]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
Upgrade Unbound to 1.6.1. More to follow.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains both code to deal with invoking "external" functions, but
11 //  also contains code that implements "exported" external functions.
12 //
13 //  There are currently two mechanisms for handling external functions in the
14 //  Interpreter.  The first is to implement lle_* wrapper functions that are
15 //  specific to well-known library functions which manually translate the
16 //  arguments from GenericValues and make the call.  If such a wrapper does
17 //  not exist, and libffi is available, then the Interpreter will attempt to
18 //  invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "Interpreter.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/Config/config.h" // Detect libffi
26 #include "llvm/ExecutionEngine/GenericValue.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/Mutex.h"
36 #include "llvm/Support/UniqueLock.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cmath>
40 #include <csignal>
41 #include <cstdint>
42 #include <cstdio>
43 #include <cstring>
44 #include <map>
45 #include <string>
46 #include <utility>
47 #include <vector>
48
49 #ifdef HAVE_FFI_CALL
50 #ifdef HAVE_FFI_H
51 #include <ffi.h>
52 #define USE_LIBFFI
53 #elif HAVE_FFI_FFI_H
54 #include <ffi/ffi.h>
55 #define USE_LIBFFI
56 #endif
57 #endif
58
59 using namespace llvm;
60
61 static ManagedStatic<sys::Mutex> FunctionsLock;
62
63 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
64 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
65 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
66
67 #ifdef USE_LIBFFI
68 typedef void (*RawFunc)();
69 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
70 #endif
71
72 static Interpreter *TheInterpreter;
73
74 static char getTypeID(Type *Ty) {
75   switch (Ty->getTypeID()) {
76   case Type::VoidTyID:    return 'V';
77   case Type::IntegerTyID:
78     switch (cast<IntegerType>(Ty)->getBitWidth()) {
79       case 1:  return 'o';
80       case 8:  return 'B';
81       case 16: return 'S';
82       case 32: return 'I';
83       case 64: return 'L';
84       default: return 'N';
85     }
86   case Type::FloatTyID:   return 'F';
87   case Type::DoubleTyID:  return 'D';
88   case Type::PointerTyID: return 'P';
89   case Type::FunctionTyID:return 'M';
90   case Type::StructTyID:  return 'T';
91   case Type::ArrayTyID:   return 'A';
92   default: return 'U';
93   }
94 }
95
96 // Try to find address of external function given a Function object.
97 // Please note, that interpreter doesn't know how to assemble a
98 // real call in general case (this is JIT job), that's why it assumes,
99 // that all external functions has the same (and pretty "general") signature.
100 // The typical example of such functions are "lle_X_" ones.
101 static ExFunc lookupFunction(const Function *F) {
102   // Function not found, look it up... start by figuring out what the
103   // composite function name should be.
104   std::string ExtName = "lle_";
105   FunctionType *FT = F->getFunctionType();
106   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
107     ExtName += getTypeID(FT->getContainedType(i));
108   ExtName += ("_" + F->getName()).str();
109
110   sys::ScopedLock Writer(*FunctionsLock);
111   ExFunc FnPtr = (*FuncNames)[ExtName];
112   if (!FnPtr)
113     FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
114   if (!FnPtr)  // Try calling a generic function... if it exists...
115     FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
116         ("lle_X_" + F->getName()).str());
117   if (FnPtr)
118     ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
119   return FnPtr;
120 }
121
122 #ifdef USE_LIBFFI
123 static ffi_type *ffiTypeFor(Type *Ty) {
124   switch (Ty->getTypeID()) {
125     case Type::VoidTyID: return &ffi_type_void;
126     case Type::IntegerTyID:
127       switch (cast<IntegerType>(Ty)->getBitWidth()) {
128         case 8:  return &ffi_type_sint8;
129         case 16: return &ffi_type_sint16;
130         case 32: return &ffi_type_sint32;
131         case 64: return &ffi_type_sint64;
132       }
133     case Type::FloatTyID:   return &ffi_type_float;
134     case Type::DoubleTyID:  return &ffi_type_double;
135     case Type::PointerTyID: return &ffi_type_pointer;
136     default: break;
137   }
138   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
139   report_fatal_error("Type could not be mapped for use with libffi.");
140   return NULL;
141 }
142
143 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
144                          void *ArgDataPtr) {
145   switch (Ty->getTypeID()) {
146     case Type::IntegerTyID:
147       switch (cast<IntegerType>(Ty)->getBitWidth()) {
148         case 8: {
149           int8_t *I8Ptr = (int8_t *) ArgDataPtr;
150           *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
151           return ArgDataPtr;
152         }
153         case 16: {
154           int16_t *I16Ptr = (int16_t *) ArgDataPtr;
155           *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
156           return ArgDataPtr;
157         }
158         case 32: {
159           int32_t *I32Ptr = (int32_t *) ArgDataPtr;
160           *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
161           return ArgDataPtr;
162         }
163         case 64: {
164           int64_t *I64Ptr = (int64_t *) ArgDataPtr;
165           *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
166           return ArgDataPtr;
167         }
168       }
169     case Type::FloatTyID: {
170       float *FloatPtr = (float *) ArgDataPtr;
171       *FloatPtr = AV.FloatVal;
172       return ArgDataPtr;
173     }
174     case Type::DoubleTyID: {
175       double *DoublePtr = (double *) ArgDataPtr;
176       *DoublePtr = AV.DoubleVal;
177       return ArgDataPtr;
178     }
179     case Type::PointerTyID: {
180       void **PtrPtr = (void **) ArgDataPtr;
181       *PtrPtr = GVTOP(AV);
182       return ArgDataPtr;
183     }
184     default: break;
185   }
186   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
187   report_fatal_error("Type value could not be mapped for use with libffi.");
188   return NULL;
189 }
190
191 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
192                       const DataLayout &TD, GenericValue &Result) {
193   ffi_cif cif;
194   FunctionType *FTy = F->getFunctionType();
195   const unsigned NumArgs = F->arg_size();
196
197   // TODO: We don't have type information about the remaining arguments, because
198   // this information is never passed into ExecutionEngine::runFunction().
199   if (ArgVals.size() > NumArgs && F->isVarArg()) {
200     report_fatal_error("Calling external var arg function '" + F->getName()
201                       + "' is not supported by the Interpreter.");
202   }
203
204   unsigned ArgBytes = 0;
205
206   std::vector<ffi_type*> args(NumArgs);
207   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
208        A != E; ++A) {
209     const unsigned ArgNo = A->getArgNo();
210     Type *ArgTy = FTy->getParamType(ArgNo);
211     args[ArgNo] = ffiTypeFor(ArgTy);
212     ArgBytes += TD.getTypeStoreSize(ArgTy);
213   }
214
215   SmallVector<uint8_t, 128> ArgData;
216   ArgData.resize(ArgBytes);
217   uint8_t *ArgDataPtr = ArgData.data();
218   SmallVector<void*, 16> values(NumArgs);
219   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
220        A != E; ++A) {
221     const unsigned ArgNo = A->getArgNo();
222     Type *ArgTy = FTy->getParamType(ArgNo);
223     values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
224     ArgDataPtr += TD.getTypeStoreSize(ArgTy);
225   }
226
227   Type *RetTy = FTy->getReturnType();
228   ffi_type *rtype = ffiTypeFor(RetTy);
229
230   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
231     SmallVector<uint8_t, 128> ret;
232     if (RetTy->getTypeID() != Type::VoidTyID)
233       ret.resize(TD.getTypeStoreSize(RetTy));
234     ffi_call(&cif, Fn, ret.data(), values.data());
235     switch (RetTy->getTypeID()) {
236       case Type::IntegerTyID:
237         switch (cast<IntegerType>(RetTy)->getBitWidth()) {
238           case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
239           case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
240           case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
241           case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
242         }
243         break;
244       case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
245       case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
246       case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
247       default: break;
248     }
249     return true;
250   }
251
252   return false;
253 }
254 #endif // USE_LIBFFI
255
256 GenericValue Interpreter::callExternalFunction(Function *F,
257                                                ArrayRef<GenericValue> ArgVals) {
258   TheInterpreter = this;
259
260   unique_lock<sys::Mutex> Guard(*FunctionsLock);
261
262   // Do a lookup to see if the function is in our cache... this should just be a
263   // deferred annotation!
264   std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
265   if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
266                                                    : FI->second) {
267     Guard.unlock();
268     return Fn(F->getFunctionType(), ArgVals);
269   }
270
271 #ifdef USE_LIBFFI
272   std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
273   RawFunc RawFn;
274   if (RF == RawFunctions->end()) {
275     RawFn = (RawFunc)(intptr_t)
276       sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
277     if (!RawFn)
278       RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
279     if (RawFn != 0)
280       RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
281   } else {
282     RawFn = RF->second;
283   }
284
285   Guard.unlock();
286
287   GenericValue Result;
288   if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
289     return Result;
290 #endif // USE_LIBFFI
291
292   if (F->getName() == "__main")
293     errs() << "Tried to execute an unknown external function: "
294       << *F->getType() << " __main\n";
295   else
296     report_fatal_error("Tried to execute an unknown external function: " +
297                        F->getName());
298 #ifndef USE_LIBFFI
299   errs() << "Recompiling LLVM with --enable-libffi might help.\n";
300 #endif
301   return GenericValue();
302 }
303
304 //===----------------------------------------------------------------------===//
305 //  Functions "exported" to the running application...
306 //
307
308 // void atexit(Function*)
309 static GenericValue lle_X_atexit(FunctionType *FT,
310                                  ArrayRef<GenericValue> Args) {
311   assert(Args.size() == 1);
312   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
313   GenericValue GV;
314   GV.IntVal = 0;
315   return GV;
316 }
317
318 // void exit(int)
319 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
320   TheInterpreter->exitCalled(Args[0]);
321   return GenericValue();
322 }
323
324 // void abort(void)
325 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
326   //FIXME: should we report or raise here?
327   //report_fatal_error("Interpreted program raised SIGABRT");
328   raise (SIGABRT);
329   return GenericValue();
330 }
331
332 // int sprintf(char *, const char *, ...) - a very rough implementation to make
333 // output useful.
334 static GenericValue lle_X_sprintf(FunctionType *FT,
335                                   ArrayRef<GenericValue> Args) {
336   char *OutputBuffer = (char *)GVTOP(Args[0]);
337   const char *FmtStr = (const char *)GVTOP(Args[1]);
338   unsigned ArgNo = 2;
339
340   // printf should return # chars printed.  This is completely incorrect, but
341   // close enough for now.
342   GenericValue GV;
343   GV.IntVal = APInt(32, strlen(FmtStr));
344   while (true) {
345     switch (*FmtStr) {
346     case 0: return GV;             // Null terminator...
347     default:                       // Normal nonspecial character
348       sprintf(OutputBuffer++, "%c", *FmtStr++);
349       break;
350     case '\\': {                   // Handle escape codes
351       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
352       FmtStr += 2; OutputBuffer += 2;
353       break;
354     }
355     case '%': {                    // Handle format specifiers
356       char FmtBuf[100] = "", Buffer[1000] = "";
357       char *FB = FmtBuf;
358       *FB++ = *FmtStr++;
359       char Last = *FB++ = *FmtStr++;
360       unsigned HowLong = 0;
361       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
362              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
363              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
364              Last != 'p' && Last != 's' && Last != '%') {
365         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
366         Last = *FB++ = *FmtStr++;
367       }
368       *FB = 0;
369
370       switch (Last) {
371       case '%':
372         memcpy(Buffer, "%", 2); break;
373       case 'c':
374         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
375         break;
376       case 'd': case 'i':
377       case 'u': case 'o':
378       case 'x': case 'X':
379         if (HowLong >= 1) {
380           if (HowLong == 1 &&
381               TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
382               sizeof(long) < sizeof(int64_t)) {
383             // Make sure we use %lld with a 64 bit argument because we might be
384             // compiling LLI on a 32 bit compiler.
385             unsigned Size = strlen(FmtBuf);
386             FmtBuf[Size] = FmtBuf[Size-1];
387             FmtBuf[Size+1] = 0;
388             FmtBuf[Size-1] = 'l';
389           }
390           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
391         } else
392           sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
393         break;
394       case 'e': case 'E': case 'g': case 'G': case 'f':
395         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
396       case 'p':
397         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
398       case 's':
399         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
400       default:
401         errs() << "<unknown printf code '" << *FmtStr << "'!>";
402         ArgNo++; break;
403       }
404       size_t Len = strlen(Buffer);
405       memcpy(OutputBuffer, Buffer, Len + 1);
406       OutputBuffer += Len;
407       }
408       break;
409     }
410   }
411   return GV;
412 }
413
414 // int printf(const char *, ...) - a very rough implementation to make output
415 // useful.
416 static GenericValue lle_X_printf(FunctionType *FT,
417                                  ArrayRef<GenericValue> Args) {
418   char Buffer[10000];
419   std::vector<GenericValue> NewArgs;
420   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
421   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
422   GenericValue GV = lle_X_sprintf(FT, NewArgs);
423   outs() << Buffer;
424   return GV;
425 }
426
427 // int sscanf(const char *format, ...);
428 static GenericValue lle_X_sscanf(FunctionType *FT,
429                                  ArrayRef<GenericValue> args) {
430   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
431
432   char *Args[10];
433   for (unsigned i = 0; i < args.size(); ++i)
434     Args[i] = (char*)GVTOP(args[i]);
435
436   GenericValue GV;
437   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438                     Args[5], Args[6], Args[7], Args[8], Args[9]));
439   return GV;
440 }
441
442 // int scanf(const char *format, ...);
443 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
444   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
445
446   char *Args[10];
447   for (unsigned i = 0; i < args.size(); ++i)
448     Args[i] = (char*)GVTOP(args[i]);
449
450   GenericValue GV;
451   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
452                     Args[5], Args[6], Args[7], Args[8], Args[9]));
453   return GV;
454 }
455
456 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
457 // output useful.
458 static GenericValue lle_X_fprintf(FunctionType *FT,
459                                   ArrayRef<GenericValue> Args) {
460   assert(Args.size() >= 2);
461   char Buffer[10000];
462   std::vector<GenericValue> NewArgs;
463   NewArgs.push_back(PTOGV(Buffer));
464   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
465   GenericValue GV = lle_X_sprintf(FT, NewArgs);
466
467   fputs(Buffer, (FILE *) GVTOP(Args[0]));
468   return GV;
469 }
470
471 static GenericValue lle_X_memset(FunctionType *FT,
472                                  ArrayRef<GenericValue> Args) {
473   int val = (int)Args[1].IntVal.getSExtValue();
474   size_t len = (size_t)Args[2].IntVal.getZExtValue();
475   memset((void *)GVTOP(Args[0]), val, len);
476   // llvm.memset.* returns void, lle_X_* returns GenericValue,
477   // so here we return GenericValue with IntVal set to zero
478   GenericValue GV;
479   GV.IntVal = 0;
480   return GV;
481 }
482
483 static GenericValue lle_X_memcpy(FunctionType *FT,
484                                  ArrayRef<GenericValue> Args) {
485   memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
486          (size_t)(Args[2].IntVal.getLimitedValue()));
487
488   // llvm.memcpy* returns void, lle_X_* returns GenericValue,
489   // so here we return GenericValue with IntVal set to zero
490   GenericValue GV;
491   GV.IntVal = 0;
492   return GV;
493 }
494
495 void Interpreter::initializeExternalFunctions() {
496   sys::ScopedLock Writer(*FunctionsLock);
497   (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
498   (*FuncNames)["lle_X_exit"]         = lle_X_exit;
499   (*FuncNames)["lle_X_abort"]        = lle_X_abort;
500
501   (*FuncNames)["lle_X_printf"]       = lle_X_printf;
502   (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
503   (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
504   (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
505   (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
506   (*FuncNames)["lle_X_memset"]       = lle_X_memset;
507   (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
508 }