]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/SplitKit.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / SplitKit.cpp
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SplitKit.h"
16 #include "LiveRangeCalc.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/VirtRegMap.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/Support/Allocator.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <limits>
55 #include <tuple>
56 #include <utility>
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "regalloc"
61
62 STATISTIC(NumFinished, "Number of splits finished");
63 STATISTIC(NumSimple,   "Number of splits that were simple");
64 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
65 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
66 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
67
68 //===----------------------------------------------------------------------===//
69 //                     Last Insert Point Analysis
70 //===----------------------------------------------------------------------===//
71
72 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
73                                          unsigned BBNum)
74     : LIS(lis), LastInsertPoint(BBNum) {}
75
76 SlotIndex
77 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
78                                             const MachineBasicBlock &MBB) {
79   unsigned Num = MBB.getNumber();
80   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
81   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
82
83   SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
84   for (const MachineBasicBlock *SMBB : MBB.successors())
85     if (SMBB->isEHPad())
86       EHPadSuccessors.push_back(SMBB);
87
88   // Compute insert points on the first call. The pair is independent of the
89   // current live interval.
90   if (!LIP.first.isValid()) {
91     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
92     if (FirstTerm == MBB.end())
93       LIP.first = MBBEnd;
94     else
95       LIP.first = LIS.getInstructionIndex(*FirstTerm);
96
97     // If there is a landing pad successor, also find the call instruction.
98     if (EHPadSuccessors.empty())
99       return LIP.first;
100     // There may not be a call instruction (?) in which case we ignore LPad.
101     LIP.second = LIP.first;
102     for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
103          I != E;) {
104       --I;
105       if (I->isCall()) {
106         LIP.second = LIS.getInstructionIndex(*I);
107         break;
108       }
109     }
110   }
111
112   // If CurLI is live into a landing pad successor, move the last insert point
113   // back to the call that may throw.
114   if (!LIP.second)
115     return LIP.first;
116
117   if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
118         return LIS.isLiveInToMBB(CurLI, EHPad);
119       }))
120     return LIP.first;
121
122   // Find the value leaving MBB.
123   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
124   if (!VNI)
125     return LIP.first;
126
127   // If the value leaving MBB was defined after the call in MBB, it can't
128   // really be live-in to the landing pad.  This can happen if the landing pad
129   // has a PHI, and this register is undef on the exceptional edge.
130   // <rdar://problem/10664933>
131   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132     return LIP.first;
133
134   // Value is properly live-in to the landing pad.
135   // Only allow inserts before the call.
136   return LIP.second;
137 }
138
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141                                             MachineBasicBlock &MBB) {
142   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143   if (LIP == LIS.getMBBEndIdx(&MBB))
144     return MBB.end();
145   return LIS.getInstructionFromIndex(LIP);
146 }
147
148 //===----------------------------------------------------------------------===//
149 //                                 Split Analysis
150 //===----------------------------------------------------------------------===//
151
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153                              const MachineLoopInfo &mli)
154     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
156
157 void SplitAnalysis::clear() {
158   UseSlots.clear();
159   UseBlocks.clear();
160   ThroughBlocks.clear();
161   CurLI = nullptr;
162   DidRepairRange = false;
163 }
164
165 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
166 void SplitAnalysis::analyzeUses() {
167   assert(UseSlots.empty() && "Call clear first");
168
169   // First get all the defs from the interval values. This provides the correct
170   // slots for early clobbers.
171   for (const VNInfo *VNI : CurLI->valnos)
172     if (!VNI->isPHIDef() && !VNI->isUnused())
173       UseSlots.push_back(VNI->def);
174
175   // Get use slots form the use-def chain.
176   const MachineRegisterInfo &MRI = MF.getRegInfo();
177   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
178     if (!MO.isUndef())
179       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
180
181   array_pod_sort(UseSlots.begin(), UseSlots.end());
182
183   // Remove duplicates, keeping the smaller slot for each instruction.
184   // That is what we want for early clobbers.
185   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
186                              SlotIndex::isSameInstr),
187                  UseSlots.end());
188
189   // Compute per-live block info.
190   if (!calcLiveBlockInfo()) {
191     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
192     // I am looking at you, RegisterCoalescer!
193     DidRepairRange = true;
194     ++NumRepairs;
195     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
196     const_cast<LiveIntervals&>(LIS)
197       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
198     UseBlocks.clear();
199     ThroughBlocks.clear();
200     bool fixed = calcLiveBlockInfo();
201     (void)fixed;
202     assert(fixed && "Couldn't fix broken live interval");
203   }
204
205   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
206                     << UseBlocks.size() << " blocks, through "
207                     << NumThroughBlocks << " blocks.\n");
208 }
209
210 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
211 /// where CurLI is live.
212 bool SplitAnalysis::calcLiveBlockInfo() {
213   ThroughBlocks.resize(MF.getNumBlockIDs());
214   NumThroughBlocks = NumGapBlocks = 0;
215   if (CurLI->empty())
216     return true;
217
218   LiveInterval::const_iterator LVI = CurLI->begin();
219   LiveInterval::const_iterator LVE = CurLI->end();
220
221   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
222   UseI = UseSlots.begin();
223   UseE = UseSlots.end();
224
225   // Loop over basic blocks where CurLI is live.
226   MachineFunction::iterator MFI =
227       LIS.getMBBFromIndex(LVI->start)->getIterator();
228   while (true) {
229     BlockInfo BI;
230     BI.MBB = &*MFI;
231     SlotIndex Start, Stop;
232     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
233
234     // If the block contains no uses, the range must be live through. At one
235     // point, RegisterCoalescer could create dangling ranges that ended
236     // mid-block.
237     if (UseI == UseE || *UseI >= Stop) {
238       ++NumThroughBlocks;
239       ThroughBlocks.set(BI.MBB->getNumber());
240       // The range shouldn't end mid-block if there are no uses. This shouldn't
241       // happen.
242       if (LVI->end < Stop)
243         return false;
244     } else {
245       // This block has uses. Find the first and last uses in the block.
246       BI.FirstInstr = *UseI;
247       assert(BI.FirstInstr >= Start);
248       do ++UseI;
249       while (UseI != UseE && *UseI < Stop);
250       BI.LastInstr = UseI[-1];
251       assert(BI.LastInstr < Stop);
252
253       // LVI is the first live segment overlapping MBB.
254       BI.LiveIn = LVI->start <= Start;
255
256       // When not live in, the first use should be a def.
257       if (!BI.LiveIn) {
258         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
259         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
260         BI.FirstDef = BI.FirstInstr;
261       }
262
263       // Look for gaps in the live range.
264       BI.LiveOut = true;
265       while (LVI->end < Stop) {
266         SlotIndex LastStop = LVI->end;
267         if (++LVI == LVE || LVI->start >= Stop) {
268           BI.LiveOut = false;
269           BI.LastInstr = LastStop;
270           break;
271         }
272
273         if (LastStop < LVI->start) {
274           // There is a gap in the live range. Create duplicate entries for the
275           // live-in snippet and the live-out snippet.
276           ++NumGapBlocks;
277
278           // Push the Live-in part.
279           BI.LiveOut = false;
280           UseBlocks.push_back(BI);
281           UseBlocks.back().LastInstr = LastStop;
282
283           // Set up BI for the live-out part.
284           BI.LiveIn = false;
285           BI.LiveOut = true;
286           BI.FirstInstr = BI.FirstDef = LVI->start;
287         }
288
289         // A Segment that starts in the middle of the block must be a def.
290         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
291         if (!BI.FirstDef)
292           BI.FirstDef = LVI->start;
293       }
294
295       UseBlocks.push_back(BI);
296
297       // LVI is now at LVE or LVI->end >= Stop.
298       if (LVI == LVE)
299         break;
300     }
301
302     // Live segment ends exactly at Stop. Move to the next segment.
303     if (LVI->end == Stop && ++LVI == LVE)
304       break;
305
306     // Pick the next basic block.
307     if (LVI->start < Stop)
308       ++MFI;
309     else
310       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
311   }
312
313   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
314   return true;
315 }
316
317 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
318   if (cli->empty())
319     return 0;
320   LiveInterval *li = const_cast<LiveInterval*>(cli);
321   LiveInterval::iterator LVI = li->begin();
322   LiveInterval::iterator LVE = li->end();
323   unsigned Count = 0;
324
325   // Loop over basic blocks where li is live.
326   MachineFunction::const_iterator MFI =
327       LIS.getMBBFromIndex(LVI->start)->getIterator();
328   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
329   while (true) {
330     ++Count;
331     LVI = li->advanceTo(LVI, Stop);
332     if (LVI == LVE)
333       return Count;
334     do {
335       ++MFI;
336       Stop = LIS.getMBBEndIdx(&*MFI);
337     } while (Stop <= LVI->start);
338   }
339 }
340
341 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
342   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
343   const LiveInterval &Orig = LIS.getInterval(OrigReg);
344   assert(!Orig.empty() && "Splitting empty interval?");
345   LiveInterval::const_iterator I = Orig.find(Idx);
346
347   // Range containing Idx should begin at Idx.
348   if (I != Orig.end() && I->start <= Idx)
349     return I->start == Idx;
350
351   // Range does not contain Idx, previous must end at Idx.
352   return I != Orig.begin() && (--I)->end == Idx;
353 }
354
355 void SplitAnalysis::analyze(const LiveInterval *li) {
356   clear();
357   CurLI = li;
358   analyzeUses();
359 }
360
361 //===----------------------------------------------------------------------===//
362 //                               Split Editor
363 //===----------------------------------------------------------------------===//
364
365 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
366 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
367                          LiveIntervals &lis, VirtRegMap &vrm,
368                          MachineDominatorTree &mdt,
369                          MachineBlockFrequencyInfo &mbfi)
370     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
371       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
372       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
373       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
374       MBFI(mbfi), RegAssign(Allocator) {}
375
376 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
377   Edit = &LRE;
378   SpillMode = SM;
379   OpenIdx = 0;
380   RegAssign.clear();
381   Values.clear();
382
383   // Reset the LiveRangeCalc instances needed for this spill mode.
384   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
385                   &LIS.getVNInfoAllocator());
386   if (SpillMode)
387     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
388                     &LIS.getVNInfoAllocator());
389
390   // We don't need an AliasAnalysis since we will only be performing
391   // cheap-as-a-copy remats anyway.
392   Edit->anyRematerializable(nullptr);
393 }
394
395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396 LLVM_DUMP_METHOD void SplitEditor::dump() const {
397   if (RegAssign.empty()) {
398     dbgs() << " empty\n";
399     return;
400   }
401
402   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
403     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
404   dbgs() << '\n';
405 }
406 #endif
407
408 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
409                                                         LiveInterval &LI) {
410   for (LiveInterval::SubRange &S : LI.subranges())
411     if (S.LaneMask == LM)
412       return S;
413   llvm_unreachable("SubRange for this mask not found");
414 }
415
416 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
417   if (!LI.hasSubRanges()) {
418     LI.createDeadDef(VNI);
419     return;
420   }
421
422   SlotIndex Def = VNI->def;
423   if (Original) {
424     // If we are transferring a def from the original interval, make sure
425     // to only update the subranges for which the original subranges had
426     // a def at this location.
427     for (LiveInterval::SubRange &S : LI.subranges()) {
428       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
429       VNInfo *PV = PS.getVNInfoAt(Def);
430       if (PV != nullptr && PV->def == Def)
431         S.createDeadDef(Def, LIS.getVNInfoAllocator());
432     }
433   } else {
434     // This is a new def: either from rematerialization, or from an inserted
435     // copy. Since rematerialization can regenerate a definition of a sub-
436     // register, we need to check which subranges need to be updated.
437     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
438     assert(DefMI != nullptr);
439     LaneBitmask LM;
440     for (const MachineOperand &DefOp : DefMI->defs()) {
441       unsigned R = DefOp.getReg();
442       if (R != LI.reg)
443         continue;
444       if (unsigned SR = DefOp.getSubReg())
445         LM |= TRI.getSubRegIndexLaneMask(SR);
446       else {
447         LM = MRI.getMaxLaneMaskForVReg(R);
448         break;
449       }
450     }
451     for (LiveInterval::SubRange &S : LI.subranges())
452       if ((S.LaneMask & LM).any())
453         S.createDeadDef(Def, LIS.getVNInfoAllocator());
454   }
455 }
456
457 VNInfo *SplitEditor::defValue(unsigned RegIdx,
458                               const VNInfo *ParentVNI,
459                               SlotIndex Idx,
460                               bool Original) {
461   assert(ParentVNI && "Mapping  NULL value");
462   assert(Idx.isValid() && "Invalid SlotIndex");
463   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
464   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
465
466   // Create a new value.
467   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
468
469   bool Force = LI->hasSubRanges();
470   ValueForcePair FP(Force ? nullptr : VNI, Force);
471   // Use insert for lookup, so we can add missing values with a second lookup.
472   std::pair<ValueMap::iterator, bool> InsP =
473     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
474
475   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
476   // forced. Keep it as a simple def without any liveness.
477   if (!Force && InsP.second)
478     return VNI;
479
480   // If the previous value was a simple mapping, add liveness for it now.
481   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
482     addDeadDef(*LI, OldVNI, Original);
483
484     // No longer a simple mapping.  Switch to a complex mapping. If the
485     // interval has subranges, make it a forced mapping.
486     InsP.first->second = ValueForcePair(nullptr, Force);
487   }
488
489   // This is a complex mapping, add liveness for VNI
490   addDeadDef(*LI, VNI, Original);
491   return VNI;
492 }
493
494 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
495   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
496   VNInfo *VNI = VFP.getPointer();
497
498   // ParentVNI was either unmapped or already complex mapped. Either way, just
499   // set the force bit.
500   if (!VNI) {
501     VFP.setInt(true);
502     return;
503   }
504
505   // This was previously a single mapping. Make sure the old def is represented
506   // by a trivial live range.
507   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
508
509   // Mark as complex mapped, forced.
510   VFP = ValueForcePair(nullptr, true);
511 }
512
513 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
514     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
515     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
516   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
517   bool FirstCopy = !Def.isValid();
518   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
519       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
520               | getInternalReadRegState(!FirstCopy), SubIdx)
521       .addReg(FromReg, 0, SubIdx);
522
523   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
524   if (FirstCopy) {
525     SlotIndexes &Indexes = *LIS.getSlotIndexes();
526     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
527   } else {
528     CopyMI->bundleWithPred();
529   }
530   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
531   DestLI.refineSubRanges(Allocator, LaneMask,
532                          [Def, &Allocator](LiveInterval::SubRange& SR) {
533     SR.createDeadDef(Def, Allocator);
534   });
535   return Def;
536 }
537
538 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
539     LaneBitmask LaneMask, MachineBasicBlock &MBB,
540     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
541   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
542   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
543     // The full vreg is copied.
544     MachineInstr *CopyMI =
545         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
546     SlotIndexes &Indexes = *LIS.getSlotIndexes();
547     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
548   }
549
550   // Only a subset of lanes needs to be copied. The following is a simple
551   // heuristic to construct a sequence of COPYs. We could add a target
552   // specific callback if this turns out to be suboptimal.
553   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
554
555   // First pass: Try to find a perfectly matching subregister index. If none
556   // exists find the one covering the most lanemask bits.
557   SmallVector<unsigned, 8> PossibleIndexes;
558   unsigned BestIdx = 0;
559   unsigned BestCover = 0;
560   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
561   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
562   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
563     // Is this index even compatible with the given class?
564     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
565       continue;
566     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
567     // Early exit if we found a perfect match.
568     if (SubRegMask == LaneMask) {
569       BestIdx = Idx;
570       break;
571     }
572
573     // The index must not cover any lanes outside \p LaneMask.
574     if ((SubRegMask & ~LaneMask).any())
575       continue;
576
577     unsigned PopCount = SubRegMask.getNumLanes();
578     PossibleIndexes.push_back(Idx);
579     if (PopCount > BestCover) {
580       BestCover = PopCount;
581       BestIdx = Idx;
582     }
583   }
584
585   // Abort if we cannot possibly implement the COPY with the given indexes.
586   if (BestIdx == 0)
587     report_fatal_error("Impossible to implement partial COPY");
588
589   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
590                                         BestIdx, DestLI, Late, SlotIndex());
591
592   // Greedy heuristic: Keep iterating keeping the best covering subreg index
593   // each time.
594   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
595   while (LanesLeft.any()) {
596     unsigned BestIdx = 0;
597     int BestCover = std::numeric_limits<int>::min();
598     for (unsigned Idx : PossibleIndexes) {
599       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
600       // Early exit if we found a perfect match.
601       if (SubRegMask == LanesLeft) {
602         BestIdx = Idx;
603         break;
604       }
605
606       // Try to cover as much of the remaining lanes as possible but
607       // as few of the already covered lanes as possible.
608       int Cover = (SubRegMask & LanesLeft).getNumLanes()
609                 - (SubRegMask & ~LanesLeft).getNumLanes();
610       if (Cover > BestCover) {
611         BestCover = Cover;
612         BestIdx = Idx;
613       }
614     }
615
616     if (BestIdx == 0)
617       report_fatal_error("Impossible to implement partial COPY");
618
619     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
620                           DestLI, Late, Def);
621     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
622   }
623
624   return Def;
625 }
626
627 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
628                                    VNInfo *ParentVNI,
629                                    SlotIndex UseIdx,
630                                    MachineBasicBlock &MBB,
631                                    MachineBasicBlock::iterator I) {
632   SlotIndex Def;
633   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
634
635   // We may be trying to avoid interference that ends at a deleted instruction,
636   // so always begin RegIdx 0 early and all others late.
637   bool Late = RegIdx != 0;
638
639   // Attempt cheap-as-a-copy rematerialization.
640   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
641   LiveInterval &OrigLI = LIS.getInterval(Original);
642   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
643
644   unsigned Reg = LI->reg;
645   bool DidRemat = false;
646   if (OrigVNI) {
647     LiveRangeEdit::Remat RM(ParentVNI);
648     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
649     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
650       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
651       ++NumRemats;
652       DidRemat = true;
653     }
654   }
655   if (!DidRemat) {
656     LaneBitmask LaneMask;
657     if (LI->hasSubRanges()) {
658       LaneMask = LaneBitmask::getNone();
659       for (LiveInterval::SubRange &S : LI->subranges())
660         LaneMask |= S.LaneMask;
661     } else {
662       LaneMask = LaneBitmask::getAll();
663     }
664
665     ++NumCopies;
666     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
667   }
668
669   // Define the value in Reg.
670   return defValue(RegIdx, ParentVNI, Def, false);
671 }
672
673 /// Create a new virtual register and live interval.
674 unsigned SplitEditor::openIntv() {
675   // Create the complement as index 0.
676   if (Edit->empty())
677     Edit->createEmptyInterval();
678
679   // Create the open interval.
680   OpenIdx = Edit->size();
681   Edit->createEmptyInterval();
682   return OpenIdx;
683 }
684
685 void SplitEditor::selectIntv(unsigned Idx) {
686   assert(Idx != 0 && "Cannot select the complement interval");
687   assert(Idx < Edit->size() && "Can only select previously opened interval");
688   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
689   OpenIdx = Idx;
690 }
691
692 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
693   assert(OpenIdx && "openIntv not called before enterIntvBefore");
694   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
695   Idx = Idx.getBaseIndex();
696   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
697   if (!ParentVNI) {
698     LLVM_DEBUG(dbgs() << ": not live\n");
699     return Idx;
700   }
701   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
702   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
703   assert(MI && "enterIntvBefore called with invalid index");
704
705   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
706   return VNI->def;
707 }
708
709 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
710   assert(OpenIdx && "openIntv not called before enterIntvAfter");
711   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
712   Idx = Idx.getBoundaryIndex();
713   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
714   if (!ParentVNI) {
715     LLVM_DEBUG(dbgs() << ": not live\n");
716     return Idx;
717   }
718   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
719   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
720   assert(MI && "enterIntvAfter called with invalid index");
721
722   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
723                               std::next(MachineBasicBlock::iterator(MI)));
724   return VNI->def;
725 }
726
727 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
728   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
729   SlotIndex End = LIS.getMBBEndIdx(&MBB);
730   SlotIndex Last = End.getPrevSlot();
731   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
732                     << Last);
733   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
734   if (!ParentVNI) {
735     LLVM_DEBUG(dbgs() << ": not live\n");
736     return End;
737   }
738   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
739   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
740                               SA.getLastSplitPointIter(&MBB));
741   RegAssign.insert(VNI->def, End, OpenIdx);
742   LLVM_DEBUG(dump());
743   return VNI->def;
744 }
745
746 /// useIntv - indicate that all instructions in MBB should use OpenLI.
747 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
748   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
749 }
750
751 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
752   assert(OpenIdx && "openIntv not called before useIntv");
753   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
754   RegAssign.insert(Start, End, OpenIdx);
755   LLVM_DEBUG(dump());
756 }
757
758 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
759   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
760   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
761
762   // The interval must be live beyond the instruction at Idx.
763   SlotIndex Boundary = Idx.getBoundaryIndex();
764   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
765   if (!ParentVNI) {
766     LLVM_DEBUG(dbgs() << ": not live\n");
767     return Boundary.getNextSlot();
768   }
769   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
770   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
771   assert(MI && "No instruction at index");
772
773   // In spill mode, make live ranges as short as possible by inserting the copy
774   // before MI.  This is only possible if that instruction doesn't redefine the
775   // value.  The inserted COPY is not a kill, and we don't need to recompute
776   // the source live range.  The spiller also won't try to hoist this copy.
777   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
778       MI->readsVirtualRegister(Edit->getReg())) {
779     forceRecompute(0, *ParentVNI);
780     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
781     return Idx;
782   }
783
784   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
785                               std::next(MachineBasicBlock::iterator(MI)));
786   return VNI->def;
787 }
788
789 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
790   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
791   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
792
793   // The interval must be live into the instruction at Idx.
794   Idx = Idx.getBaseIndex();
795   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
796   if (!ParentVNI) {
797     LLVM_DEBUG(dbgs() << ": not live\n");
798     return Idx.getNextSlot();
799   }
800   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
801
802   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
803   assert(MI && "No instruction at index");
804   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
805   return VNI->def;
806 }
807
808 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
809   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
810   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
811   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
812                     << Start);
813
814   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
815   if (!ParentVNI) {
816     LLVM_DEBUG(dbgs() << ": not live\n");
817     return Start;
818   }
819
820   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
821                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
822   RegAssign.insert(Start, VNI->def, OpenIdx);
823   LLVM_DEBUG(dump());
824   return VNI->def;
825 }
826
827 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
828   assert(OpenIdx && "openIntv not called before overlapIntv");
829   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
830   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
831          "Parent changes value in extended range");
832   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
833          "Range cannot span basic blocks");
834
835   // The complement interval will be extended as needed by LRCalc.extend().
836   if (ParentVNI)
837     forceRecompute(0, *ParentVNI);
838   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
839   RegAssign.insert(Start, End, OpenIdx);
840   LLVM_DEBUG(dump());
841 }
842
843 //===----------------------------------------------------------------------===//
844 //                                  Spill modes
845 //===----------------------------------------------------------------------===//
846
847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
848   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
849   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
850   RegAssignMap::iterator AssignI;
851   AssignI.setMap(RegAssign);
852
853   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
854     SlotIndex Def = Copies[i]->def;
855     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
856     assert(MI && "No instruction for back-copy");
857
858     MachineBasicBlock *MBB = MI->getParent();
859     MachineBasicBlock::iterator MBBI(MI);
860     bool AtBegin;
861     do AtBegin = MBBI == MBB->begin();
862     while (!AtBegin && (--MBBI)->isDebugInstr());
863
864     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
865     LIS.removeVRegDefAt(*LI, Def);
866     LIS.RemoveMachineInstrFromMaps(*MI);
867     MI->eraseFromParent();
868
869     // Adjust RegAssign if a register assignment is killed at Def. We want to
870     // avoid calculating the live range of the source register if possible.
871     AssignI.find(Def.getPrevSlot());
872     if (!AssignI.valid() || AssignI.start() >= Def)
873       continue;
874     // If MI doesn't kill the assigned register, just leave it.
875     if (AssignI.stop() != Def)
876       continue;
877     unsigned RegIdx = AssignI.value();
878     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
879       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
880                         << '\n');
881       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
882     } else {
883       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
884       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
885       AssignI.setStop(Kill);
886     }
887   }
888 }
889
890 MachineBasicBlock*
891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892                                   MachineBasicBlock *DefMBB) {
893   if (MBB == DefMBB)
894     return MBB;
895   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896
897   const MachineLoopInfo &Loops = SA.Loops;
898   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900
901   // Best candidate so far.
902   MachineBasicBlock *BestMBB = MBB;
903   unsigned BestDepth = std::numeric_limits<unsigned>::max();
904
905   while (true) {
906     const MachineLoop *Loop = Loops.getLoopFor(MBB);
907
908     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
909     // higher frequency by definition.
910     if (!Loop) {
911       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912                         << " dominates " << printMBBReference(*MBB)
913                         << " at depth 0\n");
914       return MBB;
915     }
916
917     // We'll never be able to exit the DefLoop.
918     if (Loop == DefLoop) {
919       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920                         << " dominates " << printMBBReference(*MBB)
921                         << " in the same loop\n");
922       return MBB;
923     }
924
925     // Least busy dominator seen so far.
926     unsigned Depth = Loop->getLoopDepth();
927     if (Depth < BestDepth) {
928       BestMBB = MBB;
929       BestDepth = Depth;
930       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931                         << " dominates " << printMBBReference(*MBB)
932                         << " at depth " << Depth << '\n');
933     }
934
935     // Leave loop by going to the immediate dominator of the loop header.
936     // This is a bigger stride than simply walking up the dominator tree.
937     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938
939     // Too far up the dominator tree?
940     if (!IDom || !MDT.dominates(DefDomNode, IDom))
941       return BestMBB;
942
943     MBB = IDom->getBlock();
944   }
945 }
946
947 void SplitEditor::computeRedundantBackCopies(
948     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950   LiveInterval *Parent = &Edit->getParent();
951   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953
954   // Aggregate VNIs having the same value as ParentVNI.
955   for (VNInfo *VNI : LI->valnos) {
956     if (VNI->isUnused())
957       continue;
958     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959     EqualVNs[ParentVNI->id].insert(VNI);
960   }
961
962   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963   // redundant VNIs to BackCopies.
964   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965     VNInfo *ParentVNI = Parent->getValNumInfo(i);
966     if (!NotToHoistSet.count(ParentVNI->id))
967       continue;
968     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969     SmallPtrSetIterator<VNInfo *> It2 = It1;
970     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971       It2 = It1;
972       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974           continue;
975
976         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978         if (MBB1 == MBB2) {
979           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980         } else if (MDT.dominates(MBB1, MBB2)) {
981           DominatedVNIs.insert(*It2);
982         } else if (MDT.dominates(MBB2, MBB1)) {
983           DominatedVNIs.insert(*It1);
984         }
985       }
986     }
987     if (!DominatedVNIs.empty()) {
988       forceRecompute(0, *ParentVNI);
989       for (auto VNI : DominatedVNIs) {
990         BackCopies.push_back(VNI);
991       }
992       DominatedVNIs.clear();
993     }
994   }
995 }
996
997 /// For SM_Size mode, find a common dominator for all the back-copies for
998 /// the same ParentVNI and hoist the backcopies to the dominator BB.
999 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1000 /// to do the hoisting, simply remove the dominated backcopies for the same
1001 /// ParentVNI.
1002 void SplitEditor::hoistCopies() {
1003   // Get the complement interval, always RegIdx 0.
1004   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1005   LiveInterval *Parent = &Edit->getParent();
1006
1007   // Track the nearest common dominator for all back-copies for each ParentVNI,
1008   // indexed by ParentVNI->id.
1009   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1010   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1011   // The total cost of all the back-copies for each ParentVNI.
1012   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1013   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1014   // for Speed.
1015   DenseSet<unsigned> NotToHoistSet;
1016
1017   // Find the nearest common dominator for parent values with multiple
1018   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1019   for (VNInfo *VNI : LI->valnos) {
1020     if (VNI->isUnused())
1021       continue;
1022     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1023     assert(ParentVNI && "Parent not live at complement def");
1024
1025     // Don't hoist remats.  The complement is probably going to disappear
1026     // completely anyway.
1027     if (Edit->didRematerialize(ParentVNI))
1028       continue;
1029
1030     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1031
1032     DomPair &Dom = NearestDom[ParentVNI->id];
1033
1034     // Keep directly defined parent values.  This is either a PHI or an
1035     // instruction in the complement range.  All other copies of ParentVNI
1036     // should be eliminated.
1037     if (VNI->def == ParentVNI->def) {
1038       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1039       Dom = DomPair(ValMBB, VNI->def);
1040       continue;
1041     }
1042     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1043     // single back-copy.
1044     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1045       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1046       continue;
1047     }
1048
1049     if (!Dom.first) {
1050       // First time we see ParentVNI.  VNI dominates itself.
1051       Dom = DomPair(ValMBB, VNI->def);
1052     } else if (Dom.first == ValMBB) {
1053       // Two defs in the same block.  Pick the earlier def.
1054       if (!Dom.second.isValid() || VNI->def < Dom.second)
1055         Dom.second = VNI->def;
1056     } else {
1057       // Different basic blocks. Check if one dominates.
1058       MachineBasicBlock *Near =
1059         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1060       if (Near == ValMBB)
1061         // Def ValMBB dominates.
1062         Dom = DomPair(ValMBB, VNI->def);
1063       else if (Near != Dom.first)
1064         // None dominate. Hoist to common dominator, need new def.
1065         Dom = DomPair(Near, SlotIndex());
1066       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1067     }
1068
1069     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1070                       << VNI->def << " for parent " << ParentVNI->id << '@'
1071                       << ParentVNI->def << " hoist to "
1072                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1073                       << '\n');
1074   }
1075
1076   // Insert the hoisted copies.
1077   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1078     DomPair &Dom = NearestDom[i];
1079     if (!Dom.first || Dom.second.isValid())
1080       continue;
1081     // This value needs a hoisted copy inserted at the end of Dom.first.
1082     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1083     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1084     // Get a less loopy dominator than Dom.first.
1085     Dom.first = findShallowDominator(Dom.first, DefMBB);
1086     if (SpillMode == SM_Speed &&
1087         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1088       NotToHoistSet.insert(ParentVNI->id);
1089       continue;
1090     }
1091     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1092     Dom.second =
1093       defFromParent(0, ParentVNI, Last, *Dom.first,
1094                     SA.getLastSplitPointIter(Dom.first))->def;
1095   }
1096
1097   // Remove redundant back-copies that are now known to be dominated by another
1098   // def with the same value.
1099   SmallVector<VNInfo*, 8> BackCopies;
1100   for (VNInfo *VNI : LI->valnos) {
1101     if (VNI->isUnused())
1102       continue;
1103     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1104     const DomPair &Dom = NearestDom[ParentVNI->id];
1105     if (!Dom.first || Dom.second == VNI->def ||
1106         NotToHoistSet.count(ParentVNI->id))
1107       continue;
1108     BackCopies.push_back(VNI);
1109     forceRecompute(0, *ParentVNI);
1110   }
1111
1112   // If it is not beneficial to hoist all the BackCopies, simply remove
1113   // redundant BackCopies in speed mode.
1114   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1115     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1116
1117   removeBackCopies(BackCopies);
1118 }
1119
1120 /// transferValues - Transfer all possible values to the new live ranges.
1121 /// Values that were rematerialized are left alone, they need LRCalc.extend().
1122 bool SplitEditor::transferValues() {
1123   bool Skipped = false;
1124   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1125   for (const LiveRange::Segment &S : Edit->getParent()) {
1126     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1127     VNInfo *ParentVNI = S.valno;
1128     // RegAssign has holes where RegIdx 0 should be used.
1129     SlotIndex Start = S.start;
1130     AssignI.advanceTo(Start);
1131     do {
1132       unsigned RegIdx;
1133       SlotIndex End = S.end;
1134       if (!AssignI.valid()) {
1135         RegIdx = 0;
1136       } else if (AssignI.start() <= Start) {
1137         RegIdx = AssignI.value();
1138         if (AssignI.stop() < End) {
1139           End = AssignI.stop();
1140           ++AssignI;
1141         }
1142       } else {
1143         RegIdx = 0;
1144         End = std::min(End, AssignI.start());
1145       }
1146
1147       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1148       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1149                         << printReg(Edit->get(RegIdx)) << ')');
1150       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1151
1152       // Check for a simply defined value that can be blitted directly.
1153       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1154       if (VNInfo *VNI = VFP.getPointer()) {
1155         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1156         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1157         Start = End;
1158         continue;
1159       }
1160
1161       // Skip values with forced recomputation.
1162       if (VFP.getInt()) {
1163         LLVM_DEBUG(dbgs() << "(recalc)");
1164         Skipped = true;
1165         Start = End;
1166         continue;
1167       }
1168
1169       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1170
1171       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1172       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1173       // LiveInBlocks.
1174       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1175       SlotIndex BlockStart, BlockEnd;
1176       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1177
1178       // The first block may be live-in, or it may have its own def.
1179       if (Start != BlockStart) {
1180         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1181         assert(VNI && "Missing def for complex mapped value");
1182         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1183         // MBB has its own def. Is it also live-out?
1184         if (BlockEnd <= End)
1185           LRC.setLiveOutValue(&*MBB, VNI);
1186
1187         // Skip to the next block for live-in.
1188         ++MBB;
1189         BlockStart = BlockEnd;
1190       }
1191
1192       // Handle the live-in blocks covered by [Start;End).
1193       assert(Start <= BlockStart && "Expected live-in block");
1194       while (BlockStart < End) {
1195         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1196         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1197         if (BlockStart == ParentVNI->def) {
1198           // This block has the def of a parent PHI, so it isn't live-in.
1199           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1200           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1201           assert(VNI && "Missing def for complex mapped parent PHI");
1202           if (End >= BlockEnd)
1203             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1204         } else {
1205           // This block needs a live-in value.  The last block covered may not
1206           // be live-out.
1207           if (End < BlockEnd)
1208             LRC.addLiveInBlock(LI, MDT[&*MBB], End);
1209           else {
1210             // Live-through, and we don't know the value.
1211             LRC.addLiveInBlock(LI, MDT[&*MBB]);
1212             LRC.setLiveOutValue(&*MBB, nullptr);
1213           }
1214         }
1215         BlockStart = BlockEnd;
1216         ++MBB;
1217       }
1218       Start = End;
1219     } while (Start != S.end);
1220     LLVM_DEBUG(dbgs() << '\n');
1221   }
1222
1223   LRCalc[0].calculateValues();
1224   if (SpillMode)
1225     LRCalc[1].calculateValues();
1226
1227   return Skipped;
1228 }
1229
1230 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1231   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1232   if (Seg == nullptr)
1233     return true;
1234   if (Seg->end != Def.getDeadSlot())
1235     return false;
1236   // This is a dead PHI. Remove it.
1237   LR.removeSegment(*Seg, true);
1238   return true;
1239 }
1240
1241 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
1242                                  LiveRange &LR, LaneBitmask LM,
1243                                  ArrayRef<SlotIndex> Undefs) {
1244   for (MachineBasicBlock *P : B.predecessors()) {
1245     SlotIndex End = LIS.getMBBEndIdx(P);
1246     SlotIndex LastUse = End.getPrevSlot();
1247     // The predecessor may not have a live-out value. That is OK, like an
1248     // undef PHI operand.
1249     LiveInterval &PLI = Edit->getParent();
1250     // Need the cast because the inputs to ?: would otherwise be deemed
1251     // "incompatible": SubRange vs LiveInterval.
1252     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1253                                : static_cast<LiveRange&>(PLI);
1254     if (PSR.liveAt(LastUse))
1255       LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
1256   }
1257 }
1258
1259 void SplitEditor::extendPHIKillRanges() {
1260   // Extend live ranges to be live-out for successor PHI values.
1261
1262   // Visit each PHI def slot in the parent live interval. If the def is dead,
1263   // remove it. Otherwise, extend the live interval to reach the end indexes
1264   // of all predecessor blocks.
1265
1266   LiveInterval &ParentLI = Edit->getParent();
1267   for (const VNInfo *V : ParentLI.valnos) {
1268     if (V->isUnused() || !V->isPHIDef())
1269       continue;
1270
1271     unsigned RegIdx = RegAssign.lookup(V->def);
1272     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1273     LiveRangeCalc &LRC = getLRCalc(RegIdx);
1274     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1275     if (!removeDeadSegment(V->def, LI))
1276       extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1277   }
1278
1279   SmallVector<SlotIndex, 4> Undefs;
1280   LiveRangeCalc SubLRC;
1281
1282   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1283     for (const VNInfo *V : PS.valnos) {
1284       if (V->isUnused() || !V->isPHIDef())
1285         continue;
1286       unsigned RegIdx = RegAssign.lookup(V->def);
1287       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1288       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1289       if (removeDeadSegment(V->def, S))
1290         continue;
1291
1292       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1293       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1294                    &LIS.getVNInfoAllocator());
1295       Undefs.clear();
1296       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1297       extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
1298     }
1299   }
1300 }
1301
1302 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1303 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1304   struct ExtPoint {
1305     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1306       : MO(O), RegIdx(R), Next(N) {}
1307
1308     MachineOperand MO;
1309     unsigned RegIdx;
1310     SlotIndex Next;
1311   };
1312
1313   SmallVector<ExtPoint,4> ExtPoints;
1314
1315   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1316        RE = MRI.reg_end(); RI != RE;) {
1317     MachineOperand &MO = *RI;
1318     MachineInstr *MI = MO.getParent();
1319     ++RI;
1320     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1321     if (MI->isDebugValue()) {
1322       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1323       MO.setReg(0);
1324       continue;
1325     }
1326
1327     // <undef> operands don't really read the register, so it doesn't matter
1328     // which register we choose.  When the use operand is tied to a def, we must
1329     // use the same register as the def, so just do that always.
1330     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1331     if (MO.isDef() || MO.isUndef())
1332       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1333
1334     // Rewrite to the mapped register at Idx.
1335     unsigned RegIdx = RegAssign.lookup(Idx);
1336     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1337     MO.setReg(LI.reg);
1338     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1339                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1340
1341     // Extend liveness to Idx if the instruction reads reg.
1342     if (!ExtendRanges || MO.isUndef())
1343       continue;
1344
1345     // Skip instructions that don't read Reg.
1346     if (MO.isDef()) {
1347       if (!MO.getSubReg() && !MO.isEarlyClobber())
1348         continue;
1349       // We may want to extend a live range for a partial redef, or for a use
1350       // tied to an early clobber.
1351       Idx = Idx.getPrevSlot();
1352       if (!Edit->getParent().liveAt(Idx))
1353         continue;
1354     } else
1355       Idx = Idx.getRegSlot(true);
1356
1357     SlotIndex Next = Idx.getNextSlot();
1358     if (LI.hasSubRanges()) {
1359       // We have to delay extending subranges until we have seen all operands
1360       // defining the register. This is because a <def,read-undef> operand
1361       // will create an "undef" point, and we cannot extend any subranges
1362       // until all of them have been accounted for.
1363       if (MO.isUse())
1364         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1365     } else {
1366       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1367       LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1368     }
1369   }
1370
1371   for (ExtPoint &EP : ExtPoints) {
1372     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1373     assert(LI.hasSubRanges());
1374
1375     LiveRangeCalc SubLRC;
1376     unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1377     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1378                               : MRI.getMaxLaneMaskForVReg(Reg);
1379     for (LiveInterval::SubRange &S : LI.subranges()) {
1380       if ((S.LaneMask & LM).none())
1381         continue;
1382       // The problem here can be that the new register may have been created
1383       // for a partially defined original register. For example:
1384       //   %0:subreg_hireg<def,read-undef> = ...
1385       //   ...
1386       //   %1 = COPY %0
1387       if (S.empty())
1388         continue;
1389       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1390                    &LIS.getVNInfoAllocator());
1391       SmallVector<SlotIndex, 4> Undefs;
1392       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1393       SubLRC.extend(S, EP.Next, 0, Undefs);
1394     }
1395   }
1396
1397   for (unsigned R : *Edit) {
1398     LiveInterval &LI = LIS.getInterval(R);
1399     if (!LI.hasSubRanges())
1400       continue;
1401     LI.clear();
1402     LI.removeEmptySubRanges();
1403     LIS.constructMainRangeFromSubranges(LI);
1404   }
1405 }
1406
1407 void SplitEditor::deleteRematVictims() {
1408   SmallVector<MachineInstr*, 8> Dead;
1409   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1410     LiveInterval *LI = &LIS.getInterval(*I);
1411     for (const LiveRange::Segment &S : LI->segments) {
1412       // Dead defs end at the dead slot.
1413       if (S.end != S.valno->def.getDeadSlot())
1414         continue;
1415       if (S.valno->isPHIDef())
1416         continue;
1417       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1418       assert(MI && "Missing instruction for dead def");
1419       MI->addRegisterDead(LI->reg, &TRI);
1420
1421       if (!MI->allDefsAreDead())
1422         continue;
1423
1424       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1425       Dead.push_back(MI);
1426     }
1427   }
1428
1429   if (Dead.empty())
1430     return;
1431
1432   Edit->eliminateDeadDefs(Dead, None, &AA);
1433 }
1434
1435 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1436   // Fast-path for common case.
1437   if (!ParentVNI.isPHIDef()) {
1438     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1439       forceRecompute(I, ParentVNI);
1440     return;
1441   }
1442
1443   // Trace value through phis.
1444   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1445   SmallVector<const VNInfo *, 4> WorkList;
1446   Visited.insert(&ParentVNI);
1447   WorkList.push_back(&ParentVNI);
1448
1449   const LiveInterval &ParentLI = Edit->getParent();
1450   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1451   do {
1452     const VNInfo &VNI = *WorkList.back();
1453     WorkList.pop_back();
1454     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1455       forceRecompute(I, VNI);
1456     if (!VNI.isPHIDef())
1457       continue;
1458
1459     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1460     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1461       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1462       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1463       assert(PredVNI && "Value available in PhiVNI predecessor");
1464       if (Visited.insert(PredVNI).second)
1465         WorkList.push_back(PredVNI);
1466     }
1467   } while(!WorkList.empty());
1468 }
1469
1470 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1471   ++NumFinished;
1472
1473   // At this point, the live intervals in Edit contain VNInfos corresponding to
1474   // the inserted copies.
1475
1476   // Add the original defs from the parent interval.
1477   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1478     if (ParentVNI->isUnused())
1479       continue;
1480     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1481     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1482
1483     // Force rematted values to be recomputed everywhere.
1484     // The new live ranges may be truncated.
1485     if (Edit->didRematerialize(ParentVNI))
1486       forceRecomputeVNI(*ParentVNI);
1487   }
1488
1489   // Hoist back-copies to the complement interval when in spill mode.
1490   switch (SpillMode) {
1491   case SM_Partition:
1492     // Leave all back-copies as is.
1493     break;
1494   case SM_Size:
1495   case SM_Speed:
1496     // hoistCopies will behave differently between size and speed.
1497     hoistCopies();
1498   }
1499
1500   // Transfer the simply mapped values, check if any are skipped.
1501   bool Skipped = transferValues();
1502
1503   // Rewrite virtual registers, possibly extending ranges.
1504   rewriteAssigned(Skipped);
1505
1506   if (Skipped)
1507     extendPHIKillRanges();
1508   else
1509     ++NumSimple;
1510
1511   // Delete defs that were rematted everywhere.
1512   if (Skipped)
1513     deleteRematVictims();
1514
1515   // Get rid of unused values and set phi-kill flags.
1516   for (unsigned Reg : *Edit) {
1517     LiveInterval &LI = LIS.getInterval(Reg);
1518     LI.removeEmptySubRanges();
1519     LI.RenumberValues();
1520   }
1521
1522   // Provide a reverse mapping from original indices to Edit ranges.
1523   if (LRMap) {
1524     LRMap->clear();
1525     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1526       LRMap->push_back(i);
1527   }
1528
1529   // Now check if any registers were separated into multiple components.
1530   ConnectedVNInfoEqClasses ConEQ(LIS);
1531   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1532     // Don't use iterators, they are invalidated by create() below.
1533     unsigned VReg = Edit->get(i);
1534     LiveInterval &LI = LIS.getInterval(VReg);
1535     SmallVector<LiveInterval*, 8> SplitLIs;
1536     LIS.splitSeparateComponents(LI, SplitLIs);
1537     unsigned Original = VRM.getOriginal(VReg);
1538     for (LiveInterval *SplitLI : SplitLIs)
1539       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1540
1541     // The new intervals all map back to i.
1542     if (LRMap)
1543       LRMap->resize(Edit->size(), i);
1544   }
1545
1546   // Calculate spill weight and allocation hints for new intervals.
1547   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1548
1549   assert(!LRMap || LRMap->size() == Edit->size());
1550 }
1551
1552 //===----------------------------------------------------------------------===//
1553 //                            Single Block Splitting
1554 //===----------------------------------------------------------------------===//
1555
1556 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1557                                            bool SingleInstrs) const {
1558   // Always split for multiple instructions.
1559   if (!BI.isOneInstr())
1560     return true;
1561   // Don't split for single instructions unless explicitly requested.
1562   if (!SingleInstrs)
1563     return false;
1564   // Splitting a live-through range always makes progress.
1565   if (BI.LiveIn && BI.LiveOut)
1566     return true;
1567   // No point in isolating a copy. It has no register class constraints.
1568   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1569     return false;
1570   // Finally, don't isolate an end point that was created by earlier splits.
1571   return isOriginalEndpoint(BI.FirstInstr);
1572 }
1573
1574 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1575   openIntv();
1576   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1577   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1578     LastSplitPoint));
1579   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1580     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1581   } else {
1582       // The last use is after the last valid split point.
1583     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1584     useIntv(SegStart, SegStop);
1585     overlapIntv(SegStop, BI.LastInstr);
1586   }
1587 }
1588
1589 //===----------------------------------------------------------------------===//
1590 //                    Global Live Range Splitting Support
1591 //===----------------------------------------------------------------------===//
1592
1593 // These methods support a method of global live range splitting that uses a
1594 // global algorithm to decide intervals for CFG edges. They will insert split
1595 // points and color intervals in basic blocks while avoiding interference.
1596 //
1597 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1598 // are on the stack.
1599
1600 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1601                                         unsigned IntvIn, SlotIndex LeaveBefore,
1602                                         unsigned IntvOut, SlotIndex EnterAfter){
1603   SlotIndex Start, Stop;
1604   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1605
1606   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1607                     << ") intf " << LeaveBefore << '-' << EnterAfter
1608                     << ", live-through " << IntvIn << " -> " << IntvOut);
1609
1610   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1611
1612   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1613   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1614   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1615
1616   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1617
1618   if (!IntvOut) {
1619     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1620     //
1621     //        <<<<<<<<<    Possible LeaveBefore interference.
1622     //    |-----------|    Live through.
1623     //    -____________    Spill on entry.
1624     //
1625     selectIntv(IntvIn);
1626     SlotIndex Idx = leaveIntvAtTop(*MBB);
1627     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1628     (void)Idx;
1629     return;
1630   }
1631
1632   if (!IntvIn) {
1633     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1634     //
1635     //    >>>>>>>          Possible EnterAfter interference.
1636     //    |-----------|    Live through.
1637     //    ___________--    Reload on exit.
1638     //
1639     selectIntv(IntvOut);
1640     SlotIndex Idx = enterIntvAtEnd(*MBB);
1641     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1642     (void)Idx;
1643     return;
1644   }
1645
1646   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1647     LLVM_DEBUG(dbgs() << ", straight through.\n");
1648     //
1649     //    |-----------|    Live through.
1650     //    -------------    Straight through, same intv, no interference.
1651     //
1652     selectIntv(IntvOut);
1653     useIntv(Start, Stop);
1654     return;
1655   }
1656
1657   // We cannot legally insert splits after LSP.
1658   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1659   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1660
1661   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1662                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1663     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1664     //
1665     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1666     //    |-----------|    Live through.
1667     //    ------=======    Switch intervals between interference.
1668     //
1669     selectIntv(IntvOut);
1670     SlotIndex Idx;
1671     if (LeaveBefore && LeaveBefore < LSP) {
1672       Idx = enterIntvBefore(LeaveBefore);
1673       useIntv(Idx, Stop);
1674     } else {
1675       Idx = enterIntvAtEnd(*MBB);
1676     }
1677     selectIntv(IntvIn);
1678     useIntv(Start, Idx);
1679     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1680     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1681     return;
1682   }
1683
1684   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1685   //
1686   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1687   //    |-----------|    Live through.
1688   //    ==---------==    Switch intervals before/after interference.
1689   //
1690   assert(LeaveBefore <= EnterAfter && "Missed case");
1691
1692   selectIntv(IntvOut);
1693   SlotIndex Idx = enterIntvAfter(EnterAfter);
1694   useIntv(Idx, Stop);
1695   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1696
1697   selectIntv(IntvIn);
1698   Idx = leaveIntvBefore(LeaveBefore);
1699   useIntv(Start, Idx);
1700   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1701 }
1702
1703 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1704                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1705   SlotIndex Start, Stop;
1706   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1707
1708   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1709                     << Stop << "), uses " << BI.FirstInstr << '-'
1710                     << BI.LastInstr << ", reg-in " << IntvIn
1711                     << ", leave before " << LeaveBefore
1712                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1713
1714   assert(IntvIn && "Must have register in");
1715   assert(BI.LiveIn && "Must be live-in");
1716   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1717
1718   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1719     LLVM_DEBUG(dbgs() << " before interference.\n");
1720     //
1721     //               <<<    Interference after kill.
1722     //     |---o---x   |    Killed in block.
1723     //     =========        Use IntvIn everywhere.
1724     //
1725     selectIntv(IntvIn);
1726     useIntv(Start, BI.LastInstr);
1727     return;
1728   }
1729
1730   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1731
1732   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1733     //
1734     //               <<<    Possible interference after last use.
1735     //     |---o---o---|    Live-out on stack.
1736     //     =========____    Leave IntvIn after last use.
1737     //
1738     //                 <    Interference after last use.
1739     //     |---o---o--o|    Live-out on stack, late last use.
1740     //     ============     Copy to stack after LSP, overlap IntvIn.
1741     //            \_____    Stack interval is live-out.
1742     //
1743     if (BI.LastInstr < LSP) {
1744       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1745       selectIntv(IntvIn);
1746       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1747       useIntv(Start, Idx);
1748       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1749     } else {
1750       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1751       selectIntv(IntvIn);
1752       SlotIndex Idx = leaveIntvBefore(LSP);
1753       overlapIntv(Idx, BI.LastInstr);
1754       useIntv(Start, Idx);
1755       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1756     }
1757     return;
1758   }
1759
1760   // The interference is overlapping somewhere we wanted to use IntvIn. That
1761   // means we need to create a local interval that can be allocated a
1762   // different register.
1763   unsigned LocalIntv = openIntv();
1764   (void)LocalIntv;
1765   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1766
1767   if (!BI.LiveOut || BI.LastInstr < LSP) {
1768     //
1769     //           <<<<<<<    Interference overlapping uses.
1770     //     |---o---o---|    Live-out on stack.
1771     //     =====----____    Leave IntvIn before interference, then spill.
1772     //
1773     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1774     SlotIndex From = enterIntvBefore(LeaveBefore);
1775     useIntv(From, To);
1776     selectIntv(IntvIn);
1777     useIntv(Start, From);
1778     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1779     return;
1780   }
1781
1782   //           <<<<<<<    Interference overlapping uses.
1783   //     |---o---o--o|    Live-out on stack, late last use.
1784   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1785   //            \_____    Stack interval is live-out.
1786   //
1787   SlotIndex To = leaveIntvBefore(LSP);
1788   overlapIntv(To, BI.LastInstr);
1789   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1790   useIntv(From, To);
1791   selectIntv(IntvIn);
1792   useIntv(Start, From);
1793   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1794 }
1795
1796 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1797                                    unsigned IntvOut, SlotIndex EnterAfter) {
1798   SlotIndex Start, Stop;
1799   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1800
1801   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1802                     << Stop << "), uses " << BI.FirstInstr << '-'
1803                     << BI.LastInstr << ", reg-out " << IntvOut
1804                     << ", enter after " << EnterAfter
1805                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1806
1807   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1808
1809   assert(IntvOut && "Must have register out");
1810   assert(BI.LiveOut && "Must be live-out");
1811   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1812
1813   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1814     LLVM_DEBUG(dbgs() << " after interference.\n");
1815     //
1816     //    >>>>             Interference before def.
1817     //    |   o---o---|    Defined in block.
1818     //        =========    Use IntvOut everywhere.
1819     //
1820     selectIntv(IntvOut);
1821     useIntv(BI.FirstInstr, Stop);
1822     return;
1823   }
1824
1825   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1826     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1827     //
1828     //    >>>>             Interference before def.
1829     //    |---o---o---|    Live-through, stack-in.
1830     //    ____=========    Enter IntvOut before first use.
1831     //
1832     selectIntv(IntvOut);
1833     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1834     useIntv(Idx, Stop);
1835     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1836     return;
1837   }
1838
1839   // The interference is overlapping somewhere we wanted to use IntvOut. That
1840   // means we need to create a local interval that can be allocated a
1841   // different register.
1842   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1843   //
1844   //    >>>>>>>          Interference overlapping uses.
1845   //    |---o---o---|    Live-through, stack-in.
1846   //    ____---======    Create local interval for interference range.
1847   //
1848   selectIntv(IntvOut);
1849   SlotIndex Idx = enterIntvAfter(EnterAfter);
1850   useIntv(Idx, Stop);
1851   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1852
1853   openIntv();
1854   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1855   useIntv(From, Idx);
1856 }