]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/StackColoring.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / StackColoring.cpp
1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Use.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <limits>
61 #include <memory>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "stack-coloring"
67
68 static cl::opt<bool>
69 DisableColoring("no-stack-coloring",
70         cl::init(false), cl::Hidden,
71         cl::desc("Disable stack coloring"));
72
73 /// The user may write code that uses allocas outside of the declared lifetime
74 /// zone. This can happen when the user returns a reference to a local
75 /// data-structure. We can detect these cases and decide not to optimize the
76 /// code. If this flag is enabled, we try to save the user. This option
77 /// is treated as overriding LifetimeStartOnFirstUse below.
78 static cl::opt<bool>
79 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80                           cl::init(false), cl::Hidden,
81                           cl::desc("Do not optimize lifetime zones that "
82                                    "are broken"));
83
84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
85 /// use of stack slot as start of slot lifetime, as opposed to looking
86 /// for LIFETIME_START marker). See "Implementation notes" below for
87 /// more info.
88 static cl::opt<bool>
89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90         cl::init(true), cl::Hidden,
91         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
92
93
94 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98
99 //===----------------------------------------------------------------------===//
100 //                           StackColoring Pass
101 //===----------------------------------------------------------------------===//
102 //
103 // Stack Coloring reduces stack usage by merging stack slots when they
104 // can't be used together. For example, consider the following C program:
105 //
106 //     void bar(char *, int);
107 //     void foo(bool var) {
108 //         A: {
109 //             char z[4096];
110 //             bar(z, 0);
111 //         }
112 //
113 //         char *p;
114 //         char x[4096];
115 //         char y[4096];
116 //         if (var) {
117 //             p = x;
118 //         } else {
119 //             bar(y, 1);
120 //             p = y + 1024;
121 //         }
122 //     B:
123 //         bar(p, 2);
124 //     }
125 //
126 // Naively-compiled, this program would use 12k of stack space. However, the
127 // stack slot corresponding to `z` is always destroyed before either of the
128 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
129 // is true, while `y` is only used if `var` is false. So in no time are 2
130 // of the stack slots used together, and therefore we can merge them,
131 // compiling the function using only a single 4k alloca:
132 //
133 //     void foo(bool var) { // equivalent
134 //         char x[4096];
135 //         char *p;
136 //         bar(x, 0);
137 //         if (var) {
138 //             p = x;
139 //         } else {
140 //             bar(x, 1);
141 //             p = x + 1024;
142 //         }
143 //         bar(p, 2);
144 //     }
145 //
146 // This is an important optimization if we want stack space to be under
147 // control in large functions, both open-coded ones and ones created by
148 // inlining.
149 //
150 // Implementation Notes:
151 // ---------------------
152 //
153 // An important part of the above reasoning is that `z` can't be accessed
154 // while the latter 2 calls to `bar` are running. This is justified because
155 // `z`'s lifetime is over after we exit from block `A:`, so any further
156 // accesses to it would be UB. The way we represent this information
157 // in LLVM is by having frontends delimit blocks with `lifetime.start`
158 // and `lifetime.end` intrinsics.
159 //
160 // The effect of these intrinsics seems to be as follows (maybe I should
161 // specify this in the reference?):
162 //
163 //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164 //   lifetime intrinsic refers to that stack slot, in which case
165 //   it is marked as *in-scope*.
166 //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167 //   the stack slot is overwritten with `undef`.
168 //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169 //   L4) on function exit, all stack slots are marked as *out-of-scope*.
170 //   L5) `lifetime.end` is a no-op when called on a slot that is already
171 //   *out-of-scope*.
172 //   L6) memory accesses to *out-of-scope* stack slots are UB.
173 //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174 //   are invalidated, unless the slot is "degenerate". This is used to
175 //   justify not marking slots as in-use until the pointer to them is
176 //   used, but feels a bit hacky in the presence of things like LICM. See
177 //   the "Degenerate Slots" section for more details.
178 //
179 // Now, let's ground stack coloring on these rules. We'll define a slot
180 // as *in-use* at a (dynamic) point in execution if it either can be
181 // written to at that point, or if it has a live and non-undef content
182 // at that point.
183 //
184 // Obviously, slots that are never *in-use* together can be merged, and
185 // in our example `foo`, the slots for `x`, `y` and `z` are never
186 // in-use together (of course, sometimes slots that *are* in-use together
187 // might still be mergable, but we don't care about that here).
188 //
189 // In this implementation, we successively merge pairs of slots that are
190 // not *in-use* together. We could be smarter - for example, we could merge
191 // a single large slot with 2 small slots, or we could construct the
192 // interference graph and run a "smart" graph coloring algorithm, but with
193 // that aside, how do we find out whether a pair of slots might be *in-use*
194 // together?
195 //
196 // From our rules, we see that *out-of-scope* slots are never *in-use*,
197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198 // until their address is taken. Therefore, we can approximate slot activity
199 // using dataflow.
200 //
201 // A subtle point: naively, we might try to figure out which pairs of
202 // stack-slots interfere by propagating `S in-use` through the CFG for every
203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204 // which they are both *in-use*.
205 //
206 // That is sound, but overly conservative in some cases: in our (artificial)
207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
208 // as `x` is only in use if we came in from the `var` edge and `y` only
209 // if we came from the `!var` edge, they still can't be in use together.
210 // See PR32488 for an important real-life case.
211 //
212 // If we wanted to find all points of interference precisely, we could
213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 //
216 // However, we aren't interested in the *set* of points of interference
217 // between 2 stack slots, only *whether* there *is* such a point. So we
218 // can rely on a little trick: for `S` and `T` to be in-use together,
219 // one of them needs to become in-use while the other is in-use (or
220 // they might both become in use simultaneously). We can check this
221 // by also keeping track of the points at which a stack slot might *start*
222 // being in-use.
223 //
224 // Exact first use:
225 // ----------------
226 //
227 // Consider the following motivating example:
228 //
229 //     int foo() {
230 //       char b1[1024], b2[1024];
231 //       if (...) {
232 //         char b3[1024];
233 //         <uses of b1, b3>;
234 //         return x;
235 //       } else {
236 //         char b4[1024], b5[1024];
237 //         <uses of b2, b4, b5>;
238 //         return y;
239 //       }
240 //     }
241 //
242 // In the code above, "b3" and "b4" are declared in distinct lexical
243 // scopes, meaning that it is easy to prove that they can share the
244 // same stack slot. Variables "b1" and "b2" are declared in the same
245 // scope, meaning that from a lexical point of view, their lifetimes
246 // overlap. From a control flow pointer of view, however, the two
247 // variables are accessed in disjoint regions of the CFG, thus it
248 // should be possible for them to share the same stack slot. An ideal
249 // stack allocation for the function above would look like:
250 //
251 //     slot 0: b1, b2
252 //     slot 1: b3, b4
253 //     slot 2: b5
254 //
255 // Achieving this allocation is tricky, however, due to the way
256 // lifetime markers are inserted. Here is a simplified view of the
257 // control flow graph for the code above:
258 //
259 //                +------  block 0 -------+
260 //               0| LIFETIME_START b1, b2 |
261 //               1| <test 'if' condition> |
262 //                +-----------------------+
263 //                   ./              \.
264 //   +------  block 1 -------+   +------  block 2 -------+
265 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
266 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
267 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
268 //   +-----------------------+   +-----------------------+
269 //                   \.              /.
270 //                +------  block 3 -------+
271 //               8| <cleanupcode>         |
272 //               9| LIFETIME_END b1, b2   |
273 //              10| return                |
274 //                +-----------------------+
275 //
276 // If we create live intervals for the variables above strictly based
277 // on the lifetime markers, we'll get the set of intervals on the
278 // left. If we ignore the lifetime start markers and instead treat a
279 // variable's lifetime as beginning with the first reference to the
280 // var, then we get the intervals on the right.
281 //
282 //            LIFETIME_START      First Use
283 //     b1:    [0,9]               [3,4] [8,9]
284 //     b2:    [0,9]               [6,9]
285 //     b3:    [2,4]               [3,4]
286 //     b4:    [5,7]               [6,7]
287 //     b5:    [5,7]               [6,7]
288 //
289 // For the intervals on the left, the best we can do is overlap two
290 // variables (b3 and b4, for example); this gives us a stack size of
291 // 4*1024 bytes, not ideal. When treating first-use as the start of a
292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293 // byte stack (better).
294 //
295 // Degenerate Slots:
296 // -----------------
297 //
298 // Relying entirely on first-use of stack slots is problematic,
299 // however, due to the fact that optimizations can sometimes migrate
300 // uses of a variable outside of its lifetime start/end region. Here
301 // is an example:
302 //
303 //     int bar() {
304 //       char b1[1024], b2[1024];
305 //       if (...) {
306 //         <uses of b2>
307 //         return y;
308 //       } else {
309 //         <uses of b1>
310 //         while (...) {
311 //           char b3[1024];
312 //           <uses of b3>
313 //         }
314 //       }
315 //     }
316 //
317 // Before optimization, the control flow graph for the code above
318 // might look like the following:
319 //
320 //                +------  block 0 -------+
321 //               0| LIFETIME_START b1, b2 |
322 //               1| <test 'if' condition> |
323 //                +-----------------------+
324 //                   ./              \.
325 //   +------  block 1 -------+    +------- block 2 -------+
326 //  2| <uses of b2>          |   3| <uses of b1>          |
327 //   +-----------------------+    +-----------------------+
328 //              |                            |
329 //              |                 +------- block 3 -------+ <-\.
330 //              |                4| <while condition>     |    |
331 //              |                 +-----------------------+    |
332 //              |               /          |                   |
333 //              |              /  +------- block 4 -------+
334 //              \             /  5| LIFETIME_START b3     |    |
335 //               \           /   6| <uses of b3>          |    |
336 //                \         /    7| LIFETIME_END b3       |    |
337 //                 \        |    +------------------------+    |
338 //                  \       |                 \                /
339 //                +------  block 5 -----+      \---------------
340 //               8| <cleanupcode>       |
341 //               9| LIFETIME_END b1, b2 |
342 //              10| return              |
343 //                +---------------------+
344 //
345 // During optimization, however, it can happen that an instruction
346 // computing an address in "b3" (for example, a loop-invariant GEP) is
347 // hoisted up out of the loop from block 4 to block 2.  [Note that
348 // this is not an actual load from the stack, only an instruction that
349 // computes the address to be loaded]. If this happens, there is now a
350 // path leading from the first use of b3 to the return instruction
351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352 // now larger than if we were computing live intervals strictly based
353 // on lifetime markers. In the example above, this lengthened lifetime
354 // would mean that it would appear illegal to overlap b3 with b2.
355 //
356 // To deal with this such cases, the code in ::collectMarkers() below
357 // tries to identify "degenerate" slots -- those slots where on a single
358 // forward pass through the CFG we encounter a first reference to slot
359 // K before we hit the slot K lifetime start marker. For such slots,
360 // we fall back on using the lifetime start marker as the beginning of
361 // the variable's lifetime.  NB: with this implementation, slots can
362 // appear degenerate in cases where there is unstructured control flow:
363 //
364 //    if (q) goto mid;
365 //    if (x > 9) {
366 //         int b[100];
367 //         memcpy(&b[0], ...);
368 //    mid: b[k] = ...;
369 //         abc(&b);
370 //    }
371 //
372 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
373 // before visiting the memcpy block (which will contain the lifetime start
374 // for "b" then it will appear that 'b' has a degenerate lifetime.
375 //
376
377 namespace {
378
379 /// StackColoring - A machine pass for merging disjoint stack allocations,
380 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
381 class StackColoring : public MachineFunctionPass {
382   MachineFrameInfo *MFI;
383   MachineFunction *MF;
384
385   /// A class representing liveness information for a single basic block.
386   /// Each bit in the BitVector represents the liveness property
387   /// for a different stack slot.
388   struct BlockLifetimeInfo {
389     /// Which slots BEGINs in each basic block.
390     BitVector Begin;
391
392     /// Which slots ENDs in each basic block.
393     BitVector End;
394
395     /// Which slots are marked as LIVE_IN, coming into each basic block.
396     BitVector LiveIn;
397
398     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
399     BitVector LiveOut;
400   };
401
402   /// Maps active slots (per bit) for each basic block.
403   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
404   LivenessMap BlockLiveness;
405
406   /// Maps serial numbers to basic blocks.
407   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
408
409   /// Maps basic blocks to a serial number.
410   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
411
412   /// Maps slots to their use interval. Outside of this interval, slots
413   /// values are either dead or `undef` and they will not be written to.
414   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
415
416   /// Maps slots to the points where they can become in-use.
417   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
418
419   /// VNInfo is used for the construction of LiveIntervals.
420   VNInfo::Allocator VNInfoAllocator;
421
422   /// SlotIndex analysis object.
423   SlotIndexes *Indexes;
424
425   /// The list of lifetime markers found. These markers are to be removed
426   /// once the coloring is done.
427   SmallVector<MachineInstr*, 8> Markers;
428
429   /// Record the FI slots for which we have seen some sort of
430   /// lifetime marker (either start or end).
431   BitVector InterestingSlots;
432
433   /// FI slots that need to be handled conservatively (for these
434   /// slots lifetime-start-on-first-use is disabled).
435   BitVector ConservativeSlots;
436
437   /// Number of iterations taken during data flow analysis.
438   unsigned NumIterations;
439
440 public:
441   static char ID;
442
443   StackColoring() : MachineFunctionPass(ID) {
444     initializeStackColoringPass(*PassRegistry::getPassRegistry());
445   }
446
447   void getAnalysisUsage(AnalysisUsage &AU) const override;
448   bool runOnMachineFunction(MachineFunction &Func) override;
449
450 private:
451   /// Used in collectMarkers
452   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
453
454   /// Debug.
455   void dump() const;
456   void dumpIntervals() const;
457   void dumpBB(MachineBasicBlock *MBB) const;
458   void dumpBV(const char *tag, const BitVector &BV) const;
459
460   /// Removes all of the lifetime marker instructions from the function.
461   /// \returns true if any markers were removed.
462   bool removeAllMarkers();
463
464   /// Scan the machine function and find all of the lifetime markers.
465   /// Record the findings in the BEGIN and END vectors.
466   /// \returns the number of markers found.
467   unsigned collectMarkers(unsigned NumSlot);
468
469   /// Perform the dataflow calculation and calculate the lifetime for each of
470   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
471   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
472   /// in and out blocks.
473   void calculateLocalLiveness();
474
475   /// Returns TRUE if we're using the first-use-begins-lifetime method for
476   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
477   bool applyFirstUse(int Slot) {
478     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
479       return false;
480     if (ConservativeSlots.test(Slot))
481       return false;
482     return true;
483   }
484
485   /// Examines the specified instruction and returns TRUE if the instruction
486   /// represents the start or end of an interesting lifetime. The slot or slots
487   /// starting or ending are added to the vector "slots" and "isStart" is set
488   /// accordingly.
489   /// \returns True if inst contains a lifetime start or end
490   bool isLifetimeStartOrEnd(const MachineInstr &MI,
491                             SmallVector<int, 4> &slots,
492                             bool &isStart);
493
494   /// Construct the LiveIntervals for the slots.
495   void calculateLiveIntervals(unsigned NumSlots);
496
497   /// Go over the machine function and change instructions which use stack
498   /// slots to use the joint slots.
499   void remapInstructions(DenseMap<int, int> &SlotRemap);
500
501   /// The input program may contain instructions which are not inside lifetime
502   /// markers. This can happen due to a bug in the compiler or due to a bug in
503   /// user code (for example, returning a reference to a local variable).
504   /// This procedure checks all of the instructions in the function and
505   /// invalidates lifetime ranges which do not contain all of the instructions
506   /// which access that frame slot.
507   void removeInvalidSlotRanges();
508
509   /// Map entries which point to other entries to their destination.
510   ///   A->B->C becomes A->C.
511   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
512 };
513
514 } // end anonymous namespace
515
516 char StackColoring::ID = 0;
517
518 char &llvm::StackColoringID = StackColoring::ID;
519
520 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
521                       "Merge disjoint stack slots", false, false)
522 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
523 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
524                     "Merge disjoint stack slots", false, false)
525
526 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
527   AU.addRequired<SlotIndexes>();
528   MachineFunctionPass::getAnalysisUsage(AU);
529 }
530
531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
532 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
533                                             const BitVector &BV) const {
534   dbgs() << tag << " : { ";
535   for (unsigned I = 0, E = BV.size(); I != E; ++I)
536     dbgs() << BV.test(I) << " ";
537   dbgs() << "}\n";
538 }
539
540 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
541   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
542   assert(BI != BlockLiveness.end() && "Block not found");
543   const BlockLifetimeInfo &BlockInfo = BI->second;
544
545   dumpBV("BEGIN", BlockInfo.Begin);
546   dumpBV("END", BlockInfo.End);
547   dumpBV("LIVE_IN", BlockInfo.LiveIn);
548   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
549 }
550
551 LLVM_DUMP_METHOD void StackColoring::dump() const {
552   for (MachineBasicBlock *MBB : depth_first(MF)) {
553     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
554            << MBB->getName() << "]\n";
555     dumpBB(MBB);
556   }
557 }
558
559 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
560   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
561     dbgs() << "Interval[" << I << "]:\n";
562     Intervals[I]->dump();
563   }
564 }
565 #endif
566
567 static inline int getStartOrEndSlot(const MachineInstr &MI)
568 {
569   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
570           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
571          "Expected LIFETIME_START or LIFETIME_END op");
572   const MachineOperand &MO = MI.getOperand(0);
573   int Slot = MO.getIndex();
574   if (Slot >= 0)
575     return Slot;
576   return -1;
577 }
578
579 // At the moment the only way to end a variable lifetime is with
580 // a VARIABLE_LIFETIME op (which can't contain a start). If things
581 // change and the IR allows for a single inst that both begins
582 // and ends lifetime(s), this interface will need to be reworked.
583 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
584                                          SmallVector<int, 4> &slots,
585                                          bool &isStart) {
586   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
587       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
588     int Slot = getStartOrEndSlot(MI);
589     if (Slot < 0)
590       return false;
591     if (!InterestingSlots.test(Slot))
592       return false;
593     slots.push_back(Slot);
594     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
595       isStart = false;
596       return true;
597     }
598     if (!applyFirstUse(Slot)) {
599       isStart = true;
600       return true;
601     }
602   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
603     if (!MI.isDebugInstr()) {
604       bool found = false;
605       for (const MachineOperand &MO : MI.operands()) {
606         if (!MO.isFI())
607           continue;
608         int Slot = MO.getIndex();
609         if (Slot<0)
610           continue;
611         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
612           slots.push_back(Slot);
613           found = true;
614         }
615       }
616       if (found) {
617         isStart = true;
618         return true;
619       }
620     }
621   }
622   return false;
623 }
624
625 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
626   unsigned MarkersFound = 0;
627   BlockBitVecMap SeenStartMap;
628   InterestingSlots.clear();
629   InterestingSlots.resize(NumSlot);
630   ConservativeSlots.clear();
631   ConservativeSlots.resize(NumSlot);
632
633   // number of start and end lifetime ops for each slot
634   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
635   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
636
637   // Step 1: collect markers and populate the "InterestingSlots"
638   // and "ConservativeSlots" sets.
639   for (MachineBasicBlock *MBB : depth_first(MF)) {
640     // Compute the set of slots for which we've seen a START marker but have
641     // not yet seen an END marker at this point in the walk (e.g. on entry
642     // to this bb).
643     BitVector BetweenStartEnd;
644     BetweenStartEnd.resize(NumSlot);
645     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
646              PE = MBB->pred_end(); PI != PE; ++PI) {
647       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
648       if (I != SeenStartMap.end()) {
649         BetweenStartEnd |= I->second;
650       }
651     }
652
653     // Walk the instructions in the block to look for start/end ops.
654     for (MachineInstr &MI : *MBB) {
655       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
656           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
657         int Slot = getStartOrEndSlot(MI);
658         if (Slot < 0)
659           continue;
660         InterestingSlots.set(Slot);
661         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
662           BetweenStartEnd.set(Slot);
663           NumStartLifetimes[Slot] += 1;
664         } else {
665           BetweenStartEnd.reset(Slot);
666           NumEndLifetimes[Slot] += 1;
667         }
668         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
669         if (Allocation) {
670           LLVM_DEBUG(dbgs() << "Found a lifetime ");
671           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
672                                     ? "start"
673                                     : "end"));
674           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
675           LLVM_DEBUG(dbgs()
676                      << " with allocation: " << Allocation->getName() << "\n");
677         }
678         Markers.push_back(&MI);
679         MarkersFound += 1;
680       } else {
681         for (const MachineOperand &MO : MI.operands()) {
682           if (!MO.isFI())
683             continue;
684           int Slot = MO.getIndex();
685           if (Slot < 0)
686             continue;
687           if (! BetweenStartEnd.test(Slot)) {
688             ConservativeSlots.set(Slot);
689           }
690         }
691       }
692     }
693     BitVector &SeenStart = SeenStartMap[MBB];
694     SeenStart |= BetweenStartEnd;
695   }
696   if (!MarkersFound) {
697     return 0;
698   }
699
700   // PR27903: slots with multiple start or end lifetime ops are not
701   // safe to enable for "lifetime-start-on-first-use".
702   for (unsigned slot = 0; slot < NumSlot; ++slot)
703     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
704       ConservativeSlots.set(slot);
705   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
706
707   // Step 2: compute begin/end sets for each block
708
709   // NOTE: We use a depth-first iteration to ensure that we obtain a
710   // deterministic numbering.
711   for (MachineBasicBlock *MBB : depth_first(MF)) {
712     // Assign a serial number to this basic block.
713     BasicBlocks[MBB] = BasicBlockNumbering.size();
714     BasicBlockNumbering.push_back(MBB);
715
716     // Keep a reference to avoid repeated lookups.
717     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
718
719     BlockInfo.Begin.resize(NumSlot);
720     BlockInfo.End.resize(NumSlot);
721
722     SmallVector<int, 4> slots;
723     for (MachineInstr &MI : *MBB) {
724       bool isStart = false;
725       slots.clear();
726       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
727         if (!isStart) {
728           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
729           int Slot = slots[0];
730           if (BlockInfo.Begin.test(Slot)) {
731             BlockInfo.Begin.reset(Slot);
732           }
733           BlockInfo.End.set(Slot);
734         } else {
735           for (auto Slot : slots) {
736             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
737             LLVM_DEBUG(dbgs()
738                        << " at " << printMBBReference(*MBB) << " index ");
739             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
740             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
741             if (Allocation) {
742               LLVM_DEBUG(dbgs()
743                          << " with allocation: " << Allocation->getName());
744             }
745             LLVM_DEBUG(dbgs() << "\n");
746             if (BlockInfo.End.test(Slot)) {
747               BlockInfo.End.reset(Slot);
748             }
749             BlockInfo.Begin.set(Slot);
750           }
751         }
752       }
753     }
754   }
755
756   // Update statistics.
757   NumMarkerSeen += MarkersFound;
758   return MarkersFound;
759 }
760
761 void StackColoring::calculateLocalLiveness() {
762   unsigned NumIters = 0;
763   bool changed = true;
764   while (changed) {
765     changed = false;
766     ++NumIters;
767
768     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
769       // Use an iterator to avoid repeated lookups.
770       LivenessMap::iterator BI = BlockLiveness.find(BB);
771       assert(BI != BlockLiveness.end() && "Block not found");
772       BlockLifetimeInfo &BlockInfo = BI->second;
773
774       // Compute LiveIn by unioning together the LiveOut sets of all preds.
775       BitVector LocalLiveIn;
776       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
777            PE = BB->pred_end(); PI != PE; ++PI) {
778         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
779         // PR37130: transformations prior to stack coloring can
780         // sometimes leave behind statically unreachable blocks; these
781         // can be safely skipped here.
782         if (I != BlockLiveness.end())
783           LocalLiveIn |= I->second.LiveOut;
784       }
785
786       // Compute LiveOut by subtracting out lifetimes that end in this
787       // block, then adding in lifetimes that begin in this block.  If
788       // we have both BEGIN and END markers in the same basic block
789       // then we know that the BEGIN marker comes after the END,
790       // because we already handle the case where the BEGIN comes
791       // before the END when collecting the markers (and building the
792       // BEGIN/END vectors).
793       BitVector LocalLiveOut = LocalLiveIn;
794       LocalLiveOut.reset(BlockInfo.End);
795       LocalLiveOut |= BlockInfo.Begin;
796
797       // Update block LiveIn set, noting whether it has changed.
798       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
799         changed = true;
800         BlockInfo.LiveIn |= LocalLiveIn;
801       }
802
803       // Update block LiveOut set, noting whether it has changed.
804       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
805         changed = true;
806         BlockInfo.LiveOut |= LocalLiveOut;
807       }
808     }
809   } // while changed.
810
811   NumIterations = NumIters;
812 }
813
814 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
815   SmallVector<SlotIndex, 16> Starts;
816   SmallVector<bool, 16> DefinitelyInUse;
817
818   // For each block, find which slots are active within this block
819   // and update the live intervals.
820   for (const MachineBasicBlock &MBB : *MF) {
821     Starts.clear();
822     Starts.resize(NumSlots);
823     DefinitelyInUse.clear();
824     DefinitelyInUse.resize(NumSlots);
825
826     // Start the interval of the slots that we previously found to be 'in-use'.
827     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
828     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
829          pos = MBBLiveness.LiveIn.find_next(pos)) {
830       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
831     }
832
833     // Create the interval for the basic blocks containing lifetime begin/end.
834     for (const MachineInstr &MI : MBB) {
835       SmallVector<int, 4> slots;
836       bool IsStart = false;
837       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
838         continue;
839       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
840       for (auto Slot : slots) {
841         if (IsStart) {
842           // If a slot is already definitely in use, we don't have to emit
843           // a new start marker because there is already a pre-existing
844           // one.
845           if (!DefinitelyInUse[Slot]) {
846             LiveStarts[Slot].push_back(ThisIndex);
847             DefinitelyInUse[Slot] = true;
848           }
849           if (!Starts[Slot].isValid())
850             Starts[Slot] = ThisIndex;
851         } else {
852           if (Starts[Slot].isValid()) {
853             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
854             Intervals[Slot]->addSegment(
855                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
856             Starts[Slot] = SlotIndex(); // Invalidate the start index
857             DefinitelyInUse[Slot] = false;
858           }
859         }
860       }
861     }
862
863     // Finish up started segments
864     for (unsigned i = 0; i < NumSlots; ++i) {
865       if (!Starts[i].isValid())
866         continue;
867
868       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
869       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
870       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
871     }
872   }
873 }
874
875 bool StackColoring::removeAllMarkers() {
876   unsigned Count = 0;
877   for (MachineInstr *MI : Markers) {
878     MI->eraseFromParent();
879     Count++;
880   }
881   Markers.clear();
882
883   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
884   return Count;
885 }
886
887 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
888   unsigned FixedInstr = 0;
889   unsigned FixedMemOp = 0;
890   unsigned FixedDbg = 0;
891
892   // Remap debug information that refers to stack slots.
893   for (auto &VI : MF->getVariableDbgInfo()) {
894     if (!VI.Var)
895       continue;
896     if (SlotRemap.count(VI.Slot)) {
897       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
898                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
899       VI.Slot = SlotRemap[VI.Slot];
900       FixedDbg++;
901     }
902   }
903
904   // Keep a list of *allocas* which need to be remapped.
905   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
906
907   // Keep a list of allocas which has been affected by the remap.
908   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
909
910   for (const std::pair<int, int> &SI : SlotRemap) {
911     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
912     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
913     assert(To && From && "Invalid allocation object");
914     Allocas[From] = To;
915
916     // AA might be used later for instruction scheduling, and we need it to be
917     // able to deduce the correct aliasing releationships between pointers
918     // derived from the alloca being remapped and the target of that remapping.
919     // The only safe way, without directly informing AA about the remapping
920     // somehow, is to directly update the IR to reflect the change being made
921     // here.
922     Instruction *Inst = const_cast<AllocaInst *>(To);
923     if (From->getType() != To->getType()) {
924       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
925       Cast->insertAfter(Inst);
926       Inst = Cast;
927     }
928
929     // We keep both slots to maintain AliasAnalysis metadata later.
930     MergedAllocas.insert(From);
931     MergedAllocas.insert(To);
932
933     // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
934     // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
935     // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
936     MachineFrameInfo::SSPLayoutKind FromKind
937         = MFI->getObjectSSPLayout(SI.first);
938     MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
939     if (FromKind != MachineFrameInfo::SSPLK_None &&
940         (ToKind == MachineFrameInfo::SSPLK_None ||
941          (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
942           FromKind != MachineFrameInfo::SSPLK_AddrOf)))
943       MFI->setObjectSSPLayout(SI.second, FromKind);
944
945     // The new alloca might not be valid in a llvm.dbg.declare for this
946     // variable, so undef out the use to make the verifier happy.
947     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
948     if (FromAI->isUsedByMetadata())
949       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
950     for (auto &Use : FromAI->uses()) {
951       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
952         if (BCI->isUsedByMetadata())
953           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
954     }
955
956     // Note that this will not replace uses in MMOs (which we'll update below),
957     // or anywhere else (which is why we won't delete the original
958     // instruction).
959     FromAI->replaceAllUsesWith(Inst);
960   }
961
962   // Remap all instructions to the new stack slots.
963   for (MachineBasicBlock &BB : *MF)
964     for (MachineInstr &I : BB) {
965       // Skip lifetime markers. We'll remove them soon.
966       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
967           I.getOpcode() == TargetOpcode::LIFETIME_END)
968         continue;
969
970       // Update the MachineMemOperand to use the new alloca.
971       for (MachineMemOperand *MMO : I.memoperands()) {
972         // We've replaced IR-level uses of the remapped allocas, so we only
973         // need to replace direct uses here.
974         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
975         if (!AI)
976           continue;
977
978         if (!Allocas.count(AI))
979           continue;
980
981         MMO->setValue(Allocas[AI]);
982         FixedMemOp++;
983       }
984
985       // Update all of the machine instruction operands.
986       for (MachineOperand &MO : I.operands()) {
987         if (!MO.isFI())
988           continue;
989         int FromSlot = MO.getIndex();
990
991         // Don't touch arguments.
992         if (FromSlot<0)
993           continue;
994
995         // Only look at mapped slots.
996         if (!SlotRemap.count(FromSlot))
997           continue;
998
999         // In a debug build, check that the instruction that we are modifying is
1000         // inside the expected live range. If the instruction is not inside
1001         // the calculated range then it means that the alloca usage moved
1002         // outside of the lifetime markers, or that the user has a bug.
1003         // NOTE: Alloca address calculations which happen outside the lifetime
1004         // zone are okay, despite the fact that we don't have a good way
1005         // for validating all of the usages of the calculation.
1006 #ifndef NDEBUG
1007         bool TouchesMemory = I.mayLoad() || I.mayStore();
1008         // If we *don't* protect the user from escaped allocas, don't bother
1009         // validating the instructions.
1010         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1011           SlotIndex Index = Indexes->getInstructionIndex(I);
1012           const LiveInterval *Interval = &*Intervals[FromSlot];
1013           assert(Interval->find(Index) != Interval->end() &&
1014                  "Found instruction usage outside of live range.");
1015         }
1016 #endif
1017
1018         // Fix the machine instructions.
1019         int ToSlot = SlotRemap[FromSlot];
1020         MO.setIndex(ToSlot);
1021         FixedInstr++;
1022       }
1023
1024       // We adjust AliasAnalysis information for merged stack slots.
1025       MachineSDNode::mmo_iterator NewMemOps =
1026           MF->allocateMemRefsArray(I.getNumMemOperands());
1027       unsigned MemOpIdx = 0;
1028       bool ReplaceMemOps = false;
1029       for (MachineMemOperand *MMO : I.memoperands()) {
1030         // If this memory location can be a slot remapped here,
1031         // we remove AA information.
1032         bool MayHaveConflictingAAMD = false;
1033         if (MMO->getAAInfo()) {
1034           if (const Value *MMOV = MMO->getValue()) {
1035             SmallVector<Value *, 4> Objs;
1036             getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
1037
1038             if (Objs.empty())
1039               MayHaveConflictingAAMD = true;
1040             else
1041               for (Value *V : Objs) {
1042                 // If this memory location comes from a known stack slot
1043                 // that is not remapped, we continue checking.
1044                 // Otherwise, we need to invalidate AA infomation.
1045                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1046                 if (AI && MergedAllocas.count(AI)) {
1047                   MayHaveConflictingAAMD = true;
1048                   break;
1049                 }
1050               }
1051           }
1052         }
1053         if (MayHaveConflictingAAMD) {
1054           NewMemOps[MemOpIdx++] = MF->getMachineMemOperand(MMO, AAMDNodes());
1055           ReplaceMemOps = true;
1056         }
1057         else
1058           NewMemOps[MemOpIdx++] = MMO;
1059       }
1060
1061       // If any memory operand is updated, set memory references of
1062       // this instruction.
1063       if (ReplaceMemOps)
1064         I.setMemRefs(std::make_pair(NewMemOps, I.getNumMemOperands()));
1065     }
1066
1067   // Update the location of C++ catch objects for the MSVC personality routine.
1068   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1069     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1070       for (WinEHHandlerType &H : TBME.HandlerArray)
1071         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1072             SlotRemap.count(H.CatchObj.FrameIndex))
1073           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1074
1075   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1076   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1077   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1078 }
1079
1080 void StackColoring::removeInvalidSlotRanges() {
1081   for (MachineBasicBlock &BB : *MF)
1082     for (MachineInstr &I : BB) {
1083       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1084           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1085         continue;
1086
1087       // Some intervals are suspicious! In some cases we find address
1088       // calculations outside of the lifetime zone, but not actual memory
1089       // read or write. Memory accesses outside of the lifetime zone are a clear
1090       // violation, but address calculations are okay. This can happen when
1091       // GEPs are hoisted outside of the lifetime zone.
1092       // So, in here we only check instructions which can read or write memory.
1093       if (!I.mayLoad() && !I.mayStore())
1094         continue;
1095
1096       // Check all of the machine operands.
1097       for (const MachineOperand &MO : I.operands()) {
1098         if (!MO.isFI())
1099           continue;
1100
1101         int Slot = MO.getIndex();
1102
1103         if (Slot<0)
1104           continue;
1105
1106         if (Intervals[Slot]->empty())
1107           continue;
1108
1109         // Check that the used slot is inside the calculated lifetime range.
1110         // If it is not, warn about it and invalidate the range.
1111         LiveInterval *Interval = &*Intervals[Slot];
1112         SlotIndex Index = Indexes->getInstructionIndex(I);
1113         if (Interval->find(Index) == Interval->end()) {
1114           Interval->clear();
1115           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1116           EscapedAllocas++;
1117         }
1118       }
1119     }
1120 }
1121
1122 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1123                                    unsigned NumSlots) {
1124   // Expunge slot remap map.
1125   for (unsigned i=0; i < NumSlots; ++i) {
1126     // If we are remapping i
1127     if (SlotRemap.count(i)) {
1128       int Target = SlotRemap[i];
1129       // As long as our target is mapped to something else, follow it.
1130       while (SlotRemap.count(Target)) {
1131         Target = SlotRemap[Target];
1132         SlotRemap[i] = Target;
1133       }
1134     }
1135   }
1136 }
1137
1138 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1139   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1140                     << "********** Function: " << Func.getName() << '\n');
1141   MF = &Func;
1142   MFI = &MF->getFrameInfo();
1143   Indexes = &getAnalysis<SlotIndexes>();
1144   BlockLiveness.clear();
1145   BasicBlocks.clear();
1146   BasicBlockNumbering.clear();
1147   Markers.clear();
1148   Intervals.clear();
1149   LiveStarts.clear();
1150   VNInfoAllocator.Reset();
1151
1152   unsigned NumSlots = MFI->getObjectIndexEnd();
1153
1154   // If there are no stack slots then there are no markers to remove.
1155   if (!NumSlots)
1156     return false;
1157
1158   SmallVector<int, 8> SortedSlots;
1159   SortedSlots.reserve(NumSlots);
1160   Intervals.reserve(NumSlots);
1161   LiveStarts.resize(NumSlots);
1162
1163   unsigned NumMarkers = collectMarkers(NumSlots);
1164
1165   unsigned TotalSize = 0;
1166   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1167                     << " slots\n");
1168   LLVM_DEBUG(dbgs() << "Slot structure:\n");
1169
1170   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1171     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1172                       << " bytes.\n");
1173     TotalSize += MFI->getObjectSize(i);
1174   }
1175
1176   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1177
1178   // Don't continue because there are not enough lifetime markers, or the
1179   // stack is too small, or we are told not to optimize the slots.
1180   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1181       skipFunction(Func.getFunction())) {
1182     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1183     return removeAllMarkers();
1184   }
1185
1186   for (unsigned i=0; i < NumSlots; ++i) {
1187     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1188     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1189     Intervals.push_back(std::move(LI));
1190     SortedSlots.push_back(i);
1191   }
1192
1193   // Calculate the liveness of each block.
1194   calculateLocalLiveness();
1195   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1196   LLVM_DEBUG(dump());
1197
1198   // Propagate the liveness information.
1199   calculateLiveIntervals(NumSlots);
1200   LLVM_DEBUG(dumpIntervals());
1201
1202   // Search for allocas which are used outside of the declared lifetime
1203   // markers.
1204   if (ProtectFromEscapedAllocas)
1205     removeInvalidSlotRanges();
1206
1207   // Maps old slots to new slots.
1208   DenseMap<int, int> SlotRemap;
1209   unsigned RemovedSlots = 0;
1210   unsigned ReducedSize = 0;
1211
1212   // Do not bother looking at empty intervals.
1213   for (unsigned I = 0; I < NumSlots; ++I) {
1214     if (Intervals[SortedSlots[I]]->empty())
1215       SortedSlots[I] = -1;
1216   }
1217
1218   // This is a simple greedy algorithm for merging allocas. First, sort the
1219   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1220   // for disjoint slots. When you find disjoint slots, merge the samller one
1221   // into the bigger one and update the live interval. Remove the small alloca
1222   // and continue.
1223
1224   // Sort the slots according to their size. Place unused slots at the end.
1225   // Use stable sort to guarantee deterministic code generation.
1226   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1227                    [this](int LHS, int RHS) {
1228     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1229     if (LHS == -1) return false;
1230     if (RHS == -1) return true;
1231     // Sort according to size.
1232     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1233   });
1234
1235   for (auto &s : LiveStarts)
1236     llvm::sort(s.begin(), s.end());
1237
1238   bool Changed = true;
1239   while (Changed) {
1240     Changed = false;
1241     for (unsigned I = 0; I < NumSlots; ++I) {
1242       if (SortedSlots[I] == -1)
1243         continue;
1244
1245       for (unsigned J=I+1; J < NumSlots; ++J) {
1246         if (SortedSlots[J] == -1)
1247           continue;
1248
1249         int FirstSlot = SortedSlots[I];
1250         int SecondSlot = SortedSlots[J];
1251         LiveInterval *First = &*Intervals[FirstSlot];
1252         LiveInterval *Second = &*Intervals[SecondSlot];
1253         auto &FirstS = LiveStarts[FirstSlot];
1254         auto &SecondS = LiveStarts[SecondSlot];
1255         assert(!First->empty() && !Second->empty() && "Found an empty range");
1256
1257         // Merge disjoint slots. This is a little bit tricky - see the
1258         // Implementation Notes section for an explanation.
1259         if (!First->isLiveAtIndexes(SecondS) &&
1260             !Second->isLiveAtIndexes(FirstS)) {
1261           Changed = true;
1262           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1263
1264           int OldSize = FirstS.size();
1265           FirstS.append(SecondS.begin(), SecondS.end());
1266           auto Mid = FirstS.begin() + OldSize;
1267           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1268
1269           SlotRemap[SecondSlot] = FirstSlot;
1270           SortedSlots[J] = -1;
1271           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1272                             << SecondSlot << " together.\n");
1273           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1274                                            MFI->getObjectAlignment(SecondSlot));
1275
1276           assert(MFI->getObjectSize(FirstSlot) >=
1277                  MFI->getObjectSize(SecondSlot) &&
1278                  "Merging a small object into a larger one");
1279
1280           RemovedSlots+=1;
1281           ReducedSize += MFI->getObjectSize(SecondSlot);
1282           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1283           MFI->RemoveStackObject(SecondSlot);
1284         }
1285       }
1286     }
1287   }// While changed.
1288
1289   // Record statistics.
1290   StackSpaceSaved += ReducedSize;
1291   StackSlotMerged += RemovedSlots;
1292   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1293                     << ReducedSize << " bytes\n");
1294
1295   // Scan the entire function and update all machine operands that use frame
1296   // indices to use the remapped frame index.
1297   expungeSlotMap(SlotRemap, NumSlots);
1298   remapInstructions(SlotRemap);
1299
1300   return removeAllMarkers();
1301 }