]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MemoryBuffer.h"
25
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::support::endian;
29
30 #define DEBUG_TYPE "dyld"
31
32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33
34 static void or32AArch64Imm(void *L, uint64_t Imm) {
35   or32le(L, (Imm & 0xFFF) << 10);
36 }
37
38 template <class T> static void write(bool isBE, void *P, T V) {
39   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
40 }
41
42 static void write32AArch64Addr(void *L, uint64_t Imm) {
43   uint32_t ImmLo = (Imm & 0x3) << 29;
44   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47 }
48
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 static uint64_t getBits(uint64_t Val, int Start, int End) {
52   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53   return (Val >> Start) & Mask;
54 }
55
56 namespace {
57
58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60
61   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
62   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
63   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
64   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65
66   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67
68   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
69
70   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71
72 public:
73   static Expected<std::unique_ptr<DyldELFObject>>
74   create(MemoryBufferRef Wrapper);
75
76   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77
78   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79
80   // Methods for type inquiry through isa, cast and dyn_cast
81   static bool classof(const Binary *v) {
82     return (isa<ELFObjectFile<ELFT>>(v) &&
83             classof(cast<ELFObjectFile<ELFT>>(v)));
84   }
85   static bool classof(const ELFObjectFile<ELFT> *v) {
86     return v->isDyldType();
87   }
88 };
89
90
91
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory.  Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
95 template <class ELFT>
96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
97     : ELFObjectFile<ELFT>(std::move(Obj)) {
98   this->isDyldELFObject = true;
99 }
100
101 template <class ELFT>
102 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
104   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
105   if (auto E = Obj.takeError())
106     return std::move(E);
107   std::unique_ptr<DyldELFObject<ELFT>> Ret(
108       new DyldELFObject<ELFT>(std::move(*Obj)));
109   return std::move(Ret);
110 }
111
112 template <class ELFT>
113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
114                                                uint64_t Addr) {
115   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
116   Elf_Shdr *shdr =
117       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118
119   // This assumes the address passed in matches the target address bitness
120   // The template-based type cast handles everything else.
121   shdr->sh_addr = static_cast<addr_type>(Addr);
122 }
123
124 template <class ELFT>
125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
126                                               uint64_t Addr) {
127
128   Elf_Sym *sym = const_cast<Elf_Sym *>(
129       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130
131   // This assumes the address passed in matches the target address bitness
132   // The template-based type cast handles everything else.
133   sym->st_value = static_cast<addr_type>(Addr);
134 }
135
136 class LoadedELFObjectInfo final
137     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
138                                     RuntimeDyld::LoadedObjectInfo> {
139 public:
140   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
141       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142
143   OwningBinary<ObjectFile>
144   getObjectForDebug(const ObjectFile &Obj) const override;
145 };
146
147 template <typename ELFT>
148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
150                       const LoadedELFObjectInfo &L) {
151   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
152   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
153
154   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
155       DyldELFObject<ELFT>::create(Buffer);
156   if (Error E = ObjOrErr.takeError())
157     return std::move(E);
158
159   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160
161   // Iterate over all sections in the object.
162   auto SI = SourceObject.section_begin();
163   for (const auto &Sec : Obj->sections()) {
164     StringRef SectionName;
165     Sec.getName(SectionName);
166     if (SectionName != "") {
167       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
168       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
169           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170
171       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
172         // This assumes that the address passed in matches the target address
173         // bitness. The template-based type cast handles everything else.
174         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
175       }
176     }
177     ++SI;
178   }
179
180   return std::move(Obj);
181 }
182
183 static OwningBinary<ObjectFile>
184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
185   assert(Obj.isELF() && "Not an ELF object file.");
186
187   std::unique_ptr<MemoryBuffer> Buffer =
188     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189
190   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
191   handleAllErrors(DebugObj.takeError());
192   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
193     DebugObj =
194         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
195   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
196     DebugObj =
197         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
198   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
199     DebugObj =
200         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
201   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
202     DebugObj =
203         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
204   else
205     llvm_unreachable("Unexpected ELF format");
206
207   handleAllErrors(DebugObj.takeError());
208   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
209 }
210
211 OwningBinary<ObjectFile>
212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
213   return createELFDebugObject(Obj, *this);
214 }
215
216 } // anonymous namespace
217
218 namespace llvm {
219
220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
221                                JITSymbolResolver &Resolver)
222     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
223 RuntimeDyldELF::~RuntimeDyldELF() {}
224
225 void RuntimeDyldELF::registerEHFrames() {
226   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
227     SID EHFrameSID = UnregisteredEHFrameSections[i];
228     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
229     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
230     size_t EHFrameSize = Sections[EHFrameSID].getSize();
231     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232   }
233   UnregisteredEHFrameSections.clear();
234 }
235
236 std::unique_ptr<RuntimeDyldELF>
237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
238                              RuntimeDyld::MemoryManager &MemMgr,
239                              JITSymbolResolver &Resolver) {
240   switch (Arch) {
241   default:
242     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
243   case Triple::mips:
244   case Triple::mipsel:
245   case Triple::mips64:
246   case Triple::mips64el:
247     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
248   }
249 }
250
251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
253   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
254     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
255   else {
256     HasError = true;
257     raw_string_ostream ErrStream(ErrorStr);
258     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
259     return nullptr;
260   }
261 }
262
263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
264                                              uint64_t Offset, uint64_t Value,
265                                              uint32_t Type, int64_t Addend,
266                                              uint64_t SymOffset) {
267   switch (Type) {
268   default:
269     llvm_unreachable("Relocation type not implemented yet!");
270     break;
271   case ELF::R_X86_64_NONE:
272     break;
273   case ELF::R_X86_64_64: {
274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275         Value + Addend;
276     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
277                  << format("%p\n", Section.getAddressWithOffset(Offset)));
278     break;
279   }
280   case ELF::R_X86_64_32:
281   case ELF::R_X86_64_32S: {
282     Value += Addend;
283     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
284            (Type == ELF::R_X86_64_32S &&
285             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
286     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
287     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
288         TruncatedAddr;
289     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
290                  << format("%p\n", Section.getAddressWithOffset(Offset)));
291     break;
292   }
293   case ELF::R_X86_64_PC8: {
294     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
295     int64_t RealOffset = Value + Addend - FinalAddress;
296     assert(isInt<8>(RealOffset));
297     int8_t TruncOffset = (RealOffset & 0xFF);
298     Section.getAddress()[Offset] = TruncOffset;
299     break;
300   }
301   case ELF::R_X86_64_PC32: {
302     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
303     int64_t RealOffset = Value + Addend - FinalAddress;
304     assert(isInt<32>(RealOffset));
305     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
306     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
307         TruncOffset;
308     break;
309   }
310   case ELF::R_X86_64_PC64: {
311     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312     int64_t RealOffset = Value + Addend - FinalAddress;
313     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
314         RealOffset;
315     break;
316   }
317   }
318 }
319
320 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
321                                           uint64_t Offset, uint32_t Value,
322                                           uint32_t Type, int32_t Addend) {
323   switch (Type) {
324   case ELF::R_386_32: {
325     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
326         Value + Addend;
327     break;
328   }
329   case ELF::R_386_PC32: {
330     uint32_t FinalAddress =
331         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
332     uint32_t RealOffset = Value + Addend - FinalAddress;
333     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
334         RealOffset;
335     break;
336   }
337   default:
338     // There are other relocation types, but it appears these are the
339     // only ones currently used by the LLVM ELF object writer
340     llvm_unreachable("Relocation type not implemented yet!");
341     break;
342   }
343 }
344
345 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
346                                               uint64_t Offset, uint64_t Value,
347                                               uint32_t Type, int64_t Addend) {
348   uint32_t *TargetPtr =
349       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
350   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
351   // Data should use target endian. Code should always use little endian.
352   bool isBE = Arch == Triple::aarch64_be;
353
354   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
355                << format("%llx", Section.getAddressWithOffset(Offset))
356                << " FinalAddress: 0x" << format("%llx", FinalAddress)
357                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
358                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
359                << "\n");
360
361   switch (Type) {
362   default:
363     llvm_unreachable("Relocation type not implemented yet!");
364     break;
365   case ELF::R_AARCH64_ABS16: {
366     uint64_t Result = Value + Addend;
367     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
368     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
369     break;
370   }
371   case ELF::R_AARCH64_ABS32: {
372     uint64_t Result = Value + Addend;
373     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
374     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
375     break;
376   }
377   case ELF::R_AARCH64_ABS64:
378     write(isBE, TargetPtr, Value + Addend);
379     break;
380   case ELF::R_AARCH64_PREL32: {
381     uint64_t Result = Value + Addend - FinalAddress;
382     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
383            static_cast<int64_t>(Result) <= UINT32_MAX);
384     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
385     break;
386   }
387   case ELF::R_AARCH64_PREL64:
388     write(isBE, TargetPtr, Value + Addend - FinalAddress);
389     break;
390   case ELF::R_AARCH64_CALL26: // fallthrough
391   case ELF::R_AARCH64_JUMP26: {
392     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
393     // calculation.
394     uint64_t BranchImm = Value + Addend - FinalAddress;
395
396     // "Check that -2^27 <= result < 2^27".
397     assert(isInt<28>(BranchImm));
398     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
399     break;
400   }
401   case ELF::R_AARCH64_MOVW_UABS_G3:
402     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
403     break;
404   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
405     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
406     break;
407   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
408     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
409     break;
410   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
411     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
412     break;
413   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
414     // Operation: Page(S+A) - Page(P)
415     uint64_t Result =
416         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
417
418     // Check that -2^32 <= X < 2^32
419     assert(isInt<33>(Result) && "overflow check failed for relocation");
420
421     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
422     // from bits 32:12 of X.
423     write32AArch64Addr(TargetPtr, Result >> 12);
424     break;
425   }
426   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
427     // Operation: S + A
428     // Immediate goes in bits 21:10 of LD/ST instruction, taken
429     // from bits 11:0 of X
430     or32AArch64Imm(TargetPtr, Value + Addend);
431     break;
432   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
433     // Operation: S + A
434     // Immediate goes in bits 21:10 of LD/ST instruction, taken
435     // from bits 11:0 of X
436     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
437     break;
438   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
439     // Operation: S + A
440     // Immediate goes in bits 21:10 of LD/ST instruction, taken
441     // from bits 11:1 of X
442     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
443     break;
444   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
445     // Operation: S + A
446     // Immediate goes in bits 21:10 of LD/ST instruction, taken
447     // from bits 11:2 of X
448     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
449     break;
450   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
451     // Operation: S + A
452     // Immediate goes in bits 21:10 of LD/ST instruction, taken
453     // from bits 11:3 of X
454     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
455     break;
456   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
457     // Operation: S + A
458     // Immediate goes in bits 21:10 of LD/ST instruction, taken
459     // from bits 11:4 of X
460     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
461     break;
462   }
463 }
464
465 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
466                                           uint64_t Offset, uint32_t Value,
467                                           uint32_t Type, int32_t Addend) {
468   // TODO: Add Thumb relocations.
469   uint32_t *TargetPtr =
470       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
471   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
472   Value += Addend;
473
474   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
475                << Section.getAddressWithOffset(Offset)
476                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
477                << format("%x", Value) << " Type: " << format("%x", Type)
478                << " Addend: " << format("%x", Addend) << "\n");
479
480   switch (Type) {
481   default:
482     llvm_unreachable("Not implemented relocation type!");
483
484   case ELF::R_ARM_NONE:
485     break;
486     // Write a 31bit signed offset
487   case ELF::R_ARM_PREL31:
488     support::ulittle32_t::ref{TargetPtr} =
489         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
490         ((Value - FinalAddress) & ~0x80000000);
491     break;
492   case ELF::R_ARM_TARGET1:
493   case ELF::R_ARM_ABS32:
494     support::ulittle32_t::ref{TargetPtr} = Value;
495     break;
496     // Write first 16 bit of 32 bit value to the mov instruction.
497     // Last 4 bit should be shifted.
498   case ELF::R_ARM_MOVW_ABS_NC:
499   case ELF::R_ARM_MOVT_ABS:
500     if (Type == ELF::R_ARM_MOVW_ABS_NC)
501       Value = Value & 0xFFFF;
502     else if (Type == ELF::R_ARM_MOVT_ABS)
503       Value = (Value >> 16) & 0xFFFF;
504     support::ulittle32_t::ref{TargetPtr} =
505         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
506         (((Value >> 12) & 0xF) << 16);
507     break;
508     // Write 24 bit relative value to the branch instruction.
509   case ELF::R_ARM_PC24: // Fall through.
510   case ELF::R_ARM_CALL: // Fall through.
511   case ELF::R_ARM_JUMP24:
512     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
513     RelValue = (RelValue & 0x03FFFFFC) >> 2;
514     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
515     support::ulittle32_t::ref{TargetPtr} =
516         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
517     break;
518   }
519 }
520
521 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
522   if (Arch == Triple::UnknownArch ||
523       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
524     IsMipsO32ABI = false;
525     IsMipsN32ABI = false;
526     IsMipsN64ABI = false;
527     return;
528   }
529   unsigned AbiVariant;
530   Obj.getPlatformFlags(AbiVariant);
531   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
532   IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
533   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
534 }
535
536 // Return the .TOC. section and offset.
537 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
538                                           ObjSectionToIDMap &LocalSections,
539                                           RelocationValueRef &Rel) {
540   // Set a default SectionID in case we do not find a TOC section below.
541   // This may happen for references to TOC base base (sym@toc, .odp
542   // relocation) without a .toc directive.  In this case just use the
543   // first section (which is usually the .odp) since the code won't
544   // reference the .toc base directly.
545   Rel.SymbolName = nullptr;
546   Rel.SectionID = 0;
547
548   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
549   // order. The TOC starts where the first of these sections starts.
550   for (auto &Section: Obj.sections()) {
551     StringRef SectionName;
552     if (auto EC = Section.getName(SectionName))
553       return errorCodeToError(EC);
554
555     if (SectionName == ".got"
556         || SectionName == ".toc"
557         || SectionName == ".tocbss"
558         || SectionName == ".plt") {
559       if (auto SectionIDOrErr =
560             findOrEmitSection(Obj, Section, false, LocalSections))
561         Rel.SectionID = *SectionIDOrErr;
562       else
563         return SectionIDOrErr.takeError();
564       break;
565     }
566   }
567
568   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
569   // thus permitting a full 64 Kbytes segment.
570   Rel.Addend = 0x8000;
571
572   return Error::success();
573 }
574
575 // Returns the sections and offset associated with the ODP entry referenced
576 // by Symbol.
577 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
578                                           ObjSectionToIDMap &LocalSections,
579                                           RelocationValueRef &Rel) {
580   // Get the ELF symbol value (st_value) to compare with Relocation offset in
581   // .opd entries
582   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
583        si != se; ++si) {
584     section_iterator RelSecI = si->getRelocatedSection();
585     if (RelSecI == Obj.section_end())
586       continue;
587
588     StringRef RelSectionName;
589     if (auto EC = RelSecI->getName(RelSectionName))
590       return errorCodeToError(EC);
591
592     if (RelSectionName != ".opd")
593       continue;
594
595     for (elf_relocation_iterator i = si->relocation_begin(),
596                                  e = si->relocation_end();
597          i != e;) {
598       // The R_PPC64_ADDR64 relocation indicates the first field
599       // of a .opd entry
600       uint64_t TypeFunc = i->getType();
601       if (TypeFunc != ELF::R_PPC64_ADDR64) {
602         ++i;
603         continue;
604       }
605
606       uint64_t TargetSymbolOffset = i->getOffset();
607       symbol_iterator TargetSymbol = i->getSymbol();
608       int64_t Addend;
609       if (auto AddendOrErr = i->getAddend())
610         Addend = *AddendOrErr;
611       else
612         return AddendOrErr.takeError();
613
614       ++i;
615       if (i == e)
616         break;
617
618       // Just check if following relocation is a R_PPC64_TOC
619       uint64_t TypeTOC = i->getType();
620       if (TypeTOC != ELF::R_PPC64_TOC)
621         continue;
622
623       // Finally compares the Symbol value and the target symbol offset
624       // to check if this .opd entry refers to the symbol the relocation
625       // points to.
626       if (Rel.Addend != (int64_t)TargetSymbolOffset)
627         continue;
628
629       section_iterator TSI = Obj.section_end();
630       if (auto TSIOrErr = TargetSymbol->getSection())
631         TSI = *TSIOrErr;
632       else
633         return TSIOrErr.takeError();
634       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
635
636       bool IsCode = TSI->isText();
637       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
638                                                   LocalSections))
639         Rel.SectionID = *SectionIDOrErr;
640       else
641         return SectionIDOrErr.takeError();
642       Rel.Addend = (intptr_t)Addend;
643       return Error::success();
644     }
645   }
646   llvm_unreachable("Attempting to get address of ODP entry!");
647 }
648
649 // Relocation masks following the #lo(value), #hi(value), #ha(value),
650 // #higher(value), #highera(value), #highest(value), and #highesta(value)
651 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
652 // document.
653
654 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
655
656 static inline uint16_t applyPPChi(uint64_t value) {
657   return (value >> 16) & 0xffff;
658 }
659
660 static inline uint16_t applyPPCha (uint64_t value) {
661   return ((value + 0x8000) >> 16) & 0xffff;
662 }
663
664 static inline uint16_t applyPPChigher(uint64_t value) {
665   return (value >> 32) & 0xffff;
666 }
667
668 static inline uint16_t applyPPChighera (uint64_t value) {
669   return ((value + 0x8000) >> 32) & 0xffff;
670 }
671
672 static inline uint16_t applyPPChighest(uint64_t value) {
673   return (value >> 48) & 0xffff;
674 }
675
676 static inline uint16_t applyPPChighesta (uint64_t value) {
677   return ((value + 0x8000) >> 48) & 0xffff;
678 }
679
680 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
681                                             uint64_t Offset, uint64_t Value,
682                                             uint32_t Type, int64_t Addend) {
683   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
684   switch (Type) {
685   default:
686     llvm_unreachable("Relocation type not implemented yet!");
687     break;
688   case ELF::R_PPC_ADDR16_LO:
689     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
690     break;
691   case ELF::R_PPC_ADDR16_HI:
692     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
693     break;
694   case ELF::R_PPC_ADDR16_HA:
695     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
696     break;
697   }
698 }
699
700 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
701                                             uint64_t Offset, uint64_t Value,
702                                             uint32_t Type, int64_t Addend) {
703   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
704   switch (Type) {
705   default:
706     llvm_unreachable("Relocation type not implemented yet!");
707     break;
708   case ELF::R_PPC64_ADDR16:
709     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
710     break;
711   case ELF::R_PPC64_ADDR16_DS:
712     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
713     break;
714   case ELF::R_PPC64_ADDR16_LO:
715     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
716     break;
717   case ELF::R_PPC64_ADDR16_LO_DS:
718     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
719     break;
720   case ELF::R_PPC64_ADDR16_HI:
721     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
722     break;
723   case ELF::R_PPC64_ADDR16_HA:
724     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
725     break;
726   case ELF::R_PPC64_ADDR16_HIGHER:
727     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
728     break;
729   case ELF::R_PPC64_ADDR16_HIGHERA:
730     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
731     break;
732   case ELF::R_PPC64_ADDR16_HIGHEST:
733     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
734     break;
735   case ELF::R_PPC64_ADDR16_HIGHESTA:
736     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
737     break;
738   case ELF::R_PPC64_ADDR14: {
739     assert(((Value + Addend) & 3) == 0);
740     // Preserve the AA/LK bits in the branch instruction
741     uint8_t aalk = *(LocalAddress + 3);
742     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
743   } break;
744   case ELF::R_PPC64_REL16_LO: {
745     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
746     uint64_t Delta = Value - FinalAddress + Addend;
747     writeInt16BE(LocalAddress, applyPPClo(Delta));
748   } break;
749   case ELF::R_PPC64_REL16_HI: {
750     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
751     uint64_t Delta = Value - FinalAddress + Addend;
752     writeInt16BE(LocalAddress, applyPPChi(Delta));
753   } break;
754   case ELF::R_PPC64_REL16_HA: {
755     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
756     uint64_t Delta = Value - FinalAddress + Addend;
757     writeInt16BE(LocalAddress, applyPPCha(Delta));
758   } break;
759   case ELF::R_PPC64_ADDR32: {
760     int64_t Result = static_cast<int64_t>(Value + Addend);
761     if (SignExtend64<32>(Result) != Result)
762       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
763     writeInt32BE(LocalAddress, Result);
764   } break;
765   case ELF::R_PPC64_REL24: {
766     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
767     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
768     if (SignExtend64<26>(delta) != delta)
769       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
770     // Generates a 'bl <address>' instruction
771     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
772   } break;
773   case ELF::R_PPC64_REL32: {
774     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
775     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
776     if (SignExtend64<32>(delta) != delta)
777       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
778     writeInt32BE(LocalAddress, delta);
779   } break;
780   case ELF::R_PPC64_REL64: {
781     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
782     uint64_t Delta = Value - FinalAddress + Addend;
783     writeInt64BE(LocalAddress, Delta);
784   } break;
785   case ELF::R_PPC64_ADDR64:
786     writeInt64BE(LocalAddress, Value + Addend);
787     break;
788   }
789 }
790
791 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
792                                               uint64_t Offset, uint64_t Value,
793                                               uint32_t Type, int64_t Addend) {
794   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
795   switch (Type) {
796   default:
797     llvm_unreachable("Relocation type not implemented yet!");
798     break;
799   case ELF::R_390_PC16DBL:
800   case ELF::R_390_PLT16DBL: {
801     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
802     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
803     writeInt16BE(LocalAddress, Delta / 2);
804     break;
805   }
806   case ELF::R_390_PC32DBL:
807   case ELF::R_390_PLT32DBL: {
808     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
809     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
810     writeInt32BE(LocalAddress, Delta / 2);
811     break;
812   }
813   case ELF::R_390_PC16: {
814     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
815     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
816     writeInt16BE(LocalAddress, Delta);
817     break;
818   }
819   case ELF::R_390_PC32: {
820     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
821     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
822     writeInt32BE(LocalAddress, Delta);
823     break;
824   }
825   case ELF::R_390_PC64: {
826     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
827     writeInt64BE(LocalAddress, Delta);
828     break;
829   }
830   case ELF::R_390_8:
831     *LocalAddress = (uint8_t)(Value + Addend);
832     break;
833   case ELF::R_390_16:
834     writeInt16BE(LocalAddress, Value + Addend);
835     break;
836   case ELF::R_390_32:
837     writeInt32BE(LocalAddress, Value + Addend);
838     break;
839   case ELF::R_390_64:
840     writeInt64BE(LocalAddress, Value + Addend);
841     break;
842   }
843 }
844
845 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
846                                           uint64_t Offset, uint64_t Value,
847                                           uint32_t Type, int64_t Addend) {
848   bool isBE = Arch == Triple::bpfeb;
849
850   switch (Type) {
851   default:
852     llvm_unreachable("Relocation type not implemented yet!");
853     break;
854   case ELF::R_BPF_NONE:
855     break;
856   case ELF::R_BPF_64_64: {
857     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
858     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
859                  << format("%p\n", Section.getAddressWithOffset(Offset)));
860     break;
861   }
862   case ELF::R_BPF_64_32: {
863     Value += Addend;
864     assert(Value <= UINT32_MAX);
865     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
866     DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
867                  << format("%p\n", Section.getAddressWithOffset(Offset)));
868     break;
869   }
870   }
871 }
872
873 // The target location for the relocation is described by RE.SectionID and
874 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
875 // SectionEntry has three members describing its location.
876 // SectionEntry::Address is the address at which the section has been loaded
877 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
878 // address that the section will have in the target process.
879 // SectionEntry::ObjAddress is the address of the bits for this section in the
880 // original emitted object image (also in the current address space).
881 //
882 // Relocations will be applied as if the section were loaded at
883 // SectionEntry::LoadAddress, but they will be applied at an address based
884 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
885 // Target memory contents if they are required for value calculations.
886 //
887 // The Value parameter here is the load address of the symbol for the
888 // relocation to be applied.  For relocations which refer to symbols in the
889 // current object Value will be the LoadAddress of the section in which
890 // the symbol resides (RE.Addend provides additional information about the
891 // symbol location).  For external symbols, Value will be the address of the
892 // symbol in the target address space.
893 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
894                                        uint64_t Value) {
895   const SectionEntry &Section = Sections[RE.SectionID];
896   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
897                            RE.SymOffset, RE.SectionID);
898 }
899
900 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
901                                        uint64_t Offset, uint64_t Value,
902                                        uint32_t Type, int64_t Addend,
903                                        uint64_t SymOffset, SID SectionID) {
904   switch (Arch) {
905   case Triple::x86_64:
906     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
907     break;
908   case Triple::x86:
909     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
910                          (uint32_t)(Addend & 0xffffffffL));
911     break;
912   case Triple::aarch64:
913   case Triple::aarch64_be:
914     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
915     break;
916   case Triple::arm: // Fall through.
917   case Triple::armeb:
918   case Triple::thumb:
919   case Triple::thumbeb:
920     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
921                          (uint32_t)(Addend & 0xffffffffL));
922     break;
923   case Triple::ppc:
924     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
925     break;
926   case Triple::ppc64: // Fall through.
927   case Triple::ppc64le:
928     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
929     break;
930   case Triple::systemz:
931     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
932     break;
933   case Triple::bpfel:
934   case Triple::bpfeb:
935     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
936     break;
937   default:
938     llvm_unreachable("Unsupported CPU type!");
939   }
940 }
941
942 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
943   return (void *)(Sections[SectionID].getObjAddress() + Offset);
944 }
945
946 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
947   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
948   if (Value.SymbolName)
949     addRelocationForSymbol(RE, Value.SymbolName);
950   else
951     addRelocationForSection(RE, Value.SectionID);
952 }
953
954 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
955                                                  bool IsLocal) const {
956   switch (RelType) {
957   case ELF::R_MICROMIPS_GOT16:
958     if (IsLocal)
959       return ELF::R_MICROMIPS_LO16;
960     break;
961   case ELF::R_MICROMIPS_HI16:
962     return ELF::R_MICROMIPS_LO16;
963   case ELF::R_MIPS_GOT16:
964     if (IsLocal)
965       return ELF::R_MIPS_LO16;
966     break;
967   case ELF::R_MIPS_HI16:
968     return ELF::R_MIPS_LO16;
969   case ELF::R_MIPS_PCHI16:
970     return ELF::R_MIPS_PCLO16;
971   default:
972     break;
973   }
974   return ELF::R_MIPS_NONE;
975 }
976
977 // Sometimes we don't need to create thunk for a branch.
978 // This typically happens when branch target is located
979 // in the same object file. In such case target is either
980 // a weak symbol or symbol in a different executable section.
981 // This function checks if branch target is located in the
982 // same object file and if distance between source and target
983 // fits R_AARCH64_CALL26 relocation. If both conditions are
984 // met, it emits direct jump to the target and returns true.
985 // Otherwise false is returned and thunk is created.
986 bool RuntimeDyldELF::resolveAArch64ShortBranch(
987     unsigned SectionID, relocation_iterator RelI,
988     const RelocationValueRef &Value) {
989   uint64_t Address;
990   if (Value.SymbolName) {
991     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
992
993     // Don't create direct branch for external symbols.
994     if (Loc == GlobalSymbolTable.end())
995       return false;
996
997     const auto &SymInfo = Loc->second;
998     Address =
999         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1000             SymInfo.getOffset()));
1001   } else {
1002     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1003   }
1004   uint64_t Offset = RelI->getOffset();
1005   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1006
1007   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1008   // If distance between source and target is out of range then we should
1009   // create thunk.
1010   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1011     return false;
1012
1013   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1014                     Value.Addend);
1015
1016   return true;
1017 }
1018
1019 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1020                                           const RelocationValueRef &Value,
1021                                           relocation_iterator RelI,
1022                                           StubMap &Stubs) {
1023
1024   DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1025   SectionEntry &Section = Sections[SectionID];
1026
1027   uint64_t Offset = RelI->getOffset();
1028   unsigned RelType = RelI->getType();
1029   // Look for an existing stub.
1030   StubMap::const_iterator i = Stubs.find(Value);
1031   if (i != Stubs.end()) {
1032     resolveRelocation(Section, Offset,
1033                       (uint64_t)Section.getAddressWithOffset(i->second),
1034                       RelType, 0);
1035     DEBUG(dbgs() << " Stub function found\n");
1036   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1037     // Create a new stub function.
1038     DEBUG(dbgs() << " Create a new stub function\n");
1039     Stubs[Value] = Section.getStubOffset();
1040     uint8_t *StubTargetAddr = createStubFunction(
1041         Section.getAddressWithOffset(Section.getStubOffset()));
1042
1043     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1044                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1045     RelocationEntry REmovk_g2(SectionID,
1046                               StubTargetAddr - Section.getAddress() + 4,
1047                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1048     RelocationEntry REmovk_g1(SectionID,
1049                               StubTargetAddr - Section.getAddress() + 8,
1050                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1051     RelocationEntry REmovk_g0(SectionID,
1052                               StubTargetAddr - Section.getAddress() + 12,
1053                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1054
1055     if (Value.SymbolName) {
1056       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1057       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1058       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1059       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1060     } else {
1061       addRelocationForSection(REmovz_g3, Value.SectionID);
1062       addRelocationForSection(REmovk_g2, Value.SectionID);
1063       addRelocationForSection(REmovk_g1, Value.SectionID);
1064       addRelocationForSection(REmovk_g0, Value.SectionID);
1065     }
1066     resolveRelocation(Section, Offset,
1067                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1068                           Section.getStubOffset())),
1069                       RelType, 0);
1070     Section.advanceStubOffset(getMaxStubSize());
1071   }
1072 }
1073
1074 Expected<relocation_iterator>
1075 RuntimeDyldELF::processRelocationRef(
1076     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1077     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1078   const auto &Obj = cast<ELFObjectFileBase>(O);
1079   uint64_t RelType = RelI->getType();
1080   int64_t Addend = 0;
1081   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1082     Addend = *AddendOrErr;
1083   else
1084     consumeError(AddendOrErr.takeError());
1085   elf_symbol_iterator Symbol = RelI->getSymbol();
1086
1087   // Obtain the symbol name which is referenced in the relocation
1088   StringRef TargetName;
1089   if (Symbol != Obj.symbol_end()) {
1090     if (auto TargetNameOrErr = Symbol->getName())
1091       TargetName = *TargetNameOrErr;
1092     else
1093       return TargetNameOrErr.takeError();
1094   }
1095   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1096                << " TargetName: " << TargetName << "\n");
1097   RelocationValueRef Value;
1098   // First search for the symbol in the local symbol table
1099   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1100
1101   // Search for the symbol in the global symbol table
1102   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1103   if (Symbol != Obj.symbol_end()) {
1104     gsi = GlobalSymbolTable.find(TargetName.data());
1105     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1106     if (!SymTypeOrErr) {
1107       std::string Buf;
1108       raw_string_ostream OS(Buf);
1109       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1110       OS.flush();
1111       report_fatal_error(Buf);
1112     }
1113     SymType = *SymTypeOrErr;
1114   }
1115   if (gsi != GlobalSymbolTable.end()) {
1116     const auto &SymInfo = gsi->second;
1117     Value.SectionID = SymInfo.getSectionID();
1118     Value.Offset = SymInfo.getOffset();
1119     Value.Addend = SymInfo.getOffset() + Addend;
1120   } else {
1121     switch (SymType) {
1122     case SymbolRef::ST_Debug: {
1123       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1124       // and can be changed by another developers. Maybe best way is add
1125       // a new symbol type ST_Section to SymbolRef and use it.
1126       auto SectionOrErr = Symbol->getSection();
1127       if (!SectionOrErr) {
1128         std::string Buf;
1129         raw_string_ostream OS(Buf);
1130         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1131         OS.flush();
1132         report_fatal_error(Buf);
1133       }
1134       section_iterator si = *SectionOrErr;
1135       if (si == Obj.section_end())
1136         llvm_unreachable("Symbol section not found, bad object file format!");
1137       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1138       bool isCode = si->isText();
1139       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1140                                                   ObjSectionToID))
1141         Value.SectionID = *SectionIDOrErr;
1142       else
1143         return SectionIDOrErr.takeError();
1144       Value.Addend = Addend;
1145       break;
1146     }
1147     case SymbolRef::ST_Data:
1148     case SymbolRef::ST_Function:
1149     case SymbolRef::ST_Unknown: {
1150       Value.SymbolName = TargetName.data();
1151       Value.Addend = Addend;
1152
1153       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1154       // will manifest here as a NULL symbol name.
1155       // We can set this as a valid (but empty) symbol name, and rely
1156       // on addRelocationForSymbol to handle this.
1157       if (!Value.SymbolName)
1158         Value.SymbolName = "";
1159       break;
1160     }
1161     default:
1162       llvm_unreachable("Unresolved symbol type!");
1163       break;
1164     }
1165   }
1166
1167   uint64_t Offset = RelI->getOffset();
1168
1169   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1170                << "\n");
1171   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1172     if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1173       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1174     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1175       // Craete new GOT entry or find existing one. If GOT entry is
1176       // to be created, then we also emit ABS64 relocation for it.
1177       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1178       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1179                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1180
1181     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1182       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1183       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1184                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1185     } else {
1186       processSimpleRelocation(SectionID, Offset, RelType, Value);
1187     }
1188   } else if (Arch == Triple::arm) {
1189     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1190       RelType == ELF::R_ARM_JUMP24) {
1191       // This is an ARM branch relocation, need to use a stub function.
1192       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1193       SectionEntry &Section = Sections[SectionID];
1194
1195       // Look for an existing stub.
1196       StubMap::const_iterator i = Stubs.find(Value);
1197       if (i != Stubs.end()) {
1198         resolveRelocation(
1199             Section, Offset,
1200             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1201             RelType, 0);
1202         DEBUG(dbgs() << " Stub function found\n");
1203       } else {
1204         // Create a new stub function.
1205         DEBUG(dbgs() << " Create a new stub function\n");
1206         Stubs[Value] = Section.getStubOffset();
1207         uint8_t *StubTargetAddr = createStubFunction(
1208             Section.getAddressWithOffset(Section.getStubOffset()));
1209         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1210                            ELF::R_ARM_ABS32, Value.Addend);
1211         if (Value.SymbolName)
1212           addRelocationForSymbol(RE, Value.SymbolName);
1213         else
1214           addRelocationForSection(RE, Value.SectionID);
1215
1216         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1217                                                Section.getAddressWithOffset(
1218                                                    Section.getStubOffset())),
1219                           RelType, 0);
1220         Section.advanceStubOffset(getMaxStubSize());
1221       }
1222     } else {
1223       uint32_t *Placeholder =
1224         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1225       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1226           RelType == ELF::R_ARM_ABS32) {
1227         Value.Addend += *Placeholder;
1228       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1229         // See ELF for ARM documentation
1230         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1231       }
1232       processSimpleRelocation(SectionID, Offset, RelType, Value);
1233     }
1234   } else if (IsMipsO32ABI) {
1235     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1236         computePlaceholderAddress(SectionID, Offset));
1237     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1238     if (RelType == ELF::R_MIPS_26) {
1239       // This is an Mips branch relocation, need to use a stub function.
1240       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1241       SectionEntry &Section = Sections[SectionID];
1242
1243       // Extract the addend from the instruction.
1244       // We shift up by two since the Value will be down shifted again
1245       // when applying the relocation.
1246       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1247
1248       Value.Addend += Addend;
1249
1250       //  Look up for existing stub.
1251       StubMap::const_iterator i = Stubs.find(Value);
1252       if (i != Stubs.end()) {
1253         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1254         addRelocationForSection(RE, SectionID);
1255         DEBUG(dbgs() << " Stub function found\n");
1256       } else {
1257         // Create a new stub function.
1258         DEBUG(dbgs() << " Create a new stub function\n");
1259         Stubs[Value] = Section.getStubOffset();
1260
1261         unsigned AbiVariant;
1262         O.getPlatformFlags(AbiVariant);
1263
1264         uint8_t *StubTargetAddr = createStubFunction(
1265             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1266
1267         // Creating Hi and Lo relocations for the filled stub instructions.
1268         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1269                              ELF::R_MIPS_HI16, Value.Addend);
1270         RelocationEntry RELo(SectionID,
1271                              StubTargetAddr - Section.getAddress() + 4,
1272                              ELF::R_MIPS_LO16, Value.Addend);
1273
1274         if (Value.SymbolName) {
1275           addRelocationForSymbol(REHi, Value.SymbolName);
1276           addRelocationForSymbol(RELo, Value.SymbolName);
1277         } else {
1278           addRelocationForSection(REHi, Value.SectionID);
1279           addRelocationForSection(RELo, Value.SectionID);
1280         }
1281
1282         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1283         addRelocationForSection(RE, SectionID);
1284         Section.advanceStubOffset(getMaxStubSize());
1285       }
1286     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1287       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1288       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1289       PendingRelocs.push_back(std::make_pair(Value, RE));
1290     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1291       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1292       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1293         const RelocationValueRef &MatchingValue = I->first;
1294         RelocationEntry &Reloc = I->second;
1295         if (MatchingValue == Value &&
1296             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1297             SectionID == Reloc.SectionID) {
1298           Reloc.Addend += Addend;
1299           if (Value.SymbolName)
1300             addRelocationForSymbol(Reloc, Value.SymbolName);
1301           else
1302             addRelocationForSection(Reloc, Value.SectionID);
1303           I = PendingRelocs.erase(I);
1304         } else
1305           ++I;
1306       }
1307       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1308       if (Value.SymbolName)
1309         addRelocationForSymbol(RE, Value.SymbolName);
1310       else
1311         addRelocationForSection(RE, Value.SectionID);
1312     } else {
1313       if (RelType == ELF::R_MIPS_32)
1314         Value.Addend += Opcode;
1315       else if (RelType == ELF::R_MIPS_PC16)
1316         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1317       else if (RelType == ELF::R_MIPS_PC19_S2)
1318         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1319       else if (RelType == ELF::R_MIPS_PC21_S2)
1320         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1321       else if (RelType == ELF::R_MIPS_PC26_S2)
1322         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1323       processSimpleRelocation(SectionID, Offset, RelType, Value);
1324     }
1325   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1326     uint32_t r_type = RelType & 0xff;
1327     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1328     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1329         || r_type == ELF::R_MIPS_GOT_DISP) {
1330       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1331       if (i != GOTSymbolOffsets.end())
1332         RE.SymOffset = i->second;
1333       else {
1334         RE.SymOffset = allocateGOTEntries(1);
1335         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1336       }
1337       if (Value.SymbolName)
1338         addRelocationForSymbol(RE, Value.SymbolName);
1339       else
1340         addRelocationForSection(RE, Value.SectionID);
1341     } else if (RelType == ELF::R_MIPS_26) {
1342       // This is an Mips branch relocation, need to use a stub function.
1343       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1344       SectionEntry &Section = Sections[SectionID];
1345
1346       //  Look up for existing stub.
1347       StubMap::const_iterator i = Stubs.find(Value);
1348       if (i != Stubs.end()) {
1349         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1350         addRelocationForSection(RE, SectionID);
1351         DEBUG(dbgs() << " Stub function found\n");
1352       } else {
1353         // Create a new stub function.
1354         DEBUG(dbgs() << " Create a new stub function\n");
1355         Stubs[Value] = Section.getStubOffset();
1356
1357         unsigned AbiVariant;
1358         O.getPlatformFlags(AbiVariant);
1359
1360         uint8_t *StubTargetAddr = createStubFunction(
1361             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1362
1363         if (IsMipsN32ABI) {
1364           // Creating Hi and Lo relocations for the filled stub instructions.
1365           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1366                                ELF::R_MIPS_HI16, Value.Addend);
1367           RelocationEntry RELo(SectionID,
1368                                StubTargetAddr - Section.getAddress() + 4,
1369                                ELF::R_MIPS_LO16, Value.Addend);
1370           if (Value.SymbolName) {
1371             addRelocationForSymbol(REHi, Value.SymbolName);
1372             addRelocationForSymbol(RELo, Value.SymbolName);
1373           } else {
1374             addRelocationForSection(REHi, Value.SectionID);
1375             addRelocationForSection(RELo, Value.SectionID);
1376           }
1377         } else {
1378           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1379           // instructions.
1380           RelocationEntry REHighest(SectionID,
1381                                     StubTargetAddr - Section.getAddress(),
1382                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1383           RelocationEntry REHigher(SectionID,
1384                                    StubTargetAddr - Section.getAddress() + 4,
1385                                    ELF::R_MIPS_HIGHER, Value.Addend);
1386           RelocationEntry REHi(SectionID,
1387                                StubTargetAddr - Section.getAddress() + 12,
1388                                ELF::R_MIPS_HI16, Value.Addend);
1389           RelocationEntry RELo(SectionID,
1390                                StubTargetAddr - Section.getAddress() + 20,
1391                                ELF::R_MIPS_LO16, Value.Addend);
1392           if (Value.SymbolName) {
1393             addRelocationForSymbol(REHighest, Value.SymbolName);
1394             addRelocationForSymbol(REHigher, Value.SymbolName);
1395             addRelocationForSymbol(REHi, Value.SymbolName);
1396             addRelocationForSymbol(RELo, Value.SymbolName);
1397           } else {
1398             addRelocationForSection(REHighest, Value.SectionID);
1399             addRelocationForSection(REHigher, Value.SectionID);
1400             addRelocationForSection(REHi, Value.SectionID);
1401             addRelocationForSection(RELo, Value.SectionID);
1402           }
1403         }
1404         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1405         addRelocationForSection(RE, SectionID);
1406         Section.advanceStubOffset(getMaxStubSize());
1407       }
1408     } else {
1409       processSimpleRelocation(SectionID, Offset, RelType, Value);
1410     }
1411   
1412   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1413     if (RelType == ELF::R_PPC64_REL24) {
1414       // Determine ABI variant in use for this object.
1415       unsigned AbiVariant;
1416       Obj.getPlatformFlags(AbiVariant);
1417       AbiVariant &= ELF::EF_PPC64_ABI;
1418       // A PPC branch relocation will need a stub function if the target is
1419       // an external symbol (either Value.SymbolName is set, or SymType is
1420       // Symbol::ST_Unknown) or if the target address is not within the
1421       // signed 24-bits branch address.
1422       SectionEntry &Section = Sections[SectionID];
1423       uint8_t *Target = Section.getAddressWithOffset(Offset);
1424       bool RangeOverflow = false;
1425       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1426       if (!IsExtern) {
1427         if (AbiVariant != 2) {
1428           // In the ELFv1 ABI, a function call may point to the .opd entry,
1429           // so the final symbol value is calculated based on the relocation
1430           // values in the .opd section.
1431           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1432             return std::move(Err);
1433         } else {
1434           // In the ELFv2 ABI, a function symbol may provide a local entry
1435           // point, which must be used for direct calls.
1436           if (Value.SectionID == SectionID){
1437             uint8_t SymOther = Symbol->getOther();
1438             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1439           }
1440         }
1441         uint8_t *RelocTarget =
1442             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1443         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1444         // If it is within 26-bits branch range, just set the branch target
1445         if (SignExtend64<26>(delta) != delta) {
1446           RangeOverflow = true;
1447         } else if ((AbiVariant != 2) ||
1448                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1449           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1450           addRelocationForSection(RE, Value.SectionID);
1451         }
1452       }
1453       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1454           RangeOverflow) {
1455         // It is an external symbol (either Value.SymbolName is set, or
1456         // SymType is SymbolRef::ST_Unknown) or out of range.
1457         StubMap::const_iterator i = Stubs.find(Value);
1458         if (i != Stubs.end()) {
1459           // Symbol function stub already created, just relocate to it
1460           resolveRelocation(Section, Offset,
1461                             reinterpret_cast<uint64_t>(
1462                                 Section.getAddressWithOffset(i->second)),
1463                             RelType, 0);
1464           DEBUG(dbgs() << " Stub function found\n");
1465         } else {
1466           // Create a new stub function.
1467           DEBUG(dbgs() << " Create a new stub function\n");
1468           Stubs[Value] = Section.getStubOffset();
1469           uint8_t *StubTargetAddr = createStubFunction(
1470               Section.getAddressWithOffset(Section.getStubOffset()),
1471               AbiVariant);
1472           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1473                              ELF::R_PPC64_ADDR64, Value.Addend);
1474
1475           // Generates the 64-bits address loads as exemplified in section
1476           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1477           // apply to the low part of the instructions, so we have to update
1478           // the offset according to the target endianness.
1479           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1480           if (!IsTargetLittleEndian)
1481             StubRelocOffset += 2;
1482
1483           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1484                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1485           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1486                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1487           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1488                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1489           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1490                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1491
1492           if (Value.SymbolName) {
1493             addRelocationForSymbol(REhst, Value.SymbolName);
1494             addRelocationForSymbol(REhr, Value.SymbolName);
1495             addRelocationForSymbol(REh, Value.SymbolName);
1496             addRelocationForSymbol(REl, Value.SymbolName);
1497           } else {
1498             addRelocationForSection(REhst, Value.SectionID);
1499             addRelocationForSection(REhr, Value.SectionID);
1500             addRelocationForSection(REh, Value.SectionID);
1501             addRelocationForSection(REl, Value.SectionID);
1502           }
1503
1504           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1505                                                  Section.getAddressWithOffset(
1506                                                      Section.getStubOffset())),
1507                             RelType, 0);
1508           Section.advanceStubOffset(getMaxStubSize());
1509         }
1510         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1511           // Restore the TOC for external calls
1512           if (AbiVariant == 2)
1513             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1514           else
1515             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1516         }
1517       }
1518     } else if (RelType == ELF::R_PPC64_TOC16 ||
1519                RelType == ELF::R_PPC64_TOC16_DS ||
1520                RelType == ELF::R_PPC64_TOC16_LO ||
1521                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1522                RelType == ELF::R_PPC64_TOC16_HI ||
1523                RelType == ELF::R_PPC64_TOC16_HA) {
1524       // These relocations are supposed to subtract the TOC address from
1525       // the final value.  This does not fit cleanly into the RuntimeDyld
1526       // scheme, since there may be *two* sections involved in determining
1527       // the relocation value (the section of the symbol referred to by the
1528       // relocation, and the TOC section associated with the current module).
1529       //
1530       // Fortunately, these relocations are currently only ever generated
1531       // referring to symbols that themselves reside in the TOC, which means
1532       // that the two sections are actually the same.  Thus they cancel out
1533       // and we can immediately resolve the relocation right now.
1534       switch (RelType) {
1535       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1536       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1537       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1538       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1539       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1540       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1541       default: llvm_unreachable("Wrong relocation type.");
1542       }
1543
1544       RelocationValueRef TOCValue;
1545       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1546         return std::move(Err);
1547       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1548         llvm_unreachable("Unsupported TOC relocation.");
1549       Value.Addend -= TOCValue.Addend;
1550       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1551     } else {
1552       // There are two ways to refer to the TOC address directly: either
1553       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1554       // ignored), or via any relocation that refers to the magic ".TOC."
1555       // symbols (in which case the addend is respected).
1556       if (RelType == ELF::R_PPC64_TOC) {
1557         RelType = ELF::R_PPC64_ADDR64;
1558         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1559           return std::move(Err);
1560       } else if (TargetName == ".TOC.") {
1561         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1562           return std::move(Err);
1563         Value.Addend += Addend;
1564       }
1565
1566       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1567
1568       if (Value.SymbolName)
1569         addRelocationForSymbol(RE, Value.SymbolName);
1570       else
1571         addRelocationForSection(RE, Value.SectionID);
1572     }
1573   } else if (Arch == Triple::systemz &&
1574              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1575     // Create function stubs for both PLT and GOT references, regardless of
1576     // whether the GOT reference is to data or code.  The stub contains the
1577     // full address of the symbol, as needed by GOT references, and the
1578     // executable part only adds an overhead of 8 bytes.
1579     //
1580     // We could try to conserve space by allocating the code and data
1581     // parts of the stub separately.  However, as things stand, we allocate
1582     // a stub for every relocation, so using a GOT in JIT code should be
1583     // no less space efficient than using an explicit constant pool.
1584     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1585     SectionEntry &Section = Sections[SectionID];
1586
1587     // Look for an existing stub.
1588     StubMap::const_iterator i = Stubs.find(Value);
1589     uintptr_t StubAddress;
1590     if (i != Stubs.end()) {
1591       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1592       DEBUG(dbgs() << " Stub function found\n");
1593     } else {
1594       // Create a new stub function.
1595       DEBUG(dbgs() << " Create a new stub function\n");
1596
1597       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1598       uintptr_t StubAlignment = getStubAlignment();
1599       StubAddress =
1600           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1601           -StubAlignment;
1602       unsigned StubOffset = StubAddress - BaseAddress;
1603
1604       Stubs[Value] = StubOffset;
1605       createStubFunction((uint8_t *)StubAddress);
1606       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1607                          Value.Offset);
1608       if (Value.SymbolName)
1609         addRelocationForSymbol(RE, Value.SymbolName);
1610       else
1611         addRelocationForSection(RE, Value.SectionID);
1612       Section.advanceStubOffset(getMaxStubSize());
1613     }
1614
1615     if (RelType == ELF::R_390_GOTENT)
1616       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1617                         Addend);
1618     else
1619       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1620   } else if (Arch == Triple::x86_64) {
1621     if (RelType == ELF::R_X86_64_PLT32) {
1622       // The way the PLT relocations normally work is that the linker allocates
1623       // the
1624       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1625       // entry will then jump to an address provided by the GOT.  On first call,
1626       // the
1627       // GOT address will point back into PLT code that resolves the symbol. After
1628       // the first call, the GOT entry points to the actual function.
1629       //
1630       // For local functions we're ignoring all of that here and just replacing
1631       // the PLT32 relocation type with PC32, which will translate the relocation
1632       // into a PC-relative call directly to the function. For external symbols we
1633       // can't be sure the function will be within 2^32 bytes of the call site, so
1634       // we need to create a stub, which calls into the GOT.  This case is
1635       // equivalent to the usual PLT implementation except that we use the stub
1636       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1637       // rather than allocating a PLT section.
1638       if (Value.SymbolName) {
1639         // This is a call to an external function.
1640         // Look for an existing stub.
1641         SectionEntry &Section = Sections[SectionID];
1642         StubMap::const_iterator i = Stubs.find(Value);
1643         uintptr_t StubAddress;
1644         if (i != Stubs.end()) {
1645           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1646           DEBUG(dbgs() << " Stub function found\n");
1647         } else {
1648           // Create a new stub function (equivalent to a PLT entry).
1649           DEBUG(dbgs() << " Create a new stub function\n");
1650
1651           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1652           uintptr_t StubAlignment = getStubAlignment();
1653           StubAddress =
1654               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1655               -StubAlignment;
1656           unsigned StubOffset = StubAddress - BaseAddress;
1657           Stubs[Value] = StubOffset;
1658           createStubFunction((uint8_t *)StubAddress);
1659
1660           // Bump our stub offset counter
1661           Section.advanceStubOffset(getMaxStubSize());
1662
1663           // Allocate a GOT Entry
1664           uint64_t GOTOffset = allocateGOTEntries(1);
1665
1666           // The load of the GOT address has an addend of -4
1667           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1668                                      ELF::R_X86_64_PC32);
1669
1670           // Fill in the value of the symbol we're targeting into the GOT
1671           addRelocationForSymbol(
1672               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1673               Value.SymbolName);
1674         }
1675
1676         // Make the target call a call into the stub table.
1677         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1678                           Addend);
1679       } else {
1680         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1681                   Value.Offset);
1682         addRelocationForSection(RE, Value.SectionID);
1683       }
1684     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1685                RelType == ELF::R_X86_64_GOTPCRELX ||
1686                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1687       uint64_t GOTOffset = allocateGOTEntries(1);
1688       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1689                                  ELF::R_X86_64_PC32);
1690
1691       // Fill in the value of the symbol we're targeting into the GOT
1692       RelocationEntry RE =
1693           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1694       if (Value.SymbolName)
1695         addRelocationForSymbol(RE, Value.SymbolName);
1696       else
1697         addRelocationForSection(RE, Value.SectionID);
1698     } else if (RelType == ELF::R_X86_64_PC32) {
1699       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1700       processSimpleRelocation(SectionID, Offset, RelType, Value);
1701     } else if (RelType == ELF::R_X86_64_PC64) {
1702       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1703       processSimpleRelocation(SectionID, Offset, RelType, Value);
1704     } else {
1705       processSimpleRelocation(SectionID, Offset, RelType, Value);
1706     }
1707   } else {
1708     if (Arch == Triple::x86) {
1709       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1710     }
1711     processSimpleRelocation(SectionID, Offset, RelType, Value);
1712   }
1713   return ++RelI;
1714 }
1715
1716 size_t RuntimeDyldELF::getGOTEntrySize() {
1717   // We don't use the GOT in all of these cases, but it's essentially free
1718   // to put them all here.
1719   size_t Result = 0;
1720   switch (Arch) {
1721   case Triple::x86_64:
1722   case Triple::aarch64:
1723   case Triple::aarch64_be:
1724   case Triple::ppc64:
1725   case Triple::ppc64le:
1726   case Triple::systemz:
1727     Result = sizeof(uint64_t);
1728     break;
1729   case Triple::x86:
1730   case Triple::arm:
1731   case Triple::thumb:
1732     Result = sizeof(uint32_t);
1733     break;
1734   case Triple::mips:
1735   case Triple::mipsel:
1736   case Triple::mips64:
1737   case Triple::mips64el:
1738     if (IsMipsO32ABI || IsMipsN32ABI)
1739       Result = sizeof(uint32_t);
1740     else if (IsMipsN64ABI)
1741       Result = sizeof(uint64_t);
1742     else
1743       llvm_unreachable("Mips ABI not handled");
1744     break;
1745   default:
1746     llvm_unreachable("Unsupported CPU type!");
1747   }
1748   return Result;
1749 }
1750
1751 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1752   if (GOTSectionID == 0) {
1753     GOTSectionID = Sections.size();
1754     // Reserve a section id. We'll allocate the section later
1755     // once we know the total size
1756     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1757   }
1758   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1759   CurrentGOTIndex += no;
1760   return StartOffset;
1761 }
1762
1763 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1764                                              unsigned GOTRelType) {
1765   auto E = GOTOffsetMap.insert({Value, 0});
1766   if (E.second) {
1767     uint64_t GOTOffset = allocateGOTEntries(1);
1768
1769     // Create relocation for newly created GOT entry
1770     RelocationEntry RE =
1771         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1772     if (Value.SymbolName)
1773       addRelocationForSymbol(RE, Value.SymbolName);
1774     else
1775       addRelocationForSection(RE, Value.SectionID);
1776
1777     E.first->second = GOTOffset;
1778   }
1779
1780   return E.first->second;
1781 }
1782
1783 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1784                                                 uint64_t Offset,
1785                                                 uint64_t GOTOffset,
1786                                                 uint32_t Type) {
1787   // Fill in the relative address of the GOT Entry into the stub
1788   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1789   addRelocationForSection(GOTRE, GOTSectionID);
1790 }
1791
1792 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1793                                                    uint64_t SymbolOffset,
1794                                                    uint32_t Type) {
1795   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1796 }
1797
1798 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1799                                   ObjSectionToIDMap &SectionMap) {
1800   if (IsMipsO32ABI)
1801     if (!PendingRelocs.empty())
1802       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1803
1804   // If necessary, allocate the global offset table
1805   if (GOTSectionID != 0) {
1806     // Allocate memory for the section
1807     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1808     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1809                                                 GOTSectionID, ".got", false);
1810     if (!Addr)
1811       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1812
1813     Sections[GOTSectionID] =
1814         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1815
1816     if (Checker)
1817       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1818
1819     // For now, initialize all GOT entries to zero.  We'll fill them in as
1820     // needed when GOT-based relocations are applied.
1821     memset(Addr, 0, TotalSize);
1822     if (IsMipsN32ABI || IsMipsN64ABI) {
1823       // To correctly resolve Mips GOT relocations, we need a mapping from
1824       // object's sections to GOTs.
1825       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1826            SI != SE; ++SI) {
1827         if (SI->relocation_begin() != SI->relocation_end()) {
1828           section_iterator RelocatedSection = SI->getRelocatedSection();
1829           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1830           assert (i != SectionMap.end());
1831           SectionToGOTMap[i->second] = GOTSectionID;
1832         }
1833       }
1834       GOTSymbolOffsets.clear();
1835     }
1836   }
1837
1838   // Look for and record the EH frame section.
1839   ObjSectionToIDMap::iterator i, e;
1840   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1841     const SectionRef &Section = i->first;
1842     StringRef Name;
1843     Section.getName(Name);
1844     if (Name == ".eh_frame") {
1845       UnregisteredEHFrameSections.push_back(i->second);
1846       break;
1847     }
1848   }
1849
1850   GOTSectionID = 0;
1851   CurrentGOTIndex = 0;
1852
1853   return Error::success();
1854 }
1855
1856 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1857   return Obj.isELF();
1858 }
1859
1860 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1861   unsigned RelTy = R.getType();
1862   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1863     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1864            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1865
1866   if (Arch == Triple::x86_64)
1867     return RelTy == ELF::R_X86_64_GOTPCREL ||
1868            RelTy == ELF::R_X86_64_GOTPCRELX ||
1869            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1870   return false;
1871 }
1872
1873 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1874   if (Arch != Triple::x86_64)
1875     return true;  // Conservative answer
1876
1877   switch (R.getType()) {
1878   default:
1879     return true;  // Conservative answer
1880
1881
1882   case ELF::R_X86_64_GOTPCREL:
1883   case ELF::R_X86_64_GOTPCRELX:
1884   case ELF::R_X86_64_REX_GOTPCRELX:
1885   case ELF::R_X86_64_PC32:
1886   case ELF::R_X86_64_PC64:
1887   case ELF::R_X86_64_64:
1888     // We know that these reloation types won't need a stub function.  This list
1889     // can be extended as needed.
1890     return false;
1891   }
1892 }
1893
1894 } // namespace llvm