]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/CodeGen/VirtRegMap.cpp
Import zstandard 1.1.4 in base
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / CodeGen / VirtRegMap.cpp
1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
11 //
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/LiveStackAnalysis.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "regalloc"
42
43 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
44 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
45
46 //===----------------------------------------------------------------------===//
47 //  VirtRegMap implementation
48 //===----------------------------------------------------------------------===//
49
50 char VirtRegMap::ID = 0;
51
52 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
53
54 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
55   MRI = &mf.getRegInfo();
56   TII = mf.getSubtarget().getInstrInfo();
57   TRI = mf.getSubtarget().getRegisterInfo();
58   MF = &mf;
59
60   Virt2PhysMap.clear();
61   Virt2StackSlotMap.clear();
62   Virt2SplitMap.clear();
63
64   grow();
65   return false;
66 }
67
68 void VirtRegMap::grow() {
69   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
70   Virt2PhysMap.resize(NumRegs);
71   Virt2StackSlotMap.resize(NumRegs);
72   Virt2SplitMap.resize(NumRegs);
73 }
74
75 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
76   int SS = MF->getFrameInfo().CreateSpillStackObject(RC->getSize(),
77                                                      RC->getAlignment());
78   ++NumSpillSlots;
79   return SS;
80 }
81
82 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
83   unsigned Hint = MRI->getSimpleHint(VirtReg);
84   if (!Hint)
85     return false;
86   if (TargetRegisterInfo::isVirtualRegister(Hint))
87     Hint = getPhys(Hint);
88   return getPhys(VirtReg) == Hint;
89 }
90
91 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
92   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
93   if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
94     return true;
95   if (TargetRegisterInfo::isVirtualRegister(Hint.second))
96     return hasPhys(Hint.second);
97   return false;
98 }
99
100 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
101   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
102   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
103          "attempt to assign stack slot to already spilled register");
104   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
105   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
106 }
107
108 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
109   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
110   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
111          "attempt to assign stack slot to already spilled register");
112   assert((SS >= 0 ||
113           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
114          "illegal fixed frame index");
115   Virt2StackSlotMap[virtReg] = SS;
116 }
117
118 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
119   OS << "********** REGISTER MAP **********\n";
120   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
121     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
122     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
123       OS << '[' << PrintReg(Reg, TRI) << " -> "
124          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
125          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
126     }
127   }
128
129   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
130     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
131     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
132       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
133          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
134     }
135   }
136   OS << '\n';
137 }
138
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
140 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
141   print(dbgs());
142 }
143 #endif
144
145 //===----------------------------------------------------------------------===//
146 //                              VirtRegRewriter
147 //===----------------------------------------------------------------------===//
148 //
149 // The VirtRegRewriter is the last of the register allocator passes.
150 // It rewrites virtual registers to physical registers as specified in the
151 // VirtRegMap analysis. It also updates live-in information on basic blocks
152 // according to LiveIntervals.
153 //
154 namespace {
155 class VirtRegRewriter : public MachineFunctionPass {
156   MachineFunction *MF;
157   const TargetMachine *TM;
158   const TargetRegisterInfo *TRI;
159   const TargetInstrInfo *TII;
160   MachineRegisterInfo *MRI;
161   SlotIndexes *Indexes;
162   LiveIntervals *LIS;
163   VirtRegMap *VRM;
164
165   void rewrite();
166   void addMBBLiveIns();
167   bool readsUndefSubreg(const MachineOperand &MO) const;
168   void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
169   void handleIdentityCopy(MachineInstr &MI) const;
170
171 public:
172   static char ID;
173   VirtRegRewriter() : MachineFunctionPass(ID) {}
174
175   void getAnalysisUsage(AnalysisUsage &AU) const override;
176
177   bool runOnMachineFunction(MachineFunction&) override;
178   MachineFunctionProperties getSetProperties() const override {
179     return MachineFunctionProperties().set(
180         MachineFunctionProperties::Property::NoVRegs);
181   }
182 };
183 } // end anonymous namespace
184
185 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
186
187 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
188                       "Virtual Register Rewriter", false, false)
189 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
192 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
193 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
194 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
195                     "Virtual Register Rewriter", false, false)
196
197 char VirtRegRewriter::ID = 0;
198
199 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
200   AU.setPreservesCFG();
201   AU.addRequired<LiveIntervals>();
202   AU.addRequired<SlotIndexes>();
203   AU.addPreserved<SlotIndexes>();
204   AU.addRequired<LiveDebugVariables>();
205   AU.addRequired<LiveStacks>();
206   AU.addPreserved<LiveStacks>();
207   AU.addRequired<VirtRegMap>();
208   MachineFunctionPass::getAnalysisUsage(AU);
209 }
210
211 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
212   MF = &fn;
213   TM = &MF->getTarget();
214   TRI = MF->getSubtarget().getRegisterInfo();
215   TII = MF->getSubtarget().getInstrInfo();
216   MRI = &MF->getRegInfo();
217   Indexes = &getAnalysis<SlotIndexes>();
218   LIS = &getAnalysis<LiveIntervals>();
219   VRM = &getAnalysis<VirtRegMap>();
220   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
221                << "********** Function: "
222                << MF->getName() << '\n');
223   DEBUG(VRM->dump());
224
225   // Add kill flags while we still have virtual registers.
226   LIS->addKillFlags(VRM);
227
228   // Live-in lists on basic blocks are required for physregs.
229   addMBBLiveIns();
230
231   // Rewrite virtual registers.
232   rewrite();
233
234   // Write out new DBG_VALUE instructions.
235   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
236
237   // All machine operands and other references to virtual registers have been
238   // replaced. Remove the virtual registers and release all the transient data.
239   VRM->clearAllVirt();
240   MRI->clearVirtRegs();
241   return true;
242 }
243
244 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
245                                              unsigned PhysReg) const {
246   assert(!LI.empty());
247   assert(LI.hasSubRanges());
248
249   typedef std::pair<const LiveInterval::SubRange *,
250                     LiveInterval::const_iterator> SubRangeIteratorPair;
251   SmallVector<SubRangeIteratorPair, 4> SubRanges;
252   SlotIndex First;
253   SlotIndex Last;
254   for (const LiveInterval::SubRange &SR : LI.subranges()) {
255     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
256     if (!First.isValid() || SR.segments.front().start < First)
257       First = SR.segments.front().start;
258     if (!Last.isValid() || SR.segments.back().end > Last)
259       Last = SR.segments.back().end;
260   }
261
262   // Check all mbb start positions between First and Last while
263   // simulatenously advancing an iterator for each subrange.
264   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
265        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
266     SlotIndex MBBBegin = MBBI->first;
267     // Advance all subrange iterators so that their end position is just
268     // behind MBBBegin (or the iterator is at the end).
269     LaneBitmask LaneMask;
270     for (auto &RangeIterPair : SubRanges) {
271       const LiveInterval::SubRange *SR = RangeIterPair.first;
272       LiveInterval::const_iterator &SRI = RangeIterPair.second;
273       while (SRI != SR->end() && SRI->end <= MBBBegin)
274         ++SRI;
275       if (SRI == SR->end())
276         continue;
277       if (SRI->start <= MBBBegin)
278         LaneMask |= SR->LaneMask;
279     }
280     if (LaneMask.none())
281       continue;
282     MachineBasicBlock *MBB = MBBI->second;
283     MBB->addLiveIn(PhysReg, LaneMask);
284   }
285 }
286
287 // Compute MBB live-in lists from virtual register live ranges and their
288 // assignments.
289 void VirtRegRewriter::addMBBLiveIns() {
290   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
291     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
292     if (MRI->reg_nodbg_empty(VirtReg))
293       continue;
294     LiveInterval &LI = LIS->getInterval(VirtReg);
295     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
296       continue;
297     // This is a virtual register that is live across basic blocks. Its
298     // assigned PhysReg must be marked as live-in to those blocks.
299     unsigned PhysReg = VRM->getPhys(VirtReg);
300     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
301
302     if (LI.hasSubRanges()) {
303       addLiveInsForSubRanges(LI, PhysReg);
304     } else {
305       // Go over MBB begin positions and see if we have segments covering them.
306       // The following works because segments and the MBBIndex list are both
307       // sorted by slot indexes.
308       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
309       for (const auto &Seg : LI) {
310         I = Indexes->advanceMBBIndex(I, Seg.start);
311         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
312           MachineBasicBlock *MBB = I->second;
313           MBB->addLiveIn(PhysReg);
314         }
315       }
316     }
317   }
318
319   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
320   // each MBB's LiveIns set before calling addLiveIn on them.
321   for (MachineBasicBlock &MBB : *MF)
322     MBB.sortUniqueLiveIns();
323 }
324
325 /// Returns true if the given machine operand \p MO only reads undefined lanes.
326 /// The function only works for use operands with a subregister set.
327 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
328   // Shortcut if the operand is already marked undef.
329   if (MO.isUndef())
330     return true;
331
332   unsigned Reg = MO.getReg();
333   const LiveInterval &LI = LIS->getInterval(Reg);
334   const MachineInstr &MI = *MO.getParent();
335   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
336   // This code is only meant to handle reading undefined subregisters which
337   // we couldn't properly detect before.
338   assert(LI.liveAt(BaseIndex) &&
339          "Reads of completely dead register should be marked undef already");
340   unsigned SubRegIdx = MO.getSubReg();
341   assert(SubRegIdx != 0 && LI.hasSubRanges());
342   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
343   // See if any of the relevant subregister liveranges is defined at this point.
344   for (const LiveInterval::SubRange &SR : LI.subranges()) {
345     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
346       return false;
347   }
348   return true;
349 }
350
351 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
352   if (!MI.isIdentityCopy())
353     return;
354   DEBUG(dbgs() << "Identity copy: " << MI);
355   ++NumIdCopies;
356
357   // Copies like:
358   //    %R0 = COPY %R0<undef>
359   //    %AL = COPY %AL, %EAX<imp-def>
360   // give us additional liveness information: The target (super-)register
361   // must not be valid before this point. Replace the COPY with a KILL
362   // instruction to maintain this information.
363   if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) {
364     MI.setDesc(TII->get(TargetOpcode::KILL));
365     DEBUG(dbgs() << "  replace by: " << MI);
366     return;
367   }
368
369   if (Indexes)
370     Indexes->removeMachineInstrFromMaps(MI);
371   MI.eraseFromParent();
372   DEBUG(dbgs() << "  deleted.\n");
373 }
374
375 void VirtRegRewriter::rewrite() {
376   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
377   SmallVector<unsigned, 8> SuperDeads;
378   SmallVector<unsigned, 8> SuperDefs;
379   SmallVector<unsigned, 8> SuperKills;
380
381   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
382        MBBI != MBBE; ++MBBI) {
383     DEBUG(MBBI->print(dbgs(), Indexes));
384     for (MachineBasicBlock::instr_iterator
385            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
386       MachineInstr *MI = &*MII;
387       ++MII;
388
389       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
390            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
391         MachineOperand &MO = *MOI;
392
393         // Make sure MRI knows about registers clobbered by regmasks.
394         if (MO.isRegMask())
395           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
396
397         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
398           continue;
399         unsigned VirtReg = MO.getReg();
400         unsigned PhysReg = VRM->getPhys(VirtReg);
401         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
402                "Instruction uses unmapped VirtReg");
403         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
404
405         // Preserve semantics of sub-register operands.
406         unsigned SubReg = MO.getSubReg();
407         if (SubReg != 0) {
408           if (NoSubRegLiveness) {
409             // A virtual register kill refers to the whole register, so we may
410             // have to add <imp-use,kill> operands for the super-register.  A
411             // partial redef always kills and redefines the super-register.
412             if (MO.readsReg() && (MO.isDef() || MO.isKill()))
413               SuperKills.push_back(PhysReg);
414
415             if (MO.isDef()) {
416               // Also add implicit defs for the super-register.
417               if (MO.isDead())
418                 SuperDeads.push_back(PhysReg);
419               else
420                 SuperDefs.push_back(PhysReg);
421             }
422           } else {
423             if (MO.isUse()) {
424               if (readsUndefSubreg(MO))
425                 // We need to add an <undef> flag if the subregister is
426                 // completely undefined (and we are not adding super-register
427                 // defs).
428                 MO.setIsUndef(true);
429             } else if (!MO.isDead()) {
430               assert(MO.isDef());
431             }
432           }
433
434           // The <def,undef> flag only makes sense for sub-register defs, and
435           // we are substituting a full physreg.  An <imp-use,kill> operand
436           // from the SuperKills list will represent the partial read of the
437           // super-register.
438           if (MO.isDef())
439             MO.setIsUndef(false);
440
441           // PhysReg operands cannot have subregister indexes.
442           PhysReg = TRI->getSubReg(PhysReg, SubReg);
443           assert(PhysReg && "Invalid SubReg for physical register");
444           MO.setSubReg(0);
445         }
446         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
447         // we need the inlining here.
448         MO.setReg(PhysReg);
449       }
450
451       // Add any missing super-register kills after rewriting the whole
452       // instruction.
453       while (!SuperKills.empty())
454         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
455
456       while (!SuperDeads.empty())
457         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
458
459       while (!SuperDefs.empty())
460         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
461
462       DEBUG(dbgs() << "> " << *MI);
463
464       // We can remove identity copies right now.
465       handleIdentityCopy(*MI);
466     }
467   }
468 }