]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SpillPlacement.cpp
Import zstandard 1.3.1
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SpillPlacement.cpp
1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the spill code placement analysis.
11 //
12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13 // basic blocks are weighted by the block frequency and added to become the node
14 // bias.
15 //
16 // Transparent basic blocks have the variable live through, but don't care if it
17 // is spilled or in a register. These blocks become connections in the Hopfield
18 // network, again weighted by block frequency.
19 //
20 // The Hopfield network minimizes (possibly locally) its energy function:
21 //
22 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23 //
24 // The energy function represents the expected spill code execution frequency,
25 // or the cost of spilling. This is a Lyapunov function which never increases
26 // when a node is updated. It is guaranteed to converge to a local minimum.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "SpillPlacement.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ManagedStatic.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "spill-code-placement"
44
45 char SpillPlacement::ID = 0;
46 INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE,
47                       "Spill Code Placement Analysis", true, true)
48 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
49 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
50 INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE,
51                     "Spill Code Placement Analysis", true, true)
52
53 char &llvm::SpillPlacementID = SpillPlacement::ID;
54
55 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
56   AU.setPreservesAll();
57   AU.addRequired<MachineBlockFrequencyInfo>();
58   AU.addRequiredTransitive<EdgeBundles>();
59   AU.addRequiredTransitive<MachineLoopInfo>();
60   MachineFunctionPass::getAnalysisUsage(AU);
61 }
62
63 /// Node - Each edge bundle corresponds to a Hopfield node.
64 ///
65 /// The node contains precomputed frequency data that only depends on the CFG,
66 /// but Bias and Links are computed each time placeSpills is called.
67 ///
68 /// The node Value is positive when the variable should be in a register. The
69 /// value can change when linked nodes change, but convergence is very fast
70 /// because all weights are positive.
71 ///
72 struct SpillPlacement::Node {
73   /// BiasN - Sum of blocks that prefer a spill.
74   BlockFrequency BiasN;
75   /// BiasP - Sum of blocks that prefer a register.
76   BlockFrequency BiasP;
77
78   /// Value - Output value of this node computed from the Bias and links.
79   /// This is always on of the values {-1, 0, 1}. A positive number means the
80   /// variable should go in a register through this bundle.
81   int Value;
82
83   typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
84
85   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
86   /// bundles. The weights are all positive block frequencies.
87   LinkVector Links;
88
89   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
90   BlockFrequency SumLinkWeights;
91
92   /// preferReg - Return true when this node prefers to be in a register.
93   bool preferReg() const {
94     // Undecided nodes (Value==0) go on the stack.
95     return Value > 0;
96   }
97
98   /// mustSpill - Return True if this node is so biased that it must spill.
99   bool mustSpill() const {
100     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
101     // BiasN is saturated when MustSpill is set, make sure this still returns
102     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
103     return BiasN >= BiasP + SumLinkWeights;
104   }
105
106   /// clear - Reset per-query data, but preserve frequencies that only depend on
107   // the CFG.
108   void clear(const BlockFrequency &Threshold) {
109     BiasN = BiasP = Value = 0;
110     SumLinkWeights = Threshold;
111     Links.clear();
112   }
113
114   /// addLink - Add a link to bundle b with weight w.
115   void addLink(unsigned b, BlockFrequency w) {
116     // Update cached sum.
117     SumLinkWeights += w;
118
119     // There can be multiple links to the same bundle, add them up.
120     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
121       if (I->second == b) {
122         I->first += w;
123         return;
124       }
125     // This must be the first link to b.
126     Links.push_back(std::make_pair(w, b));
127   }
128
129   /// addBias - Bias this node.
130   void addBias(BlockFrequency freq, BorderConstraint direction) {
131     switch (direction) {
132     default:
133       break;
134     case PrefReg:
135       BiasP += freq;
136       break;
137     case PrefSpill:
138       BiasN += freq;
139       break;
140     case MustSpill:
141       BiasN = BlockFrequency::getMaxFrequency();
142       break;
143     }
144   }
145
146   /// update - Recompute Value from Bias and Links. Return true when node
147   /// preference changes.
148   bool update(const Node nodes[], const BlockFrequency &Threshold) {
149     // Compute the weighted sum of inputs.
150     BlockFrequency SumN = BiasN;
151     BlockFrequency SumP = BiasP;
152     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
153       if (nodes[I->second].Value == -1)
154         SumN += I->first;
155       else if (nodes[I->second].Value == 1)
156         SumP += I->first;
157     }
158
159     // Each weighted sum is going to be less than the total frequency of the
160     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
161     // will add a dead zone around 0 for two reasons:
162     //
163     //  1. It avoids arbitrary bias when all links are 0 as is possible during
164     //     initial iterations.
165     //  2. It helps tame rounding errors when the links nominally sum to 0.
166     //
167     bool Before = preferReg();
168     if (SumN >= SumP + Threshold)
169       Value = -1;
170     else if (SumP >= SumN + Threshold)
171       Value = 1;
172     else
173       Value = 0;
174     return Before != preferReg();
175   }
176
177   void getDissentingNeighbors(SparseSet<unsigned> &List,
178                               const Node nodes[]) const {
179     for (const auto &Elt : Links) {
180       unsigned n = Elt.second;
181       // Neighbors that already have the same value are not going to
182       // change because of this node changing.
183       if (Value != nodes[n].Value)
184         List.insert(n);
185     }
186   }
187 };
188
189 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
190   MF = &mf;
191   bundles = &getAnalysis<EdgeBundles>();
192   loops = &getAnalysis<MachineLoopInfo>();
193
194   assert(!nodes && "Leaking node array");
195   nodes = new Node[bundles->getNumBundles()];
196   TodoList.clear();
197   TodoList.setUniverse(bundles->getNumBundles());
198
199   // Compute total ingoing and outgoing block frequencies for all bundles.
200   BlockFrequencies.resize(mf.getNumBlockIDs());
201   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
202   setThreshold(MBFI->getEntryFreq());
203   for (auto &I : mf) {
204     unsigned Num = I.getNumber();
205     BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
206   }
207
208   // We never change the function.
209   return false;
210 }
211
212 void SpillPlacement::releaseMemory() {
213   delete[] nodes;
214   nodes = nullptr;
215   TodoList.clear();
216 }
217
218 /// activate - mark node n as active if it wasn't already.
219 void SpillPlacement::activate(unsigned n) {
220   TodoList.insert(n);
221   if (ActiveNodes->test(n))
222     return;
223   ActiveNodes->set(n);
224   nodes[n].clear(Threshold);
225
226   // Very large bundles usually come from big switches, indirect branches,
227   // landing pads, or loops with many 'continue' statements. It is difficult to
228   // allocate registers when so many different blocks are involved.
229   //
230   // Give a small negative bias to large bundles such that a substantial
231   // fraction of the connected blocks need to be interested before we consider
232   // expanding the region through the bundle. This helps compile time by
233   // limiting the number of blocks visited and the number of links in the
234   // Hopfield network.
235   if (bundles->getBlocks(n).size() > 100) {
236     nodes[n].BiasP = 0;
237     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
238   }
239 }
240
241 /// \brief Set the threshold for a given entry frequency.
242 ///
243 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
244 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
245 /// threshold.
246 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
247   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
248   // it.  Divide by 2^13, rounding as appropriate.
249   uint64_t Freq = Entry.getFrequency();
250   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
251   Threshold = std::max(UINT64_C(1), Scaled);
252 }
253
254 /// addConstraints - Compute node biases and weights from a set of constraints.
255 /// Set a bit in NodeMask for each active node.
256 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
257   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
258        E = LiveBlocks.end(); I != E; ++I) {
259     BlockFrequency Freq = BlockFrequencies[I->Number];
260
261     // Live-in to block?
262     if (I->Entry != DontCare) {
263       unsigned ib = bundles->getBundle(I->Number, 0);
264       activate(ib);
265       nodes[ib].addBias(Freq, I->Entry);
266     }
267
268     // Live-out from block?
269     if (I->Exit != DontCare) {
270       unsigned ob = bundles->getBundle(I->Number, 1);
271       activate(ob);
272       nodes[ob].addBias(Freq, I->Exit);
273     }
274   }
275 }
276
277 /// addPrefSpill - Same as addConstraints(PrefSpill)
278 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
279   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
280        I != E; ++I) {
281     BlockFrequency Freq = BlockFrequencies[*I];
282     if (Strong)
283       Freq += Freq;
284     unsigned ib = bundles->getBundle(*I, 0);
285     unsigned ob = bundles->getBundle(*I, 1);
286     activate(ib);
287     activate(ob);
288     nodes[ib].addBias(Freq, PrefSpill);
289     nodes[ob].addBias(Freq, PrefSpill);
290   }
291 }
292
293 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
294   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
295        ++I) {
296     unsigned Number = *I;
297     unsigned ib = bundles->getBundle(Number, 0);
298     unsigned ob = bundles->getBundle(Number, 1);
299
300     // Ignore self-loops.
301     if (ib == ob)
302       continue;
303     activate(ib);
304     activate(ob);
305     BlockFrequency Freq = BlockFrequencies[Number];
306     nodes[ib].addLink(ob, Freq);
307     nodes[ob].addLink(ib, Freq);
308   }
309 }
310
311 bool SpillPlacement::scanActiveBundles() {
312   RecentPositive.clear();
313   for (unsigned n : ActiveNodes->set_bits()) {
314     update(n);
315     // A node that must spill, or a node without any links is not going to
316     // change its value ever again, so exclude it from iterations.
317     if (nodes[n].mustSpill())
318       continue;
319     if (nodes[n].preferReg())
320       RecentPositive.push_back(n);
321   }
322   return !RecentPositive.empty();
323 }
324
325 bool SpillPlacement::update(unsigned n) {
326   if (!nodes[n].update(nodes, Threshold))
327     return false;
328   nodes[n].getDissentingNeighbors(TodoList, nodes);
329   return true;
330 }
331
332 /// iterate - Repeatedly update the Hopfield nodes until stability or the
333 /// maximum number of iterations is reached.
334 void SpillPlacement::iterate() {
335   // We do not need to push those node in the todolist.
336   // They are already been proceeded as part of the previous iteration.
337   RecentPositive.clear();
338
339   // Since the last iteration, the todolist have been augmented by calls
340   // to addConstraints, addLinks, and co.
341   // Update the network energy starting at this new frontier.
342   // The call to ::update will add the nodes that changed into the todolist.
343   unsigned Limit = bundles->getNumBundles() * 10;
344   while(Limit-- > 0 && !TodoList.empty()) {
345     unsigned n = TodoList.pop_back_val();
346     if (!update(n))
347       continue;
348     if (nodes[n].preferReg())
349       RecentPositive.push_back(n);
350   }
351 }
352
353 void SpillPlacement::prepare(BitVector &RegBundles) {
354   RecentPositive.clear();
355   TodoList.clear();
356   // Reuse RegBundles as our ActiveNodes vector.
357   ActiveNodes = &RegBundles;
358   ActiveNodes->clear();
359   ActiveNodes->resize(bundles->getNumBundles());
360 }
361
362 bool
363 SpillPlacement::finish() {
364   assert(ActiveNodes && "Call prepare() first");
365
366   // Write preferences back to ActiveNodes.
367   bool Perfect = true;
368   for (unsigned n : ActiveNodes->set_bits())
369     if (!nodes[n].preferReg()) {
370       ActiveNodes->reset(n);
371       Perfect = false;
372     }
373   ActiveNodes = nullptr;
374   return Perfect;
375 }