]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / TargetRegisterInfo.cpp
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/TargetRegisterInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Printable.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <cassert>
36 #include <utility>
37
38 #define DEBUG_TYPE "target-reg-info"
39
40 using namespace llvm;
41
42 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
43                              regclass_iterator RCB, regclass_iterator RCE,
44                              const char *const *SRINames,
45                              const LaneBitmask *SRILaneMasks,
46                              LaneBitmask SRICoveringLanes,
47                              const RegClassInfo *const RCIs,
48                              unsigned Mode)
49   : InfoDesc(ID), SubRegIndexNames(SRINames),
50     SubRegIndexLaneMasks(SRILaneMasks),
51     RegClassBegin(RCB), RegClassEnd(RCE),
52     CoveringLanes(SRICoveringLanes),
53     RCInfos(RCIs), HwMode(Mode) {
54 }
55
56 TargetRegisterInfo::~TargetRegisterInfo() = default;
57
58 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
59     const {
60   for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
61     RegisterSet.set(*AI);
62 }
63
64 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
65     ArrayRef<MCPhysReg> Exceptions) const {
66   // Check that all super registers of reserved regs are reserved as well.
67   BitVector Checked(getNumRegs());
68   for (unsigned Reg : RegisterSet.set_bits()) {
69     if (Checked[Reg])
70       continue;
71     for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
72       if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
73         dbgs() << "Error: Super register " << printReg(*SR, this)
74                << " of reserved register " << printReg(Reg, this)
75                << " is not reserved.\n";
76         return false;
77       }
78
79       // We transitively check superregs. So we can remember this for later
80       // to avoid compiletime explosion in deep register hierarchies.
81       Checked.set(*SR);
82     }
83   }
84   return true;
85 }
86
87 namespace llvm {
88
89 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI,
90                    unsigned SubIdx, const MachineRegisterInfo *MRI) {
91   return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
92     if (!Reg)
93       OS << "$noreg";
94     else if (TargetRegisterInfo::isStackSlot(Reg))
95       OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
96     else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
97       StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
98       if (Name != "") {
99         OS << '%' << Name;
100       } else {
101         OS << '%' << TargetRegisterInfo::virtReg2Index(Reg);
102       }
103     }
104     else if (!TRI)
105       OS << '$' << "physreg" << Reg;
106     else if (Reg < TRI->getNumRegs()) {
107       OS << '$';
108       printLowerCase(TRI->getName(Reg), OS);
109     } else
110       llvm_unreachable("Register kind is unsupported.");
111
112     if (SubIdx) {
113       if (TRI)
114         OS << ':' << TRI->getSubRegIndexName(SubIdx);
115       else
116         OS << ":sub(" << SubIdx << ')';
117     }
118   });
119 }
120
121 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
122   return Printable([Unit, TRI](raw_ostream &OS) {
123     // Generic printout when TRI is missing.
124     if (!TRI) {
125       OS << "Unit~" << Unit;
126       return;
127     }
128
129     // Check for invalid register units.
130     if (Unit >= TRI->getNumRegUnits()) {
131       OS << "BadUnit~" << Unit;
132       return;
133     }
134
135     // Normal units have at least one root.
136     MCRegUnitRootIterator Roots(Unit, TRI);
137     assert(Roots.isValid() && "Unit has no roots.");
138     OS << TRI->getName(*Roots);
139     for (++Roots; Roots.isValid(); ++Roots)
140       OS << '~' << TRI->getName(*Roots);
141   });
142 }
143
144 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
145   return Printable([Unit, TRI](raw_ostream &OS) {
146     if (TRI && TRI->isVirtualRegister(Unit)) {
147       OS << '%' << TargetRegisterInfo::virtReg2Index(Unit);
148     } else {
149       OS << printRegUnit(Unit, TRI);
150     }
151   });
152 }
153
154 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
155                               const TargetRegisterInfo *TRI) {
156   return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
157     if (RegInfo.getRegClassOrNull(Reg))
158       OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
159     else if (RegInfo.getRegBankOrNull(Reg))
160       OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
161     else {
162       OS << "_";
163       assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
164              "Generic registers must have a valid type");
165     }
166   });
167 }
168
169 } // end namespace llvm
170
171 /// getAllocatableClass - Return the maximal subclass of the given register
172 /// class that is alloctable, or NULL.
173 const TargetRegisterClass *
174 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
175   if (!RC || RC->isAllocatable())
176     return RC;
177
178   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
179        ++It) {
180     const TargetRegisterClass *SubRC = getRegClass(It.getID());
181     if (SubRC->isAllocatable())
182       return SubRC;
183   }
184   return nullptr;
185 }
186
187 /// getMinimalPhysRegClass - Returns the Register Class of a physical
188 /// register of the given type, picking the most sub register class of
189 /// the right type that contains this physreg.
190 const TargetRegisterClass *
191 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
192   assert(isPhysicalRegister(reg) && "reg must be a physical register");
193
194   // Pick the most sub register class of the right type that contains
195   // this physreg.
196   const TargetRegisterClass* BestRC = nullptr;
197   for (const TargetRegisterClass* RC : regclasses()) {
198     if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
199         RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
200       BestRC = RC;
201   }
202
203   assert(BestRC && "Couldn't find the register class");
204   return BestRC;
205 }
206
207 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
208 /// registers for the specific register class.
209 static void getAllocatableSetForRC(const MachineFunction &MF,
210                                    const TargetRegisterClass *RC, BitVector &R){
211   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
212   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
213   for (unsigned i = 0; i != Order.size(); ++i)
214     R.set(Order[i]);
215 }
216
217 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
218                                           const TargetRegisterClass *RC) const {
219   BitVector Allocatable(getNumRegs());
220   if (RC) {
221     // A register class with no allocatable subclass returns an empty set.
222     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
223     if (SubClass)
224       getAllocatableSetForRC(MF, SubClass, Allocatable);
225   } else {
226     for (const TargetRegisterClass *C : regclasses())
227       if (C->isAllocatable())
228         getAllocatableSetForRC(MF, C, Allocatable);
229   }
230
231   // Mask out the reserved registers
232   BitVector Reserved = getReservedRegs(MF);
233   Allocatable &= Reserved.flip();
234
235   return Allocatable;
236 }
237
238 static inline
239 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
240                                             const uint32_t *B,
241                                             const TargetRegisterInfo *TRI,
242                                             const MVT::SimpleValueType SVT =
243                                             MVT::SimpleValueType::Any) {
244   const MVT VT(SVT);
245   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
246     if (unsigned Common = *A++ & *B++) {
247       const TargetRegisterClass *RC =
248           TRI->getRegClass(I + countTrailingZeros(Common));
249       if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
250         return RC;
251     }
252   return nullptr;
253 }
254
255 const TargetRegisterClass *
256 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
257                                       const TargetRegisterClass *B,
258                                       const MVT::SimpleValueType SVT) const {
259   // First take care of the trivial cases.
260   if (A == B)
261     return A;
262   if (!A || !B)
263     return nullptr;
264
265   // Register classes are ordered topologically, so the largest common
266   // sub-class it the common sub-class with the smallest ID.
267   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
268 }
269
270 const TargetRegisterClass *
271 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
272                                              const TargetRegisterClass *B,
273                                              unsigned Idx) const {
274   assert(A && B && "Missing register class");
275   assert(Idx && "Bad sub-register index");
276
277   // Find Idx in the list of super-register indices.
278   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
279     if (RCI.getSubReg() == Idx)
280       // The bit mask contains all register classes that are projected into B
281       // by Idx. Find a class that is also a sub-class of A.
282       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
283   return nullptr;
284 }
285
286 const TargetRegisterClass *TargetRegisterInfo::
287 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
288                        const TargetRegisterClass *RCB, unsigned SubB,
289                        unsigned &PreA, unsigned &PreB) const {
290   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
291
292   // Search all pairs of sub-register indices that project into RCA and RCB
293   // respectively. This is quadratic, but usually the sets are very small. On
294   // most targets like X86, there will only be a single sub-register index
295   // (e.g., sub_16bit projecting into GR16).
296   //
297   // The worst case is a register class like DPR on ARM.
298   // We have indices dsub_0..dsub_7 projecting into that class.
299   //
300   // It is very common that one register class is a sub-register of the other.
301   // Arrange for RCA to be the larger register so the answer will be found in
302   // the first iteration. This makes the search linear for the most common
303   // case.
304   const TargetRegisterClass *BestRC = nullptr;
305   unsigned *BestPreA = &PreA;
306   unsigned *BestPreB = &PreB;
307   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
308     std::swap(RCA, RCB);
309     std::swap(SubA, SubB);
310     std::swap(BestPreA, BestPreB);
311   }
312
313   // Also terminate the search one we have found a register class as small as
314   // RCA.
315   unsigned MinSize = getRegSizeInBits(*RCA);
316
317   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
318     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
319     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
320       // Check if a common super-register class exists for this index pair.
321       const TargetRegisterClass *RC =
322         firstCommonClass(IA.getMask(), IB.getMask(), this);
323       if (!RC || getRegSizeInBits(*RC) < MinSize)
324         continue;
325
326       // The indexes must compose identically: PreA+SubA == PreB+SubB.
327       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
328       if (FinalA != FinalB)
329         continue;
330
331       // Is RC a better candidate than BestRC?
332       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
333         continue;
334
335       // Yes, RC is the smallest super-register seen so far.
336       BestRC = RC;
337       *BestPreA = IA.getSubReg();
338       *BestPreB = IB.getSubReg();
339
340       // Bail early if we reached MinSize. We won't find a better candidate.
341       if (getRegSizeInBits(*BestRC) == MinSize)
342         return BestRC;
343     }
344   }
345   return BestRC;
346 }
347
348 /// Check if the registers defined by the pair (RegisterClass, SubReg)
349 /// share the same register file.
350 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
351                                   const TargetRegisterClass *DefRC,
352                                   unsigned DefSubReg,
353                                   const TargetRegisterClass *SrcRC,
354                                   unsigned SrcSubReg) {
355   // Same register class.
356   if (DefRC == SrcRC)
357     return true;
358
359   // Both operands are sub registers. Check if they share a register class.
360   unsigned SrcIdx, DefIdx;
361   if (SrcSubReg && DefSubReg) {
362     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
363                                       SrcIdx, DefIdx) != nullptr;
364   }
365
366   // At most one of the register is a sub register, make it Src to avoid
367   // duplicating the test.
368   if (!SrcSubReg) {
369     std::swap(DefSubReg, SrcSubReg);
370     std::swap(DefRC, SrcRC);
371   }
372
373   // One of the register is a sub register, check if we can get a superclass.
374   if (SrcSubReg)
375     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
376
377   // Plain copy.
378   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
379 }
380
381 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
382                                               unsigned DefSubReg,
383                                               const TargetRegisterClass *SrcRC,
384                                               unsigned SrcSubReg) const {
385   // If this source does not incur a cross register bank copy, use it.
386   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
387 }
388
389 // Compute target-independent register allocator hints to help eliminate copies.
390 bool
391 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
392                                           ArrayRef<MCPhysReg> Order,
393                                           SmallVectorImpl<MCPhysReg> &Hints,
394                                           const MachineFunction &MF,
395                                           const VirtRegMap *VRM,
396                                           const LiveRegMatrix *Matrix) const {
397   const MachineRegisterInfo &MRI = MF.getRegInfo();
398   const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
399     MRI.getRegAllocationHints(VirtReg);
400
401   // First hint may be a target hint.
402   bool Skip = (Hints_MRI.first != 0);
403   for (auto Reg : Hints_MRI.second) {
404     if (Skip) {
405       Skip = false;
406       continue;
407     }
408
409     // Target-independent hints are either a physical or a virtual register.
410     unsigned Phys = Reg;
411     if (VRM && isVirtualRegister(Phys))
412       Phys = VRM->getPhys(Phys);
413
414     // Check that Phys is a valid hint in VirtReg's register class.
415     if (!isPhysicalRegister(Phys))
416       continue;
417     if (MRI.isReserved(Phys))
418       continue;
419     // Check that Phys is in the allocation order. We shouldn't heed hints
420     // from VirtReg's register class if they aren't in the allocation order. The
421     // target probably has a reason for removing the register.
422     if (!is_contained(Order, Phys))
423       continue;
424
425     // All clear, tell the register allocator to prefer this register.
426     Hints.push_back(Phys);
427   }
428   return false;
429 }
430
431 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
432   return !MF.getFunction().hasFnAttribute("no-realign-stack");
433 }
434
435 bool TargetRegisterInfo::needsStackRealignment(
436     const MachineFunction &MF) const {
437   const MachineFrameInfo &MFI = MF.getFrameInfo();
438   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
439   const Function &F = MF.getFunction();
440   unsigned StackAlign = TFI->getStackAlignment();
441   bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
442                               F.hasFnAttribute(Attribute::StackAlignment));
443   if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
444     if (canRealignStack(MF))
445       return true;
446     LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
447                       << "\n");
448   }
449   return false;
450 }
451
452 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
453                                             const uint32_t *mask1) const {
454   unsigned N = (getNumRegs()+31) / 32;
455   for (unsigned I = 0; I < N; ++I)
456     if ((mask0[I] & mask1[I]) != mask0[I])
457       return false;
458   return true;
459 }
460
461 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
462                                          const MachineRegisterInfo &MRI) const {
463   const TargetRegisterClass *RC{};
464   if (isPhysicalRegister(Reg)) {
465     // The size is not directly available for physical registers.
466     // Instead, we need to access a register class that contains Reg and
467     // get the size of that register class.
468     RC = getMinimalPhysRegClass(Reg);
469   } else {
470     LLT Ty = MRI.getType(Reg);
471     unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
472     // If Reg is not a generic register, query the register class to
473     // get its size.
474     if (RegSize)
475       return RegSize;
476     // Since Reg is not a generic register, it must have a register class.
477     RC = MRI.getRegClass(Reg);
478   }
479   assert(RC && "Unable to deduce the register class");
480   return getRegSizeInBits(*RC);
481 }
482
483 unsigned
484 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
485                                      const MachineRegisterInfo *MRI) const {
486   while (true) {
487     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
488     if (!MI->isCopyLike())
489       return SrcReg;
490
491     unsigned CopySrcReg;
492     if (MI->isCopy())
493       CopySrcReg = MI->getOperand(1).getReg();
494     else {
495       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
496       CopySrcReg = MI->getOperand(2).getReg();
497     }
498
499     if (!isVirtualRegister(CopySrcReg))
500       return CopySrcReg;
501
502     SrcReg = CopySrcReg;
503   }
504 }
505
506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
507 LLVM_DUMP_METHOD
508 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
509                                  const TargetRegisterInfo *TRI) {
510   dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
511 }
512 #endif