]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
MFhead@r323343
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/GCMetadata.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachinePassRegistry.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/MachineValueType.h"
46 #include "llvm/CodeGen/SchedulerRegistry.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGISel.h"
49 #include "llvm/CodeGen/SelectionDAGNodes.h"
50 #include "llvm/CodeGen/StackProtector.h"
51 #include "llvm/CodeGen/ValueTypes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/BranchProbability.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CodeGen.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/KnownBits.h"
81 #include "llvm/Support/Timer.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetInstrInfo.h"
84 #include "llvm/Target/TargetIntrinsicInfo.h"
85 #include "llvm/Target/TargetLowering.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Target/TargetRegisterInfo.h"
89 #include "llvm/Target/TargetSubtargetInfo.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <string>
98 #include <utility>
99 #include <vector>
100
101 using namespace llvm;
102
103 #define DEBUG_TYPE "isel"
104
105 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
106 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
107 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
108 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
109 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
110 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
111 STATISTIC(NumFastIselFailLowerArguments,
112           "Number of entry blocks where fast isel failed to lower arguments");
113
114 static cl::opt<int> EnableFastISelAbort(
115     "fast-isel-abort", cl::Hidden,
116     cl::desc("Enable abort calls when \"fast\" instruction selection "
117              "fails to lower an instruction: 0 disable the abort, 1 will "
118              "abort but for args, calls and terminators, 2 will also "
119              "abort for argument lowering, and 3 will never fallback "
120              "to SelectionDAG."));
121
122 static cl::opt<bool> EnableFastISelFallbackReport(
123     "fast-isel-report-on-fallback", cl::Hidden,
124     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
125              "falls back to SelectionDAG."));
126
127 static cl::opt<bool>
128 UseMBPI("use-mbpi",
129         cl::desc("use Machine Branch Probability Info"),
130         cl::init(true), cl::Hidden);
131
132 #ifndef NDEBUG
133 static cl::opt<std::string>
134 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
135                         cl::desc("Only display the basic block whose name "
136                                  "matches this for all view-*-dags options"));
137 static cl::opt<bool>
138 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
139           cl::desc("Pop up a window to show dags before the first "
140                    "dag combine pass"));
141 static cl::opt<bool>
142 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
143           cl::desc("Pop up a window to show dags before legalize types"));
144 static cl::opt<bool>
145 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
146           cl::desc("Pop up a window to show dags before legalize"));
147 static cl::opt<bool>
148 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
149           cl::desc("Pop up a window to show dags before the second "
150                    "dag combine pass"));
151 static cl::opt<bool>
152 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
153           cl::desc("Pop up a window to show dags before the post legalize types"
154                    " dag combine pass"));
155 static cl::opt<bool>
156 ViewISelDAGs("view-isel-dags", cl::Hidden,
157           cl::desc("Pop up a window to show isel dags as they are selected"));
158 static cl::opt<bool>
159 ViewSchedDAGs("view-sched-dags", cl::Hidden,
160           cl::desc("Pop up a window to show sched dags as they are processed"));
161 static cl::opt<bool>
162 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
163       cl::desc("Pop up a window to show SUnit dags after they are processed"));
164 #else
165 static const bool ViewDAGCombine1 = false,
166                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
167                   ViewDAGCombine2 = false,
168                   ViewDAGCombineLT = false,
169                   ViewISelDAGs = false, ViewSchedDAGs = false,
170                   ViewSUnitDAGs = false;
171 #endif
172
173 //===---------------------------------------------------------------------===//
174 ///
175 /// RegisterScheduler class - Track the registration of instruction schedulers.
176 ///
177 //===---------------------------------------------------------------------===//
178 MachinePassRegistry RegisterScheduler::Registry;
179
180 //===---------------------------------------------------------------------===//
181 ///
182 /// ISHeuristic command line option for instruction schedulers.
183 ///
184 //===---------------------------------------------------------------------===//
185 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
186                RegisterPassParser<RegisterScheduler>>
187 ISHeuristic("pre-RA-sched",
188             cl::init(&createDefaultScheduler), cl::Hidden,
189             cl::desc("Instruction schedulers available (before register"
190                      " allocation):"));
191
192 static RegisterScheduler
193 defaultListDAGScheduler("default", "Best scheduler for the target",
194                         createDefaultScheduler);
195
196 namespace llvm {
197
198   //===--------------------------------------------------------------------===//
199   /// \brief This class is used by SelectionDAGISel to temporarily override
200   /// the optimization level on a per-function basis.
201   class OptLevelChanger {
202     SelectionDAGISel &IS;
203     CodeGenOpt::Level SavedOptLevel;
204     bool SavedFastISel;
205
206   public:
207     OptLevelChanger(SelectionDAGISel &ISel,
208                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
209       SavedOptLevel = IS.OptLevel;
210       if (NewOptLevel == SavedOptLevel)
211         return;
212       IS.OptLevel = NewOptLevel;
213       IS.TM.setOptLevel(NewOptLevel);
214       DEBUG(dbgs() << "\nChanging optimization level for Function "
215             << IS.MF->getFunction()->getName() << "\n");
216       DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
217             << " ; After: -O" << NewOptLevel << "\n");
218       SavedFastISel = IS.TM.Options.EnableFastISel;
219       if (NewOptLevel == CodeGenOpt::None) {
220         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
221         DEBUG(dbgs() << "\tFastISel is "
222               << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
223               << "\n");
224       }
225     }
226
227     ~OptLevelChanger() {
228       if (IS.OptLevel == SavedOptLevel)
229         return;
230       DEBUG(dbgs() << "\nRestoring optimization level for Function "
231             << IS.MF->getFunction()->getName() << "\n");
232       DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
233             << " ; After: -O" << SavedOptLevel << "\n");
234       IS.OptLevel = SavedOptLevel;
235       IS.TM.setOptLevel(SavedOptLevel);
236       IS.TM.setFastISel(SavedFastISel);
237     }
238   };
239
240   //===--------------------------------------------------------------------===//
241   /// createDefaultScheduler - This creates an instruction scheduler appropriate
242   /// for the target.
243   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
244                                              CodeGenOpt::Level OptLevel) {
245     const TargetLowering *TLI = IS->TLI;
246     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
247
248     // Try first to see if the Target has its own way of selecting a scheduler
249     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
250       return SchedulerCtor(IS, OptLevel);
251     }
252
253     if (OptLevel == CodeGenOpt::None ||
254         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
255         TLI->getSchedulingPreference() == Sched::Source)
256       return createSourceListDAGScheduler(IS, OptLevel);
257     if (TLI->getSchedulingPreference() == Sched::RegPressure)
258       return createBURRListDAGScheduler(IS, OptLevel);
259     if (TLI->getSchedulingPreference() == Sched::Hybrid)
260       return createHybridListDAGScheduler(IS, OptLevel);
261     if (TLI->getSchedulingPreference() == Sched::VLIW)
262       return createVLIWDAGScheduler(IS, OptLevel);
263     assert(TLI->getSchedulingPreference() == Sched::ILP &&
264            "Unknown sched type!");
265     return createILPListDAGScheduler(IS, OptLevel);
266   }
267
268 } // end namespace llvm
269
270 // EmitInstrWithCustomInserter - This method should be implemented by targets
271 // that mark instructions with the 'usesCustomInserter' flag.  These
272 // instructions are special in various ways, which require special support to
273 // insert.  The specified MachineInstr is created but not inserted into any
274 // basic blocks, and this method is called to expand it into a sequence of
275 // instructions, potentially also creating new basic blocks and control flow.
276 // When new basic blocks are inserted and the edges from MBB to its successors
277 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
278 // DenseMap.
279 MachineBasicBlock *
280 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
281                                             MachineBasicBlock *MBB) const {
282 #ifndef NDEBUG
283   dbgs() << "If a target marks an instruction with "
284           "'usesCustomInserter', it must implement "
285           "TargetLowering::EmitInstrWithCustomInserter!";
286 #endif
287   llvm_unreachable(nullptr);
288 }
289
290 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
291                                                    SDNode *Node) const {
292   assert(!MI.hasPostISelHook() &&
293          "If a target marks an instruction with 'hasPostISelHook', "
294          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
295 }
296
297 //===----------------------------------------------------------------------===//
298 // SelectionDAGISel code
299 //===----------------------------------------------------------------------===//
300
301 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
302                                    CodeGenOpt::Level OL) :
303   MachineFunctionPass(ID), TM(tm),
304   FuncInfo(new FunctionLoweringInfo()),
305   CurDAG(new SelectionDAG(tm, OL)),
306   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
307   AA(), GFI(),
308   OptLevel(OL),
309   DAGSize(0) {
310     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
311     initializeBranchProbabilityInfoWrapperPassPass(
312         *PassRegistry::getPassRegistry());
313     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
314     initializeTargetLibraryInfoWrapperPassPass(
315         *PassRegistry::getPassRegistry());
316   }
317
318 SelectionDAGISel::~SelectionDAGISel() {
319   delete SDB;
320   delete CurDAG;
321   delete FuncInfo;
322 }
323
324 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
325   if (OptLevel != CodeGenOpt::None)
326     AU.addRequired<AAResultsWrapperPass>();
327   AU.addRequired<GCModuleInfo>();
328   AU.addRequired<StackProtector>();
329   AU.addPreserved<StackProtector>();
330   AU.addPreserved<GCModuleInfo>();
331   AU.addRequired<TargetLibraryInfoWrapperPass>();
332   if (UseMBPI && OptLevel != CodeGenOpt::None)
333     AU.addRequired<BranchProbabilityInfoWrapperPass>();
334   MachineFunctionPass::getAnalysisUsage(AU);
335 }
336
337 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
338 /// may trap on it.  In this case we have to split the edge so that the path
339 /// through the predecessor block that doesn't go to the phi block doesn't
340 /// execute the possibly trapping instruction. If available, we pass domtree
341 /// and loop info to be updated when we split critical edges. This is because
342 /// SelectionDAGISel preserves these analyses.
343 /// This is required for correctness, so it must be done at -O0.
344 ///
345 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
346                                          LoopInfo *LI) {
347   // Loop for blocks with phi nodes.
348   for (BasicBlock &BB : Fn) {
349     PHINode *PN = dyn_cast<PHINode>(BB.begin());
350     if (!PN) continue;
351
352   ReprocessBlock:
353     // For each block with a PHI node, check to see if any of the input values
354     // are potentially trapping constant expressions.  Constant expressions are
355     // the only potentially trapping value that can occur as the argument to a
356     // PHI.
357     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
358       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
359         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
360         if (!CE || !CE->canTrap()) continue;
361
362         // The only case we have to worry about is when the edge is critical.
363         // Since this block has a PHI Node, we assume it has multiple input
364         // edges: check to see if the pred has multiple successors.
365         BasicBlock *Pred = PN->getIncomingBlock(i);
366         if (Pred->getTerminator()->getNumSuccessors() == 1)
367           continue;
368
369         // Okay, we have to split this edge.
370         SplitCriticalEdge(
371             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
372             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
373         goto ReprocessBlock;
374       }
375   }
376 }
377
378 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
379   // If we already selected that function, we do not need to run SDISel.
380   if (mf.getProperties().hasProperty(
381           MachineFunctionProperties::Property::Selected))
382     return false;
383   // Do some sanity-checking on the command-line options.
384   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
385          "-fast-isel-abort > 0 requires -fast-isel");
386
387   const Function &Fn = *mf.getFunction();
388   MF = &mf;
389
390   // Reset the target options before resetting the optimization
391   // level below.
392   // FIXME: This is a horrible hack and should be processed via
393   // codegen looking at the optimization level explicitly when
394   // it wants to look at it.
395   TM.resetTargetOptions(Fn);
396   // Reset OptLevel to None for optnone functions.
397   CodeGenOpt::Level NewOptLevel = OptLevel;
398   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
399     NewOptLevel = CodeGenOpt::None;
400   OptLevelChanger OLC(*this, NewOptLevel);
401
402   TII = MF->getSubtarget().getInstrInfo();
403   TLI = MF->getSubtarget().getTargetLowering();
404   RegInfo = &MF->getRegInfo();
405   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
406   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
407   ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
408   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
409   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
410   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
411   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
412
413   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
414
415   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
416
417   CurDAG->init(*MF, *ORE);
418   FuncInfo->set(Fn, *MF, CurDAG);
419
420   // Now get the optional analyzes if we want to.
421   // This is based on the possibly changed OptLevel (after optnone is taken
422   // into account).  That's unfortunate but OK because it just means we won't
423   // ask for passes that have been required anyway.
424
425   if (UseMBPI && OptLevel != CodeGenOpt::None)
426     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
427   else
428     FuncInfo->BPI = nullptr;
429
430   if (OptLevel != CodeGenOpt::None)
431     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
432   else
433     AA = nullptr;
434
435   SDB->init(GFI, AA, LibInfo);
436
437   MF->setHasInlineAsm(false);
438
439   FuncInfo->SplitCSR = false;
440
441   // We split CSR if the target supports it for the given function
442   // and the function has only return exits.
443   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
444     FuncInfo->SplitCSR = true;
445
446     // Collect all the return blocks.
447     for (const BasicBlock &BB : Fn) {
448       if (!succ_empty(&BB))
449         continue;
450
451       const TerminatorInst *Term = BB.getTerminator();
452       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
453         continue;
454
455       // Bail out if the exit block is not Return nor Unreachable.
456       FuncInfo->SplitCSR = false;
457       break;
458     }
459   }
460
461   MachineBasicBlock *EntryMBB = &MF->front();
462   if (FuncInfo->SplitCSR)
463     // This performs initialization so lowering for SplitCSR will be correct.
464     TLI->initializeSplitCSR(EntryMBB);
465
466   SelectAllBasicBlocks(Fn);
467   if (FastISelFailed && EnableFastISelFallbackReport) {
468     DiagnosticInfoISelFallback DiagFallback(Fn);
469     Fn.getContext().diagnose(DiagFallback);
470   }
471
472   // If the first basic block in the function has live ins that need to be
473   // copied into vregs, emit the copies into the top of the block before
474   // emitting the code for the block.
475   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
476   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
477
478   // Insert copies in the entry block and the return blocks.
479   if (FuncInfo->SplitCSR) {
480     SmallVector<MachineBasicBlock*, 4> Returns;
481     // Collect all the return blocks.
482     for (MachineBasicBlock &MBB : mf) {
483       if (!MBB.succ_empty())
484         continue;
485
486       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
487       if (Term != MBB.end() && Term->isReturn()) {
488         Returns.push_back(&MBB);
489         continue;
490       }
491     }
492     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
493   }
494
495   DenseMap<unsigned, unsigned> LiveInMap;
496   if (!FuncInfo->ArgDbgValues.empty())
497     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
498            E = RegInfo->livein_end(); LI != E; ++LI)
499       if (LI->second)
500         LiveInMap.insert(std::make_pair(LI->first, LI->second));
501
502   // Insert DBG_VALUE instructions for function arguments to the entry block.
503   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
504     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
505     bool hasFI = MI->getOperand(0).isFI();
506     unsigned Reg =
507         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
508     if (TargetRegisterInfo::isPhysicalRegister(Reg))
509       EntryMBB->insert(EntryMBB->begin(), MI);
510     else {
511       MachineInstr *Def = RegInfo->getVRegDef(Reg);
512       if (Def) {
513         MachineBasicBlock::iterator InsertPos = Def;
514         // FIXME: VR def may not be in entry block.
515         Def->getParent()->insert(std::next(InsertPos), MI);
516       } else
517         DEBUG(dbgs() << "Dropping debug info for dead vreg"
518               << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
519     }
520
521     // If Reg is live-in then update debug info to track its copy in a vreg.
522     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
523     if (LDI != LiveInMap.end()) {
524       assert(!hasFI && "There's no handling of frame pointer updating here yet "
525                        "- add if needed");
526       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
527       MachineBasicBlock::iterator InsertPos = Def;
528       const MDNode *Variable = MI->getDebugVariable();
529       const MDNode *Expr = MI->getDebugExpression();
530       DebugLoc DL = MI->getDebugLoc();
531       bool IsIndirect = MI->isIndirectDebugValue();
532       unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
533       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
534              "Expected inlined-at fields to agree");
535       // Def is never a terminator here, so it is ok to increment InsertPos.
536       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
537               IsIndirect, LDI->second, Offset, Variable, Expr);
538
539       // If this vreg is directly copied into an exported register then
540       // that COPY instructions also need DBG_VALUE, if it is the only
541       // user of LDI->second.
542       MachineInstr *CopyUseMI = nullptr;
543       for (MachineRegisterInfo::use_instr_iterator
544            UI = RegInfo->use_instr_begin(LDI->second),
545            E = RegInfo->use_instr_end(); UI != E; ) {
546         MachineInstr *UseMI = &*(UI++);
547         if (UseMI->isDebugValue()) continue;
548         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
549           CopyUseMI = UseMI; continue;
550         }
551         // Otherwise this is another use or second copy use.
552         CopyUseMI = nullptr; break;
553       }
554       if (CopyUseMI) {
555         // Use MI's debug location, which describes where Variable was
556         // declared, rather than whatever is attached to CopyUseMI.
557         MachineInstr *NewMI =
558             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
559                     CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
560         MachineBasicBlock::iterator Pos = CopyUseMI;
561         EntryMBB->insertAfter(Pos, NewMI);
562       }
563     }
564   }
565
566   // Determine if there are any calls in this machine function.
567   MachineFrameInfo &MFI = MF->getFrameInfo();
568   for (const auto &MBB : *MF) {
569     if (MFI.hasCalls() && MF->hasInlineAsm())
570       break;
571
572     for (const auto &MI : MBB) {
573       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
574       if ((MCID.isCall() && !MCID.isReturn()) ||
575           MI.isStackAligningInlineAsm()) {
576         MFI.setHasCalls(true);
577       }
578       if (MI.isInlineAsm()) {
579         MF->setHasInlineAsm(true);
580       }
581     }
582   }
583
584   // Determine if there is a call to setjmp in the machine function.
585   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
586
587   // Replace forward-declared registers with the registers containing
588   // the desired value.
589   MachineRegisterInfo &MRI = MF->getRegInfo();
590   for (DenseMap<unsigned, unsigned>::iterator
591        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
592        I != E; ++I) {
593     unsigned From = I->first;
594     unsigned To = I->second;
595     // If To is also scheduled to be replaced, find what its ultimate
596     // replacement is.
597     while (true) {
598       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
599       if (J == E) break;
600       To = J->second;
601     }
602     // Make sure the new register has a sufficiently constrained register class.
603     if (TargetRegisterInfo::isVirtualRegister(From) &&
604         TargetRegisterInfo::isVirtualRegister(To))
605       MRI.constrainRegClass(To, MRI.getRegClass(From));
606     // Replace it.
607
608
609     // Replacing one register with another won't touch the kill flags.
610     // We need to conservatively clear the kill flags as a kill on the old
611     // register might dominate existing uses of the new register.
612     if (!MRI.use_empty(To))
613       MRI.clearKillFlags(From);
614     MRI.replaceRegWith(From, To);
615   }
616
617   TLI->finalizeLowering(*MF);
618
619   // Release function-specific state. SDB and CurDAG are already cleared
620   // at this point.
621   FuncInfo->clear();
622
623   DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
624   DEBUG(MF->print(dbgs()));
625
626   return true;
627 }
628
629 static void reportFastISelFailure(MachineFunction &MF,
630                                   OptimizationRemarkEmitter &ORE,
631                                   OptimizationRemarkMissed &R,
632                                   bool ShouldAbort) {
633   // Print the function name explicitly if we don't have a debug location (which
634   // makes the diagnostic less useful) or if we're going to emit a raw error.
635   if (!R.getLocation().isValid() || ShouldAbort)
636     R << (" (in function: " + MF.getName() + ")").str();
637
638   if (ShouldAbort)
639     report_fatal_error(R.getMsg());
640
641   ORE.emit(R);
642 }
643
644 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
645                                         BasicBlock::const_iterator End,
646                                         bool &HadTailCall) {
647   // Lower the instructions. If a call is emitted as a tail call, cease emitting
648   // nodes for this block.
649   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
650     if (!ElidedArgCopyInstrs.count(&*I))
651       SDB->visit(*I);
652   }
653
654   // Make sure the root of the DAG is up-to-date.
655   CurDAG->setRoot(SDB->getControlRoot());
656   HadTailCall = SDB->HasTailCall;
657   SDB->clear();
658
659   // Final step, emit the lowered DAG as machine code.
660   CodeGenAndEmitDAG();
661 }
662
663 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
664   SmallPtrSet<SDNode*, 16> VisitedNodes;
665   SmallVector<SDNode*, 128> Worklist;
666
667   Worklist.push_back(CurDAG->getRoot().getNode());
668
669   KnownBits Known;
670
671   do {
672     SDNode *N = Worklist.pop_back_val();
673
674     // If we've already seen this node, ignore it.
675     if (!VisitedNodes.insert(N).second)
676       continue;
677
678     // Otherwise, add all chain operands to the worklist.
679     for (const SDValue &Op : N->op_values())
680       if (Op.getValueType() == MVT::Other)
681         Worklist.push_back(Op.getNode());
682
683     // If this is a CopyToReg with a vreg dest, process it.
684     if (N->getOpcode() != ISD::CopyToReg)
685       continue;
686
687     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
688     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
689       continue;
690
691     // Ignore non-scalar or non-integer values.
692     SDValue Src = N->getOperand(2);
693     EVT SrcVT = Src.getValueType();
694     if (!SrcVT.isInteger() || SrcVT.isVector())
695       continue;
696
697     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
698     CurDAG->computeKnownBits(Src, Known);
699     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
700   } while (!Worklist.empty());
701 }
702
703 void SelectionDAGISel::CodeGenAndEmitDAG() {
704   StringRef GroupName = "sdag";
705   StringRef GroupDescription = "Instruction Selection and Scheduling";
706   std::string BlockName;
707   int BlockNumber = -1;
708   (void)BlockNumber;
709   bool MatchFilterBB = false; (void)MatchFilterBB;
710
711   // Pre-type legalization allow creation of any node types.
712   CurDAG->NewNodesMustHaveLegalTypes = false;
713
714 #ifndef NDEBUG
715   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
716                    FilterDAGBasicBlockName ==
717                        FuncInfo->MBB->getBasicBlock()->getName().str());
718 #endif
719 #ifdef NDEBUG
720   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
721       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
722       ViewSUnitDAGs)
723 #endif
724   {
725     BlockNumber = FuncInfo->MBB->getNumber();
726     BlockName =
727         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
728   }
729   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
730         << " '" << BlockName << "'\n"; CurDAG->dump());
731
732   if (ViewDAGCombine1 && MatchFilterBB)
733     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
734
735   // Run the DAG combiner in pre-legalize mode.
736   {
737     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
738                        GroupDescription, TimePassesIsEnabled);
739     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
740   }
741
742   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
743         << " '" << BlockName << "'\n"; CurDAG->dump());
744
745   // Second step, hack on the DAG until it only uses operations and types that
746   // the target supports.
747   if (ViewLegalizeTypesDAGs && MatchFilterBB)
748     CurDAG->viewGraph("legalize-types input for " + BlockName);
749
750   bool Changed;
751   {
752     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
753                        GroupDescription, TimePassesIsEnabled);
754     Changed = CurDAG->LegalizeTypes();
755   }
756
757   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
758         << " '" << BlockName << "'\n"; CurDAG->dump());
759
760   // Only allow creation of legal node types.
761   CurDAG->NewNodesMustHaveLegalTypes = true;
762
763   if (Changed) {
764     if (ViewDAGCombineLT && MatchFilterBB)
765       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
766
767     // Run the DAG combiner in post-type-legalize mode.
768     {
769       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
770                          GroupName, GroupDescription, TimePassesIsEnabled);
771       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
772     }
773
774     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
775           << " '" << BlockName << "'\n"; CurDAG->dump());
776   }
777
778   {
779     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
780                        GroupDescription, TimePassesIsEnabled);
781     Changed = CurDAG->LegalizeVectors();
782   }
783
784   if (Changed) {
785     DEBUG(dbgs() << "Vector-legalized selection DAG: BB#" << BlockNumber
786           << " '" << BlockName << "'\n"; CurDAG->dump());
787
788     {
789       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
790                          GroupDescription, TimePassesIsEnabled);
791       CurDAG->LegalizeTypes();
792     }
793
794     DEBUG(dbgs() << "Vector/type-legalized selection DAG: BB#" << BlockNumber
795           << " '" << BlockName << "'\n"; CurDAG->dump());
796
797     if (ViewDAGCombineLT && MatchFilterBB)
798       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
799
800     // Run the DAG combiner in post-type-legalize mode.
801     {
802       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
803                          GroupName, GroupDescription, TimePassesIsEnabled);
804       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
805     }
806
807     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
808           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
809   }
810
811   if (ViewLegalizeDAGs && MatchFilterBB)
812     CurDAG->viewGraph("legalize input for " + BlockName);
813
814   {
815     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
816                        GroupDescription, TimePassesIsEnabled);
817     CurDAG->Legalize();
818   }
819
820   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
821         << " '" << BlockName << "'\n"; CurDAG->dump());
822
823   if (ViewDAGCombine2 && MatchFilterBB)
824     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
825
826   // Run the DAG combiner in post-legalize mode.
827   {
828     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
829                        GroupDescription, TimePassesIsEnabled);
830     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
831   }
832
833   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
834         << " '" << BlockName << "'\n"; CurDAG->dump());
835
836   if (OptLevel != CodeGenOpt::None)
837     ComputeLiveOutVRegInfo();
838
839   if (ViewISelDAGs && MatchFilterBB)
840     CurDAG->viewGraph("isel input for " + BlockName);
841
842   // Third, instruction select all of the operations to machine code, adding the
843   // code to the MachineBasicBlock.
844   {
845     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
846                        GroupDescription, TimePassesIsEnabled);
847     DoInstructionSelection();
848   }
849
850   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
851         << " '" << BlockName << "'\n"; CurDAG->dump());
852
853   if (ViewSchedDAGs && MatchFilterBB)
854     CurDAG->viewGraph("scheduler input for " + BlockName);
855
856   // Schedule machine code.
857   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
858   {
859     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
860                        GroupDescription, TimePassesIsEnabled);
861     Scheduler->Run(CurDAG, FuncInfo->MBB);
862   }
863
864   if (ViewSUnitDAGs && MatchFilterBB)
865     Scheduler->viewGraph();
866
867   // Emit machine code to BB.  This can change 'BB' to the last block being
868   // inserted into.
869   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
870   {
871     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
872                        GroupDescription, TimePassesIsEnabled);
873
874     // FuncInfo->InsertPt is passed by reference and set to the end of the
875     // scheduled instructions.
876     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
877   }
878
879   // If the block was split, make sure we update any references that are used to
880   // update PHI nodes later on.
881   if (FirstMBB != LastMBB)
882     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
883
884   // Free the scheduler state.
885   {
886     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
887                        GroupDescription, TimePassesIsEnabled);
888     delete Scheduler;
889   }
890
891   // Free the SelectionDAG state, now that we're finished with it.
892   CurDAG->clear();
893 }
894
895 namespace {
896
897 /// ISelUpdater - helper class to handle updates of the instruction selection
898 /// graph.
899 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
900   SelectionDAG::allnodes_iterator &ISelPosition;
901
902 public:
903   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
904     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
905
906   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
907   /// deleted is the current ISelPosition node, update ISelPosition.
908   ///
909   void NodeDeleted(SDNode *N, SDNode *E) override {
910     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
911       ++ISelPosition;
912   }
913 };
914
915 } // end anonymous namespace
916
917 void SelectionDAGISel::DoInstructionSelection() {
918   DEBUG(dbgs() << "===== Instruction selection begins: BB#"
919         << FuncInfo->MBB->getNumber()
920         << " '" << FuncInfo->MBB->getName() << "'\n");
921
922   PreprocessISelDAG();
923
924   // Select target instructions for the DAG.
925   {
926     // Number all nodes with a topological order and set DAGSize.
927     DAGSize = CurDAG->AssignTopologicalOrder();
928
929     // Create a dummy node (which is not added to allnodes), that adds
930     // a reference to the root node, preventing it from being deleted,
931     // and tracking any changes of the root.
932     HandleSDNode Dummy(CurDAG->getRoot());
933     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
934     ++ISelPosition;
935
936     // Make sure that ISelPosition gets properly updated when nodes are deleted
937     // in calls made from this function.
938     ISelUpdater ISU(*CurDAG, ISelPosition);
939
940     // The AllNodes list is now topological-sorted. Visit the
941     // nodes by starting at the end of the list (the root of the
942     // graph) and preceding back toward the beginning (the entry
943     // node).
944     while (ISelPosition != CurDAG->allnodes_begin()) {
945       SDNode *Node = &*--ISelPosition;
946       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
947       // but there are currently some corner cases that it misses. Also, this
948       // makes it theoretically possible to disable the DAGCombiner.
949       if (Node->use_empty())
950         continue;
951
952       // When we are using non-default rounding modes or FP exception behavior
953       // FP operations are represented by StrictFP pseudo-operations.  They
954       // need to be simplified here so that the target-specific instruction
955       // selectors know how to handle them.
956       //
957       // If the current node is a strict FP pseudo-op, the isStrictFPOp()
958       // function will provide the corresponding normal FP opcode to which the
959       // node should be mutated.
960       //
961       // FIXME: The backends need a way to handle FP constraints.
962       if (Node->isStrictFPOpcode())
963         Node = CurDAG->mutateStrictFPToFP(Node);
964
965       Select(Node);
966     }
967
968     CurDAG->setRoot(Dummy.getValue());
969   }
970
971   DEBUG(dbgs() << "===== Instruction selection ends:\n");
972
973   PostprocessISelDAG();
974 }
975
976 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
977   for (const User *U : CPI->users()) {
978     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
979       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
980       if (IID == Intrinsic::eh_exceptionpointer ||
981           IID == Intrinsic::eh_exceptioncode)
982         return true;
983     }
984   }
985   return false;
986 }
987
988 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
989 /// do other setup for EH landing-pad blocks.
990 bool SelectionDAGISel::PrepareEHLandingPad() {
991   MachineBasicBlock *MBB = FuncInfo->MBB;
992   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
993   const BasicBlock *LLVMBB = MBB->getBasicBlock();
994   const TargetRegisterClass *PtrRC =
995       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
996
997   // Catchpads have one live-in register, which typically holds the exception
998   // pointer or code.
999   if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1000     if (hasExceptionPointerOrCodeUser(CPI)) {
1001       // Get or create the virtual register to hold the pointer or code.  Mark
1002       // the live in physreg and copy into the vreg.
1003       MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1004       assert(EHPhysReg && "target lacks exception pointer register");
1005       MBB->addLiveIn(EHPhysReg);
1006       unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1007       BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1008               TII->get(TargetOpcode::COPY), VReg)
1009           .addReg(EHPhysReg, RegState::Kill);
1010     }
1011     return true;
1012   }
1013
1014   if (!LLVMBB->isLandingPad())
1015     return true;
1016
1017   // Add a label to mark the beginning of the landing pad.  Deletion of the
1018   // landing pad can thus be detected via the MachineModuleInfo.
1019   MCSymbol *Label = MF->addLandingPad(MBB);
1020
1021   // Assign the call site to the landing pad's begin label.
1022   MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1023
1024   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1025   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1026     .addSym(Label);
1027
1028   // Mark exception register as live in.
1029   if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1030     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1031
1032   // Mark exception selector register as live in.
1033   if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1034     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1035
1036   return true;
1037 }
1038
1039 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1040 /// side-effect free and is either dead or folded into a generated instruction.
1041 /// Return false if it needs to be emitted.
1042 static bool isFoldedOrDeadInstruction(const Instruction *I,
1043                                       FunctionLoweringInfo *FuncInfo) {
1044   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1045          !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
1046          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1047          !I->isEHPad() &&              // EH pad instructions aren't folded.
1048          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1049 }
1050
1051 /// Set up SwiftErrorVals by going through the function. If the function has
1052 /// swifterror argument, it will be the first entry.
1053 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1054                                 FunctionLoweringInfo *FuncInfo) {
1055   if (!TLI->supportSwiftError())
1056     return;
1057
1058   FuncInfo->SwiftErrorVals.clear();
1059   FuncInfo->SwiftErrorVRegDefMap.clear();
1060   FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1061   FuncInfo->SwiftErrorVRegDefUses.clear();
1062   FuncInfo->SwiftErrorArg = nullptr;
1063
1064   // Check if function has a swifterror argument.
1065   bool HaveSeenSwiftErrorArg = false;
1066   for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1067        AI != AE; ++AI)
1068     if (AI->hasSwiftErrorAttr()) {
1069       assert(!HaveSeenSwiftErrorArg &&
1070              "Must have only one swifterror parameter");
1071       (void)HaveSeenSwiftErrorArg; // silence warning.
1072       HaveSeenSwiftErrorArg = true;
1073       FuncInfo->SwiftErrorArg = &*AI;
1074       FuncInfo->SwiftErrorVals.push_back(&*AI);
1075     }
1076
1077   for (const auto &LLVMBB : Fn)
1078     for (const auto &Inst : LLVMBB) {
1079       if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1080         if (Alloca->isSwiftError())
1081           FuncInfo->SwiftErrorVals.push_back(Alloca);
1082     }
1083 }
1084
1085 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1086                                                 FastISel *FastIS,
1087                                                 const TargetLowering *TLI,
1088                                                 const TargetInstrInfo *TII,
1089                                                 SelectionDAGBuilder *SDB) {
1090   if (!TLI->supportSwiftError())
1091     return;
1092
1093   // We only need to do this when we have swifterror parameter or swifterror
1094   // alloc.
1095   if (FuncInfo->SwiftErrorVals.empty())
1096     return;
1097
1098   assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1099          "expected to insert into entry block");
1100   auto &DL = FuncInfo->MF->getDataLayout();
1101   auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1102   for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1103     // We will always generate a copy from the argument. It is always used at
1104     // least by the 'return' of the swifterror.
1105     if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1106       continue;
1107     unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1108     // Assign Undef to Vreg. We construct MI directly to make sure it works
1109     // with FastISel.
1110     BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1111             SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1112             VReg);
1113
1114     // Keep FastIS informed about the value we just inserted.
1115     if (FastIS)
1116       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1117
1118     FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1119   }
1120 }
1121
1122 /// Collect llvm.dbg.declare information. This is done after argument lowering
1123 /// in case the declarations refer to arguments.
1124 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1125   MachineFunction *MF = FuncInfo->MF;
1126   const DataLayout &DL = MF->getDataLayout();
1127   for (const BasicBlock &BB : *FuncInfo->Fn) {
1128     for (const Instruction &I : BB) {
1129       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1130       if (!DI)
1131         continue;
1132
1133       assert(DI->getVariable() && "Missing variable");
1134       assert(DI->getDebugLoc() && "Missing location");
1135       const Value *Address = DI->getAddress();
1136       if (!Address)
1137         continue;
1138
1139       // Look through casts and constant offset GEPs. These mostly come from
1140       // inalloca.
1141       APInt Offset(DL.getPointerSizeInBits(0), 0);
1142       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1143
1144       // Check if the variable is a static alloca or a byval or inalloca
1145       // argument passed in memory. If it is not, then we will ignore this
1146       // intrinsic and handle this during isel like dbg.value.
1147       int FI = std::numeric_limits<int>::max();
1148       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1149         auto SI = FuncInfo->StaticAllocaMap.find(AI);
1150         if (SI != FuncInfo->StaticAllocaMap.end())
1151           FI = SI->second;
1152       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1153         FI = FuncInfo->getArgumentFrameIndex(Arg);
1154
1155       if (FI == std::numeric_limits<int>::max())
1156         continue;
1157
1158       DIExpression *Expr = DI->getExpression();
1159       if (Offset.getBoolValue())
1160         Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1161                                      Offset.getZExtValue());
1162       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1163     }
1164   }
1165 }
1166
1167 /// Propagate swifterror values through the machine function CFG.
1168 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1169   auto *TLI = FuncInfo->TLI;
1170   if (!TLI->supportSwiftError())
1171     return;
1172
1173   // We only need to do this when we have swifterror parameter or swifterror
1174   // alloc.
1175   if (FuncInfo->SwiftErrorVals.empty())
1176     return;
1177
1178   // For each machine basic block in reverse post order.
1179   ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1180   for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1181            It = RPOT.begin(),
1182            E = RPOT.end();
1183        It != E; ++It) {
1184     MachineBasicBlock *MBB = *It;
1185
1186     // For each swifterror value in the function.
1187     for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1188       auto Key = std::make_pair(MBB, SwiftErrorVal);
1189       auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1190       auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1191       bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1192       unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1193       bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1194       assert(!(UpwardsUse && !DownwardDef) &&
1195              "We can't have an upwards use but no downwards def");
1196
1197       // If there is no upwards exposed use and an entry for the swifterror in
1198       // the def map for this value we don't need to do anything: We already
1199       // have a downward def for this basic block.
1200       if (!UpwardsUse && DownwardDef)
1201         continue;
1202
1203       // Otherwise we either have an upwards exposed use vreg that we need to
1204       // materialize or need to forward the downward def from predecessors.
1205
1206       // Check whether we have a single vreg def from all predecessors.
1207       // Otherwise we need a phi.
1208       SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1209       SmallSet<const MachineBasicBlock*, 8> Visited;
1210       for (auto *Pred : MBB->predecessors()) {
1211         if (!Visited.insert(Pred).second)
1212           continue;
1213         VRegs.push_back(std::make_pair(
1214             Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1215         if (Pred != MBB)
1216           continue;
1217         // We have a self-edge.
1218         // If there was no upwards use in this basic block there is now one: the
1219         // phi needs to use it self.
1220         if (!UpwardsUse) {
1221           UpwardsUse = true;
1222           UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1223           assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1224           UUseVReg = UUseIt->second;
1225         }
1226       }
1227
1228       // We need a phi node if we have more than one predecessor with different
1229       // downward defs.
1230       bool needPHI =
1231           VRegs.size() >= 1 &&
1232           std::find_if(
1233               VRegs.begin(), VRegs.end(),
1234               [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1235                   -> bool { return V.second != VRegs[0].second; }) !=
1236               VRegs.end();
1237
1238       // If there is no upwards exposed used and we don't need a phi just
1239       // forward the swifterror vreg from the predecessor(s).
1240       if (!UpwardsUse && !needPHI) {
1241         assert(!VRegs.empty() &&
1242                "No predecessors? The entry block should bail out earlier");
1243         // Just forward the swifterror vreg from the predecessor(s).
1244         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1245         continue;
1246       }
1247
1248       auto DLoc = isa<Instruction>(SwiftErrorVal)
1249                       ? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1250                       : DebugLoc();
1251       const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1252
1253       // If we don't need a phi create a copy to the upward exposed vreg.
1254       if (!needPHI) {
1255         assert(UpwardsUse);
1256         unsigned DestReg = UUseVReg;
1257         BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1258                 DestReg)
1259             .addReg(VRegs[0].second);
1260         continue;
1261       }
1262
1263       // We need a phi: if there is an upwards exposed use we already have a
1264       // destination virtual register number otherwise we generate a new one.
1265       auto &DL = FuncInfo->MF->getDataLayout();
1266       auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1267       unsigned PHIVReg =
1268           UpwardsUse ? UUseVReg
1269                      : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1270       MachineInstrBuilder SwiftErrorPHI =
1271           BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1272                   TII->get(TargetOpcode::PHI), PHIVReg);
1273       for (auto BBRegPair : VRegs) {
1274         SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1275       }
1276
1277       // We did not have a definition in this block before: store the phi's vreg
1278       // as this block downward exposed def.
1279       if (!UpwardsUse)
1280         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1281     }
1282   }
1283 }
1284
1285 void preassignSwiftErrorRegs(const TargetLowering *TLI,
1286                              FunctionLoweringInfo *FuncInfo,
1287                              BasicBlock::const_iterator Begin,
1288                              BasicBlock::const_iterator End) {
1289   if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1290     return;
1291
1292   // Iterator over instructions and assign vregs to swifterror defs and uses.
1293   for (auto It = Begin; It != End; ++It) {
1294     ImmutableCallSite CS(&*It);
1295     if (CS) {
1296       // A call-site with a swifterror argument is both use and def.
1297       const Value *SwiftErrorAddr = nullptr;
1298       for (auto &Arg : CS.args()) {
1299         if (!Arg->isSwiftError())
1300           continue;
1301         // Use of swifterror.
1302         assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1303         SwiftErrorAddr = &*Arg;
1304         assert(SwiftErrorAddr->isSwiftError() &&
1305                "Must have a swifterror value argument");
1306         unsigned VReg; bool CreatedReg;
1307         std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1308           &*It, FuncInfo->MBB, SwiftErrorAddr);
1309         assert(CreatedReg);
1310       }
1311       if (!SwiftErrorAddr)
1312         continue;
1313
1314       // Def of swifterror.
1315       unsigned VReg; bool CreatedReg;
1316       std::tie(VReg, CreatedReg) =
1317           FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1318       assert(CreatedReg);
1319       FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1320
1321     // A load is a use.
1322     } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1323       const Value *V = LI->getOperand(0);
1324       if (!V->isSwiftError())
1325         continue;
1326
1327       unsigned VReg; bool CreatedReg;
1328       std::tie(VReg, CreatedReg) =
1329           FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1330       assert(CreatedReg);
1331
1332     // A store is a def.
1333     } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1334       const Value *SwiftErrorAddr = SI->getOperand(1);
1335       if (!SwiftErrorAddr->isSwiftError())
1336         continue;
1337
1338       // Def of swifterror.
1339       unsigned VReg; bool CreatedReg;
1340       std::tie(VReg, CreatedReg) =
1341           FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1342       assert(CreatedReg);
1343       FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1344
1345     // A return in a swiferror returning function is a use.
1346     } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1347       const Function *F = R->getParent()->getParent();
1348       if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1349         continue;
1350
1351       unsigned VReg; bool CreatedReg;
1352       std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1353           R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1354       assert(CreatedReg);
1355     }
1356   }
1357 }
1358
1359 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1360   FastISelFailed = false;
1361   // Initialize the Fast-ISel state, if needed.
1362   FastISel *FastIS = nullptr;
1363   if (TM.Options.EnableFastISel)
1364     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1365
1366   setupSwiftErrorVals(Fn, TLI, FuncInfo);
1367
1368   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1369
1370   // Lower arguments up front. An RPO iteration always visits the entry block
1371   // first.
1372   assert(*RPOT.begin() == &Fn.getEntryBlock());
1373   ++NumEntryBlocks;
1374
1375   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1376   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1377   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1378
1379   if (!FastIS) {
1380     LowerArguments(Fn);
1381   } else {
1382     // See if fast isel can lower the arguments.
1383     FastIS->startNewBlock();
1384     if (!FastIS->lowerArguments()) {
1385       FastISelFailed = true;
1386       // Fast isel failed to lower these arguments
1387       ++NumFastIselFailLowerArguments;
1388
1389       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1390                                  Fn.getSubprogram(),
1391                                  &Fn.getEntryBlock());
1392       R << "FastISel didn't lower all arguments: "
1393         << ore::NV("Prototype", Fn.getType());
1394       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1395
1396       // Use SelectionDAG argument lowering
1397       LowerArguments(Fn);
1398       CurDAG->setRoot(SDB->getControlRoot());
1399       SDB->clear();
1400       CodeGenAndEmitDAG();
1401     }
1402
1403     // If we inserted any instructions at the beginning, make a note of
1404     // where they are, so we can be sure to emit subsequent instructions
1405     // after them.
1406     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1407       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1408     else
1409       FastIS->setLastLocalValue(nullptr);
1410   }
1411   createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1412
1413   processDbgDeclares(FuncInfo);
1414
1415   // Iterate over all basic blocks in the function.
1416   for (const BasicBlock *LLVMBB : RPOT) {
1417     if (OptLevel != CodeGenOpt::None) {
1418       bool AllPredsVisited = true;
1419       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1420            PI != PE; ++PI) {
1421         if (!FuncInfo->VisitedBBs.count(*PI)) {
1422           AllPredsVisited = false;
1423           break;
1424         }
1425       }
1426
1427       if (AllPredsVisited) {
1428         for (BasicBlock::const_iterator I = LLVMBB->begin();
1429              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1430           FuncInfo->ComputePHILiveOutRegInfo(PN);
1431       } else {
1432         for (BasicBlock::const_iterator I = LLVMBB->begin();
1433              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1434           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1435       }
1436
1437       FuncInfo->VisitedBBs.insert(LLVMBB);
1438     }
1439
1440     BasicBlock::const_iterator const Begin =
1441         LLVMBB->getFirstNonPHI()->getIterator();
1442     BasicBlock::const_iterator const End = LLVMBB->end();
1443     BasicBlock::const_iterator BI = End;
1444
1445     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1446     if (!FuncInfo->MBB)
1447       continue; // Some blocks like catchpads have no code or MBB.
1448
1449     // Insert new instructions after any phi or argument setup code.
1450     FuncInfo->InsertPt = FuncInfo->MBB->end();
1451
1452     // Setup an EH landing-pad block.
1453     FuncInfo->ExceptionPointerVirtReg = 0;
1454     FuncInfo->ExceptionSelectorVirtReg = 0;
1455     if (LLVMBB->isEHPad())
1456       if (!PrepareEHLandingPad())
1457         continue;
1458
1459     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1460     if (FastIS) {
1461       if (LLVMBB != &Fn.getEntryBlock())
1462         FastIS->startNewBlock();
1463
1464       unsigned NumFastIselRemaining = std::distance(Begin, End);
1465
1466       // Pre-assign swifterror vregs.
1467       preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1468
1469       // Do FastISel on as many instructions as possible.
1470       for (; BI != Begin; --BI) {
1471         const Instruction *Inst = &*std::prev(BI);
1472
1473         // If we no longer require this instruction, skip it.
1474         if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1475             ElidedArgCopyInstrs.count(Inst)) {
1476           --NumFastIselRemaining;
1477           continue;
1478         }
1479
1480         // Bottom-up: reset the insert pos at the top, after any local-value
1481         // instructions.
1482         FastIS->recomputeInsertPt();
1483
1484         // Try to select the instruction with FastISel.
1485         if (FastIS->selectInstruction(Inst)) {
1486           --NumFastIselRemaining;
1487           ++NumFastIselSuccess;
1488           // If fast isel succeeded, skip over all the folded instructions, and
1489           // then see if there is a load right before the selected instructions.
1490           // Try to fold the load if so.
1491           const Instruction *BeforeInst = Inst;
1492           while (BeforeInst != &*Begin) {
1493             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1494             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1495               break;
1496           }
1497           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1498               BeforeInst->hasOneUse() &&
1499               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1500             // If we succeeded, don't re-select the load.
1501             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1502             --NumFastIselRemaining;
1503             ++NumFastIselSuccess;
1504           }
1505           continue;
1506         }
1507
1508         FastISelFailed = true;
1509
1510         // Then handle certain instructions as single-LLVM-Instruction blocks.
1511         // We cannot separate out GCrelocates to their own blocks since we need
1512         // to keep track of gc-relocates for a particular gc-statepoint. This is
1513         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1514         // visitGCRelocate.
1515         if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1516           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1517                                      Inst->getDebugLoc(), LLVMBB);
1518
1519           R << "FastISel missed call";
1520
1521           if (R.isEnabled() || EnableFastISelAbort) {
1522             std::string InstStrStorage;
1523             raw_string_ostream InstStr(InstStrStorage);
1524             InstStr << *Inst;
1525
1526             R << ": " << InstStr.str();
1527           }
1528
1529           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1530
1531           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1532               !Inst->use_empty()) {
1533             unsigned &R = FuncInfo->ValueMap[Inst];
1534             if (!R)
1535               R = FuncInfo->CreateRegs(Inst->getType());
1536           }
1537
1538           bool HadTailCall = false;
1539           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1540           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1541
1542           // If the call was emitted as a tail call, we're done with the block.
1543           // We also need to delete any previously emitted instructions.
1544           if (HadTailCall) {
1545             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1546             --BI;
1547             break;
1548           }
1549
1550           // Recompute NumFastIselRemaining as Selection DAG instruction
1551           // selection may have handled the call, input args, etc.
1552           unsigned RemainingNow = std::distance(Begin, BI);
1553           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1554           NumFastIselRemaining = RemainingNow;
1555           continue;
1556         }
1557
1558         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1559                                    Inst->getDebugLoc(), LLVMBB);
1560
1561         bool ShouldAbort = EnableFastISelAbort;
1562         if (isa<TerminatorInst>(Inst)) {
1563           // Use a different message for terminator misses.
1564           R << "FastISel missed terminator";
1565           // Don't abort for terminator unless the level is really high
1566           ShouldAbort = (EnableFastISelAbort > 2);
1567         } else {
1568           R << "FastISel missed";
1569         }
1570
1571         if (R.isEnabled() || EnableFastISelAbort) {
1572           std::string InstStrStorage;
1573           raw_string_ostream InstStr(InstStrStorage);
1574           InstStr << *Inst;
1575           R << ": " << InstStr.str();
1576         }
1577
1578         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1579
1580         NumFastIselFailures += NumFastIselRemaining;
1581         break;
1582       }
1583
1584       FastIS->recomputeInsertPt();
1585     }
1586
1587     if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) {
1588       bool FunctionBasedInstrumentation =
1589           TLI->getSSPStackGuardCheck(*Fn.getParent());
1590       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1591                                    FunctionBasedInstrumentation);
1592     }
1593
1594     if (Begin != BI)
1595       ++NumDAGBlocks;
1596     else
1597       ++NumFastIselBlocks;
1598
1599     if (Begin != BI) {
1600       // Run SelectionDAG instruction selection on the remainder of the block
1601       // not handled by FastISel. If FastISel is not run, this is the entire
1602       // block.
1603       bool HadTailCall;
1604       SelectBasicBlock(Begin, BI, HadTailCall);
1605
1606       // But if FastISel was run, we already selected some of the block.
1607       // If we emitted a tail-call, we need to delete any previously emitted
1608       // instruction that follows it.
1609       if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1610         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1611     }
1612
1613     FinishBasicBlock();
1614     FuncInfo->PHINodesToUpdate.clear();
1615     ElidedArgCopyInstrs.clear();
1616   }
1617
1618   propagateSwiftErrorVRegs(FuncInfo);
1619
1620   delete FastIS;
1621   SDB->clearDanglingDebugInfo();
1622   SDB->SPDescriptor.resetPerFunctionState();
1623 }
1624
1625 /// Given that the input MI is before a partial terminator sequence TSeq, return
1626 /// true if M + TSeq also a partial terminator sequence.
1627 ///
1628 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1629 /// lowering copy vregs into physical registers, which are then passed into
1630 /// terminator instructors so we can satisfy ABI constraints. A partial
1631 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1632 /// may be the whole terminator sequence).
1633 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1634   // If we do not have a copy or an implicit def, we return true if and only if
1635   // MI is a debug value.
1636   if (!MI.isCopy() && !MI.isImplicitDef())
1637     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1638     // physical registers if there is debug info associated with the terminator
1639     // of our mbb. We want to include said debug info in our terminator
1640     // sequence, so we return true in that case.
1641     return MI.isDebugValue();
1642
1643   // We have left the terminator sequence if we are not doing one of the
1644   // following:
1645   //
1646   // 1. Copying a vreg into a physical register.
1647   // 2. Copying a vreg into a vreg.
1648   // 3. Defining a register via an implicit def.
1649
1650   // OPI should always be a register definition...
1651   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1652   if (!OPI->isReg() || !OPI->isDef())
1653     return false;
1654
1655   // Defining any register via an implicit def is always ok.
1656   if (MI.isImplicitDef())
1657     return true;
1658
1659   // Grab the copy source...
1660   MachineInstr::const_mop_iterator OPI2 = OPI;
1661   ++OPI2;
1662   assert(OPI2 != MI.operands_end()
1663          && "Should have a copy implying we should have 2 arguments.");
1664
1665   // Make sure that the copy dest is not a vreg when the copy source is a
1666   // physical register.
1667   if (!OPI2->isReg() ||
1668       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1669        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1670     return false;
1671
1672   return true;
1673 }
1674
1675 /// Find the split point at which to splice the end of BB into its success stack
1676 /// protector check machine basic block.
1677 ///
1678 /// On many platforms, due to ABI constraints, terminators, even before register
1679 /// allocation, use physical registers. This creates an issue for us since
1680 /// physical registers at this point can not travel across basic
1681 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1682 /// when they enter functions and moves them through a sequence of copies back
1683 /// into the physical registers right before the terminator creating a
1684 /// ``Terminator Sequence''. This function is searching for the beginning of the
1685 /// terminator sequence so that we can ensure that we splice off not just the
1686 /// terminator, but additionally the copies that move the vregs into the
1687 /// physical registers.
1688 static MachineBasicBlock::iterator
1689 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1690   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1691   //
1692   if (SplitPoint == BB->begin())
1693     return SplitPoint;
1694
1695   MachineBasicBlock::iterator Start = BB->begin();
1696   MachineBasicBlock::iterator Previous = SplitPoint;
1697   --Previous;
1698
1699   while (MIIsInTerminatorSequence(*Previous)) {
1700     SplitPoint = Previous;
1701     if (Previous == Start)
1702       break;
1703     --Previous;
1704   }
1705
1706   return SplitPoint;
1707 }
1708
1709 void
1710 SelectionDAGISel::FinishBasicBlock() {
1711   DEBUG(dbgs() << "Total amount of phi nodes to update: "
1712                << FuncInfo->PHINodesToUpdate.size() << "\n";
1713         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1714           dbgs() << "Node " << i << " : ("
1715                  << FuncInfo->PHINodesToUpdate[i].first
1716                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1717
1718   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1719   // PHI nodes in successors.
1720   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1721     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1722     assert(PHI->isPHI() &&
1723            "This is not a machine PHI node that we are updating!");
1724     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1725       continue;
1726     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1727   }
1728
1729   // Handle stack protector.
1730   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1731     // The target provides a guard check function. There is no need to
1732     // generate error handling code or to split current basic block.
1733     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1734
1735     // Add load and check to the basicblock.
1736     FuncInfo->MBB = ParentMBB;
1737     FuncInfo->InsertPt =
1738         FindSplitPointForStackProtector(ParentMBB);
1739     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1740     CurDAG->setRoot(SDB->getRoot());
1741     SDB->clear();
1742     CodeGenAndEmitDAG();
1743
1744     // Clear the Per-BB State.
1745     SDB->SPDescriptor.resetPerBBState();
1746   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1747     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1748     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1749
1750     // Find the split point to split the parent mbb. At the same time copy all
1751     // physical registers used in the tail of parent mbb into virtual registers
1752     // before the split point and back into physical registers after the split
1753     // point. This prevents us needing to deal with Live-ins and many other
1754     // register allocation issues caused by us splitting the parent mbb. The
1755     // register allocator will clean up said virtual copies later on.
1756     MachineBasicBlock::iterator SplitPoint =
1757         FindSplitPointForStackProtector(ParentMBB);
1758
1759     // Splice the terminator of ParentMBB into SuccessMBB.
1760     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1761                        SplitPoint,
1762                        ParentMBB->end());
1763
1764     // Add compare/jump on neq/jump to the parent BB.
1765     FuncInfo->MBB = ParentMBB;
1766     FuncInfo->InsertPt = ParentMBB->end();
1767     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1768     CurDAG->setRoot(SDB->getRoot());
1769     SDB->clear();
1770     CodeGenAndEmitDAG();
1771
1772     // CodeGen Failure MBB if we have not codegened it yet.
1773     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1774     if (FailureMBB->empty()) {
1775       FuncInfo->MBB = FailureMBB;
1776       FuncInfo->InsertPt = FailureMBB->end();
1777       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1778       CurDAG->setRoot(SDB->getRoot());
1779       SDB->clear();
1780       CodeGenAndEmitDAG();
1781     }
1782
1783     // Clear the Per-BB State.
1784     SDB->SPDescriptor.resetPerBBState();
1785   }
1786
1787   // Lower each BitTestBlock.
1788   for (auto &BTB : SDB->BitTestCases) {
1789     // Lower header first, if it wasn't already lowered
1790     if (!BTB.Emitted) {
1791       // Set the current basic block to the mbb we wish to insert the code into
1792       FuncInfo->MBB = BTB.Parent;
1793       FuncInfo->InsertPt = FuncInfo->MBB->end();
1794       // Emit the code
1795       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1796       CurDAG->setRoot(SDB->getRoot());
1797       SDB->clear();
1798       CodeGenAndEmitDAG();
1799     }
1800
1801     BranchProbability UnhandledProb = BTB.Prob;
1802     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1803       UnhandledProb -= BTB.Cases[j].ExtraProb;
1804       // Set the current basic block to the mbb we wish to insert the code into
1805       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1806       FuncInfo->InsertPt = FuncInfo->MBB->end();
1807       // Emit the code
1808
1809       // If all cases cover a contiguous range, it is not necessary to jump to
1810       // the default block after the last bit test fails. This is because the
1811       // range check during bit test header creation has guaranteed that every
1812       // case here doesn't go outside the range. In this case, there is no need
1813       // to perform the last bit test, as it will always be true. Instead, make
1814       // the second-to-last bit-test fall through to the target of the last bit
1815       // test, and delete the last bit test.
1816
1817       MachineBasicBlock *NextMBB;
1818       if (BTB.ContiguousRange && j + 2 == ej) {
1819         // Second-to-last bit-test with contiguous range: fall through to the
1820         // target of the final bit test.
1821         NextMBB = BTB.Cases[j + 1].TargetBB;
1822       } else if (j + 1 == ej) {
1823         // For the last bit test, fall through to Default.
1824         NextMBB = BTB.Default;
1825       } else {
1826         // Otherwise, fall through to the next bit test.
1827         NextMBB = BTB.Cases[j + 1].ThisBB;
1828       }
1829
1830       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1831                             FuncInfo->MBB);
1832
1833       CurDAG->setRoot(SDB->getRoot());
1834       SDB->clear();
1835       CodeGenAndEmitDAG();
1836
1837       if (BTB.ContiguousRange && j + 2 == ej) {
1838         // Since we're not going to use the final bit test, remove it.
1839         BTB.Cases.pop_back();
1840         break;
1841       }
1842     }
1843
1844     // Update PHI Nodes
1845     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1846          pi != pe; ++pi) {
1847       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1848       MachineBasicBlock *PHIBB = PHI->getParent();
1849       assert(PHI->isPHI() &&
1850              "This is not a machine PHI node that we are updating!");
1851       // This is "default" BB. We have two jumps to it. From "header" BB and
1852       // from last "case" BB, unless the latter was skipped.
1853       if (PHIBB == BTB.Default) {
1854         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1855         if (!BTB.ContiguousRange) {
1856           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1857               .addMBB(BTB.Cases.back().ThisBB);
1858          }
1859       }
1860       // One of "cases" BB.
1861       for (unsigned j = 0, ej = BTB.Cases.size();
1862            j != ej; ++j) {
1863         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1864         if (cBB->isSuccessor(PHIBB))
1865           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1866       }
1867     }
1868   }
1869   SDB->BitTestCases.clear();
1870
1871   // If the JumpTable record is filled in, then we need to emit a jump table.
1872   // Updating the PHI nodes is tricky in this case, since we need to determine
1873   // whether the PHI is a successor of the range check MBB or the jump table MBB
1874   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1875     // Lower header first, if it wasn't already lowered
1876     if (!SDB->JTCases[i].first.Emitted) {
1877       // Set the current basic block to the mbb we wish to insert the code into
1878       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1879       FuncInfo->InsertPt = FuncInfo->MBB->end();
1880       // Emit the code
1881       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1882                                 FuncInfo->MBB);
1883       CurDAG->setRoot(SDB->getRoot());
1884       SDB->clear();
1885       CodeGenAndEmitDAG();
1886     }
1887
1888     // Set the current basic block to the mbb we wish to insert the code into
1889     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1890     FuncInfo->InsertPt = FuncInfo->MBB->end();
1891     // Emit the code
1892     SDB->visitJumpTable(SDB->JTCases[i].second);
1893     CurDAG->setRoot(SDB->getRoot());
1894     SDB->clear();
1895     CodeGenAndEmitDAG();
1896
1897     // Update PHI Nodes
1898     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1899          pi != pe; ++pi) {
1900       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1901       MachineBasicBlock *PHIBB = PHI->getParent();
1902       assert(PHI->isPHI() &&
1903              "This is not a machine PHI node that we are updating!");
1904       // "default" BB. We can go there only from header BB.
1905       if (PHIBB == SDB->JTCases[i].second.Default)
1906         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1907            .addMBB(SDB->JTCases[i].first.HeaderBB);
1908       // JT BB. Just iterate over successors here
1909       if (FuncInfo->MBB->isSuccessor(PHIBB))
1910         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1911     }
1912   }
1913   SDB->JTCases.clear();
1914
1915   // If we generated any switch lowering information, build and codegen any
1916   // additional DAGs necessary.
1917   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1918     // Set the current basic block to the mbb we wish to insert the code into
1919     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1920     FuncInfo->InsertPt = FuncInfo->MBB->end();
1921
1922     // Determine the unique successors.
1923     SmallVector<MachineBasicBlock *, 2> Succs;
1924     Succs.push_back(SDB->SwitchCases[i].TrueBB);
1925     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1926       Succs.push_back(SDB->SwitchCases[i].FalseBB);
1927
1928     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1929     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1930     CurDAG->setRoot(SDB->getRoot());
1931     SDB->clear();
1932     CodeGenAndEmitDAG();
1933
1934     // Remember the last block, now that any splitting is done, for use in
1935     // populating PHI nodes in successors.
1936     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1937
1938     // Handle any PHI nodes in successors of this chunk, as if we were coming
1939     // from the original BB before switch expansion.  Note that PHI nodes can
1940     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1941     // handle them the right number of times.
1942     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1943       FuncInfo->MBB = Succs[i];
1944       FuncInfo->InsertPt = FuncInfo->MBB->end();
1945       // FuncInfo->MBB may have been removed from the CFG if a branch was
1946       // constant folded.
1947       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1948         for (MachineBasicBlock::iterator
1949              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1950              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1951           MachineInstrBuilder PHI(*MF, MBBI);
1952           // This value for this PHI node is recorded in PHINodesToUpdate.
1953           for (unsigned pn = 0; ; ++pn) {
1954             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1955                    "Didn't find PHI entry!");
1956             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1957               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1958               break;
1959             }
1960           }
1961         }
1962       }
1963     }
1964   }
1965   SDB->SwitchCases.clear();
1966 }
1967
1968 /// Create the scheduler. If a specific scheduler was specified
1969 /// via the SchedulerRegistry, use it, otherwise select the
1970 /// one preferred by the target.
1971 ///
1972 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1973   return ISHeuristic(this, OptLevel);
1974 }
1975
1976 //===----------------------------------------------------------------------===//
1977 // Helper functions used by the generated instruction selector.
1978 //===----------------------------------------------------------------------===//
1979 // Calls to these methods are generated by tblgen.
1980
1981 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1982 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1983 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1984 /// specified in the .td file (e.g. 255).
1985 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1986                                     int64_t DesiredMaskS) const {
1987   const APInt &ActualMask = RHS->getAPIntValue();
1988   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1989
1990   // If the actual mask exactly matches, success!
1991   if (ActualMask == DesiredMask)
1992     return true;
1993
1994   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1995   if (ActualMask.intersects(~DesiredMask))
1996     return false;
1997
1998   // Otherwise, the DAG Combiner may have proven that the value coming in is
1999   // either already zero or is not demanded.  Check for known zero input bits.
2000   APInt NeededMask = DesiredMask & ~ActualMask;
2001   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2002     return true;
2003
2004   // TODO: check to see if missing bits are just not demanded.
2005
2006   // Otherwise, this pattern doesn't match.
2007   return false;
2008 }
2009
2010 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2011 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2012 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2013 /// specified in the .td file (e.g. 255).
2014 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2015                                    int64_t DesiredMaskS) const {
2016   const APInt &ActualMask = RHS->getAPIntValue();
2017   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2018
2019   // If the actual mask exactly matches, success!
2020   if (ActualMask == DesiredMask)
2021     return true;
2022
2023   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2024   if (ActualMask.intersects(~DesiredMask))
2025     return false;
2026
2027   // Otherwise, the DAG Combiner may have proven that the value coming in is
2028   // either already zero or is not demanded.  Check for known zero input bits.
2029   APInt NeededMask = DesiredMask & ~ActualMask;
2030
2031   KnownBits Known;
2032   CurDAG->computeKnownBits(LHS, Known);
2033
2034   // If all the missing bits in the or are already known to be set, match!
2035   if (NeededMask.isSubsetOf(Known.One))
2036     return true;
2037
2038   // TODO: check to see if missing bits are just not demanded.
2039
2040   // Otherwise, this pattern doesn't match.
2041   return false;
2042 }
2043
2044 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2045 /// by tblgen.  Others should not call it.
2046 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2047                                                      const SDLoc &DL) {
2048   std::vector<SDValue> InOps;
2049   std::swap(InOps, Ops);
2050
2051   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2052   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2053   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2054   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2055
2056   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2057   if (InOps[e-1].getValueType() == MVT::Glue)
2058     --e;  // Don't process a glue operand if it is here.
2059
2060   while (i != e) {
2061     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2062     if (!InlineAsm::isMemKind(Flags)) {
2063       // Just skip over this operand, copying the operands verbatim.
2064       Ops.insert(Ops.end(), InOps.begin()+i,
2065                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2066       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2067     } else {
2068       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2069              "Memory operand with multiple values?");
2070
2071       unsigned TiedToOperand;
2072       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2073         // We need the constraint ID from the operand this is tied to.
2074         unsigned CurOp = InlineAsm::Op_FirstOperand;
2075         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2076         for (; TiedToOperand; --TiedToOperand) {
2077           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2078           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2079         }
2080       }
2081
2082       // Otherwise, this is a memory operand.  Ask the target to select it.
2083       std::vector<SDValue> SelOps;
2084       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2085       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2086         report_fatal_error("Could not match memory address.  Inline asm"
2087                            " failure!");
2088
2089       // Add this to the output node.
2090       unsigned NewFlags =
2091         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2092       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2093       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2094       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2095       i += 2;
2096     }
2097   }
2098
2099   // Add the glue input back if present.
2100   if (e != InOps.size())
2101     Ops.push_back(InOps.back());
2102 }
2103
2104 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2105 /// SDNode.
2106 ///
2107 static SDNode *findGlueUse(SDNode *N) {
2108   unsigned FlagResNo = N->getNumValues()-1;
2109   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2110     SDUse &Use = I.getUse();
2111     if (Use.getResNo() == FlagResNo)
2112       return Use.getUser();
2113   }
2114   return nullptr;
2115 }
2116
2117 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
2118 /// This function iteratively traverses up the operand chain, ignoring
2119 /// certain nodes.
2120 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
2121                           SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
2122                           bool IgnoreChains) {
2123   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
2124   // greater than all of its (recursive) operands.  If we scan to a point where
2125   // 'use' is smaller than the node we're scanning for, then we know we will
2126   // never find it.
2127   //
2128   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
2129   // happen because we scan down to newly selected nodes in the case of glue
2130   // uses.
2131   std::vector<SDNode *> WorkList;
2132   WorkList.push_back(Use);
2133
2134   while (!WorkList.empty()) {
2135     Use = WorkList.back();
2136     WorkList.pop_back();
2137     if (Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)
2138       continue;
2139
2140     // Don't revisit nodes if we already scanned it and didn't fail, we know we
2141     // won't fail if we scan it again.
2142     if (!Visited.insert(Use).second)
2143       continue;
2144
2145     for (const SDValue &Op : Use->op_values()) {
2146       // Ignore chain uses, they are validated by HandleMergeInputChains.
2147       if (Op.getValueType() == MVT::Other && IgnoreChains)
2148         continue;
2149
2150       SDNode *N = Op.getNode();
2151       if (N == Def) {
2152         if (Use == ImmedUse || Use == Root)
2153           continue;  // We are not looking for immediate use.
2154         assert(N != Root);
2155         return true;
2156       }
2157
2158       // Traverse up the operand chain.
2159       WorkList.push_back(N);
2160     }
2161   }
2162   return false;
2163 }
2164
2165 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2166 /// operand node N of U during instruction selection that starts at Root.
2167 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2168                                           SDNode *Root) const {
2169   if (OptLevel == CodeGenOpt::None) return false;
2170   return N.hasOneUse();
2171 }
2172
2173 /// IsLegalToFold - Returns true if the specific operand node N of
2174 /// U can be folded during instruction selection that starts at Root.
2175 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2176                                      CodeGenOpt::Level OptLevel,
2177                                      bool IgnoreChains) {
2178   if (OptLevel == CodeGenOpt::None) return false;
2179
2180   // If Root use can somehow reach N through a path that that doesn't contain
2181   // U then folding N would create a cycle. e.g. In the following
2182   // diagram, Root can reach N through X. If N is folded into into Root, then
2183   // X is both a predecessor and a successor of U.
2184   //
2185   //          [N*]           //
2186   //         ^   ^           //
2187   //        /     \          //
2188   //      [U*]    [X]?       //
2189   //        ^     ^          //
2190   //         \   /           //
2191   //          \ /            //
2192   //         [Root*]         //
2193   //
2194   // * indicates nodes to be folded together.
2195   //
2196   // If Root produces glue, then it gets (even more) interesting. Since it
2197   // will be "glued" together with its glue use in the scheduler, we need to
2198   // check if it might reach N.
2199   //
2200   //          [N*]           //
2201   //         ^   ^           //
2202   //        /     \          //
2203   //      [U*]    [X]?       //
2204   //        ^       ^        //
2205   //         \       \       //
2206   //          \      |       //
2207   //         [Root*] |       //
2208   //          ^      |       //
2209   //          f      |       //
2210   //          |      /       //
2211   //         [Y]    /        //
2212   //           ^   /         //
2213   //           f  /          //
2214   //           | /           //
2215   //          [GU]           //
2216   //
2217   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2218   // (call it Fold), then X is a predecessor of GU and a successor of
2219   // Fold. But since Fold and GU are glued together, this will create
2220   // a cycle in the scheduling graph.
2221
2222   // If the node has glue, walk down the graph to the "lowest" node in the
2223   // glueged set.
2224   EVT VT = Root->getValueType(Root->getNumValues()-1);
2225   while (VT == MVT::Glue) {
2226     SDNode *GU = findGlueUse(Root);
2227     if (!GU)
2228       break;
2229     Root = GU;
2230     VT = Root->getValueType(Root->getNumValues()-1);
2231
2232     // If our query node has a glue result with a use, we've walked up it.  If
2233     // the user (which has already been selected) has a chain or indirectly uses
2234     // the chain, our WalkChainUsers predicate will not consider it.  Because of
2235     // this, we cannot ignore chains in this predicate.
2236     IgnoreChains = false;
2237   }
2238
2239   SmallPtrSet<SDNode*, 16> Visited;
2240   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
2241 }
2242
2243 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2244   SDLoc DL(N);
2245
2246   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2247   SelectInlineAsmMemoryOperands(Ops, DL);
2248
2249   const EVT VTs[] = {MVT::Other, MVT::Glue};
2250   SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2251   New->setNodeId(-1);
2252   ReplaceUses(N, New.getNode());
2253   CurDAG->RemoveDeadNode(N);
2254 }
2255
2256 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2257   SDLoc dl(Op);
2258   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2259   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2260   unsigned Reg =
2261       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2262                              *CurDAG);
2263   SDValue New = CurDAG->getCopyFromReg(
2264                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2265   New->setNodeId(-1);
2266   ReplaceUses(Op, New.getNode());
2267   CurDAG->RemoveDeadNode(Op);
2268 }
2269
2270 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2271   SDLoc dl(Op);
2272   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2273   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2274   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2275                                         Op->getOperand(2).getValueType(),
2276                                         *CurDAG);
2277   SDValue New = CurDAG->getCopyToReg(
2278                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2279   New->setNodeId(-1);
2280   ReplaceUses(Op, New.getNode());
2281   CurDAG->RemoveDeadNode(Op);
2282 }
2283
2284 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2285   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2286 }
2287
2288 /// GetVBR - decode a vbr encoding whose top bit is set.
2289 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2290 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2291   assert(Val >= 128 && "Not a VBR");
2292   Val &= 127;  // Remove first vbr bit.
2293
2294   unsigned Shift = 7;
2295   uint64_t NextBits;
2296   do {
2297     NextBits = MatcherTable[Idx++];
2298     Val |= (NextBits&127) << Shift;
2299     Shift += 7;
2300   } while (NextBits & 128);
2301
2302   return Val;
2303 }
2304
2305 /// When a match is complete, this method updates uses of interior chain results
2306 /// to use the new results.
2307 void SelectionDAGISel::UpdateChains(
2308     SDNode *NodeToMatch, SDValue InputChain,
2309     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2310   SmallVector<SDNode*, 4> NowDeadNodes;
2311
2312   // Now that all the normal results are replaced, we replace the chain and
2313   // glue results if present.
2314   if (!ChainNodesMatched.empty()) {
2315     assert(InputChain.getNode() &&
2316            "Matched input chains but didn't produce a chain");
2317     // Loop over all of the nodes we matched that produced a chain result.
2318     // Replace all the chain results with the final chain we ended up with.
2319     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2320       SDNode *ChainNode = ChainNodesMatched[i];
2321       // If ChainNode is null, it's because we replaced it on a previous
2322       // iteration and we cleared it out of the map. Just skip it.
2323       if (!ChainNode)
2324         continue;
2325
2326       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2327              "Deleted node left in chain");
2328
2329       // Don't replace the results of the root node if we're doing a
2330       // MorphNodeTo.
2331       if (ChainNode == NodeToMatch && isMorphNodeTo)
2332         continue;
2333
2334       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2335       if (ChainVal.getValueType() == MVT::Glue)
2336         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2337       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2338       SelectionDAG::DAGNodeDeletedListener NDL(
2339           *CurDAG, [&](SDNode *N, SDNode *E) {
2340             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2341                          static_cast<SDNode *>(nullptr));
2342           });
2343       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2344
2345       // If the node became dead and we haven't already seen it, delete it.
2346       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2347           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2348         NowDeadNodes.push_back(ChainNode);
2349     }
2350   }
2351
2352   if (!NowDeadNodes.empty())
2353     CurDAG->RemoveDeadNodes(NowDeadNodes);
2354
2355   DEBUG(dbgs() << "ISEL: Match complete!\n");
2356 }
2357
2358 enum ChainResult {
2359   CR_Simple,
2360   CR_InducesCycle,
2361   CR_LeadsToInteriorNode
2362 };
2363
2364 /// WalkChainUsers - Walk down the users of the specified chained node that is
2365 /// part of the pattern we're matching, looking at all of the users we find.
2366 /// This determines whether something is an interior node, whether we have a
2367 /// non-pattern node in between two pattern nodes (which prevent folding because
2368 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2369 /// between pattern nodes (in which case the TF becomes part of the pattern).
2370 ///
2371 /// The walk we do here is guaranteed to be small because we quickly get down to
2372 /// already selected nodes "below" us.
2373 static ChainResult
2374 WalkChainUsers(const SDNode *ChainedNode,
2375                SmallVectorImpl<SDNode *> &ChainedNodesInPattern,
2376                DenseMap<const SDNode *, ChainResult> &TokenFactorResult,
2377                SmallVectorImpl<SDNode *> &InteriorChainedNodes) {
2378   ChainResult Result = CR_Simple;
2379
2380   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2381          E = ChainedNode->use_end(); UI != E; ++UI) {
2382     // Make sure the use is of the chain, not some other value we produce.
2383     if (UI.getUse().getValueType() != MVT::Other) continue;
2384
2385     SDNode *User = *UI;
2386
2387     if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
2388       continue;
2389
2390     // If we see an already-selected machine node, then we've gone beyond the
2391     // pattern that we're selecting down into the already selected chunk of the
2392     // DAG.
2393     unsigned UserOpcode = User->getOpcode();
2394     if (User->isMachineOpcode() ||
2395         UserOpcode == ISD::CopyToReg ||
2396         UserOpcode == ISD::CopyFromReg ||
2397         UserOpcode == ISD::INLINEASM ||
2398         UserOpcode == ISD::EH_LABEL ||
2399         UserOpcode == ISD::LIFETIME_START ||
2400         UserOpcode == ISD::LIFETIME_END) {
2401       // If their node ID got reset to -1 then they've already been selected.
2402       // Treat them like a MachineOpcode.
2403       if (User->getNodeId() == -1)
2404         continue;
2405     }
2406
2407     // If we have a TokenFactor, we handle it specially.
2408     if (User->getOpcode() != ISD::TokenFactor) {
2409       // If the node isn't a token factor and isn't part of our pattern, then it
2410       // must be a random chained node in between two nodes we're selecting.
2411       // This happens when we have something like:
2412       //   x = load ptr
2413       //   call
2414       //   y = x+4
2415       //   store y -> ptr
2416       // Because we structurally match the load/store as a read/modify/write,
2417       // but the call is chained between them.  We cannot fold in this case
2418       // because it would induce a cycle in the graph.
2419       if (!std::count(ChainedNodesInPattern.begin(),
2420                       ChainedNodesInPattern.end(), User))
2421         return CR_InducesCycle;
2422
2423       // Otherwise we found a node that is part of our pattern.  For example in:
2424       //   x = load ptr
2425       //   y = x+4
2426       //   store y -> ptr
2427       // This would happen when we're scanning down from the load and see the
2428       // store as a user.  Record that there is a use of ChainedNode that is
2429       // part of the pattern and keep scanning uses.
2430       Result = CR_LeadsToInteriorNode;
2431       InteriorChainedNodes.push_back(User);
2432       continue;
2433     }
2434
2435     // If we found a TokenFactor, there are two cases to consider: first if the
2436     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2437     // uses of the TF are in our pattern) we just want to ignore it.  Second,
2438     // the TokenFactor can be sandwiched in between two chained nodes, like so:
2439     //     [Load chain]
2440     //         ^
2441     //         |
2442     //       [Load]
2443     //       ^    ^
2444     //       |    \                    DAG's like cheese
2445     //      /       \                       do you?
2446     //     /         |
2447     // [TokenFactor] [Op]
2448     //     ^          ^
2449     //     |          |
2450     //      \        /
2451     //       \      /
2452     //       [Store]
2453     //
2454     // In this case, the TokenFactor becomes part of our match and we rewrite it
2455     // as a new TokenFactor.
2456     //
2457     // To distinguish these two cases, do a recursive walk down the uses.
2458     auto MemoizeResult = TokenFactorResult.find(User);
2459     bool Visited = MemoizeResult != TokenFactorResult.end();
2460     // Recursively walk chain users only if the result is not memoized.
2461     if (!Visited) {
2462       auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult,
2463                                 InteriorChainedNodes);
2464       MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first;
2465     }
2466     switch (MemoizeResult->second) {
2467     case CR_Simple:
2468       // If the uses of the TokenFactor are just already-selected nodes, ignore
2469       // it, it is "below" our pattern.
2470       continue;
2471     case CR_InducesCycle:
2472       // If the uses of the TokenFactor lead to nodes that are not part of our
2473       // pattern that are not selected, folding would turn this into a cycle,
2474       // bail out now.
2475       return CR_InducesCycle;
2476     case CR_LeadsToInteriorNode:
2477       break;  // Otherwise, keep processing.
2478     }
2479
2480     // Okay, we know we're in the interesting interior case.  The TokenFactor
2481     // is now going to be considered part of the pattern so that we rewrite its
2482     // uses (it may have uses that are not part of the pattern) with the
2483     // ultimate chain result of the generated code.  We will also add its chain
2484     // inputs as inputs to the ultimate TokenFactor we create.
2485     Result = CR_LeadsToInteriorNode;
2486     if (!Visited) {
2487       ChainedNodesInPattern.push_back(User);
2488       InteriorChainedNodes.push_back(User);
2489     }
2490   }
2491
2492   return Result;
2493 }
2494
2495 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2496 /// operation for when the pattern matched at least one node with a chains.  The
2497 /// input vector contains a list of all of the chained nodes that we match.  We
2498 /// must determine if this is a valid thing to cover (i.e. matching it won't
2499 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2500 /// be used as the input node chain for the generated nodes.
2501 static SDValue
2502 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2503                        SelectionDAG *CurDAG) {
2504   // Used for memoization. Without it WalkChainUsers could take exponential
2505   // time to run.
2506   DenseMap<const SDNode *, ChainResult> TokenFactorResult;
2507   // Walk all of the chained nodes we've matched, recursively scanning down the
2508   // users of the chain result. This adds any TokenFactor nodes that are caught
2509   // in between chained nodes to the chained and interior nodes list.
2510   SmallVector<SDNode*, 3> InteriorChainedNodes;
2511   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2512     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2513                        TokenFactorResult,
2514                        InteriorChainedNodes) == CR_InducesCycle)
2515       return SDValue(); // Would induce a cycle.
2516   }
2517
2518   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2519   // that we are interested in.  Form our input TokenFactor node.
2520   SmallVector<SDValue, 3> InputChains;
2521   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2522     // Add the input chain of this node to the InputChains list (which will be
2523     // the operands of the generated TokenFactor) if it's not an interior node.
2524     SDNode *N = ChainNodesMatched[i];
2525     if (N->getOpcode() != ISD::TokenFactor) {
2526       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2527         continue;
2528
2529       // Otherwise, add the input chain.
2530       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2531       assert(InChain.getValueType() == MVT::Other && "Not a chain");
2532       InputChains.push_back(InChain);
2533       continue;
2534     }
2535
2536     // If we have a token factor, we want to add all inputs of the token factor
2537     // that are not part of the pattern we're matching.
2538     for (const SDValue &Op : N->op_values()) {
2539       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2540                       Op.getNode()))
2541         InputChains.push_back(Op);
2542     }
2543   }
2544
2545   if (InputChains.size() == 1)
2546     return InputChains[0];
2547   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2548                          MVT::Other, InputChains);
2549 }
2550
2551 /// MorphNode - Handle morphing a node in place for the selector.
2552 SDNode *SelectionDAGISel::
2553 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2554           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2555   // It is possible we're using MorphNodeTo to replace a node with no
2556   // normal results with one that has a normal result (or we could be
2557   // adding a chain) and the input could have glue and chains as well.
2558   // In this case we need to shift the operands down.
2559   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2560   // than the old isel though.
2561   int OldGlueResultNo = -1, OldChainResultNo = -1;
2562
2563   unsigned NTMNumResults = Node->getNumValues();
2564   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2565     OldGlueResultNo = NTMNumResults-1;
2566     if (NTMNumResults != 1 &&
2567         Node->getValueType(NTMNumResults-2) == MVT::Other)
2568       OldChainResultNo = NTMNumResults-2;
2569   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2570     OldChainResultNo = NTMNumResults-1;
2571
2572   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2573   // that this deletes operands of the old node that become dead.
2574   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2575
2576   // MorphNodeTo can operate in two ways: if an existing node with the
2577   // specified operands exists, it can just return it.  Otherwise, it
2578   // updates the node in place to have the requested operands.
2579   if (Res == Node) {
2580     // If we updated the node in place, reset the node ID.  To the isel,
2581     // this should be just like a newly allocated machine node.
2582     Res->setNodeId(-1);
2583   }
2584
2585   unsigned ResNumResults = Res->getNumValues();
2586   // Move the glue if needed.
2587   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2588       (unsigned)OldGlueResultNo != ResNumResults-1)
2589     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2590                                       SDValue(Res, ResNumResults-1));
2591
2592   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2593     --ResNumResults;
2594
2595   // Move the chain reference if needed.
2596   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2597       (unsigned)OldChainResultNo != ResNumResults-1)
2598     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2599                                       SDValue(Res, ResNumResults-1));
2600
2601   // Otherwise, no replacement happened because the node already exists. Replace
2602   // Uses of the old node with the new one.
2603   if (Res != Node) {
2604     CurDAG->ReplaceAllUsesWith(Node, Res);
2605     CurDAG->RemoveDeadNode(Node);
2606   }
2607
2608   return Res;
2609 }
2610
2611 /// CheckSame - Implements OP_CheckSame.
2612 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2613 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2614           SDValue N,
2615           const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2616   // Accept if it is exactly the same as a previously recorded node.
2617   unsigned RecNo = MatcherTable[MatcherIndex++];
2618   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2619   return N == RecordedNodes[RecNo].first;
2620 }
2621
2622 /// CheckChildSame - Implements OP_CheckChildXSame.
2623 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2624 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2625               SDValue N,
2626               const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2627               unsigned ChildNo) {
2628   if (ChildNo >= N.getNumOperands())
2629     return false;  // Match fails if out of range child #.
2630   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2631                      RecordedNodes);
2632 }
2633
2634 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2635 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2636 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2637                       const SelectionDAGISel &SDISel) {
2638   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2639 }
2640
2641 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2642 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2643 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2644                    const SelectionDAGISel &SDISel, SDNode *N) {
2645   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2646 }
2647
2648 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2649 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2650             SDNode *N) {
2651   uint16_t Opc = MatcherTable[MatcherIndex++];
2652   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2653   return N->getOpcode() == Opc;
2654 }
2655
2656 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2657 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2658           const TargetLowering *TLI, const DataLayout &DL) {
2659   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2660   if (N.getValueType() == VT) return true;
2661
2662   // Handle the case when VT is iPTR.
2663   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2664 }
2665
2666 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2667 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2668                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2669                unsigned ChildNo) {
2670   if (ChildNo >= N.getNumOperands())
2671     return false;  // Match fails if out of range child #.
2672   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2673                      DL);
2674 }
2675
2676 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2677 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2678               SDValue N) {
2679   return cast<CondCodeSDNode>(N)->get() ==
2680       (ISD::CondCode)MatcherTable[MatcherIndex++];
2681 }
2682
2683 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2684 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2685                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2686   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2687   if (cast<VTSDNode>(N)->getVT() == VT)
2688     return true;
2689
2690   // Handle the case when VT is iPTR.
2691   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2692 }
2693
2694 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2695 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2696              SDValue N) {
2697   int64_t Val = MatcherTable[MatcherIndex++];
2698   if (Val & 128)
2699     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2700
2701   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2702   return C && C->getSExtValue() == Val;
2703 }
2704
2705 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2706 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2707                   SDValue N, unsigned ChildNo) {
2708   if (ChildNo >= N.getNumOperands())
2709     return false;  // Match fails if out of range child #.
2710   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2711 }
2712
2713 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2714 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2715             SDValue N, const SelectionDAGISel &SDISel) {
2716   int64_t Val = MatcherTable[MatcherIndex++];
2717   if (Val & 128)
2718     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2719
2720   if (N->getOpcode() != ISD::AND) return false;
2721
2722   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2723   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2724 }
2725
2726 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2727 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2728            SDValue N, const SelectionDAGISel &SDISel) {
2729   int64_t Val = MatcherTable[MatcherIndex++];
2730   if (Val & 128)
2731     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2732
2733   if (N->getOpcode() != ISD::OR) return false;
2734
2735   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2736   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2737 }
2738
2739 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2740 /// scope, evaluate the current node.  If the current predicate is known to
2741 /// fail, set Result=true and return anything.  If the current predicate is
2742 /// known to pass, set Result=false and return the MatcherIndex to continue
2743 /// with.  If the current predicate is unknown, set Result=false and return the
2744 /// MatcherIndex to continue with.
2745 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2746                                        unsigned Index, SDValue N,
2747                                        bool &Result,
2748                                        const SelectionDAGISel &SDISel,
2749                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2750   switch (Table[Index++]) {
2751   default:
2752     Result = false;
2753     return Index-1;  // Could not evaluate this predicate.
2754   case SelectionDAGISel::OPC_CheckSame:
2755     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2756     return Index;
2757   case SelectionDAGISel::OPC_CheckChild0Same:
2758   case SelectionDAGISel::OPC_CheckChild1Same:
2759   case SelectionDAGISel::OPC_CheckChild2Same:
2760   case SelectionDAGISel::OPC_CheckChild3Same:
2761     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2762                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2763     return Index;
2764   case SelectionDAGISel::OPC_CheckPatternPredicate:
2765     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2766     return Index;
2767   case SelectionDAGISel::OPC_CheckPredicate:
2768     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2769     return Index;
2770   case SelectionDAGISel::OPC_CheckOpcode:
2771     Result = !::CheckOpcode(Table, Index, N.getNode());
2772     return Index;
2773   case SelectionDAGISel::OPC_CheckType:
2774     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2775                           SDISel.CurDAG->getDataLayout());
2776     return Index;
2777   case SelectionDAGISel::OPC_CheckChild0Type:
2778   case SelectionDAGISel::OPC_CheckChild1Type:
2779   case SelectionDAGISel::OPC_CheckChild2Type:
2780   case SelectionDAGISel::OPC_CheckChild3Type:
2781   case SelectionDAGISel::OPC_CheckChild4Type:
2782   case SelectionDAGISel::OPC_CheckChild5Type:
2783   case SelectionDAGISel::OPC_CheckChild6Type:
2784   case SelectionDAGISel::OPC_CheckChild7Type:
2785     Result = !::CheckChildType(
2786                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2787                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2788     return Index;
2789   case SelectionDAGISel::OPC_CheckCondCode:
2790     Result = !::CheckCondCode(Table, Index, N);
2791     return Index;
2792   case SelectionDAGISel::OPC_CheckValueType:
2793     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2794                                SDISel.CurDAG->getDataLayout());
2795     return Index;
2796   case SelectionDAGISel::OPC_CheckInteger:
2797     Result = !::CheckInteger(Table, Index, N);
2798     return Index;
2799   case SelectionDAGISel::OPC_CheckChild0Integer:
2800   case SelectionDAGISel::OPC_CheckChild1Integer:
2801   case SelectionDAGISel::OPC_CheckChild2Integer:
2802   case SelectionDAGISel::OPC_CheckChild3Integer:
2803   case SelectionDAGISel::OPC_CheckChild4Integer:
2804     Result = !::CheckChildInteger(Table, Index, N,
2805                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2806     return Index;
2807   case SelectionDAGISel::OPC_CheckAndImm:
2808     Result = !::CheckAndImm(Table, Index, N, SDISel);
2809     return Index;
2810   case SelectionDAGISel::OPC_CheckOrImm:
2811     Result = !::CheckOrImm(Table, Index, N, SDISel);
2812     return Index;
2813   }
2814 }
2815
2816 namespace {
2817
2818 struct MatchScope {
2819   /// FailIndex - If this match fails, this is the index to continue with.
2820   unsigned FailIndex;
2821
2822   /// NodeStack - The node stack when the scope was formed.
2823   SmallVector<SDValue, 4> NodeStack;
2824
2825   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2826   unsigned NumRecordedNodes;
2827
2828   /// NumMatchedMemRefs - The number of matched memref entries.
2829   unsigned NumMatchedMemRefs;
2830
2831   /// InputChain/InputGlue - The current chain/glue
2832   SDValue InputChain, InputGlue;
2833
2834   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2835   bool HasChainNodesMatched;
2836 };
2837
2838 /// \\brief A DAG update listener to keep the matching state
2839 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2840 /// change the DAG while matching.  X86 addressing mode matcher is an example
2841 /// for this.
2842 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2843 {
2844   SDNode **NodeToMatch;
2845   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2846   SmallVectorImpl<MatchScope> &MatchScopes;
2847
2848 public:
2849   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2850                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2851                     SmallVectorImpl<MatchScope> &MS)
2852       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2853         RecordedNodes(RN), MatchScopes(MS) {}
2854
2855   void NodeDeleted(SDNode *N, SDNode *E) override {
2856     // Some early-returns here to avoid the search if we deleted the node or
2857     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2858     // do, so it's unnecessary to update matching state at that point).
2859     // Neither of these can occur currently because we only install this
2860     // update listener during matching a complex patterns.
2861     if (!E || E->isMachineOpcode())
2862       return;
2863     // Check if NodeToMatch was updated.
2864     if (N == *NodeToMatch)
2865       *NodeToMatch = E;
2866     // Performing linear search here does not matter because we almost never
2867     // run this code.  You'd have to have a CSE during complex pattern
2868     // matching.
2869     for (auto &I : RecordedNodes)
2870       if (I.first.getNode() == N)
2871         I.first.setNode(E);
2872
2873     for (auto &I : MatchScopes)
2874       for (auto &J : I.NodeStack)
2875         if (J.getNode() == N)
2876           J.setNode(E);
2877   }
2878 };
2879
2880 } // end anonymous namespace
2881
2882 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2883                                         const unsigned char *MatcherTable,
2884                                         unsigned TableSize) {
2885   // FIXME: Should these even be selected?  Handle these cases in the caller?
2886   switch (NodeToMatch->getOpcode()) {
2887   default:
2888     break;
2889   case ISD::EntryToken:       // These nodes remain the same.
2890   case ISD::BasicBlock:
2891   case ISD::Register:
2892   case ISD::RegisterMask:
2893   case ISD::HANDLENODE:
2894   case ISD::MDNODE_SDNODE:
2895   case ISD::TargetConstant:
2896   case ISD::TargetConstantFP:
2897   case ISD::TargetConstantPool:
2898   case ISD::TargetFrameIndex:
2899   case ISD::TargetExternalSymbol:
2900   case ISD::MCSymbol:
2901   case ISD::TargetBlockAddress:
2902   case ISD::TargetJumpTable:
2903   case ISD::TargetGlobalTLSAddress:
2904   case ISD::TargetGlobalAddress:
2905   case ISD::TokenFactor:
2906   case ISD::CopyFromReg:
2907   case ISD::CopyToReg:
2908   case ISD::EH_LABEL:
2909   case ISD::LIFETIME_START:
2910   case ISD::LIFETIME_END:
2911     NodeToMatch->setNodeId(-1); // Mark selected.
2912     return;
2913   case ISD::AssertSext:
2914   case ISD::AssertZext:
2915     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2916                                       NodeToMatch->getOperand(0));
2917     CurDAG->RemoveDeadNode(NodeToMatch);
2918     return;
2919   case ISD::INLINEASM:
2920     Select_INLINEASM(NodeToMatch);
2921     return;
2922   case ISD::READ_REGISTER:
2923     Select_READ_REGISTER(NodeToMatch);
2924     return;
2925   case ISD::WRITE_REGISTER:
2926     Select_WRITE_REGISTER(NodeToMatch);
2927     return;
2928   case ISD::UNDEF:
2929     Select_UNDEF(NodeToMatch);
2930     return;
2931   }
2932
2933   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2934
2935   // Set up the node stack with NodeToMatch as the only node on the stack.
2936   SmallVector<SDValue, 8> NodeStack;
2937   SDValue N = SDValue(NodeToMatch, 0);
2938   NodeStack.push_back(N);
2939
2940   // MatchScopes - Scopes used when matching, if a match failure happens, this
2941   // indicates where to continue checking.
2942   SmallVector<MatchScope, 8> MatchScopes;
2943
2944   // RecordedNodes - This is the set of nodes that have been recorded by the
2945   // state machine.  The second value is the parent of the node, or null if the
2946   // root is recorded.
2947   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2948
2949   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2950   // pattern.
2951   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2952
2953   // These are the current input chain and glue for use when generating nodes.
2954   // Various Emit operations change these.  For example, emitting a copytoreg
2955   // uses and updates these.
2956   SDValue InputChain, InputGlue;
2957
2958   // ChainNodesMatched - If a pattern matches nodes that have input/output
2959   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2960   // which ones they are.  The result is captured into this list so that we can
2961   // update the chain results when the pattern is complete.
2962   SmallVector<SDNode*, 3> ChainNodesMatched;
2963
2964   DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2965         NodeToMatch->dump(CurDAG);
2966         dbgs() << '\n');
2967
2968   // Determine where to start the interpreter.  Normally we start at opcode #0,
2969   // but if the state machine starts with an OPC_SwitchOpcode, then we
2970   // accelerate the first lookup (which is guaranteed to be hot) with the
2971   // OpcodeOffset table.
2972   unsigned MatcherIndex = 0;
2973
2974   if (!OpcodeOffset.empty()) {
2975     // Already computed the OpcodeOffset table, just index into it.
2976     if (N.getOpcode() < OpcodeOffset.size())
2977       MatcherIndex = OpcodeOffset[N.getOpcode()];
2978     DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2979
2980   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2981     // Otherwise, the table isn't computed, but the state machine does start
2982     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2983     // is the first time we're selecting an instruction.
2984     unsigned Idx = 1;
2985     while (true) {
2986       // Get the size of this case.
2987       unsigned CaseSize = MatcherTable[Idx++];
2988       if (CaseSize & 128)
2989         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2990       if (CaseSize == 0) break;
2991
2992       // Get the opcode, add the index to the table.
2993       uint16_t Opc = MatcherTable[Idx++];
2994       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2995       if (Opc >= OpcodeOffset.size())
2996         OpcodeOffset.resize((Opc+1)*2);
2997       OpcodeOffset[Opc] = Idx;
2998       Idx += CaseSize;
2999     }
3000
3001     // Okay, do the lookup for the first opcode.
3002     if (N.getOpcode() < OpcodeOffset.size())
3003       MatcherIndex = OpcodeOffset[N.getOpcode()];
3004   }
3005
3006   while (true) {
3007     assert(MatcherIndex < TableSize && "Invalid index");
3008 #ifndef NDEBUG
3009     unsigned CurrentOpcodeIndex = MatcherIndex;
3010 #endif
3011     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3012     switch (Opcode) {
3013     case OPC_Scope: {
3014       // Okay, the semantics of this operation are that we should push a scope
3015       // then evaluate the first child.  However, pushing a scope only to have
3016       // the first check fail (which then pops it) is inefficient.  If we can
3017       // determine immediately that the first check (or first several) will
3018       // immediately fail, don't even bother pushing a scope for them.
3019       unsigned FailIndex;
3020
3021       while (true) {
3022         unsigned NumToSkip = MatcherTable[MatcherIndex++];
3023         if (NumToSkip & 128)
3024           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3025         // Found the end of the scope with no match.
3026         if (NumToSkip == 0) {
3027           FailIndex = 0;
3028           break;
3029         }
3030
3031         FailIndex = MatcherIndex+NumToSkip;
3032
3033         unsigned MatcherIndexOfPredicate = MatcherIndex;
3034         (void)MatcherIndexOfPredicate; // silence warning.
3035
3036         // If we can't evaluate this predicate without pushing a scope (e.g. if
3037         // it is a 'MoveParent') or if the predicate succeeds on this node, we
3038         // push the scope and evaluate the full predicate chain.
3039         bool Result;
3040         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3041                                               Result, *this, RecordedNodes);
3042         if (!Result)
3043           break;
3044
3045         DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
3046                      << "index " << MatcherIndexOfPredicate
3047                      << ", continuing at " << FailIndex << "\n");
3048         ++NumDAGIselRetries;
3049
3050         // Otherwise, we know that this case of the Scope is guaranteed to fail,
3051         // move to the next case.
3052         MatcherIndex = FailIndex;
3053       }
3054
3055       // If the whole scope failed to match, bail.
3056       if (FailIndex == 0) break;
3057
3058       // Push a MatchScope which indicates where to go if the first child fails
3059       // to match.
3060       MatchScope NewEntry;
3061       NewEntry.FailIndex = FailIndex;
3062       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3063       NewEntry.NumRecordedNodes = RecordedNodes.size();
3064       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3065       NewEntry.InputChain = InputChain;
3066       NewEntry.InputGlue = InputGlue;
3067       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3068       MatchScopes.push_back(NewEntry);
3069       continue;
3070     }
3071     case OPC_RecordNode: {
3072       // Remember this node, it may end up being an operand in the pattern.
3073       SDNode *Parent = nullptr;
3074       if (NodeStack.size() > 1)
3075         Parent = NodeStack[NodeStack.size()-2].getNode();
3076       RecordedNodes.push_back(std::make_pair(N, Parent));
3077       continue;
3078     }
3079
3080     case OPC_RecordChild0: case OPC_RecordChild1:
3081     case OPC_RecordChild2: case OPC_RecordChild3:
3082     case OPC_RecordChild4: case OPC_RecordChild5:
3083     case OPC_RecordChild6: case OPC_RecordChild7: {
3084       unsigned ChildNo = Opcode-OPC_RecordChild0;
3085       if (ChildNo >= N.getNumOperands())
3086         break;  // Match fails if out of range child #.
3087
3088       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3089                                              N.getNode()));
3090       continue;
3091     }
3092     case OPC_RecordMemRef:
3093       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
3094       continue;
3095
3096     case OPC_CaptureGlueInput:
3097       // If the current node has an input glue, capture it in InputGlue.
3098       if (N->getNumOperands() != 0 &&
3099           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3100         InputGlue = N->getOperand(N->getNumOperands()-1);
3101       continue;
3102
3103     case OPC_MoveChild: {
3104       unsigned ChildNo = MatcherTable[MatcherIndex++];
3105       if (ChildNo >= N.getNumOperands())
3106         break;  // Match fails if out of range child #.
3107       N = N.getOperand(ChildNo);
3108       NodeStack.push_back(N);
3109       continue;
3110     }
3111
3112     case OPC_MoveChild0: case OPC_MoveChild1:
3113     case OPC_MoveChild2: case OPC_MoveChild3:
3114     case OPC_MoveChild4: case OPC_MoveChild5:
3115     case OPC_MoveChild6: case OPC_MoveChild7: {
3116       unsigned ChildNo = Opcode-OPC_MoveChild0;
3117       if (ChildNo >= N.getNumOperands())
3118         break;  // Match fails if out of range child #.
3119       N = N.getOperand(ChildNo);
3120       NodeStack.push_back(N);
3121       continue;
3122     }
3123
3124     case OPC_MoveParent:
3125       // Pop the current node off the NodeStack.
3126       NodeStack.pop_back();
3127       assert(!NodeStack.empty() && "Node stack imbalance!");
3128       N = NodeStack.back();
3129       continue;
3130
3131     case OPC_CheckSame:
3132       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3133       continue;
3134
3135     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3136     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3137       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3138                             Opcode-OPC_CheckChild0Same))
3139         break;
3140       continue;
3141
3142     case OPC_CheckPatternPredicate:
3143       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3144       continue;
3145     case OPC_CheckPredicate:
3146       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3147                                 N.getNode()))
3148         break;
3149       continue;
3150     case OPC_CheckComplexPat: {
3151       unsigned CPNum = MatcherTable[MatcherIndex++];
3152       unsigned RecNo = MatcherTable[MatcherIndex++];
3153       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3154
3155       // If target can modify DAG during matching, keep the matching state
3156       // consistent.
3157       std::unique_ptr<MatchStateUpdater> MSU;
3158       if (ComplexPatternFuncMutatesDAG())
3159         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3160                                         MatchScopes));
3161
3162       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3163                                RecordedNodes[RecNo].first, CPNum,
3164                                RecordedNodes))
3165         break;
3166       continue;
3167     }
3168     case OPC_CheckOpcode:
3169       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3170       continue;
3171
3172     case OPC_CheckType:
3173       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3174                        CurDAG->getDataLayout()))
3175         break;
3176       continue;
3177
3178     case OPC_SwitchOpcode: {
3179       unsigned CurNodeOpcode = N.getOpcode();
3180       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3181       unsigned CaseSize;
3182       while (true) {
3183         // Get the size of this case.
3184         CaseSize = MatcherTable[MatcherIndex++];
3185         if (CaseSize & 128)
3186           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3187         if (CaseSize == 0) break;
3188
3189         uint16_t Opc = MatcherTable[MatcherIndex++];
3190         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3191
3192         // If the opcode matches, then we will execute this case.
3193         if (CurNodeOpcode == Opc)
3194           break;
3195
3196         // Otherwise, skip over this case.
3197         MatcherIndex += CaseSize;
3198       }
3199
3200       // If no cases matched, bail out.
3201       if (CaseSize == 0) break;
3202
3203       // Otherwise, execute the case we found.
3204       DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
3205                    << " to " << MatcherIndex << "\n");
3206       continue;
3207     }
3208
3209     case OPC_SwitchType: {
3210       MVT CurNodeVT = N.getSimpleValueType();
3211       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3212       unsigned CaseSize;
3213       while (true) {
3214         // Get the size of this case.
3215         CaseSize = MatcherTable[MatcherIndex++];
3216         if (CaseSize & 128)
3217           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3218         if (CaseSize == 0) break;
3219
3220         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3221         if (CaseVT == MVT::iPTR)
3222           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3223
3224         // If the VT matches, then we will execute this case.
3225         if (CurNodeVT == CaseVT)
3226           break;
3227
3228         // Otherwise, skip over this case.
3229         MatcherIndex += CaseSize;
3230       }
3231
3232       // If no cases matched, bail out.
3233       if (CaseSize == 0) break;
3234
3235       // Otherwise, execute the case we found.
3236       DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3237                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
3238       continue;
3239     }
3240     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3241     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3242     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3243     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3244       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3245                             CurDAG->getDataLayout(),
3246                             Opcode - OPC_CheckChild0Type))
3247         break;
3248       continue;
3249     case OPC_CheckCondCode:
3250       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3251       continue;
3252     case OPC_CheckValueType:
3253       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3254                             CurDAG->getDataLayout()))
3255         break;
3256       continue;
3257     case OPC_CheckInteger:
3258       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3259       continue;
3260     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3261     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3262     case OPC_CheckChild4Integer:
3263       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3264                                Opcode-OPC_CheckChild0Integer)) break;
3265       continue;
3266     case OPC_CheckAndImm:
3267       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3268       continue;
3269     case OPC_CheckOrImm:
3270       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3271       continue;
3272
3273     case OPC_CheckFoldableChainNode: {
3274       assert(NodeStack.size() != 1 && "No parent node");
3275       // Verify that all intermediate nodes between the root and this one have
3276       // a single use.
3277       bool HasMultipleUses = false;
3278       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3279         if (!NodeStack[i].getNode()->hasOneUse()) {
3280           HasMultipleUses = true;
3281           break;
3282         }
3283       if (HasMultipleUses) break;
3284
3285       // Check to see that the target thinks this is profitable to fold and that
3286       // we can fold it without inducing cycles in the graph.
3287       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3288                               NodeToMatch) ||
3289           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3290                          NodeToMatch, OptLevel,
3291                          true/*We validate our own chains*/))
3292         break;
3293
3294       continue;
3295     }
3296     case OPC_EmitInteger: {
3297       MVT::SimpleValueType VT =
3298         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3299       int64_t Val = MatcherTable[MatcherIndex++];
3300       if (Val & 128)
3301         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3302       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3303                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3304                                                         VT), nullptr));
3305       continue;
3306     }
3307     case OPC_EmitRegister: {
3308       MVT::SimpleValueType VT =
3309         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3310       unsigned RegNo = MatcherTable[MatcherIndex++];
3311       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3312                               CurDAG->getRegister(RegNo, VT), nullptr));
3313       continue;
3314     }
3315     case OPC_EmitRegister2: {
3316       // For targets w/ more than 256 register names, the register enum
3317       // values are stored in two bytes in the matcher table (just like
3318       // opcodes).
3319       MVT::SimpleValueType VT =
3320         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3321       unsigned RegNo = MatcherTable[MatcherIndex++];
3322       RegNo |= MatcherTable[MatcherIndex++] << 8;
3323       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3324                               CurDAG->getRegister(RegNo, VT), nullptr));
3325       continue;
3326     }
3327
3328     case OPC_EmitConvertToTarget:  {
3329       // Convert from IMM/FPIMM to target version.
3330       unsigned RecNo = MatcherTable[MatcherIndex++];
3331       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3332       SDValue Imm = RecordedNodes[RecNo].first;
3333
3334       if (Imm->getOpcode() == ISD::Constant) {
3335         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3336         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3337                                         Imm.getValueType());
3338       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3339         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3340         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3341                                           Imm.getValueType());
3342       }
3343
3344       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3345       continue;
3346     }
3347
3348     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3349     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3350     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3351       // These are space-optimized forms of OPC_EmitMergeInputChains.
3352       assert(!InputChain.getNode() &&
3353              "EmitMergeInputChains should be the first chain producing node");
3354       assert(ChainNodesMatched.empty() &&
3355              "Should only have one EmitMergeInputChains per match");
3356
3357       // Read all of the chained nodes.
3358       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3359       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3360       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3361
3362       // FIXME: What if other value results of the node have uses not matched
3363       // by this pattern?
3364       if (ChainNodesMatched.back() != NodeToMatch &&
3365           !RecordedNodes[RecNo].first.hasOneUse()) {
3366         ChainNodesMatched.clear();
3367         break;
3368       }
3369
3370       // Merge the input chains if they are not intra-pattern references.
3371       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3372
3373       if (!InputChain.getNode())
3374         break;  // Failed to merge.
3375       continue;
3376     }
3377
3378     case OPC_EmitMergeInputChains: {
3379       assert(!InputChain.getNode() &&
3380              "EmitMergeInputChains should be the first chain producing node");
3381       // This node gets a list of nodes we matched in the input that have
3382       // chains.  We want to token factor all of the input chains to these nodes
3383       // together.  However, if any of the input chains is actually one of the
3384       // nodes matched in this pattern, then we have an intra-match reference.
3385       // Ignore these because the newly token factored chain should not refer to
3386       // the old nodes.
3387       unsigned NumChains = MatcherTable[MatcherIndex++];
3388       assert(NumChains != 0 && "Can't TF zero chains");
3389
3390       assert(ChainNodesMatched.empty() &&
3391              "Should only have one EmitMergeInputChains per match");
3392
3393       // Read all of the chained nodes.
3394       for (unsigned i = 0; i != NumChains; ++i) {
3395         unsigned RecNo = MatcherTable[MatcherIndex++];
3396         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3397         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3398
3399         // FIXME: What if other value results of the node have uses not matched
3400         // by this pattern?
3401         if (ChainNodesMatched.back() != NodeToMatch &&
3402             !RecordedNodes[RecNo].first.hasOneUse()) {
3403           ChainNodesMatched.clear();
3404           break;
3405         }
3406       }
3407
3408       // If the inner loop broke out, the match fails.
3409       if (ChainNodesMatched.empty())
3410         break;
3411
3412       // Merge the input chains if they are not intra-pattern references.
3413       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3414
3415       if (!InputChain.getNode())
3416         break;  // Failed to merge.
3417
3418       continue;
3419     }
3420
3421     case OPC_EmitCopyToReg: {
3422       unsigned RecNo = MatcherTable[MatcherIndex++];
3423       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3424       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3425
3426       if (!InputChain.getNode())
3427         InputChain = CurDAG->getEntryNode();
3428
3429       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3430                                         DestPhysReg, RecordedNodes[RecNo].first,
3431                                         InputGlue);
3432
3433       InputGlue = InputChain.getValue(1);
3434       continue;
3435     }
3436
3437     case OPC_EmitNodeXForm: {
3438       unsigned XFormNo = MatcherTable[MatcherIndex++];
3439       unsigned RecNo = MatcherTable[MatcherIndex++];
3440       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3441       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3442       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3443       continue;
3444     }
3445     case OPC_Coverage: {
3446       // This is emitted right before MorphNode/EmitNode.
3447       // So it should be safe to assume that this node has been selected
3448       unsigned index = MatcherTable[MatcherIndex++];
3449       index |= (MatcherTable[MatcherIndex++] << 8);
3450       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3451       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3452       continue;
3453     }
3454
3455     case OPC_EmitNode:     case OPC_MorphNodeTo:
3456     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3457     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3458       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3459       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3460       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3461       // Get the result VT list.
3462       unsigned NumVTs;
3463       // If this is one of the compressed forms, get the number of VTs based
3464       // on the Opcode. Otherwise read the next byte from the table.
3465       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3466         NumVTs = Opcode - OPC_MorphNodeTo0;
3467       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3468         NumVTs = Opcode - OPC_EmitNode0;
3469       else
3470         NumVTs = MatcherTable[MatcherIndex++];
3471       SmallVector<EVT, 4> VTs;
3472       for (unsigned i = 0; i != NumVTs; ++i) {
3473         MVT::SimpleValueType VT =
3474           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3475         if (VT == MVT::iPTR)
3476           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3477         VTs.push_back(VT);
3478       }
3479
3480       if (EmitNodeInfo & OPFL_Chain)
3481         VTs.push_back(MVT::Other);
3482       if (EmitNodeInfo & OPFL_GlueOutput)
3483         VTs.push_back(MVT::Glue);
3484
3485       // This is hot code, so optimize the two most common cases of 1 and 2
3486       // results.
3487       SDVTList VTList;
3488       if (VTs.size() == 1)
3489         VTList = CurDAG->getVTList(VTs[0]);
3490       else if (VTs.size() == 2)
3491         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3492       else
3493         VTList = CurDAG->getVTList(VTs);
3494
3495       // Get the operand list.
3496       unsigned NumOps = MatcherTable[MatcherIndex++];
3497       SmallVector<SDValue, 8> Ops;
3498       for (unsigned i = 0; i != NumOps; ++i) {
3499         unsigned RecNo = MatcherTable[MatcherIndex++];
3500         if (RecNo & 128)
3501           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3502
3503         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3504         Ops.push_back(RecordedNodes[RecNo].first);
3505       }
3506
3507       // If there are variadic operands to add, handle them now.
3508       if (EmitNodeInfo & OPFL_VariadicInfo) {
3509         // Determine the start index to copy from.
3510         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3511         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3512         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3513                "Invalid variadic node");
3514         // Copy all of the variadic operands, not including a potential glue
3515         // input.
3516         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3517              i != e; ++i) {
3518           SDValue V = NodeToMatch->getOperand(i);
3519           if (V.getValueType() == MVT::Glue) break;
3520           Ops.push_back(V);
3521         }
3522       }
3523
3524       // If this has chain/glue inputs, add them.
3525       if (EmitNodeInfo & OPFL_Chain)
3526         Ops.push_back(InputChain);
3527       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3528         Ops.push_back(InputGlue);
3529
3530       // Create the node.
3531       SDNode *Res = nullptr;
3532       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3533                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3534       if (!IsMorphNodeTo) {
3535         // If this is a normal EmitNode command, just create the new node and
3536         // add the results to the RecordedNodes list.
3537         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3538                                      VTList, Ops);
3539
3540         // Add all the non-glue/non-chain results to the RecordedNodes list.
3541         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3542           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3543           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3544                                                              nullptr));
3545         }
3546       } else {
3547         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3548                "NodeToMatch was removed partway through selection");
3549         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3550                                                               SDNode *E) {
3551           auto &Chain = ChainNodesMatched;
3552           assert((!E || !is_contained(Chain, N)) &&
3553                  "Chain node replaced during MorphNode");
3554           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3555         });
3556         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3557       }
3558
3559       // If the node had chain/glue results, update our notion of the current
3560       // chain and glue.
3561       if (EmitNodeInfo & OPFL_GlueOutput) {
3562         InputGlue = SDValue(Res, VTs.size()-1);
3563         if (EmitNodeInfo & OPFL_Chain)
3564           InputChain = SDValue(Res, VTs.size()-2);
3565       } else if (EmitNodeInfo & OPFL_Chain)
3566         InputChain = SDValue(Res, VTs.size()-1);
3567
3568       // If the OPFL_MemRefs glue is set on this node, slap all of the
3569       // accumulated memrefs onto it.
3570       //
3571       // FIXME: This is vastly incorrect for patterns with multiple outputs
3572       // instructions that access memory and for ComplexPatterns that match
3573       // loads.
3574       if (EmitNodeInfo & OPFL_MemRefs) {
3575         // Only attach load or store memory operands if the generated
3576         // instruction may load or store.
3577         const MCInstrDesc &MCID = TII->get(TargetOpc);
3578         bool mayLoad = MCID.mayLoad();
3579         bool mayStore = MCID.mayStore();
3580
3581         unsigned NumMemRefs = 0;
3582         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3583                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3584           if ((*I)->isLoad()) {
3585             if (mayLoad)
3586               ++NumMemRefs;
3587           } else if ((*I)->isStore()) {
3588             if (mayStore)
3589               ++NumMemRefs;
3590           } else {
3591             ++NumMemRefs;
3592           }
3593         }
3594
3595         MachineSDNode::mmo_iterator MemRefs =
3596           MF->allocateMemRefsArray(NumMemRefs);
3597
3598         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3599         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3600                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3601           if ((*I)->isLoad()) {
3602             if (mayLoad)
3603               *MemRefsPos++ = *I;
3604           } else if ((*I)->isStore()) {
3605             if (mayStore)
3606               *MemRefsPos++ = *I;
3607           } else {
3608             *MemRefsPos++ = *I;
3609           }
3610         }
3611
3612         cast<MachineSDNode>(Res)
3613           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3614       }
3615
3616       DEBUG(dbgs() << "  "
3617                    << (IsMorphNodeTo ? "Morphed" : "Created")
3618                    << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3619
3620       // If this was a MorphNodeTo then we're completely done!
3621       if (IsMorphNodeTo) {
3622         // Update chain uses.
3623         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3624         return;
3625       }
3626       continue;
3627     }
3628
3629     case OPC_CompleteMatch: {
3630       // The match has been completed, and any new nodes (if any) have been
3631       // created.  Patch up references to the matched dag to use the newly
3632       // created nodes.
3633       unsigned NumResults = MatcherTable[MatcherIndex++];
3634
3635       for (unsigned i = 0; i != NumResults; ++i) {
3636         unsigned ResSlot = MatcherTable[MatcherIndex++];
3637         if (ResSlot & 128)
3638           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3639
3640         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3641         SDValue Res = RecordedNodes[ResSlot].first;
3642
3643         assert(i < NodeToMatch->getNumValues() &&
3644                NodeToMatch->getValueType(i) != MVT::Other &&
3645                NodeToMatch->getValueType(i) != MVT::Glue &&
3646                "Invalid number of results to complete!");
3647         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3648                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3649                 Res.getValueType() == MVT::iPTR ||
3650                 NodeToMatch->getValueType(i).getSizeInBits() ==
3651                     Res.getValueSizeInBits()) &&
3652                "invalid replacement");
3653         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3654       }
3655
3656       // Update chain uses.
3657       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3658
3659       // If the root node defines glue, we need to update it to the glue result.
3660       // TODO: This never happens in our tests and I think it can be removed /
3661       // replaced with an assert, but if we do it this the way the change is
3662       // NFC.
3663       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3664               MVT::Glue &&
3665           InputGlue.getNode())
3666         CurDAG->ReplaceAllUsesOfValueWith(
3667             SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue);
3668
3669       assert(NodeToMatch->use_empty() &&
3670              "Didn't replace all uses of the node?");
3671       CurDAG->RemoveDeadNode(NodeToMatch);
3672
3673       return;
3674     }
3675     }
3676
3677     // If the code reached this point, then the match failed.  See if there is
3678     // another child to try in the current 'Scope', otherwise pop it until we
3679     // find a case to check.
3680     DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3681     ++NumDAGIselRetries;
3682     while (true) {
3683       if (MatchScopes.empty()) {
3684         CannotYetSelect(NodeToMatch);
3685         return;
3686       }
3687
3688       // Restore the interpreter state back to the point where the scope was
3689       // formed.
3690       MatchScope &LastScope = MatchScopes.back();
3691       RecordedNodes.resize(LastScope.NumRecordedNodes);
3692       NodeStack.clear();
3693       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3694       N = NodeStack.back();
3695
3696       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3697         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3698       MatcherIndex = LastScope.FailIndex;
3699
3700       DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3701
3702       InputChain = LastScope.InputChain;
3703       InputGlue = LastScope.InputGlue;
3704       if (!LastScope.HasChainNodesMatched)
3705         ChainNodesMatched.clear();
3706
3707       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3708       // we have reached the end of this scope, otherwise we have another child
3709       // in the current scope to try.
3710       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3711       if (NumToSkip & 128)
3712         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3713
3714       // If we have another child in this scope to match, update FailIndex and
3715       // try it.
3716       if (NumToSkip != 0) {
3717         LastScope.FailIndex = MatcherIndex+NumToSkip;
3718         break;
3719       }
3720
3721       // End of this scope, pop it and try the next child in the containing
3722       // scope.
3723       MatchScopes.pop_back();
3724     }
3725   }
3726 }
3727
3728 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3729   std::string msg;
3730   raw_string_ostream Msg(msg);
3731   Msg << "Cannot select: ";
3732
3733   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3734       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3735       N->getOpcode() != ISD::INTRINSIC_VOID) {
3736     N->printrFull(Msg, CurDAG);
3737     Msg << "\nIn function: " << MF->getName();
3738   } else {
3739     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3740     unsigned iid =
3741       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3742     if (iid < Intrinsic::num_intrinsics)
3743       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3744     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3745       Msg << "target intrinsic %" << TII->getName(iid);
3746     else
3747       Msg << "unknown intrinsic #" << iid;
3748   }
3749   report_fatal_error(Msg.str());
3750 }
3751
3752 char SelectionDAGISel::ID = 0;