG::
6965 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6966                    SDValue Op3, SDValue Op4, SDValue Op5) {
6967   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6968   return UpdateNodeOperands(N, Ops);
6969 }
6970
6971 SDNode *SelectionDAG::
6972 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6973   unsigned NumOps = Ops.size();
6974   assert(N->getNumOperands() == NumOps &&
6975          "Update with wrong number of operands");
6976
6977   // If no operands changed just return the input node.
6978   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6979     return N;
6980
6981   // See if the modified node already exists.
6982   void *InsertPos = nullptr;
6983   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6984     return Existing;
6985
6986   // Nope it doesn't.  Remove the node from its current place in the maps.
6987   if (InsertPos)
6988     if (!RemoveNodeFromCSEMaps(N))
6989       InsertPos = nullptr;
6990
6991   // Now we update the operands.
6992   for (unsigned i = 0; i != NumOps; ++i)
6993     if (N->OperandList[i] != Ops[i])
6994       N->OperandList[i].set(Ops[i]);
6995
6996   updateDivergence(N);
6997   // If this gets put into a CSE map, add it.
6998   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6999   return N;
7000 }
7001
7002 /// DropOperands - Release the operands and set this node to have
7003 /// zero operands.
7004 void SDNode::DropOperands() {
7005   // Unlike the code in MorphNodeTo that does this, we don't need to
7006   // watch for dead nodes here.
7007   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7008     SDUse &Use = *I++;
7009     Use.set(SDValue());
7010   }
7011 }
7012
7013 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7014 /// machine opcode.
7015 ///
7016 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7017                                    EVT VT) {
7018   SDVTList VTs = getVTList(VT);
7019   return SelectNodeTo(N, MachineOpc, VTs, None);
7020 }
7021
7022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7023                                    EVT VT, SDValue Op1) {
7024   SDVTList VTs = getVTList(VT);
7025   SDValue Ops[] = { Op1 };
7026   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7027 }
7028
7029 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7030                                    EVT VT, SDValue Op1,
7031                                    SDValue Op2) {
7032   SDVTList VTs = getVTList(VT);
7033   SDValue Ops[] = { Op1, Op2 };
7034   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7035 }
7036
7037 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7038                                    EVT VT, SDValue Op1,
7039                                    SDValue Op2, SDValue Op3) {
7040   SDVTList VTs = getVTList(VT);
7041   SDValue Ops[] = { Op1, Op2, Op3 };
7042   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7043 }
7044
7045 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7046                                    EVT VT, ArrayRef<SDValue> Ops) {
7047   SDVTList VTs = getVTList(VT);
7048   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7049 }
7050
7051 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7052                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7053   SDVTList VTs = getVTList(VT1, VT2);
7054   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7055 }
7056
7057 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7058                                    EVT VT1, EVT VT2) {
7059   SDVTList VTs = getVTList(VT1, VT2);
7060   return SelectNodeTo(N, MachineOpc, VTs, None);
7061 }
7062
7063 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7064                                    EVT VT1, EVT VT2, EVT VT3,
7065                                    ArrayRef<SDValue> Ops) {
7066   SDVTList VTs = getVTList(VT1, VT2, VT3);
7067   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7068 }
7069
7070 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7071                                    EVT VT1, EVT VT2,
7072                                    SDValue Op1, SDValue Op2) {
7073   SDVTList VTs = getVTList(VT1, VT2);
7074   SDValue Ops[] = { Op1, Op2 };
7075   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7076 }
7077
7078 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7079                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7080   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7081   // Reset the NodeID to -1.
7082   New->setNodeId(-1);
7083   if (New != N) {
7084     ReplaceAllUsesWith(N, New);
7085     RemoveDeadNode(N);
7086   }
7087   return New;
7088 }
7089
7090 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7091 /// the line number information on the merged node since it is not possible to
7092 /// preserve the information that operation is associated with multiple lines.
7093 /// This will make the debugger working better at -O0, were there is a higher
7094 /// probability having other instructions associated with that line.
7095 ///
7096 /// For IROrder, we keep the smaller of the two
7097 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7098   DebugLoc NLoc = N->getDebugLoc();
7099   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7100     N->setDebugLoc(DebugLoc());
7101   }
7102   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7103   N->setIROrder(Order);
7104   return N;
7105 }
7106
7107 /// MorphNodeTo - This *mutates* the specified node to have the specified
7108 /// return type, opcode, and operands.
7109 ///
7110 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7111 /// node of the specified opcode and operands, it returns that node instead of
7112 /// the current one.  Note that the SDLoc need not be the same.
7113 ///
7114 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7115 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7116 /// node, and because it doesn't require CSE recalculation for any of
7117 /// the node's users.
7118 ///
7119 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7120 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7121 /// the legalizer which maintain worklists that would need to be updated when
7122 /// deleting things.
7123 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7124                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7125   // If an identical node already exists, use it.
7126   void *IP = nullptr;
7127   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7128     FoldingSetNodeID ID;
7129     AddNodeIDNode(ID, Opc, VTs, Ops);
7130     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7131       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7132   }
7133
7134   if (!RemoveNodeFromCSEMaps(N))
7135     IP = nullptr;
7136
7137   // Start the morphing.
7138   N->NodeType = Opc;
7139   N->ValueList = VTs.VTs;
7140   N->NumValues = VTs.NumVTs;
7141
7142   // Clear the operands list, updating used nodes to remove this from their
7143   // use list.  Keep track of any operands that become dead as a result.
7144   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7145   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7146     SDUse &Use = *I++;
7147     SDNode *Used = Use.getNode();
7148     Use.set(SDValue());
7149     if (Used->use_empty())
7150       DeadNodeSet.insert(Used);
7151   }
7152
7153   // For MachineNode, initialize the memory references information.
7154   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7155     MN->setMemRefs(nullptr, nullptr);
7156
7157   // Swap for an appropriately sized array from the recycler.
7158   removeOperands(N);
7159   createOperands(N, Ops);
7160
7161   // Delete any nodes that are still dead after adding the uses for the
7162   // new operands.
7163   if (!DeadNodeSet.empty()) {
7164     SmallVector<SDNode *, 16> DeadNodes;
7165     for (SDNode *N : DeadNodeSet)
7166       if (N->use_empty())
7167         DeadNodes.push_back(N);
7168     RemoveDeadNodes(DeadNodes);
7169   }
7170
7171   if (IP)
7172     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7173   return N;
7174 }
7175
7176 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7177   unsigned OrigOpc = Node->getOpcode();
7178   unsigned NewOpc;
7179   bool IsUnary = false;
7180   bool IsTernary = false;
7181   switch (OrigOpc) {
7182   default:
7183     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7184   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7185   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7186   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7187   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7188   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7189   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7190   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7191   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7192   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7193   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7194   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7195   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7196   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7197   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7198   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7199   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7200   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7201   case ISD::STRICT_FNEARBYINT:
7202     NewOpc = ISD::FNEARBYINT;
7203     IsUnary = true;
7204     break;
7205   }
7206
7207   // We're taking this node out of the chain, so we need to re-link things.
7208   SDValue InputChain = Node->getOperand(0);
7209   SDValue OutputChain = SDValue(Node, 1);
7210   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7211
7212   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7213   SDNode *Res = nullptr;
7214   if (IsUnary)
7215     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7216   else if (IsTernary)
7217     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7218                                            Node->getOperand(2),
7219                                            Node->getOperand(3)});
7220   else
7221     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7222                                            Node->getOperand(2) });
7223
7224   // MorphNodeTo can operate in two ways: if an existing node with the
7225   // specified operands exists, it can just return it.  Otherwise, it
7226   // updates the node in place to have the requested operands.
7227   if (Res == Node) {
7228     // If we updated the node in place, reset the node ID.  To the isel,
7229     // this should be just like a newly allocated machine node.
7230     Res->setNodeId(-1);
7231   } else {
7232     ReplaceAllUsesWith(Node, Res);
7233     RemoveDeadNode(Node);
7234   }
7235
7236   return Res;
7237 }
7238
7239 /// getMachineNode - These are used for target selectors to create a new node
7240 /// with specified return type(s), MachineInstr opcode, and operands.
7241 ///
7242 /// Note that getMachineNode returns the resultant node.  If there is already a
7243 /// node of the specified opcode and operands, it returns that node instead of
7244 /// the current one.
7245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7246                                             EVT VT) {
7247   SDVTList VTs = getVTList(VT);
7248   return getMachineNode(Opcode, dl, VTs, None);
7249 }
7250
7251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7252                                             EVT VT, SDValue Op1) {
7253   SDVTList VTs = getVTList(VT);
7254   SDValue Ops[] = { Op1 };
7255   return getMachineNode(Opcode, dl, VTs, Ops);
7256 }
7257
7258 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7259                                             EVT VT, SDValue Op1, SDValue Op2) {
7260   SDVTList VTs = getVTList(VT);
7261   SDValue Ops[] = { Op1, Op2 };
7262   return getMachineNode(Opcode, dl, VTs, Ops);
7263 }
7264
7265 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7266                                             EVT VT, SDValue Op1, SDValue Op2,
7267                                             SDValue Op3) {
7268   SDVTList VTs = getVTList(VT);
7269   SDValue Ops[] = { Op1, Op2, Op3 };
7270   return getMachineNode(Opcode, dl, VTs, Ops);
7271 }
7272
7273 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7274                                             EVT VT, ArrayRef<SDValue> Ops) {
7275   SDVTList VTs = getVTList(VT);
7276   return getMachineNode(Opcode, dl, VTs, Ops);
7277 }
7278
7279 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7280                                             EVT VT1, EVT VT2, SDValue Op1,
7281                                             SDValue Op2) {
7282   SDVTList VTs = getVTList(VT1, VT2);
7283   SDValue Ops[] = { Op1, Op2 };
7284   return getMachineNode(Opcode, dl, VTs, Ops);
7285 }
7286
7287 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7288                                             EVT VT1, EVT VT2, SDValue Op1,
7289                                             SDValue Op2, SDValue Op3) {
7290   SDVTList VTs = getVTList(VT1, VT2);
7291   SDValue Ops[] = { Op1, Op2, Op3 };
7292   return getMachineNode(Opcode, dl, VTs, Ops);
7293 }
7294
7295 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7296                                             EVT VT1, EVT VT2,
7297                                             ArrayRef<SDValue> Ops) {
7298   SDVTList VTs = getVTList(VT1, VT2);
7299   return getMachineNode(Opcode, dl, VTs, Ops);
7300 }
7301
7302 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7303                                             EVT VT1, EVT VT2, EVT VT3,
7304                                             SDValue Op1, SDValue Op2) {
7305   SDVTList VTs = getVTList(VT1, VT2, VT3);
7306   SDValue Ops[] = { Op1, Op2 };
7307   return getMachineNode(Opcode, dl, VTs, Ops);
7308 }
7309
7310 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7311                                             EVT VT1, EVT VT2, EVT VT3,
7312                                             SDValue Op1, SDValue Op2,
7313                                             SDValue Op3) {
7314   SDVTList VTs = getVTList(VT1, VT2, VT3);
7315   SDValue Ops[] = { Op1, Op2, Op3 };
7316   return getMachineNode(Opcode, dl, VTs, Ops);
7317 }
7318
7319 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7320                                             EVT VT1, EVT VT2, EVT VT3,
7321                                             ArrayRef<SDValue> Ops) {
7322   SDVTList VTs = getVTList(VT1, VT2, VT3);
7323   return getMachineNode(Opcode, dl, VTs, Ops);
7324 }
7325
7326 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7327                                             ArrayRef<EVT> ResultTys,
7328                                             ArrayRef<SDValue> Ops) {
7329   SDVTList VTs = getVTList(ResultTys);
7330   return getMachineNode(Opcode, dl, VTs, Ops);
7331 }
7332
7333 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7334                                             SDVTList VTs,
7335                                             ArrayRef<SDValue> Ops) {
7336   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7337   MachineSDNode *N;
7338   void *IP = nullptr;
7339
7340   if (DoCSE) {
7341     FoldingSetNodeID ID;
7342     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7343     IP = nullptr;
7344     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7345       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7346     }
7347   }
7348
7349   // Allocate a new MachineSDNode.
7350   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7351   createOperands(N, Ops);
7352
7353   if (DoCSE)
7354     CSEMap.InsertNode(N, IP);
7355
7356   InsertNode(N);
7357   return N;
7358 }
7359
7360 /// getTargetExtractSubreg - A convenience function for creating
7361 /// TargetOpcode::EXTRACT_SUBREG nodes.
7362 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7363                                              SDValue Operand) {
7364   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7365   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7366                                   VT, Operand, SRIdxVal);
7367   return SDValue(Subreg, 0);
7368 }
7369
7370 /// getTargetInsertSubreg - A convenience function for creating
7371 /// TargetOpcode::INSERT_SUBREG nodes.
7372 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7373                                             SDValue Operand, SDValue Subreg) {
7374   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7375   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7376                                   VT, Operand, Subreg, SRIdxVal);
7377   return SDValue(Result, 0);
7378 }
7379
7380 /// getNodeIfExists - Get the specified node if it's already available, or
7381 /// else return NULL.
7382 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7383                                       ArrayRef<SDValue> Ops,
7384                                       const SDNodeFlags Flags) {
7385   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7386     FoldingSetNodeID ID;
7387     AddNodeIDNode(ID, Opcode, VTList, Ops);
7388     void *IP = nullptr;
7389     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7390       E->intersectFlagsWith(Flags);
7391       return E;
7392     }
7393   }
7394   return nullptr;
7395 }
7396
7397 /// getDbgValue - Creates a SDDbgValue node.
7398 ///
7399 /// SDNode
7400 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7401                                       SDNode *N, unsigned R, bool IsIndirect,
7402                                       const DebugLoc &DL, unsigned O) {
7403   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7404          "Expected inlined-at fields to agree");
7405   return new (DbgInfo->getAlloc())
7406       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7407 }
7408
7409 /// Constant
7410 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7411                                               DIExpression *Expr,
7412                                               const Value *C,
7413                                               const DebugLoc &DL, unsigned O) {
7414   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7415          "Expected inlined-at fields to agree");
7416   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7417 }
7418
7419 /// FrameIndex
7420 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7421                                                 DIExpression *Expr, unsigned FI,
7422                                                 bool IsIndirect,
7423                                                 const DebugLoc &DL,
7424                                                 unsigned O) {
7425   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7426          "Expected inlined-at fields to agree");
7427   return new (DbgInfo->getAlloc())
7428       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7429 }
7430
7431 /// VReg
7432 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7433                                           DIExpression *Expr,
7434                                           unsigned VReg, bool IsIndirect,
7435                                           const DebugLoc &DL, unsigned O) {
7436   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7437          "Expected inlined-at fields to agree");
7438   return new (DbgInfo->getAlloc())
7439       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7440 }
7441
7442 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7443                                      unsigned OffsetInBits, unsigned SizeInBits,
7444                                      bool InvalidateDbg) {
7445   SDNode *FromNode = From.getNode();
7446   SDNode *ToNode = To.getNode();
7447   assert(FromNode && ToNode && "Can't modify dbg values");
7448
7449   // PR35338
7450   // TODO: assert(From != To && "Redundant dbg value transfer");
7451   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7452   if (From == To || FromNode == ToNode)
7453     return;
7454
7455   if (!FromNode->getHasDebugValue())
7456     return;
7457
7458   SmallVector<SDDbgValue *, 2> ClonedDVs;
7459   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7460     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7461       continue;
7462
7463     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7464
7465     // Just transfer the dbg value attached to From.
7466     if (Dbg->getResNo() != From.getResNo())
7467       continue;
7468
7469     DIVariable *Var = Dbg->getVariable();
7470     auto *Expr = Dbg->getExpression();
7471     // If a fragment is requested, update the expression.
7472     if (SizeInBits) {
7473       // When splitting a larger (e.g., sign-extended) value whose
7474       // lower bits are described with an SDDbgValue, do not attempt
7475       // to transfer the SDDbgValue to the upper bits.
7476       if (auto FI = Expr->getFragmentInfo())
7477         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7478           continue;
7479       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7480                                                              SizeInBits);
7481       if (!Fragment)
7482         continue;
7483       Expr = *Fragment;
7484     }
7485     // Clone the SDDbgValue and move it to To.
7486     SDDbgValue *Clone =
7487         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7488                     Dbg->getDebugLoc(), Dbg->getOrder());
7489     ClonedDVs.push_back(Clone);
7490
7491     if (InvalidateDbg)
7492       Dbg->setIsInvalidated();
7493   }
7494
7495   for (SDDbgValue *Dbg : ClonedDVs)
7496     AddDbgValue(Dbg, ToNode, false);
7497 }
7498
7499 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7500   if (!N.getHasDebugValue())
7501     return;
7502
7503   SmallVector<SDDbgValue *, 2> ClonedDVs;
7504   for (auto DV : GetDbgValues(&N)) {
7505     if (DV->isInvalidated())
7506       continue;
7507     switch (N.getOpcode()) {
7508     default:
7509       break;
7510     case ISD::ADD:
7511       SDValue N0 = N.getOperand(0);
7512       SDValue N1 = N.getOperand(1);
7513       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7514           isConstantIntBuildVectorOrConstantInt(N1)) {
7515         uint64_t Offset = N.getConstantOperandVal(1);
7516         // Rewrite an ADD constant node into a DIExpression. Since we are
7517         // performing arithmetic to compute the variable's *value* in the
7518         // DIExpression, we need to mark the expression with a
7519         // DW_OP_stack_value.
7520         auto *DIExpr = DV->getExpression();
7521         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7522                                        DIExpression::NoDeref,
7523                                        DIExpression::WithStackValue);
7524         SDDbgValue *Clone =
7525             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7526                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7527         ClonedDVs.push_back(Clone);
7528         DV->setIsInvalidated();
7529         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7530                    N0.getNode()->dumprFull(this);
7531                    dbgs() << " into " << *DIExpr << '\n');
7532       }
7533     }
7534   }
7535
7536   for (SDDbgValue *Dbg : ClonedDVs)
7537     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7538 }
7539
7540 /// Creates a SDDbgLabel node.
7541 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7542                                       const DebugLoc &DL, unsigned O) {
7543   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7544          "Expected inlined-at fields to agree");
7545   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7546 }
7547
7548 namespace {
7549
7550 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7551 /// pointed to by a use iterator is deleted, increment the use iterator
7552 /// so that it doesn't dangle.
7553 ///
7554 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7555   SDNode::use_iterator &UI;
7556   SDNode::use_iterator &UE;
7557
7558   void NodeDeleted(SDNode *N, SDNode *E) override {
7559     // Increment the iterator as needed.
7560     while (UI != UE && N == *UI)
7561       ++UI;
7562   }
7563
7564 public:
7565   RAUWUpdateListener(SelectionDAG &d,
7566                      SDNode::use_iterator &ui,
7567                      SDNode::use_iterator &ue)
7568     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7569 };
7570
7571 } // end anonymous namespace
7572
7573 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7574 /// This can cause recursive merging of nodes in the DAG.
7575 ///
7576 /// This version assumes From has a single result value.
7577 ///
7578 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
7579   SDNode *From = FromN.getNode();
7580   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
7581          "Cannot replace with this method!");
7582   assert(From != To.getNode() && "Cannot replace uses of with self");
7583
7584   // Preserve Debug Values
7585   transferDbgValues(FromN, To);
7586
7587   // Iterate over all the existing uses of From. New uses will be added
7588   // to the beginning of the use list, which we avoid visiting.
7589   // This specifically avoids visiting uses of From that arise while the
7590   // replacement is happening, because any such uses would be the result
7591   // of CSE: If an existing node looks like From after one of its operands
7592   // is replaced by To, we don't want to replace of all its users with To
7593   // too. See PR3018 for more info.
7594   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7595   RAUWUpdateListener Listener(*this, UI, UE);
7596   while (UI != UE) {
7597     SDNode *User = *UI;
7598
7599     // This node is about to morph, remove its old self from the CSE maps.
7600     RemoveNodeFromCSEMaps(User);
7601
7602     // A user can appear in a use list multiple times, and when this
7603     // happens the uses are usually next to each other in the list.
7604     // To help reduce the number of CSE recomputations, process all
7605     // the uses of this user that we can find this way.
7606     do {
7607       SDUse &Use = UI.getUse();
7608       ++UI;
7609       Use.set(To);
7610       if (To->isDivergent() != From->isDivergent())
7611         updateDivergence(User);
7612     } while (UI != UE && *UI == User);
7613     // Now that we have modified User, add it back to the CSE maps.  If it
7614     // already exists there, recursively merge the results together.
7615     AddModifiedNodeToCSEMaps(User);
7616   }
7617
7618   // If we just RAUW'd the root, take note.
7619   if (FromN == getRoot())
7620     setRoot(To);
7621 }
7622
7623 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7624 /// This can cause recursive merging of nodes in the DAG.
7625 ///
7626 /// This version assumes that for each value of From, there is a
7627 /// corresponding value in To in the same position with the same type.
7628 ///
7629 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
7630 #ifndef NDEBUG
7631   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7632     assert((!From->hasAnyUseOfValue(i) ||
7633             From->getValueType(i) == To->getValueType(i)) &&
7634            "Cannot use this version of ReplaceAllUsesWith!");
7635 #endif
7636
7637   // Handle the trivial case.
7638   if (From == To)
7639     return;
7640
7641   // Preserve Debug Info. Only do this if there's a use.
7642   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7643     if (From->hasAnyUseOfValue(i)) {
7644       assert((i < To->getNumValues()) && "Invalid To location");
7645       transferDbgValues(SDValue(From, i), SDValue(To, i));
7646     }
7647
7648   // Iterate over just the existing users of From. See the comments in
7649   // the ReplaceAllUsesWith above.
7650   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7651   RAUWUpdateListener Listener(*this, UI, UE);
7652   while (UI != UE) {
7653     SDNode *User = *UI;
7654
7655     // This node is about to morph, remove its old self from the CSE maps.
7656     RemoveNodeFromCSEMaps(User);
7657
7658     // A user can appear in a use list multiple times, and when this
7659     // happens the uses are usually next to each other in the list.
7660     // To help reduce the number of CSE recomputations, process all
7661     // the uses of this user that we can find this way.
7662     do {
7663       SDUse &Use = UI.getUse();
7664       ++UI;
7665       Use.setNode(To);
7666       if (To->isDivergent() != From->isDivergent())
7667         updateDivergence(User);
7668     } while (UI != UE && *UI == User);
7669
7670     // Now that we have modified User, add it back to the CSE maps.  If it
7671     // already exists there, recursively merge the results together.
7672     AddModifiedNodeToCSEMaps(User);
7673   }
7674
7675   // If we just RAUW'd the root, take note.
7676   if (From == getRoot().getNode())
7677     setRoot(SDValue(To, getRoot().getResNo()));
7678 }
7679
7680 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7681 /// This can cause recursive merging of nodes in the DAG.
7682 ///
7683 /// This version can replace From with any result values.  To must match the
7684 /// number and types of values returned by From.
7685 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
7686   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
7687     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
7688
7689   // Preserve Debug Info.
7690   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
7691     transferDbgValues(SDValue(From, i), *To);
7692
7693   // Iterate over just the existing users of From. See the comments in
7694   // the ReplaceAllUsesWith above.
7695   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
7696   RAUWUpdateListener Listener(*this, UI, UE);
7697   while (UI != UE) {
7698     SDNode *User = *UI;
7699
7700     // This node is about to morph, remove its old self from the CSE maps.
7701     RemoveNodeFromCSEMaps(User);
7702
7703     // A user can appear in a use list multiple times, and when this
7704     // happens the uses are usually next to each other in the list.
7705     // To help reduce the number of CSE recomputations, process all
7706     // the uses of this user that we can find this way.
7707     do {
7708       SDUse &Use = UI.getUse();
7709       const SDValue &ToOp = To[Use.getResNo()];
7710       ++UI;
7711       Use.set(ToOp);
7712       if (To->getNode()->isDivergent() != From->isDivergent())
7713         updateDivergence(User);
7714     } while (UI != UE && *UI == User);
7715     // Now that we have modified User, add it back to the CSE maps.  If it
7716     // already exists there, recursively merge the results together.
7717     AddModifiedNodeToCSEMaps(User);
7718   }
7719
7720   // If we just RAUW'd the root, take note.
7721   if (From == getRoot().getNode())
7722     setRoot(SDValue(To[getRoot().getResNo()]));
7723 }
7724
7725 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
7726 /// uses of other values produced by From.getNode() alone.  The Deleted
7727 /// vector is handled the same way as for ReplaceAllUsesWith.
7728 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
7729   // Handle the really simple, really trivial case efficiently.
7730   if (From == To) return;
7731
7732   // Handle the simple, trivial, case efficiently.
7733   if (From.getNode()->getNumValues() == 1) {
7734     ReplaceAllUsesWith(From, To);
7735     return;
7736   }
7737
7738   // Preserve Debug Info.
7739   transferDbgValues(From, To);
7740
7741   // Iterate over just the existing users of From. See the comments in
7742   // the ReplaceAllUsesWith above.
7743   SDNode::use_iterator UI = From.getNode()->use_begin(),
7744                        UE = From.getNode()->use_end();
7745   RAUWUpdateListener Listener(*this, UI, UE);
7746   while (UI != UE) {
7747     SDNode *User = *UI;
7748     bool UserRemovedFromCSEMaps = false;
7749
7750     // A user can appear in a use list multiple times, and when this
7751     // happens the uses are usually next to each other in the list.
7752     // To help reduce the number of CSE recomputations, process all
7753     // the uses of this user that we can find this way.
7754     do {
7755       SDUse &Use = UI.getUse();
7756
7757       // Skip uses of different values from the same node.
7758       if (Use.getResNo() != From.getResNo()) {
7759         ++UI;
7760         continue;
7761       }
7762
7763       // If this node hasn't been modified yet, it's still in the CSE maps,
7764       // so remove its old self from the CSE maps.
7765       if (!UserRemovedFromCSEMaps) {
7766         RemoveNodeFromCSEMaps(User);
7767         UserRemovedFromCSEMaps = true;
7768       }
7769
7770       ++UI;
7771       Use.set(To);
7772       if (To->isDivergent() != From->isDivergent())
7773         updateDivergence(User);
7774     } while (UI != UE && *UI == User);
7775     // We are iterating over all uses of the From node, so if a use
7776     // doesn't use the specific value, no changes are made.
7777     if (!UserRemovedFromCSEMaps)
7778       continue;
7779
7780     // Now that we have modified User, add it back to the CSE maps.  If it
7781     // already exists there, recursively merge the results together.
7782     AddModifiedNodeToCSEMaps(User);
7783   }
7784
7785   // If we just RAUW'd the root, take note.
7786   if (From == getRoot())
7787     setRoot(To);
7788 }
7789
7790 namespace {
7791
7792   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
7793   /// to record information about a use.
7794   struct UseMemo {
7795     SDNode *User;
7796     unsigned Index;
7797     SDUse *Use;
7798   };
7799
7800   /// operator< - Sort Memos by User.
7801   bool operator<(const UseMemo &L, const UseMemo &R) {
7802     return (intptr_t)L.User < (intptr_t)R.User;
7803   }
7804
7805 } // end anonymous namespace
7806
7807 void SelectionDAG::updateDivergence(SDNode * N)
7808 {
7809   if (TLI->isSDNodeAlwaysUniform(N))
7810     return;
7811   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
7812   for (auto &Op : N->ops()) {
7813     if (Op.Val.getValueType() != MVT::Other)
7814       IsDivergent |= Op.getNode()->isDivergent();
7815   }
7816   if (N->SDNodeBits.IsDivergent != IsDivergent) {
7817     N->SDNodeBits.IsDivergent = IsDivergent;
7818     for (auto U : N->uses()) {
7819       updateDivergence(U);
7820     }
7821   }
7822 }
7823
7824
7825 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
7826   DenseMap<SDNode *, unsigned> Degree;
7827   Order.reserve(AllNodes.size());
7828   for (auto & N : allnodes()) {
7829     unsigned NOps = N.getNumOperands();
7830     Degree[&N] = NOps;
7831     if (0 == NOps)
7832       Order.push_back(&N);
7833   }
7834   for (std::vector<SDNode *>::iterator I = Order.begin();
7835   I!=Order.end();++I) {
7836     SDNode * N = *I;
7837     for (auto U : N->uses()) {
7838       unsigned &UnsortedOps = Degree[U];
7839       if (0 == --UnsortedOps)
7840         Order.push_back(U);
7841     }
7842   }
7843 }
7844
7845 void SelectionDAG::VerifyDAGDiverence()
7846 {
7847   std::vector<SDNode*> TopoOrder;
7848   CreateTopologicalOrder(TopoOrder);
7849   const TargetLowering &TLI = getTargetLoweringInfo();
7850   DenseMap<const SDNode *, bool> DivergenceMap;
7851   for (auto &N : allnodes()) {
7852     DivergenceMap[&N] = false;
7853   }
7854   for (auto N : TopoOrder) {
7855     bool IsDivergent = DivergenceMap[N];
7856     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
7857     for (auto &Op : N->ops()) {
7858       if (Op.Val.getValueType() != MVT::Other)
7859         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
7860     }
7861     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
7862       DivergenceMap[N] = true;
7863     }
7864   }
7865   for (auto &N : allnodes()) {
7866     (void)N;
7867     assert(DivergenceMap[&N] == N.isDivergent() &&
7868            "Divergence bit inconsistency detected\n");
7869   }
7870 }
7871
7872
7873 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
7874 /// uses of other values produced by From.getNode() alone.  The same value
7875 /// may appear in both the From and To list.  The Deleted vector is
7876 /// handled the same way as for ReplaceAllUsesWith.
7877 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
7878                                               const SDValue *To,
7879                                               unsigned Num){
7880   // Handle the simple, trivial case efficiently.
7881   if (Num == 1)
7882     return ReplaceAllUsesOfValueWith(*From, *To);
7883
7884   transferDbgValues(*From, *To);
7885
7886   // Read up all the uses and make records of them. This helps
7887   // processing new uses that are introduced during the
7888   // replacement process.
7889   SmallVector<UseMemo, 4> Uses;
7890   for (unsigned i = 0; i != Num; ++i) {
7891     unsigned FromResNo = From[i].getResNo();
7892     SDNode *FromNode = From[i].getNode();
7893     for (SDNode::use_iterator UI = FromNode->use_begin(),
7894          E = FromNode->use_end(); UI != E; ++UI) {
7895       SDUse &Use = UI.getUse();
7896       if (Use.getResNo() == FromResNo) {
7897         UseMemo Memo = { *UI, i, &Use };
7898         Uses.push_back(Memo);
7899       }
7900     }
7901   }
7902
7903   // Sort the uses, so that all the uses from a given User are together.
7904   llvm::sort(Uses.begin(), Uses.end());
7905
7906   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
7907        UseIndex != UseIndexEnd; ) {
7908     // We know that this user uses some value of From.  If it is the right
7909     // value, update it.
7910     SDNode *User = Uses[UseIndex].User;
7911
7912     // This node is about to morph, remove its old self from the CSE maps.
7913     RemoveNodeFromCSEMaps(User);
7914
7915     // The Uses array is sorted, so all the uses for a given User
7916     // are next to each other in the list.
7917     // To help reduce the number of CSE recomputations, process all
7918     // the uses of this user that we can find this way.
7919     do {
7920       unsigned i = Uses[UseIndex].Index;
7921       SDUse &Use = *Uses[UseIndex].Use;
7922       ++UseIndex;
7923
7924       Use.set(To[i]);
7925     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
7926
7927     // Now that we have modified User, add it back to the CSE maps.  If it
7928     // already exists there, recursively merge the results together.
7929     AddModifiedNodeToCSEMaps(User);
7930   }
7931 }
7932
7933 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
7934 /// based on their topological order. It returns the maximum id and a vector
7935 /// of the SDNodes* in assigned order by reference.
7936 unsigned SelectionDAG::AssignTopologicalOrder() {
7937   unsigned DAGSize = 0;
7938
7939   // SortedPos tracks the progress of the algorithm. Nodes before it are
7940   // sorted, nodes after it are unsorted. When the algorithm completes
7941   // it is at the end of the list.
7942   allnodes_iterator SortedPos = allnodes_begin();
7943
7944   // Visit all the nodes. Move nodes with no operands to the front of
7945   // the list immediately. Annotate nodes that do have operands with their
7946   // operand count. Before we do this, the Node Id fields of the nodes
7947   // may contain arbitrary values. After, the Node Id fields for nodes
7948   // before SortedPos will contain the topological sort index, and the
7949   // Node Id fields for nodes At SortedPos and after will contain the
7950   // count of outstanding operands.
7951   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
7952     SDNode *N = &*I++;
7953     checkForCycles(N, this);
7954     unsigned Degree = N->getNumOperands();
7955     if (Degree == 0) {
7956       // A node with no uses, add it to the result array immediately.
7957       N->setNodeId(DAGSize++);
7958       allnodes_iterator Q(N);
7959       if (Q != SortedPos)
7960         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
7961       assert(SortedPos != AllNodes.end() && "Overran node list");
7962       ++SortedPos;
7963     } else {
7964       // Temporarily use the Node Id as scratch space for the degree count.
7965       N->setNodeId(Degree);
7966     }
7967   }
7968
7969   // Visit all the nodes. As we iterate, move nodes into sorted order,
7970   // such that by the time the end is reached all nodes will be sorted.
7971   for (SDNode &Node : allnodes()) {
7972     SDNode *N = &Node;
7973     checkForCycles(N, this);
7974     // N is in sorted position, so all its uses have one less operand
7975     // that needs to be sorted.
7976     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7977          UI != UE; ++UI) {
7978       SDNode *P = *UI;
7979       unsigned Degree = P->getNodeId();
7980       assert(Degree != 0 && "Invalid node degree");
7981       --Degree;
7982       if (Degree == 0) {
7983         // All of P's operands are sorted, so P may sorted now.
7984         P->setNodeId(DAGSize++);
7985         if (P->getIterator() != SortedPos)
7986           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7987         assert(SortedPos != AllNodes.end() && "Overran node list");
7988         ++SortedPos;
7989       } else {
7990         // Update P's outstanding operand count.
7991         P->setNodeId(Degree);
7992       }
7993     }
7994     if (Node.getIterator() == SortedPos) {
7995 #ifndef NDEBUG
7996       allnodes_iterator I(N);
7997       SDNode *S = &*++I;
7998       dbgs() << "Overran sorted position:\n";
7999       S->dumprFull(this); dbgs() << "\n";
8000       dbgs() << "Checking if this is due to cycles\n";
8001       checkForCycles(this, true);
8002 #endif
8003       llvm_unreachable(nullptr);
8004     }
8005   }
8006
8007   assert(SortedPos == AllNodes.end() &&
8008          "Topological sort incomplete!");
8009   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8010          "First node in topological sort is not the entry token!");
8011   assert(AllNodes.front().getNodeId() == 0 &&
8012          "First node in topological sort has non-zero id!");
8013   assert(AllNodes.front().getNumOperands() == 0 &&
8014          "First node in topological sort has operands!");
8015   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8016          "Last node in topologic sort has unexpected id!");
8017   assert(AllNodes.back().use_empty() &&
8018          "Last node in topologic sort has users!");
8019   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8020   return DAGSize;
8021 }
8022
8023 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8024 /// value is produced by SD.
8025 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8026   if (SD) {
8027     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8028     SD->setHasDebugValue(true);
8029   }
8030   DbgInfo->add(DB, SD, isParameter);
8031 }
8032
8033 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8034   DbgInfo->add(DB);
8035 }
8036
8037 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8038                                                    SDValue NewMemOp) {
8039   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8040   // The new memory operation must have the same position as the old load in
8041   // terms of memory dependency. Create a TokenFactor for the old load and new
8042   // memory operation and update uses of the old load's output chain to use that
8043   // TokenFactor.
8044   SDValue OldChain = SDValue(OldLoad, 1);
8045   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8046   if (!OldLoad->hasAnyUseOfValue(1))
8047     return NewChain;
8048
8049   SDValue TokenFactor =
8050       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8051   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8052   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8053   return TokenFactor;
8054 }
8055
8056 //===----------------------------------------------------------------------===//
8057 //                              SDNode Class
8058 //===----------------------------------------------------------------------===//
8059
8060 bool llvm::isNullConstant(SDValue V) {
8061   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8062   return Const != nullptr && Const->isNullValue();
8063 }
8064
8065 bool llvm::isNullFPConstant(SDValue V) {
8066   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8067   return Const != nullptr && Const->isZero() && !Const->isNegative();
8068 }
8069
8070 bool llvm::isAllOnesConstant(SDValue V) {
8071   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8072   return Const != nullptr && Const->isAllOnesValue();
8073 }
8074
8075 bool llvm::isOneConstant(SDValue V) {
8076   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8077   return Const != nullptr && Const->isOne();
8078 }
8079
8080 bool llvm::isBitwiseNot(SDValue V) {
8081   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
8082 }
8083
8084 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
8085   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8086     return CN;
8087
8088   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8089     BitVector UndefElements;
8090     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8091
8092     // BuildVectors can truncate their operands. Ignore that case here.
8093     // FIXME: We blindly ignore splats which include undef which is overly
8094     // pessimistic.
8095     if (CN && UndefElements.none() &&
8096         CN->getValueType(0) == N.getValueType().getScalarType())
8097       return CN;
8098   }
8099
8100   return nullptr;
8101 }
8102
8103 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
8104   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8105     return CN;
8106
8107   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8108     BitVector UndefElements;
8109     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8110
8111     if (CN && UndefElements.none())
8112       return CN;
8113   }
8114
8115   return nullptr;
8116 }
8117
8118 HandleSDNode::~HandleSDNode() {
8119   DropOperands();
8120 }
8121
8122 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8123                                          const DebugLoc &DL,
8124                                          const GlobalValue *GA, EVT VT,
8125                                          int64_t o, unsigned char TF)
8126     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8127   TheGlobal = GA;
8128 }
8129
8130 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8131                                          EVT VT, unsigned SrcAS,
8132                                          unsigned DestAS)
8133     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8134       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8135
8136 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8137                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8138     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8139   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8140   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8141   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8142   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8143
8144   // We check here that the size of the memory operand fits within the size of
8145   // the MMO. This is because the MMO might indicate only a possible address
8146   // range instead of specifying the affected memory addresses precisely.
8147   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8148 }
8149
8150 /// Profile - Gather unique data for the node.
8151 ///
8152 void SDNode::Profile(FoldingSetNodeID &ID) const {
8153   AddNodeIDNode(ID, this);
8154 }
8155
8156 namespace {
8157
8158   struct EVTArray {
8159     std::vector<EVT> VTs;
8160
8161     EVTArray() {
8162       VTs.reserve(MVT::LAST_VALUETYPE);
8163       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8164         VTs.push_back(MVT((MVT::SimpleValueType)i));
8165     }
8166   };
8167
8168 } // end anonymous namespace
8169
8170 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8171 static ManagedStatic<EVTArray> SimpleVTArray;
8172 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8173
8174 /// getValueTypeList - Return a pointer to the specified value type.
8175 ///
8176 const EVT *SDNode::getValueTypeList(EVT VT) {
8177   if (VT.isExtended()) {
8178     sys::SmartScopedLock<true> Lock(*VTMutex);
8179     return &(*EVTs->insert(VT).first);
8180   } else {
8181     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8182            "Value type out of range!");
8183     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8184   }
8185 }
8186
8187 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8188 /// indicated value.  This method ignores uses of other values defined by this
8189 /// operation.
8190 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8191   assert(Value < getNumValues() && "Bad value!");
8192
8193   // TODO: Only iterate over uses of a given value of the node
8194   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8195     if (UI.getUse().getResNo() == Value) {
8196       if (NUses == 0)
8197         return false;
8198       --NUses;
8199     }
8200   }
8201
8202   // Found exactly the right number of uses?
8203   return NUses == 0;
8204 }
8205
8206 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8207 /// value. This method ignores uses of other values defined by this operation.
8208 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8209   assert(Value < getNumValues() && "Bad value!");
8210
8211   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8212     if (UI.getUse().getResNo() == Value)
8213       return true;
8214
8215   return false;
8216 }
8217
8218 /// isOnlyUserOf - Return true if this node is the only use of N.
8219 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8220   bool Seen = false;
8221   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8222     SDNode *User = *I;
8223     if (User == this)
8224       Seen = true;
8225     else
8226       return false;
8227   }
8228
8229   return Seen;
8230 }
8231
8232 /// Return true if the only users of N are contained in Nodes.
8233 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8234   bool Seen = false;
8235   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8236     SDNode *User = *I;
8237     if (llvm::any_of(Nodes,
8238                      [&User](const SDNode *Node) { return User == Node; }))
8239       Seen = true;
8240     else
8241       return false;
8242   }
8243
8244   return Seen;
8245 }
8246
8247 /// isOperand - Return true if this node is an operand of N.
8248 bool SDValue::isOperandOf(const SDNode *N) const {
8249   for (const SDValue &Op : N->op_values())
8250     if (*this == Op)
8251       return true;
8252   return false;
8253 }
8254
8255 bool SDNode::isOperandOf(const SDNode *N) const {
8256   for (const SDValue &Op : N->op_values())
8257     if (this == Op.getNode())
8258       return true;
8259   return false;
8260 }
8261
8262 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8263 /// be a chain) reaches the specified operand without crossing any
8264 /// side-effecting instructions on any chain path.  In practice, this looks
8265 /// through token factors and non-volatile loads.  In order to remain efficient,
8266 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8267 ///
8268 /// Note that we only need to examine chains when we're searching for
8269 /// side-effects; SelectionDAG requires that all side-effects are represented
8270 /// by chains, even if another operand would force a specific ordering. This
8271 /// constraint is necessary to allow transformations like splitting loads.
8272 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8273                                              unsigned Depth) const {
8274   if (*this == Dest) return true;
8275
8276   // Don't search too deeply, we just want to be able to see through
8277   // TokenFactor's etc.
8278   if (Depth == 0) return false;
8279
8280   // If this is a token factor, all inputs to the TF happen in parallel.
8281   if (getOpcode() == ISD::TokenFactor) {
8282     // First, try a shallow search.
8283     if (is_contained((*this)->ops(), Dest)) {
8284       // We found the chain we want as an operand of this TokenFactor.
8285       // Essentially, we reach the chain without side-effects if we could
8286       // serialize the TokenFactor into a simple chain of operations with
8287       // Dest as the last operation. This is automatically true if the
8288       // chain has one use: there are no other ordering constraints.
8289       // If the chain has more than one use, we give up: some other
8290       // use of Dest might force a side-effect between Dest and the current
8291       // node.
8292       if (Dest.hasOneUse())
8293         return true;
8294     }
8295     // Next, try a deep search: check whether every operand of the TokenFactor
8296     // reaches Dest.
8297     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8298       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8299     });
8300   }
8301
8302   // Loads don't have side effects, look through them.
8303   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8304     if (!Ld->isVolatile())
8305       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8306   }
8307   return false;
8308 }
8309
8310 bool SDNode::hasPredecessor(const SDNode *N) const {
8311   SmallPtrSet<const SDNode *, 32> Visited;
8312   SmallVector<const SDNode *, 16> Worklist;
8313   Worklist.push_back(this);
8314   return hasPredecessorHelper(N, Visited, Worklist);
8315 }
8316
8317 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8318   this->Flags.intersectWith(Flags);
8319 }
8320
8321 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8322   assert(N->getNumValues() == 1 &&
8323          "Can't unroll a vector with multiple results!");
8324
8325   EVT VT = N->getValueType(0);
8326   unsigned NE = VT.getVectorNumElements();
8327   EVT EltVT = VT.getVectorElementType();
8328   SDLoc dl(N);
8329
8330   SmallVector<SDValue, 8> Scalars;
8331   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8332
8333   // If ResNE is 0, fully unroll the vector op.
8334   if (ResNE == 0)
8335     ResNE = NE;
8336   else if (NE > ResNE)
8337     NE = ResNE;
8338
8339   unsigned i;
8340   for (i= 0; i != NE; ++i) {
8341     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8342       SDValue Operand = N->getOperand(j);
8343       EVT OperandVT = Operand.getValueType();
8344       if (OperandVT.isVector()) {
8345         // A vector operand; extract a single element.
8346         EVT OperandEltVT = OperandVT.getVectorElementType();
8347         Operands[j] =
8348             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8349                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8350       } else {
8351         // A scalar operand; just use it as is.
8352         Operands[j] = Operand;
8353       }
8354     }
8355
8356     switch (N->getOpcode()) {
8357     default: {
8358       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8359                                 N->getFlags()));
8360       break;
8361     }
8362     case ISD::VSELECT:
8363       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8364       break;
8365     case ISD::SHL:
8366     case ISD::SRA:
8367     case ISD::SRL:
8368     case ISD::ROTL:
8369     case ISD::ROTR:
8370       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8371                                getShiftAmountOperand(Operands[0].getValueType(),
8372                                                      Operands[1])));
8373       break;
8374     case ISD::SIGN_EXTEND_INREG:
8375     case ISD::FP_ROUND_INREG: {
8376       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8377       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8378                                 Operands[0],
8379                                 getValueType(ExtVT)));
8380     }
8381     }
8382   }
8383
8384   for (; i < ResNE; ++i)
8385     Scalars.push_back(getUNDEF(EltVT));
8386
8387   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8388   return getBuildVector(VecVT, dl, Scalars);
8389 }
8390
8391 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
8392                                                   LoadSDNode *Base,
8393                                                   unsigned Bytes,
8394                                                   int Dist) const {
8395   if (LD->isVolatile() || Base->isVolatile())
8396     return false;
8397   if (LD->isIndexed() || Base->isIndexed())
8398     return false;
8399   if (LD->getChain() != Base->getChain())
8400     return false;
8401   EVT VT = LD->getValueType(0);
8402   if (VT.getSizeInBits() / 8 != Bytes)
8403     return false;
8404
8405   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
8406   auto LocDecomp = BaseIndexOffset::match(LD, *this);
8407
8408   int64_t Offset = 0;
8409   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
8410     return (Dist * Bytes == Offset);
8411   return false;
8412 }
8413
8414 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8415 /// it cannot be inferred.
8416 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
8417   // If this is a GlobalAddress + cst, return the alignment.
8418   const GlobalValue *GV;
8419   int64_t GVOffset = 0;
8420   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
8421     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
8422     KnownBits Known(IdxWidth);
8423     llvm::computeKnownBits(GV, Known, getDataLayout());
8424     unsigned AlignBits = Known.countMinTrailingZeros();
8425     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
8426     if (Align)
8427       return MinAlign(Align, GVOffset);
8428   }
8429
8430   // If this is a direct reference to a stack slot, use information about the
8431   // stack slot's alignment.
8432   int FrameIdx = 1 << 31;
8433   int64_t FrameOffset = 0;
8434   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
8435     FrameIdx = FI->getIndex();
8436   } else if (isBaseWithConstantOffset(Ptr) &&
8437              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
8438     // Handle FI+Cst
8439     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8440     FrameOffset = Ptr.getConstantOperandVal(1);
8441   }
8442
8443   if (FrameIdx != (1 << 31)) {
8444     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
8445     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
8446                                     FrameOffset);
8447     return FIInfoAlign;
8448   }
8449
8450   return 0;
8451 }
8452
8453 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
8454 /// which is split (or expanded) into two not necessarily identical pieces.
8455 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
8456   // Currently all types are split in half.
8457   EVT LoVT, HiVT;
8458   if (!VT.isVector())
8459     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
8460   else
8461     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
8462
8463   return std::make_pair(LoVT, HiVT);
8464 }
8465
8466 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
8467 /// low/high part.
8468 std::pair<SDValue, SDValue>
8469 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
8470                           const EVT &HiVT) {
8471   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
8472          N.getValueType().getVectorNumElements() &&
8473          "More vector elements requested than available!");
8474   SDValue Lo, Hi;
8475   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
8476                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
8477   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
8478                getConstant(LoVT.getVectorNumElements(), DL,
8479                            TLI->getVectorIdxTy(getDataLayout())));
8480   return std::make_pair(Lo, Hi);
8481 }
8482
8483 void SelectionDAG::ExtractVectorElements(SDValue Op,
8484                                          SmallVectorImpl<SDValue> &Args,
8485                                          unsigned Start, unsigned Count) {
8486   EVT VT = Op.getValueType();
8487   if (Count == 0)
8488     Count = VT.getVectorNumElements();
8489
8490   EVT EltVT = VT.getVectorElementType();
8491   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
8492   SDLoc SL(Op);
8493   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
8494     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
8495                            Op, getConstant(i, SL, IdxTy)));
8496   }
8497 }
8498
8499 // getAddressSpace - Return the address space this GlobalAddress belongs to.
8500 unsigned GlobalAddressSDNode::getAddressSpace() const {
8501   return getGlobal()->getType()->getAddressSpace();
8502 }
8503
8504 Type *ConstantPoolSDNode::getType() const {
8505   if (isMachineConstantPoolEntry())
8506     return Val.MachineCPVal->getType();
8507   return Val.ConstVal->getType();
8508 }
8509
8510 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
8511                                         unsigned &SplatBitSize,
8512                                         bool &HasAnyUndefs,
8513                                         unsigned MinSplatBits,
8514                                         bool IsBigEndian) const {
8515   EVT VT = getValueType(0);
8516   assert(VT.isVector() && "Expected a vector type");
8517   unsigned VecWidth = VT.getSizeInBits();
8518   if (MinSplatBits > VecWidth)
8519     return false;
8520
8521   // FIXME: The widths are based on this node's type, but build vectors can
8522   // truncate their operands.
8523   SplatValue = APInt(VecWidth, 0);
8524   SplatUndef = APInt(VecWidth, 0);
8525
8526   // Get the bits. Bits with undefined values (when the corresponding element
8527   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
8528   // in SplatValue. If any of the values are not constant, give up and return
8529   // false.
8530   unsigned int NumOps = getNumOperands();
8531   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
8532   unsigned EltWidth = VT.getScalarSizeInBits();
8533
8534   for (unsigned j = 0; j < NumOps; ++j) {
8535     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
8536     SDValue OpVal = getOperand(i);
8537     unsigned BitPos = j * EltWidth;
8538
8539     if (OpVal.isUndef())
8540       SplatUndef.setBits(BitPos, BitPos + EltWidth);
8541     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
8542       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
8543     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
8544       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
8545     else
8546       return false;
8547   }
8548
8549   // The build_vector is all constants or undefs. Find the smallest element
8550   // size that splats the vector.
8551   HasAnyUndefs = (SplatUndef != 0);
8552
8553   // FIXME: This does not work for vectors with elements less than 8 bits.
8554   while (VecWidth > 8) {
8555     unsigned HalfSize = VecWidth / 2;
8556     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
8557     APInt LowValue = SplatValue.trunc(HalfSize);
8558     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
8559     APInt LowUndef = SplatUndef.trunc(HalfSize);
8560
8561     // If the two halves do not match (ignoring undef bits), stop here.
8562     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
8563         MinSplatBits > HalfSize)
8564       break;
8565
8566     SplatValue = HighValue | LowValue;
8567     SplatUndef = HighUndef & LowUndef;
8568
8569     VecWidth = HalfSize;
8570   }
8571
8572   SplatBitSize = VecWidth;
8573   return true;
8574 }
8575
8576 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
8577   if (UndefElements) {
8578     UndefElements->clear();
8579     UndefElements->resize(getNumOperands());
8580   }
8581   SDValue Splatted;
8582   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
8583     SDValue Op = getOperand(i);
8584     if (Op.isUndef()) {
8585       if (UndefElements)
8586         (*UndefElements)[i] = true;
8587     } else if (!Splatted) {
8588       Splatted = Op;
8589     } else if (Splatted != Op) {
8590       return SDValue();
8591     }
8592   }
8593
8594   if (!Splatted) {
8595     assert(getOperand(0).isUndef() &&
8596            "Can only have a splat without a constant for all undefs.");
8597     return getOperand(0);
8598   }
8599
8600   return Splatted;
8601 }
8602
8603 ConstantSDNode *
8604 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
8605   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
8606 }
8607
8608 ConstantFPSDNode *
8609 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
8610   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
8611 }
8612
8613 int32_t
8614 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
8615                                                    uint32_t BitWidth) const {
8616   if (ConstantFPSDNode *CN =
8617           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
8618     bool IsExact;
8619     APSInt IntVal(BitWidth);
8620     const APFloat &APF = CN->getValueAPF();
8621     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
8622             APFloat::opOK ||
8623         !IsExact)
8624       return -1;
8625
8626     return IntVal.exactLogBase2();
8627   }
8628   return -1;
8629 }
8630
8631 bool BuildVectorSDNode::isConstant() const {
8632   for (const SDValue &Op : op_values()) {
8633     unsigned Opc = Op.getOpcode();
8634     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
8635       return false;
8636   }
8637   return true;
8638 }
8639
8640 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
8641   // Find the first non-undef value in the shuffle mask.
8642   unsigned i, e;
8643   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
8644     /* search */;
8645
8646   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
8647
8648   // Make sure all remaining elements are either undef or the same as the first
8649   // non-undef value.
8650   for (int Idx = Mask[i]; i != e; ++i)
8651     if (Mask[i] >= 0 && Mask[i] != Idx)
8652       return false;
8653   return true;
8654 }
8655
8656 // Returns the SDNode if it is a constant integer BuildVector
8657 // or constant integer.
8658 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
8659   if (isa<ConstantSDNode>(N))
8660     return N.getNode();
8661   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
8662     return N.getNode();
8663   // Treat a GlobalAddress supporting constant offset folding as a
8664   // constant integer.
8665   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
8666     if (GA->getOpcode() == ISD::GlobalAddress &&
8667         TLI->isOffsetFoldingLegal(GA))
8668       return GA;
8669   return nullptr;
8670 }
8671
8672 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
8673   if (isa<ConstantFPSDNode>(N))
8674     return N.getNode();
8675
8676   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
8677     return N.getNode();
8678
8679   return nullptr;
8680 }
8681
8682 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
8683   assert(!Node->OperandList && "Node already has operands");
8684   SDUse *Ops = OperandRecycler.allocate(
8685     ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
8686
8687   bool IsDivergent = false;
8688   for (unsigned I = 0; I != Vals.size(); ++I) {
8689     Ops[I].setUser(Node);
8690     Ops[I].setInitial(Vals[I]);
8691     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
8692       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
8693   }
8694   Node->NumOperands = Vals.size();
8695   Node->OperandList = Ops;
8696   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
8697   if (!TLI->isSDNodeAlwaysUniform(Node))
8698     Node->SDNodeBits.IsDivergent = IsDivergent;
8699   checkForCycles(Node);
8700 }
8701
8702 #ifndef NDEBUG
8703 static void checkForCyclesHelper(const SDNode *N,
8704                                  SmallPtrSetImpl<const SDNode*> &Visited,
8705                                  SmallPtrSetImpl<const SDNode*> &Checked,
8706                                  const llvm::SelectionDAG *DAG) {
8707   // If this node has already been checked, don't check it again.
8708   if (Checked.count(N))
8709     return;
8710
8711   // If a node has already been visited on this depth-first walk, reject it as
8712   // a cycle.
8713   if (!Visited.insert(N).second) {
8714     errs() << "Detected cycle in SelectionDAG\n";
8715     dbgs() << "Offending node:\n";
8716     N->dumprFull(DAG); dbgs() << "\n";
8717     abort();
8718   }
8719
8720   for (const SDValue &Op : N->op_values())
8721     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
8722
8723   Checked.insert(N);
8724   Visited.erase(N);
8725 }
8726 #endif
8727
8728 void llvm::checkForCycles(const llvm::SDNode *N,
8729                           const llvm::SelectionDAG *DAG,
8730                           bool force) {
8731 #ifndef NDEBUG
8732   bool check = force;
8733 #ifdef EXPENSIVE_CHECKS
8734   check = true;
8735 #endif  // EXPENSIVE_CHECKS
8736   if (check) {
8737     assert(N && "Checking nonexistent SDNode");
8738     SmallPtrSet<const SDNode*, 32> visited;
8739     SmallPtrSet<const SDNode*, 32> checked;
8740     checkForCyclesHelper(N, visited, checked, DAG);
8741   }
8742 #endif  // !NDEBUG
8743 }
8744
8745 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
8746   checkForCycles(DAG->getRoot().getNode(), DAG, force);
8747 }