]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / ExecutionEngine / Orc / OrcMCJITReplacement.h
1 //===- OrcMCJITReplacement.h - Orc based MCJIT replacement ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Orc based MCJIT replacement.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
15 #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ExecutionEngine/ExecutionEngine.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ExecutionEngine/JITSymbol.h"
23 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
24 #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
25 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
26 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
27 #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
28 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
29 #include "llvm/ExecutionEngine/RuntimeDyld.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/Binary.h"
36 #include "llvm/Object/ObjectFile.h"
37 #include "llvm/Support/Error.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstddef>
44 #include <cstdint>
45 #include <map>
46 #include <memory>
47 #include <set>
48 #include <string>
49 #include <vector>
50
51 namespace llvm {
52
53 class ObjectCache;
54
55 namespace orc {
56
57 class OrcMCJITReplacement : public ExecutionEngine {
58
59   // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
60   // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
61   // expecting - see finalizeMemory.
62   class MCJITReplacementMemMgr : public MCJITMemoryManager {
63   public:
64     MCJITReplacementMemMgr(OrcMCJITReplacement &M,
65                            std::shared_ptr<MCJITMemoryManager> ClientMM)
66       : M(M), ClientMM(std::move(ClientMM)) {}
67
68     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
69                                  unsigned SectionID,
70                                  StringRef SectionName) override {
71       uint8_t *Addr =
72           ClientMM->allocateCodeSection(Size, Alignment, SectionID,
73                                         SectionName);
74       M.SectionsAllocatedSinceLastLoad.insert(Addr);
75       return Addr;
76     }
77
78     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
79                                  unsigned SectionID, StringRef SectionName,
80                                  bool IsReadOnly) override {
81       uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
82                                                     SectionName, IsReadOnly);
83       M.SectionsAllocatedSinceLastLoad.insert(Addr);
84       return Addr;
85     }
86
87     void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
88                                 uintptr_t RODataSize, uint32_t RODataAlign,
89                                 uintptr_t RWDataSize,
90                                 uint32_t RWDataAlign) override {
91       return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign,
92                                               RODataSize, RODataAlign,
93                                               RWDataSize, RWDataAlign);
94     }
95
96     bool needsToReserveAllocationSpace() override {
97       return ClientMM->needsToReserveAllocationSpace();
98     }
99
100     void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
101                           size_t Size) override {
102       return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
103     }
104
105     void deregisterEHFrames() override {
106       return ClientMM->deregisterEHFrames();
107     }
108
109     void notifyObjectLoaded(RuntimeDyld &RTDyld,
110                             const object::ObjectFile &O) override {
111       return ClientMM->notifyObjectLoaded(RTDyld, O);
112     }
113
114     void notifyObjectLoaded(ExecutionEngine *EE,
115                             const object::ObjectFile &O) override {
116       return ClientMM->notifyObjectLoaded(EE, O);
117     }
118
119     bool finalizeMemory(std::string *ErrMsg = nullptr) override {
120       // Each set of objects loaded will be finalized exactly once, but since
121       // symbol lookup during relocation may recursively trigger the
122       // loading/relocation of other modules, and since we're forwarding all
123       // finalizeMemory calls to a single underlying memory manager, we need to
124       // defer forwarding the call on until all necessary objects have been
125       // loaded. Otherwise, during the relocation of a leaf object, we will end
126       // up finalizing memory, causing a crash further up the stack when we
127       // attempt to apply relocations to finalized memory.
128       // To avoid finalizing too early, look at how many objects have been
129       // loaded but not yet finalized. This is a bit of a hack that relies on
130       // the fact that we're lazily emitting object files: The only way you can
131       // get more than one set of objects loaded but not yet finalized is if
132       // they were loaded during relocation of another set.
133       if (M.UnfinalizedSections.size() == 1)
134         return ClientMM->finalizeMemory(ErrMsg);
135       return false;
136     }
137
138   private:
139     OrcMCJITReplacement &M;
140     std::shared_ptr<MCJITMemoryManager> ClientMM;
141   };
142
143   class LinkingORCResolver : public orc::SymbolResolver {
144   public:
145     LinkingORCResolver(OrcMCJITReplacement &M) : M(M) {}
146
147     SymbolFlagsMap lookupFlags(const SymbolNameSet &Symbols) override {
148       SymbolFlagsMap SymbolFlags;
149
150       for (auto &S : Symbols) {
151         if (auto Sym = M.findMangledSymbol(*S)) {
152           SymbolFlags[S] = Sym.getFlags();
153         } else if (auto Err = Sym.takeError()) {
154           M.reportError(std::move(Err));
155           return SymbolFlagsMap();
156         } else {
157           if (auto Sym2 = M.ClientResolver->findSymbolInLogicalDylib(*S)) {
158             SymbolFlags[S] = Sym2.getFlags();
159           } else if (auto Err = Sym2.takeError()) {
160             M.reportError(std::move(Err));
161             return SymbolFlagsMap();
162           }
163         }
164       }
165
166       return SymbolFlags;
167     }
168
169     SymbolNameSet lookup(std::shared_ptr<AsynchronousSymbolQuery> Query,
170                          SymbolNameSet Symbols) override {
171       SymbolNameSet UnresolvedSymbols;
172       bool NewSymbolsResolved = false;
173
174       for (auto &S : Symbols) {
175         if (auto Sym = M.findMangledSymbol(*S)) {
176           if (auto Addr = Sym.getAddress()) {
177             Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym.getFlags()));
178             Query->notifySymbolReady();
179             NewSymbolsResolved = true;
180           } else {
181             M.ES.legacyFailQuery(*Query, Addr.takeError());
182             return SymbolNameSet();
183           }
184         } else if (auto Err = Sym.takeError()) {
185           M.ES.legacyFailQuery(*Query, std::move(Err));
186           return SymbolNameSet();
187         } else {
188           if (auto Sym2 = M.ClientResolver->findSymbol(*S)) {
189             if (auto Addr = Sym2.getAddress()) {
190               Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym2.getFlags()));
191               Query->notifySymbolReady();
192               NewSymbolsResolved = true;
193             } else {
194               M.ES.legacyFailQuery(*Query, Addr.takeError());
195               return SymbolNameSet();
196             }
197           } else if (auto Err = Sym2.takeError()) {
198             M.ES.legacyFailQuery(*Query, std::move(Err));
199             return SymbolNameSet();
200           } else
201             UnresolvedSymbols.insert(S);
202         }
203       }
204
205       if (NewSymbolsResolved && Query->isFullyResolved())
206         Query->handleFullyResolved();
207
208       if (NewSymbolsResolved && Query->isFullyReady())
209         Query->handleFullyReady();
210
211       return UnresolvedSymbols;
212     }
213
214   private:
215     OrcMCJITReplacement &M;
216   };
217
218 private:
219   static ExecutionEngine *
220   createOrcMCJITReplacement(std::string *ErrorMsg,
221                             std::shared_ptr<MCJITMemoryManager> MemMgr,
222                             std::shared_ptr<LegacyJITSymbolResolver> Resolver,
223                             std::unique_ptr<TargetMachine> TM) {
224     return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
225                                    std::move(TM));
226   }
227
228   void reportError(Error Err) {
229     logAllUnhandledErrors(std::move(Err), errs(), "MCJIT error: ");
230   }
231
232 public:
233   OrcMCJITReplacement(std::shared_ptr<MCJITMemoryManager> MemMgr,
234                       std::shared_ptr<LegacyJITSymbolResolver> ClientResolver,
235                       std::unique_ptr<TargetMachine> TM)
236       : ExecutionEngine(TM->createDataLayout()),
237         TM(std::move(TM)),
238         MemMgr(
239             std::make_shared<MCJITReplacementMemMgr>(*this, std::move(MemMgr))),
240         Resolver(std::make_shared<LinkingORCResolver>(*this)),
241         ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
242         NotifyFinalized(*this),
243         ObjectLayer(
244             ES,
245             [this](VModuleKey K) {
246               return ObjectLayerT::Resources{this->MemMgr, this->Resolver};
247             },
248             NotifyObjectLoaded, NotifyFinalized),
249         CompileLayer(ObjectLayer, SimpleCompiler(*this->TM),
250                      [this](VModuleKey K, std::unique_ptr<Module> M) {
251                        Modules.push_back(std::move(M));
252                      }),
253         LazyEmitLayer(CompileLayer) {}
254
255   static void Register() {
256     OrcMCJITReplacementCtor = createOrcMCJITReplacement;
257   }
258
259   void addModule(std::unique_ptr<Module> M) override {
260     // If this module doesn't have a DataLayout attached then attach the
261     // default.
262     if (M->getDataLayout().isDefault()) {
263       M->setDataLayout(getDataLayout());
264     } else {
265       assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
266     }
267
268     // Rename, bump linkage and record static constructors and destructors.
269     // We have to do this before we hand over ownership of the module to the
270     // JIT.
271     std::vector<std::string> CtorNames, DtorNames;
272     {
273       unsigned CtorId = 0, DtorId = 0;
274       for (auto Ctor : orc::getConstructors(*M)) {
275         std::string NewCtorName = ("$static_ctor." + Twine(CtorId++)).str();
276         Ctor.Func->setName(NewCtorName);
277         Ctor.Func->setLinkage(GlobalValue::ExternalLinkage);
278         Ctor.Func->setVisibility(GlobalValue::HiddenVisibility);
279         CtorNames.push_back(mangle(NewCtorName));
280       }
281       for (auto Dtor : orc::getDestructors(*M)) {
282         std::string NewDtorName = ("$static_dtor." + Twine(DtorId++)).str();
283         dbgs() << "Found dtor: " << NewDtorName << "\n";
284         Dtor.Func->setName(NewDtorName);
285         Dtor.Func->setLinkage(GlobalValue::ExternalLinkage);
286         Dtor.Func->setVisibility(GlobalValue::HiddenVisibility);
287         DtorNames.push_back(mangle(NewDtorName));
288       }
289     }
290
291     auto K = ES.allocateVModule();
292
293     UnexecutedConstructors[K] = std::move(CtorNames);
294     UnexecutedDestructors[K] = std::move(DtorNames);
295
296     cantFail(LazyEmitLayer.addModule(K, std::move(M)));
297   }
298
299   void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
300     cantFail(ObjectLayer.addObject(
301         ES.allocateVModule(), MemoryBuffer::getMemBufferCopy(O->getData())));
302   }
303
304   void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
305     std::unique_ptr<object::ObjectFile> Obj;
306     std::unique_ptr<MemoryBuffer> ObjBuffer;
307     std::tie(Obj, ObjBuffer) = O.takeBinary();
308     cantFail(ObjectLayer.addObject(ES.allocateVModule(), std::move(ObjBuffer)));
309   }
310
311   void addArchive(object::OwningBinary<object::Archive> A) override {
312     Archives.push_back(std::move(A));
313   }
314
315   bool removeModule(Module *M) override {
316     auto I = Modules.begin();
317     for (auto E = Modules.end(); I != E; ++I)
318       if (I->get() == M)
319         break;
320     if (I == Modules.end())
321       return false;
322     Modules.erase(I);
323     return true;
324   }
325
326   uint64_t getSymbolAddress(StringRef Name) {
327     return cantFail(findSymbol(Name).getAddress());
328   }
329
330   JITSymbol findSymbol(StringRef Name) {
331     return findMangledSymbol(mangle(Name));
332   }
333
334   void finalizeObject() override {
335     // This is deprecated - Aim to remove in ExecutionEngine.
336     // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
337   }
338
339   void mapSectionAddress(const void *LocalAddress,
340                          uint64_t TargetAddress) override {
341     for (auto &P : UnfinalizedSections)
342       if (P.second.count(LocalAddress))
343         ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
344   }
345
346   uint64_t getGlobalValueAddress(const std::string &Name) override {
347     return getSymbolAddress(Name);
348   }
349
350   uint64_t getFunctionAddress(const std::string &Name) override {
351     return getSymbolAddress(Name);
352   }
353
354   void *getPointerToFunction(Function *F) override {
355     uint64_t FAddr = getSymbolAddress(F->getName());
356     return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
357   }
358
359   void *getPointerToNamedFunction(StringRef Name,
360                                   bool AbortOnFailure = true) override {
361     uint64_t Addr = getSymbolAddress(Name);
362     if (!Addr && AbortOnFailure)
363       llvm_unreachable("Missing symbol!");
364     return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
365   }
366
367   GenericValue runFunction(Function *F,
368                            ArrayRef<GenericValue> ArgValues) override;
369
370   void setObjectCache(ObjectCache *NewCache) override {
371     CompileLayer.getCompiler().setObjectCache(NewCache);
372   }
373
374   void setProcessAllSections(bool ProcessAllSections) override {
375     ObjectLayer.setProcessAllSections(ProcessAllSections);
376   }
377
378   void runStaticConstructorsDestructors(bool isDtors) override;
379
380 private:
381   JITSymbol findMangledSymbol(StringRef Name) {
382     if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
383       return Sym;
384     if (auto Sym = ClientResolver->findSymbol(Name))
385       return Sym;
386     if (auto Sym = scanArchives(Name))
387       return Sym;
388
389     return nullptr;
390   }
391
392   JITSymbol scanArchives(StringRef Name) {
393     for (object::OwningBinary<object::Archive> &OB : Archives) {
394       object::Archive *A = OB.getBinary();
395       // Look for our symbols in each Archive
396       auto OptionalChildOrErr = A->findSym(Name);
397       if (!OptionalChildOrErr)
398         report_fatal_error(OptionalChildOrErr.takeError());
399       auto &OptionalChild = *OptionalChildOrErr;
400       if (OptionalChild) {
401         // FIXME: Support nested archives?
402         Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
403             OptionalChild->getAsBinary();
404         if (!ChildBinOrErr) {
405           // TODO: Actually report errors helpfully.
406           consumeError(ChildBinOrErr.takeError());
407           continue;
408         }
409         std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
410         if (ChildBin->isObject()) {
411           cantFail(ObjectLayer.addObject(
412               ES.allocateVModule(),
413               MemoryBuffer::getMemBufferCopy(ChildBin->getData())));
414           if (auto Sym = ObjectLayer.findSymbol(Name, true))
415             return Sym;
416         }
417       }
418     }
419     return nullptr;
420   }
421
422   class NotifyObjectLoadedT {
423   public:
424     using LoadedObjInfoListT =
425         std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>;
426
427     NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
428
429     void operator()(VModuleKey K, const object::ObjectFile &Obj,
430                     const RuntimeDyld::LoadedObjectInfo &Info) const {
431       M.UnfinalizedSections[K] = std::move(M.SectionsAllocatedSinceLastLoad);
432       M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
433       M.MemMgr->notifyObjectLoaded(&M, Obj);
434     }
435   private:
436     OrcMCJITReplacement &M;
437   };
438
439   class NotifyFinalizedT {
440   public:
441     NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
442
443     void operator()(VModuleKey K, const object::ObjectFile &Obj,
444                     const RuntimeDyld::LoadedObjectInfo &Info) {
445       M.UnfinalizedSections.erase(K);
446     }
447
448   private:
449     OrcMCJITReplacement &M;
450   };
451
452   std::string mangle(StringRef Name) {
453     std::string MangledName;
454     {
455       raw_string_ostream MangledNameStream(MangledName);
456       Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
457     }
458     return MangledName;
459   }
460
461   using ObjectLayerT = RTDyldObjectLinkingLayer;
462   using CompileLayerT = IRCompileLayer<ObjectLayerT, orc::SimpleCompiler>;
463   using LazyEmitLayerT = LazyEmittingLayer<CompileLayerT>;
464
465   ExecutionSession ES;
466
467   std::unique_ptr<TargetMachine> TM;
468   std::shared_ptr<MCJITReplacementMemMgr> MemMgr;
469   std::shared_ptr<LinkingORCResolver> Resolver;
470   std::shared_ptr<LegacyJITSymbolResolver> ClientResolver;
471   Mangler Mang;
472
473   // IMPORTANT: ShouldDelete *must* come before LocalModules: The shared_ptr
474   // delete blocks in LocalModules refer to the ShouldDelete map, so
475   // LocalModules needs to be destructed before ShouldDelete.
476   std::map<Module*, bool> ShouldDelete;
477
478   NotifyObjectLoadedT NotifyObjectLoaded;
479   NotifyFinalizedT NotifyFinalized;
480
481   ObjectLayerT ObjectLayer;
482   CompileLayerT CompileLayer;
483   LazyEmitLayerT LazyEmitLayer;
484
485   std::map<VModuleKey, std::vector<std::string>> UnexecutedConstructors;
486   std::map<VModuleKey, std::vector<std::string>> UnexecutedDestructors;
487
488   // We need to store ObjLayerT::ObjSetHandles for each of the object sets
489   // that have been emitted but not yet finalized so that we can forward the
490   // mapSectionAddress calls appropriately.
491   using SectionAddrSet = std::set<const void *>;
492   SectionAddrSet SectionsAllocatedSinceLastLoad;
493   std::map<VModuleKey, SectionAddrSet> UnfinalizedSections;
494
495   std::vector<object::OwningBinary<object::Archive>> Archives;
496 };
497
498 } // end namespace orc
499
500 } // end namespace llvm
501
502 #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H