]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
MFV r316934: 7340 receive manual origin should override automatic origin
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / ExecutionEngine / ExecutionEngineBindings.cpp
1 //===-- ExecutionEngineBindings.cpp - C bindings for EEs ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the C bindings for the ExecutionEngine library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-c/ExecutionEngine.h"
15 #include "llvm/ExecutionEngine/ExecutionEngine.h"
16 #include "llvm/ExecutionEngine/GenericValue.h"
17 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/CodeGenCWrappers.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include <cstring>
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "jit"
28
29 // Wrapping the C bindings types.
30 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef)
31
32
33 static LLVMTargetMachineRef wrap(const TargetMachine *P) {
34   return
35   reinterpret_cast<LLVMTargetMachineRef>(const_cast<TargetMachine*>(P));
36 }
37
38 /*===-- Operations on generic values --------------------------------------===*/
39
40 LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
41                                                 unsigned long long N,
42                                                 LLVMBool IsSigned) {
43   GenericValue *GenVal = new GenericValue();
44   GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned);
45   return wrap(GenVal);
46 }
47
48 LLVMGenericValueRef LLVMCreateGenericValueOfPointer(void *P) {
49   GenericValue *GenVal = new GenericValue();
50   GenVal->PointerVal = P;
51   return wrap(GenVal);
52 }
53
54 LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) {
55   GenericValue *GenVal = new GenericValue();
56   switch (unwrap(TyRef)->getTypeID()) {
57   case Type::FloatTyID:
58     GenVal->FloatVal = N;
59     break;
60   case Type::DoubleTyID:
61     GenVal->DoubleVal = N;
62     break;
63   default:
64     llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
65   }
66   return wrap(GenVal);
67 }
68
69 unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) {
70   return unwrap(GenValRef)->IntVal.getBitWidth();
71 }
72
73 unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef,
74                                          LLVMBool IsSigned) {
75   GenericValue *GenVal = unwrap(GenValRef);
76   if (IsSigned)
77     return GenVal->IntVal.getSExtValue();
78   else
79     return GenVal->IntVal.getZExtValue();
80 }
81
82 void *LLVMGenericValueToPointer(LLVMGenericValueRef GenVal) {
83   return unwrap(GenVal)->PointerVal;
84 }
85
86 double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) {
87   switch (unwrap(TyRef)->getTypeID()) {
88   case Type::FloatTyID:
89     return unwrap(GenVal)->FloatVal;
90   case Type::DoubleTyID:
91     return unwrap(GenVal)->DoubleVal;
92   default:
93     llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
94   }
95 }
96
97 void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) {
98   delete unwrap(GenVal);
99 }
100
101 /*===-- Operations on execution engines -----------------------------------===*/
102
103 LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE,
104                                             LLVMModuleRef M,
105                                             char **OutError) {
106   std::string Error;
107   EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
108   builder.setEngineKind(EngineKind::Either)
109          .setErrorStr(&Error);
110   if (ExecutionEngine *EE = builder.create()){
111     *OutEE = wrap(EE);
112     return 0;
113   }
114   *OutError = strdup(Error.c_str());
115   return 1;
116 }
117
118 LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp,
119                                         LLVMModuleRef M,
120                                         char **OutError) {
121   std::string Error;
122   EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
123   builder.setEngineKind(EngineKind::Interpreter)
124          .setErrorStr(&Error);
125   if (ExecutionEngine *Interp = builder.create()) {
126     *OutInterp = wrap(Interp);
127     return 0;
128   }
129   *OutError = strdup(Error.c_str());
130   return 1;
131 }
132
133 LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
134                                         LLVMModuleRef M,
135                                         unsigned OptLevel,
136                                         char **OutError) {
137   std::string Error;
138   EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
139   builder.setEngineKind(EngineKind::JIT)
140          .setErrorStr(&Error)
141          .setOptLevel((CodeGenOpt::Level)OptLevel);
142   if (ExecutionEngine *JIT = builder.create()) {
143     *OutJIT = wrap(JIT);
144     return 0;
145   }
146   *OutError = strdup(Error.c_str());
147   return 1;
148 }
149
150 void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions,
151                                         size_t SizeOfPassedOptions) {
152   LLVMMCJITCompilerOptions options;
153   memset(&options, 0, sizeof(options)); // Most fields are zero by default.
154   options.CodeModel = LLVMCodeModelJITDefault;
155   
156   memcpy(PassedOptions, &options,
157          std::min(sizeof(options), SizeOfPassedOptions));
158 }
159
160 LLVMBool LLVMCreateMCJITCompilerForModule(
161     LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M,
162     LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions,
163     char **OutError) {
164   LLVMMCJITCompilerOptions options;
165   // If the user passed a larger sized options struct, then they were compiled
166   // against a newer LLVM. Tell them that something is wrong.
167   if (SizeOfPassedOptions > sizeof(options)) {
168     *OutError = strdup(
169       "Refusing to use options struct that is larger than my own; assuming "
170       "LLVM library mismatch.");
171     return 1;
172   }
173   
174   // Defend against the user having an old version of the API by ensuring that
175   // any fields they didn't see are cleared. We must defend against fields being
176   // set to the bitwise equivalent of zero, and assume that this means "do the
177   // default" as if that option hadn't been available.
178   LLVMInitializeMCJITCompilerOptions(&options, sizeof(options));
179   memcpy(&options, PassedOptions, SizeOfPassedOptions);
180   
181   TargetOptions targetOptions;
182   targetOptions.EnableFastISel = options.EnableFastISel;
183   std::unique_ptr<Module> Mod(unwrap(M));
184
185   if (Mod)
186     // Set function attribute "no-frame-pointer-elim" based on
187     // NoFramePointerElim.
188     for (auto &F : *Mod) {
189       auto Attrs = F.getAttributes();
190       StringRef Value(options.NoFramePointerElim ? "true" : "false");
191       Attrs = Attrs.addAttribute(F.getContext(), AttributeList::FunctionIndex,
192                                  "no-frame-pointer-elim", Value);
193       F.setAttributes(Attrs);
194     }
195
196   std::string Error;
197   EngineBuilder builder(std::move(Mod));
198   builder.setEngineKind(EngineKind::JIT)
199          .setErrorStr(&Error)
200          .setOptLevel((CodeGenOpt::Level)options.OptLevel)
201          .setCodeModel(unwrap(options.CodeModel))
202          .setTargetOptions(targetOptions);
203   if (options.MCJMM)
204     builder.setMCJITMemoryManager(
205       std::unique_ptr<RTDyldMemoryManager>(unwrap(options.MCJMM)));
206   if (ExecutionEngine *JIT = builder.create()) {
207     *OutJIT = wrap(JIT);
208     return 0;
209   }
210   *OutError = strdup(Error.c_str());
211   return 1;
212 }
213
214 void LLVMDisposeExecutionEngine(LLVMExecutionEngineRef EE) {
215   delete unwrap(EE);
216 }
217
218 void LLVMRunStaticConstructors(LLVMExecutionEngineRef EE) {
219   unwrap(EE)->finalizeObject();
220   unwrap(EE)->runStaticConstructorsDestructors(false);
221 }
222
223 void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) {
224   unwrap(EE)->finalizeObject();
225   unwrap(EE)->runStaticConstructorsDestructors(true);
226 }
227
228 int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
229                           unsigned ArgC, const char * const *ArgV,
230                           const char * const *EnvP) {
231   unwrap(EE)->finalizeObject();
232
233   std::vector<std::string> ArgVec(ArgV, ArgV + ArgC);
234   return unwrap(EE)->runFunctionAsMain(unwrap<Function>(F), ArgVec, EnvP);
235 }
236
237 LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
238                                     unsigned NumArgs,
239                                     LLVMGenericValueRef *Args) {
240   unwrap(EE)->finalizeObject();
241   
242   std::vector<GenericValue> ArgVec;
243   ArgVec.reserve(NumArgs);
244   for (unsigned I = 0; I != NumArgs; ++I)
245     ArgVec.push_back(*unwrap(Args[I]));
246   
247   GenericValue *Result = new GenericValue();
248   *Result = unwrap(EE)->runFunction(unwrap<Function>(F), ArgVec);
249   return wrap(Result);
250 }
251
252 void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
253 }
254
255 void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
256   unwrap(EE)->addModule(std::unique_ptr<Module>(unwrap(M)));
257 }
258
259 LLVMBool LLVMRemoveModule(LLVMExecutionEngineRef EE, LLVMModuleRef M,
260                           LLVMModuleRef *OutMod, char **OutError) {
261   Module *Mod = unwrap(M);
262   unwrap(EE)->removeModule(Mod);
263   *OutMod = wrap(Mod);
264   return 0;
265 }
266
267 LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
268                           LLVMValueRef *OutFn) {
269   if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) {
270     *OutFn = wrap(F);
271     return 0;
272   }
273   return 1;
274 }
275
276 void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
277                                      LLVMValueRef Fn) {
278   return nullptr;
279 }
280
281 LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
282   return wrap(&unwrap(EE)->getDataLayout());
283 }
284
285 LLVMTargetMachineRef
286 LLVMGetExecutionEngineTargetMachine(LLVMExecutionEngineRef EE) {
287   return wrap(unwrap(EE)->getTargetMachine());
288 }
289
290 void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
291                           void* Addr) {
292   unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr);
293 }
294
295 void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
296   unwrap(EE)->finalizeObject();
297   
298   return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
299 }
300
301 uint64_t LLVMGetGlobalValueAddress(LLVMExecutionEngineRef EE, const char *Name) {
302   return unwrap(EE)->getGlobalValueAddress(Name);
303 }
304
305 uint64_t LLVMGetFunctionAddress(LLVMExecutionEngineRef EE, const char *Name) {
306   return unwrap(EE)->getFunctionAddress(Name);
307 }
308
309 /*===-- Operations on memory managers -------------------------------------===*/
310
311 namespace {
312
313 struct SimpleBindingMMFunctions {
314   LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection;
315   LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection;
316   LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory;
317   LLVMMemoryManagerDestroyCallback Destroy;
318 };
319
320 class SimpleBindingMemoryManager : public RTDyldMemoryManager {
321 public:
322   SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions,
323                              void *Opaque);
324   ~SimpleBindingMemoryManager() override;
325
326   uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
327                                unsigned SectionID,
328                                StringRef SectionName) override;
329
330   uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
331                                unsigned SectionID, StringRef SectionName,
332                                bool isReadOnly) override;
333
334   bool finalizeMemory(std::string *ErrMsg) override;
335
336 private:
337   SimpleBindingMMFunctions Functions;
338   void *Opaque;
339 };
340
341 SimpleBindingMemoryManager::SimpleBindingMemoryManager(
342   const SimpleBindingMMFunctions& Functions,
343   void *Opaque)
344   : Functions(Functions), Opaque(Opaque) {
345   assert(Functions.AllocateCodeSection &&
346          "No AllocateCodeSection function provided!");
347   assert(Functions.AllocateDataSection &&
348          "No AllocateDataSection function provided!");
349   assert(Functions.FinalizeMemory &&
350          "No FinalizeMemory function provided!");
351   assert(Functions.Destroy &&
352          "No Destroy function provided!");
353 }
354
355 SimpleBindingMemoryManager::~SimpleBindingMemoryManager() {
356   Functions.Destroy(Opaque);
357 }
358
359 uint8_t *SimpleBindingMemoryManager::allocateCodeSection(
360   uintptr_t Size, unsigned Alignment, unsigned SectionID,
361   StringRef SectionName) {
362   return Functions.AllocateCodeSection(Opaque, Size, Alignment, SectionID,
363                                        SectionName.str().c_str());
364 }
365
366 uint8_t *SimpleBindingMemoryManager::allocateDataSection(
367   uintptr_t Size, unsigned Alignment, unsigned SectionID,
368   StringRef SectionName, bool isReadOnly) {
369   return Functions.AllocateDataSection(Opaque, Size, Alignment, SectionID,
370                                        SectionName.str().c_str(),
371                                        isReadOnly);
372 }
373
374 bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) {
375   char *errMsgCString = nullptr;
376   bool result = Functions.FinalizeMemory(Opaque, &errMsgCString);
377   assert((result || !errMsgCString) &&
378          "Did not expect an error message if FinalizeMemory succeeded");
379   if (errMsgCString) {
380     if (ErrMsg)
381       *ErrMsg = errMsgCString;
382     free(errMsgCString);
383   }
384   return result;
385 }
386
387 } // anonymous namespace
388
389 LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager(
390   void *Opaque,
391   LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection,
392   LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection,
393   LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory,
394   LLVMMemoryManagerDestroyCallback Destroy) {
395   
396   if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory ||
397       !Destroy)
398     return nullptr;
399   
400   SimpleBindingMMFunctions functions;
401   functions.AllocateCodeSection = AllocateCodeSection;
402   functions.AllocateDataSection = AllocateDataSection;
403   functions.FinalizeMemory = FinalizeMemory;
404   functions.Destroy = Destroy;
405   return wrap(new SimpleBindingMemoryManager(functions, Opaque));
406 }
407
408 void LLVMDisposeMCJITMemoryManager(LLVMMCJITMemoryManagerRef MM) {
409   delete unwrap(MM);
410 }
411