]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/StackColoring.cpp
Copy ^/vendor/NetBSD/tests/dist to contrib/netbsd-tests
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / StackColoring.cpp
1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "stackcoloring"
58
59 static cl::opt<bool>
60 DisableColoring("no-stack-coloring",
61         cl::init(false), cl::Hidden,
62         cl::desc("Disable stack coloring"));
63
64 /// The user may write code that uses allocas outside of the declared lifetime
65 /// zone. This can happen when the user returns a reference to a local
66 /// data-structure. We can detect these cases and decide not to optimize the
67 /// code. If this flag is enabled, we try to save the user. This option
68 /// is treated as overriding LifetimeStartOnFirstUse below.
69 static cl::opt<bool>
70 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
71                           cl::init(false), cl::Hidden,
72                           cl::desc("Do not optimize lifetime zones that "
73                                    "are broken"));
74
75 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
76 /// use of stack slot as start of slot lifetime, as opposed to looking
77 /// for LIFETIME_START marker). See "Implementation notes" below for
78 /// more info.
79 static cl::opt<bool>
80 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
81         cl::init(true), cl::Hidden,
82         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
83
84
85 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
86 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
87 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
88 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
89
90 //
91 // Implementation Notes:
92 // ---------------------
93 //
94 // Consider the following motivating example:
95 //
96 //     int foo() {
97 //       char b1[1024], b2[1024];
98 //       if (...) {
99 //         char b3[1024];
100 //         <uses of b1, b3>;
101 //         return x;
102 //       } else {
103 //         char b4[1024], b5[1024];
104 //         <uses of b2, b4, b5>;
105 //         return y;
106 //       }
107 //     }
108 //
109 // In the code above, "b3" and "b4" are declared in distinct lexical
110 // scopes, meaning that it is easy to prove that they can share the
111 // same stack slot. Variables "b1" and "b2" are declared in the same
112 // scope, meaning that from a lexical point of view, their lifetimes
113 // overlap. From a control flow pointer of view, however, the two
114 // variables are accessed in disjoint regions of the CFG, thus it
115 // should be possible for them to share the same stack slot. An ideal
116 // stack allocation for the function above would look like:
117 //
118 //     slot 0: b1, b2
119 //     slot 1: b3, b4
120 //     slot 2: b5
121 //
122 // Achieving this allocation is tricky, however, due to the way
123 // lifetime markers are inserted. Here is a simplified view of the
124 // control flow graph for the code above:
125 //
126 //                +------  block 0 -------+
127 //               0| LIFETIME_START b1, b2 |
128 //               1| <test 'if' condition> |
129 //                +-----------------------+
130 //                   ./              \.
131 //   +------  block 1 -------+   +------  block 2 -------+
132 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
133 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
134 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
135 //   +-----------------------+   +-----------------------+
136 //                   \.              /.
137 //                +------  block 3 -------+
138 //               8| <cleanupcode>         |
139 //               9| LIFETIME_END b1, b2   |
140 //              10| return                |
141 //                +-----------------------+
142 //
143 // If we create live intervals for the variables above strictly based
144 // on the lifetime markers, we'll get the set of intervals on the
145 // left. If we ignore the lifetime start markers and instead treat a
146 // variable's lifetime as beginning with the first reference to the
147 // var, then we get the intervals on the right.
148 //
149 //            LIFETIME_START      First Use
150 //     b1:    [0,9]               [3,4] [8,9]
151 //     b2:    [0,9]               [6,9]
152 //     b3:    [2,4]               [3,4]
153 //     b4:    [5,7]               [6,7]
154 //     b5:    [5,7]               [6,7]
155 //
156 // For the intervals on the left, the best we can do is overlap two
157 // variables (b3 and b4, for example); this gives us a stack size of
158 // 4*1024 bytes, not ideal. When treating first-use as the start of a
159 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
160 // byte stack (better).
161 //
162 // Relying entirely on first-use of stack slots is problematic,
163 // however, due to the fact that optimizations can sometimes migrate
164 // uses of a variable outside of its lifetime start/end region. Here
165 // is an example:
166 //
167 //     int bar() {
168 //       char b1[1024], b2[1024];
169 //       if (...) {
170 //         <uses of b2>
171 //         return y;
172 //       } else {
173 //         <uses of b1>
174 //         while (...) {
175 //           char b3[1024];
176 //           <uses of b3>
177 //         }
178 //       }
179 //     }
180 //
181 // Before optimization, the control flow graph for the code above
182 // might look like the following:
183 //
184 //                +------  block 0 -------+
185 //               0| LIFETIME_START b1, b2 |
186 //               1| <test 'if' condition> |
187 //                +-----------------------+
188 //                   ./              \.
189 //   +------  block 1 -------+    +------- block 2 -------+
190 //  2| <uses of b2>          |   3| <uses of b1>          |
191 //   +-----------------------+    +-----------------------+
192 //              |                            |
193 //              |                 +------- block 3 -------+ <-\.
194 //              |                4| <while condition>     |    |
195 //              |                 +-----------------------+    |
196 //              |               /          |                   |
197 //              |              /  +------- block 4 -------+
198 //              \             /  5| LIFETIME_START b3     |    |
199 //               \           /   6| <uses of b3>          |    |
200 //                \         /    7| LIFETIME_END b3       |    |
201 //                 \        |    +------------------------+    |
202 //                  \       |                 \                /
203 //                +------  block 5 -----+      \---------------
204 //               8| <cleanupcode>       |
205 //               9| LIFETIME_END b1, b2 |
206 //              10| return              |
207 //                +---------------------+
208 //
209 // During optimization, however, it can happen that an instruction
210 // computing an address in "b3" (for example, a loop-invariant GEP) is
211 // hoisted up out of the loop from block 4 to block 2.  [Note that
212 // this is not an actual load from the stack, only an instruction that
213 // computes the address to be loaded]. If this happens, there is now a
214 // path leading from the first use of b3 to the return instruction
215 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
216 // now larger than if we were computing live intervals strictly based
217 // on lifetime markers. In the example above, this lengthened lifetime
218 // would mean that it would appear illegal to overlap b3 with b2.
219 //
220 // To deal with this such cases, the code in ::collectMarkers() below
221 // tries to identify "degenerate" slots -- those slots where on a single
222 // forward pass through the CFG we encounter a first reference to slot
223 // K before we hit the slot K lifetime start marker. For such slots,
224 // we fall back on using the lifetime start marker as the beginning of
225 // the variable's lifetime.  NB: with this implementation, slots can
226 // appear degenerate in cases where there is unstructured control flow:
227 //
228 //    if (q) goto mid;
229 //    if (x > 9) {
230 //         int b[100];
231 //         memcpy(&b[0], ...);
232 //    mid: b[k] = ...;
233 //         abc(&b);
234 //    }
235 //
236 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
237 // before visiting the memcpy block (which will contain the lifetime start
238 // for "b" then it will appear that 'b' has a degenerate lifetime.
239 //
240
241 //===----------------------------------------------------------------------===//
242 //                           StackColoring Pass
243 //===----------------------------------------------------------------------===//
244
245 namespace {
246 /// StackColoring - A machine pass for merging disjoint stack allocations,
247 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
248 class StackColoring : public MachineFunctionPass {
249   MachineFrameInfo *MFI;
250   MachineFunction *MF;
251
252   /// A class representing liveness information for a single basic block.
253   /// Each bit in the BitVector represents the liveness property
254   /// for a different stack slot.
255   struct BlockLifetimeInfo {
256     /// Which slots BEGINs in each basic block.
257     BitVector Begin;
258     /// Which slots ENDs in each basic block.
259     BitVector End;
260     /// Which slots are marked as LIVE_IN, coming into each basic block.
261     BitVector LiveIn;
262     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
263     BitVector LiveOut;
264   };
265
266   /// Maps active slots (per bit) for each basic block.
267   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
268   LivenessMap BlockLiveness;
269
270   /// Maps serial numbers to basic blocks.
271   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
272   /// Maps basic blocks to a serial number.
273   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
274
275   /// Maps liveness intervals for each slot.
276   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
277   /// VNInfo is used for the construction of LiveIntervals.
278   VNInfo::Allocator VNInfoAllocator;
279   /// SlotIndex analysis object.
280   SlotIndexes *Indexes;
281   /// The stack protector object.
282   StackProtector *SP;
283
284   /// The list of lifetime markers found. These markers are to be removed
285   /// once the coloring is done.
286   SmallVector<MachineInstr*, 8> Markers;
287
288   /// Record the FI slots for which we have seen some sort of
289   /// lifetime marker (either start or end).
290   BitVector InterestingSlots;
291
292   /// FI slots that need to be handled conservatively (for these
293   /// slots lifetime-start-on-first-use is disabled).
294   BitVector ConservativeSlots;
295
296   /// Number of iterations taken during data flow analysis.
297   unsigned NumIterations;
298
299 public:
300   static char ID;
301   StackColoring() : MachineFunctionPass(ID) {
302     initializeStackColoringPass(*PassRegistry::getPassRegistry());
303   }
304   void getAnalysisUsage(AnalysisUsage &AU) const override;
305   bool runOnMachineFunction(MachineFunction &MF) override;
306
307 private:
308   /// Debug.
309   void dump() const;
310   void dumpIntervals() const;
311   void dumpBB(MachineBasicBlock *MBB) const;
312   void dumpBV(const char *tag, const BitVector &BV) const;
313
314   /// Removes all of the lifetime marker instructions from the function.
315   /// \returns true if any markers were removed.
316   bool removeAllMarkers();
317
318   /// Scan the machine function and find all of the lifetime markers.
319   /// Record the findings in the BEGIN and END vectors.
320   /// \returns the number of markers found.
321   unsigned collectMarkers(unsigned NumSlot);
322
323   /// Perform the dataflow calculation and calculate the lifetime for each of
324   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
325   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
326   /// in and out blocks.
327   void calculateLocalLiveness();
328
329   /// Returns TRUE if we're using the first-use-begins-lifetime method for
330   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
331   bool applyFirstUse(int Slot) {
332     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
333       return false;
334     if (ConservativeSlots.test(Slot))
335       return false;
336     return true;
337   }
338
339   /// Examines the specified instruction and returns TRUE if the instruction
340   /// represents the start or end of an interesting lifetime. The slot or slots
341   /// starting or ending are added to the vector "slots" and "isStart" is set
342   /// accordingly.
343   /// \returns True if inst contains a lifetime start or end
344   bool isLifetimeStartOrEnd(const MachineInstr &MI,
345                             SmallVector<int, 4> &slots,
346                             bool &isStart);
347
348   /// Construct the LiveIntervals for the slots.
349   void calculateLiveIntervals(unsigned NumSlots);
350
351   /// Go over the machine function and change instructions which use stack
352   /// slots to use the joint slots.
353   void remapInstructions(DenseMap<int, int> &SlotRemap);
354
355   /// The input program may contain instructions which are not inside lifetime
356   /// markers. This can happen due to a bug in the compiler or due to a bug in
357   /// user code (for example, returning a reference to a local variable).
358   /// This procedure checks all of the instructions in the function and
359   /// invalidates lifetime ranges which do not contain all of the instructions
360   /// which access that frame slot.
361   void removeInvalidSlotRanges();
362
363   /// Map entries which point to other entries to their destination.
364   ///   A->B->C becomes A->C.
365   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
366
367   /// Used in collectMarkers
368   typedef DenseMap<const MachineBasicBlock*, BitVector> BlockBitVecMap;
369 };
370 } // end anonymous namespace
371
372 char StackColoring::ID = 0;
373 char &llvm::StackColoringID = StackColoring::ID;
374
375 INITIALIZE_PASS_BEGIN(StackColoring,
376                    "stack-coloring", "Merge disjoint stack slots", false, false)
377 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
378 INITIALIZE_PASS_DEPENDENCY(StackProtector)
379 INITIALIZE_PASS_END(StackColoring,
380                    "stack-coloring", "Merge disjoint stack slots", false, false)
381
382 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
383   AU.addRequired<SlotIndexes>();
384   AU.addRequired<StackProtector>();
385   MachineFunctionPass::getAnalysisUsage(AU);
386 }
387
388 #ifndef NDEBUG
389
390 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
391                                             const BitVector &BV) const {
392   DEBUG(dbgs() << tag << " : { ");
393   for (unsigned I = 0, E = BV.size(); I != E; ++I)
394     DEBUG(dbgs() << BV.test(I) << " ");
395   DEBUG(dbgs() << "}\n");
396 }
397
398 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
399   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
400   assert(BI != BlockLiveness.end() && "Block not found");
401   const BlockLifetimeInfo &BlockInfo = BI->second;
402
403   dumpBV("BEGIN", BlockInfo.Begin);
404   dumpBV("END", BlockInfo.End);
405   dumpBV("LIVE_IN", BlockInfo.LiveIn);
406   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
407 }
408
409 LLVM_DUMP_METHOD void StackColoring::dump() const {
410   for (MachineBasicBlock *MBB : depth_first(MF)) {
411     DEBUG(dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
412                  << MBB->getName() << "]\n");
413     DEBUG(dumpBB(MBB));
414   }
415 }
416
417 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
418   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
419     DEBUG(dbgs() << "Interval[" << I << "]:\n");
420     DEBUG(Intervals[I]->dump());
421   }
422 }
423
424 #endif // not NDEBUG
425
426 static inline int getStartOrEndSlot(const MachineInstr &MI)
427 {
428   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
429           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
430          "Expected LIFETIME_START or LIFETIME_END op");
431   const MachineOperand &MO = MI.getOperand(0);
432   int Slot = MO.getIndex();
433   if (Slot >= 0)
434     return Slot;
435   return -1;
436 }
437
438 //
439 // At the moment the only way to end a variable lifetime is with
440 // a VARIABLE_LIFETIME op (which can't contain a start). If things
441 // change and the IR allows for a single inst that both begins
442 // and ends lifetime(s), this interface will need to be reworked.
443 //
444 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
445                                          SmallVector<int, 4> &slots,
446                                          bool &isStart)
447 {
448   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
449       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
450     int Slot = getStartOrEndSlot(MI);
451     if (Slot < 0)
452       return false;
453     if (!InterestingSlots.test(Slot))
454       return false;
455     slots.push_back(Slot);
456     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
457       isStart = false;
458       return true;
459     }
460     if (! applyFirstUse(Slot)) {
461       isStart = true;
462       return true;
463     }
464   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
465     if (! MI.isDebugValue()) {
466       bool found = false;
467       for (const MachineOperand &MO : MI.operands()) {
468         if (!MO.isFI())
469           continue;
470         int Slot = MO.getIndex();
471         if (Slot<0)
472           continue;
473         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
474           slots.push_back(Slot);
475           found = true;
476         }
477       }
478       if (found) {
479         isStart = true;
480         return true;
481       }
482     }
483   }
484   return false;
485 }
486
487 unsigned StackColoring::collectMarkers(unsigned NumSlot)
488 {
489   unsigned MarkersFound = 0;
490   BlockBitVecMap SeenStartMap;
491   InterestingSlots.clear();
492   InterestingSlots.resize(NumSlot);
493   ConservativeSlots.clear();
494   ConservativeSlots.resize(NumSlot);
495
496   // number of start and end lifetime ops for each slot
497   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
498   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
499
500   // Step 1: collect markers and populate the "InterestingSlots"
501   // and "ConservativeSlots" sets.
502   for (MachineBasicBlock *MBB : depth_first(MF)) {
503
504     // Compute the set of slots for which we've seen a START marker but have
505     // not yet seen an END marker at this point in the walk (e.g. on entry
506     // to this bb).
507     BitVector BetweenStartEnd;
508     BetweenStartEnd.resize(NumSlot);
509     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
510              PE = MBB->pred_end(); PI != PE; ++PI) {
511       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
512       if (I != SeenStartMap.end()) {
513         BetweenStartEnd |= I->second;
514       }
515     }
516
517     // Walk the instructions in the block to look for start/end ops.
518     for (MachineInstr &MI : *MBB) {
519       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
520           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
521         int Slot = getStartOrEndSlot(MI);
522         if (Slot < 0)
523           continue;
524         InterestingSlots.set(Slot);
525         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
526           BetweenStartEnd.set(Slot);
527           NumStartLifetimes[Slot] += 1;
528         } else {
529           BetweenStartEnd.reset(Slot);
530           NumEndLifetimes[Slot] += 1;
531         }
532         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
533         if (Allocation) {
534           DEBUG(dbgs() << "Found a lifetime ");
535           DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
536                                ? "start"
537                                : "end"));
538           DEBUG(dbgs() << " marker for slot #" << Slot);
539           DEBUG(dbgs() << " with allocation: " << Allocation->getName()
540                        << "\n");
541         }
542         Markers.push_back(&MI);
543         MarkersFound += 1;
544       } else {
545         for (const MachineOperand &MO : MI.operands()) {
546           if (!MO.isFI())
547             continue;
548           int Slot = MO.getIndex();
549           if (Slot < 0)
550             continue;
551           if (! BetweenStartEnd.test(Slot)) {
552             ConservativeSlots.set(Slot);
553           }
554         }
555       }
556     }
557     BitVector &SeenStart = SeenStartMap[MBB];
558     SeenStart |= BetweenStartEnd;
559   }
560   if (!MarkersFound) {
561     return 0;
562   }
563
564   // PR27903: slots with multiple start or end lifetime ops are not
565   // safe to enable for "lifetime-start-on-first-use".
566   for (unsigned slot = 0; slot < NumSlot; ++slot)
567     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
568       ConservativeSlots.set(slot);
569   DEBUG(dumpBV("Conservative slots", ConservativeSlots));
570
571   // Step 2: compute begin/end sets for each block
572
573   // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
574   // deterministic numbering, and because we'll need a post-order iteration
575   // later for solving the liveness dataflow problem.
576   for (MachineBasicBlock *MBB : depth_first(MF)) {
577
578     // Assign a serial number to this basic block.
579     BasicBlocks[MBB] = BasicBlockNumbering.size();
580     BasicBlockNumbering.push_back(MBB);
581
582     // Keep a reference to avoid repeated lookups.
583     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
584
585     BlockInfo.Begin.resize(NumSlot);
586     BlockInfo.End.resize(NumSlot);
587
588     SmallVector<int, 4> slots;
589     for (MachineInstr &MI : *MBB) {
590       bool isStart = false;
591       slots.clear();
592       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
593         if (!isStart) {
594           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
595           int Slot = slots[0];
596           if (BlockInfo.Begin.test(Slot)) {
597             BlockInfo.Begin.reset(Slot);
598           }
599           BlockInfo.End.set(Slot);
600         } else {
601           for (auto Slot : slots) {
602             DEBUG(dbgs() << "Found a use of slot #" << Slot);
603             DEBUG(dbgs() << " at BB#" << MBB->getNumber() << " index ");
604             DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
605             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
606             if (Allocation) {
607               DEBUG(dbgs() << " with allocation: "<< Allocation->getName());
608             }
609             DEBUG(dbgs() << "\n");
610             if (BlockInfo.End.test(Slot)) {
611               BlockInfo.End.reset(Slot);
612             }
613             BlockInfo.Begin.set(Slot);
614           }
615         }
616       }
617     }
618   }
619
620   // Update statistics.
621   NumMarkerSeen += MarkersFound;
622   return MarkersFound;
623 }
624
625 void StackColoring::calculateLocalLiveness()
626 {
627   unsigned NumIters = 0;
628   bool changed = true;
629   while (changed) {
630     changed = false;
631     ++NumIters;
632
633     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
634
635       // Use an iterator to avoid repeated lookups.
636       LivenessMap::iterator BI = BlockLiveness.find(BB);
637       assert(BI != BlockLiveness.end() && "Block not found");
638       BlockLifetimeInfo &BlockInfo = BI->second;
639
640       // Compute LiveIn by unioning together the LiveOut sets of all preds.
641       BitVector LocalLiveIn;
642       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
643            PE = BB->pred_end(); PI != PE; ++PI) {
644         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
645         assert(I != BlockLiveness.end() && "Predecessor not found");
646         LocalLiveIn |= I->second.LiveOut;
647       }
648
649       // Compute LiveOut by subtracting out lifetimes that end in this
650       // block, then adding in lifetimes that begin in this block.  If
651       // we have both BEGIN and END markers in the same basic block
652       // then we know that the BEGIN marker comes after the END,
653       // because we already handle the case where the BEGIN comes
654       // before the END when collecting the markers (and building the
655       // BEGIN/END vectors).
656       BitVector LocalLiveOut = LocalLiveIn;
657       LocalLiveOut.reset(BlockInfo.End);
658       LocalLiveOut |= BlockInfo.Begin;
659
660       // Update block LiveIn set, noting whether it has changed.
661       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
662         changed = true;
663         BlockInfo.LiveIn |= LocalLiveIn;
664       }
665
666       // Update block LiveOut set, noting whether it has changed.
667       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
668         changed = true;
669         BlockInfo.LiveOut |= LocalLiveOut;
670       }
671     }
672   }// while changed.
673
674   NumIterations = NumIters;
675 }
676
677 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
678   SmallVector<SlotIndex, 16> Starts;
679   SmallVector<SlotIndex, 16> Finishes;
680
681   // For each block, find which slots are active within this block
682   // and update the live intervals.
683   for (const MachineBasicBlock &MBB : *MF) {
684     Starts.clear();
685     Starts.resize(NumSlots);
686     Finishes.clear();
687     Finishes.resize(NumSlots);
688
689     // Create the interval for the basic blocks containing lifetime begin/end.
690     for (const MachineInstr &MI : MBB) {
691
692       SmallVector<int, 4> slots;
693       bool IsStart = false;
694       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
695         continue;
696       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
697       for (auto Slot : slots) {
698         if (IsStart) {
699           if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
700             Starts[Slot] = ThisIndex;
701         } else {
702           if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
703             Finishes[Slot] = ThisIndex;
704         }
705       }
706     }
707
708     // Create the interval of the blocks that we previously found to be 'alive'.
709     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
710     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
711          pos = MBBLiveness.LiveIn.find_next(pos)) {
712       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
713     }
714     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
715          pos = MBBLiveness.LiveOut.find_next(pos)) {
716       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
717     }
718
719     for (unsigned i = 0; i < NumSlots; ++i) {
720       //
721       // When LifetimeStartOnFirstUse is turned on, data flow analysis
722       // is forward (from starts to ends), not bidirectional. A
723       // consequence of this is that we can wind up in situations
724       // where Starts[i] is invalid but Finishes[i] is valid and vice
725       // versa. Example:
726       //
727       //     LIFETIME_START x
728       //     if (...) {
729       //       <use of x>
730       //       throw ...;
731       //     }
732       //     LIFETIME_END x
733       //     return 2;
734       //
735       //
736       // Here the slot for "x" will not be live into the block
737       // containing the "return 2" (since lifetimes start with first
738       // use, not at the dominating LIFETIME_START marker).
739       //
740       if (Starts[i].isValid() && !Finishes[i].isValid()) {
741         Finishes[i] = Indexes->getMBBEndIdx(&MBB);
742       }
743       if (!Starts[i].isValid())
744         continue;
745
746       assert(Starts[i] && Finishes[i] && "Invalid interval");
747       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
748       SlotIndex S = Starts[i];
749       SlotIndex F = Finishes[i];
750       if (S < F) {
751         // We have a single consecutive region.
752         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
753       } else {
754         // We have two non-consecutive regions. This happens when
755         // LIFETIME_START appears after the LIFETIME_END marker.
756         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
757         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
758         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
759         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
760       }
761     }
762   }
763 }
764
765 bool StackColoring::removeAllMarkers() {
766   unsigned Count = 0;
767   for (MachineInstr *MI : Markers) {
768     MI->eraseFromParent();
769     Count++;
770   }
771   Markers.clear();
772
773   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
774   return Count;
775 }
776
777 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
778   unsigned FixedInstr = 0;
779   unsigned FixedMemOp = 0;
780   unsigned FixedDbg = 0;
781   MachineModuleInfo *MMI = &MF->getMMI();
782
783   // Remap debug information that refers to stack slots.
784   for (auto &VI : MMI->getVariableDbgInfo()) {
785     if (!VI.Var)
786       continue;
787     if (SlotRemap.count(VI.Slot)) {
788       DEBUG(dbgs() << "Remapping debug info for ["
789                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
790       VI.Slot = SlotRemap[VI.Slot];
791       FixedDbg++;
792     }
793   }
794
795   // Keep a list of *allocas* which need to be remapped.
796   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
797   for (const std::pair<int, int> &SI : SlotRemap) {
798     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
799     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
800     assert(To && From && "Invalid allocation object");
801     Allocas[From] = To;
802
803     // AA might be used later for instruction scheduling, and we need it to be
804     // able to deduce the correct aliasing releationships between pointers
805     // derived from the alloca being remapped and the target of that remapping.
806     // The only safe way, without directly informing AA about the remapping
807     // somehow, is to directly update the IR to reflect the change being made
808     // here.
809     Instruction *Inst = const_cast<AllocaInst *>(To);
810     if (From->getType() != To->getType()) {
811       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
812       Cast->insertAfter(Inst);
813       Inst = Cast;
814     }
815
816     // Allow the stack protector to adjust its value map to account for the
817     // upcoming replacement.
818     SP->adjustForColoring(From, To);
819
820     // The new alloca might not be valid in a llvm.dbg.declare for this
821     // variable, so undef out the use to make the verifier happy.
822     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
823     if (FromAI->isUsedByMetadata())
824       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
825     for (auto &Use : FromAI->uses()) {
826       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
827         if (BCI->isUsedByMetadata())
828           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
829     }
830
831     // Note that this will not replace uses in MMOs (which we'll update below),
832     // or anywhere else (which is why we won't delete the original
833     // instruction).
834     FromAI->replaceAllUsesWith(Inst);
835   }
836
837   // Remap all instructions to the new stack slots.
838   for (MachineBasicBlock &BB : *MF)
839     for (MachineInstr &I : BB) {
840       // Skip lifetime markers. We'll remove them soon.
841       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
842           I.getOpcode() == TargetOpcode::LIFETIME_END)
843         continue;
844
845       // Update the MachineMemOperand to use the new alloca.
846       for (MachineMemOperand *MMO : I.memoperands()) {
847         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
848         // we'll also need to update the TBAA nodes in MMOs with values
849         // derived from the merged allocas. When doing this, we'll need to use
850         // the same variant of GetUnderlyingObjects that is used by the
851         // instruction scheduler (that can look through ptrtoint/inttoptr
852         // pairs).
853
854         // We've replaced IR-level uses of the remapped allocas, so we only
855         // need to replace direct uses here.
856         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
857         if (!AI)
858           continue;
859
860         if (!Allocas.count(AI))
861           continue;
862
863         MMO->setValue(Allocas[AI]);
864         FixedMemOp++;
865       }
866
867       // Update all of the machine instruction operands.
868       for (MachineOperand &MO : I.operands()) {
869         if (!MO.isFI())
870           continue;
871         int FromSlot = MO.getIndex();
872
873         // Don't touch arguments.
874         if (FromSlot<0)
875           continue;
876
877         // Only look at mapped slots.
878         if (!SlotRemap.count(FromSlot))
879           continue;
880
881         // In a debug build, check that the instruction that we are modifying is
882         // inside the expected live range. If the instruction is not inside
883         // the calculated range then it means that the alloca usage moved
884         // outside of the lifetime markers, or that the user has a bug.
885         // NOTE: Alloca address calculations which happen outside the lifetime
886         // zone are are okay, despite the fact that we don't have a good way
887         // for validating all of the usages of the calculation.
888 #ifndef NDEBUG
889         bool TouchesMemory = I.mayLoad() || I.mayStore();
890         // If we *don't* protect the user from escaped allocas, don't bother
891         // validating the instructions.
892         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
893           SlotIndex Index = Indexes->getInstructionIndex(I);
894           const LiveInterval *Interval = &*Intervals[FromSlot];
895           assert(Interval->find(Index) != Interval->end() &&
896                  "Found instruction usage outside of live range.");
897         }
898 #endif
899
900         // Fix the machine instructions.
901         int ToSlot = SlotRemap[FromSlot];
902         MO.setIndex(ToSlot);
903         FixedInstr++;
904       }
905     }
906
907   // Update the location of C++ catch objects for the MSVC personality routine.
908   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
909     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
910       for (WinEHHandlerType &H : TBME.HandlerArray)
911         if (H.CatchObj.FrameIndex != INT_MAX &&
912             SlotRemap.count(H.CatchObj.FrameIndex))
913           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
914
915   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
916   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
917   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
918 }
919
920 void StackColoring::removeInvalidSlotRanges() {
921   for (MachineBasicBlock &BB : *MF)
922     for (MachineInstr &I : BB) {
923       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
924           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
925         continue;
926
927       // Some intervals are suspicious! In some cases we find address
928       // calculations outside of the lifetime zone, but not actual memory
929       // read or write. Memory accesses outside of the lifetime zone are a clear
930       // violation, but address calculations are okay. This can happen when
931       // GEPs are hoisted outside of the lifetime zone.
932       // So, in here we only check instructions which can read or write memory.
933       if (!I.mayLoad() && !I.mayStore())
934         continue;
935
936       // Check all of the machine operands.
937       for (const MachineOperand &MO : I.operands()) {
938         if (!MO.isFI())
939           continue;
940
941         int Slot = MO.getIndex();
942
943         if (Slot<0)
944           continue;
945
946         if (Intervals[Slot]->empty())
947           continue;
948
949         // Check that the used slot is inside the calculated lifetime range.
950         // If it is not, warn about it and invalidate the range.
951         LiveInterval *Interval = &*Intervals[Slot];
952         SlotIndex Index = Indexes->getInstructionIndex(I);
953         if (Interval->find(Index) == Interval->end()) {
954           Interval->clear();
955           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
956           EscapedAllocas++;
957         }
958       }
959     }
960 }
961
962 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
963                                    unsigned NumSlots) {
964   // Expunge slot remap map.
965   for (unsigned i=0; i < NumSlots; ++i) {
966     // If we are remapping i
967     if (SlotRemap.count(i)) {
968       int Target = SlotRemap[i];
969       // As long as our target is mapped to something else, follow it.
970       while (SlotRemap.count(Target)) {
971         Target = SlotRemap[Target];
972         SlotRemap[i] = Target;
973       }
974     }
975   }
976 }
977
978 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
979   DEBUG(dbgs() << "********** Stack Coloring **********\n"
980                << "********** Function: "
981                << ((const Value*)Func.getFunction())->getName() << '\n');
982   MF = &Func;
983   MFI = MF->getFrameInfo();
984   Indexes = &getAnalysis<SlotIndexes>();
985   SP = &getAnalysis<StackProtector>();
986   BlockLiveness.clear();
987   BasicBlocks.clear();
988   BasicBlockNumbering.clear();
989   Markers.clear();
990   Intervals.clear();
991   VNInfoAllocator.Reset();
992
993   unsigned NumSlots = MFI->getObjectIndexEnd();
994
995   // If there are no stack slots then there are no markers to remove.
996   if (!NumSlots)
997     return false;
998
999   SmallVector<int, 8> SortedSlots;
1000   SortedSlots.reserve(NumSlots);
1001   Intervals.reserve(NumSlots);
1002
1003   unsigned NumMarkers = collectMarkers(NumSlots);
1004
1005   unsigned TotalSize = 0;
1006   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
1007   DEBUG(dbgs()<<"Slot structure:\n");
1008
1009   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1010     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
1011     TotalSize += MFI->getObjectSize(i);
1012   }
1013
1014   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
1015
1016   // Don't continue because there are not enough lifetime markers, or the
1017   // stack is too small, or we are told not to optimize the slots.
1018   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1019       skipFunction(*Func.getFunction())) {
1020     DEBUG(dbgs()<<"Will not try to merge slots.\n");
1021     return removeAllMarkers();
1022   }
1023
1024   for (unsigned i=0; i < NumSlots; ++i) {
1025     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1026     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1027     Intervals.push_back(std::move(LI));
1028     SortedSlots.push_back(i);
1029   }
1030
1031   // Calculate the liveness of each block.
1032   calculateLocalLiveness();
1033   DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1034   DEBUG(dump());
1035
1036   // Propagate the liveness information.
1037   calculateLiveIntervals(NumSlots);
1038   DEBUG(dumpIntervals());
1039
1040   // Search for allocas which are used outside of the declared lifetime
1041   // markers.
1042   if (ProtectFromEscapedAllocas)
1043     removeInvalidSlotRanges();
1044
1045   // Maps old slots to new slots.
1046   DenseMap<int, int> SlotRemap;
1047   unsigned RemovedSlots = 0;
1048   unsigned ReducedSize = 0;
1049
1050   // Do not bother looking at empty intervals.
1051   for (unsigned I = 0; I < NumSlots; ++I) {
1052     if (Intervals[SortedSlots[I]]->empty())
1053       SortedSlots[I] = -1;
1054   }
1055
1056   // This is a simple greedy algorithm for merging allocas. First, sort the
1057   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1058   // for disjoint slots. When you find disjoint slots, merge the samller one
1059   // into the bigger one and update the live interval. Remove the small alloca
1060   // and continue.
1061
1062   // Sort the slots according to their size. Place unused slots at the end.
1063   // Use stable sort to guarantee deterministic code generation.
1064   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1065                    [this](int LHS, int RHS) {
1066     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1067     if (LHS == -1) return false;
1068     if (RHS == -1) return true;
1069     // Sort according to size.
1070     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1071   });
1072
1073   bool Changed = true;
1074   while (Changed) {
1075     Changed = false;
1076     for (unsigned I = 0; I < NumSlots; ++I) {
1077       if (SortedSlots[I] == -1)
1078         continue;
1079
1080       for (unsigned J=I+1; J < NumSlots; ++J) {
1081         if (SortedSlots[J] == -1)
1082           continue;
1083
1084         int FirstSlot = SortedSlots[I];
1085         int SecondSlot = SortedSlots[J];
1086         LiveInterval *First = &*Intervals[FirstSlot];
1087         LiveInterval *Second = &*Intervals[SecondSlot];
1088         assert (!First->empty() && !Second->empty() && "Found an empty range");
1089
1090         // Merge disjoint slots.
1091         if (!First->overlaps(*Second)) {
1092           Changed = true;
1093           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1094           SlotRemap[SecondSlot] = FirstSlot;
1095           SortedSlots[J] = -1;
1096           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
1097                 SecondSlot<<" together.\n");
1098           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1099                                            MFI->getObjectAlignment(SecondSlot));
1100
1101           assert(MFI->getObjectSize(FirstSlot) >=
1102                  MFI->getObjectSize(SecondSlot) &&
1103                  "Merging a small object into a larger one");
1104
1105           RemovedSlots+=1;
1106           ReducedSize += MFI->getObjectSize(SecondSlot);
1107           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1108           MFI->RemoveStackObject(SecondSlot);
1109         }
1110       }
1111     }
1112   }// While changed.
1113
1114   // Record statistics.
1115   StackSpaceSaved += ReducedSize;
1116   StackSlotMerged += RemovedSlots;
1117   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
1118         ReducedSize<<" bytes\n");
1119
1120   // Scan the entire function and update all machine operands that use frame
1121   // indices to use the remapped frame index.
1122   expungeSlotMap(SlotRemap, NumSlots);
1123   remapInstructions(SlotRemap);
1124
1125   return removeAllMarkers();
1126 }