]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
MFV r313676: libpcap 1.8.1
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "llvm/ADT/IntervalMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/TargetRegistry.h"
27
28 using namespace llvm;
29 using namespace llvm::object;
30
31 #define DEBUG_TYPE "dyld"
32
33 namespace {
34
35 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
36   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
37
38   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
39   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
40   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
41   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
42
43   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
44
45   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
46
47 public:
48   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
49
50   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
51
52   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
53
54   // Methods for type inquiry through isa, cast and dyn_cast
55   static inline bool classof(const Binary *v) {
56     return (isa<ELFObjectFile<ELFT>>(v) &&
57             classof(cast<ELFObjectFile<ELFT>>(v)));
58   }
59   static inline bool classof(const ELFObjectFile<ELFT> *v) {
60     return v->isDyldType();
61   }
62 };
63
64
65
66 // The MemoryBuffer passed into this constructor is just a wrapper around the
67 // actual memory.  Ultimately, the Binary parent class will take ownership of
68 // this MemoryBuffer object but not the underlying memory.
69 template <class ELFT>
70 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
71     : ELFObjectFile<ELFT>(Wrapper, EC) {
72   this->isDyldELFObject = true;
73 }
74
75 template <class ELFT>
76 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
77                                                uint64_t Addr) {
78   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
79   Elf_Shdr *shdr =
80       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
81
82   // This assumes the address passed in matches the target address bitness
83   // The template-based type cast handles everything else.
84   shdr->sh_addr = static_cast<addr_type>(Addr);
85 }
86
87 template <class ELFT>
88 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
89                                               uint64_t Addr) {
90
91   Elf_Sym *sym = const_cast<Elf_Sym *>(
92       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
93
94   // This assumes the address passed in matches the target address bitness
95   // The template-based type cast handles everything else.
96   sym->st_value = static_cast<addr_type>(Addr);
97 }
98
99 class LoadedELFObjectInfo final
100     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
101 public:
102   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
103       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
104
105   OwningBinary<ObjectFile>
106   getObjectForDebug(const ObjectFile &Obj) const override;
107 };
108
109 template <typename ELFT>
110 std::unique_ptr<DyldELFObject<ELFT>>
111 createRTDyldELFObject(MemoryBufferRef Buffer,
112                       const ObjectFile &SourceObject,
113                       const LoadedELFObjectInfo &L,
114                       std::error_code &ec) {
115   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
116   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
117
118   std::unique_ptr<DyldELFObject<ELFT>> Obj =
119     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
120
121   // Iterate over all sections in the object.
122   auto SI = SourceObject.section_begin();
123   for (const auto &Sec : Obj->sections()) {
124     StringRef SectionName;
125     Sec.getName(SectionName);
126     if (SectionName != "") {
127       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
129           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130
131       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
132         // This assumes that the address passed in matches the target address
133         // bitness. The template-based type cast handles everything else.
134         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
135       }
136     }
137     ++SI;
138   }
139
140   return Obj;
141 }
142
143 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
144                                               const LoadedELFObjectInfo &L) {
145   assert(Obj.isELF() && "Not an ELF object file.");
146
147   std::unique_ptr<MemoryBuffer> Buffer =
148     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
149
150   std::error_code ec;
151
152   std::unique_ptr<ObjectFile> DebugObj;
153   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
154     typedef ELFType<support::little, false> ELF32LE;
155     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
156                                               ec);
157   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
158     typedef ELFType<support::big, false> ELF32BE;
159     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
160                                               ec);
161   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
162     typedef ELFType<support::big, true> ELF64BE;
163     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
164                                               ec);
165   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
166     typedef ELFType<support::little, true> ELF64LE;
167     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
168                                               ec);
169   } else
170     llvm_unreachable("Unexpected ELF format");
171
172   assert(!ec && "Could not construct copy ELF object file");
173
174   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
175 }
176
177 OwningBinary<ObjectFile>
178 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
179   return createELFDebugObject(Obj, *this);
180 }
181
182 } // anonymous namespace
183
184 namespace llvm {
185
186 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
187                                RuntimeDyld::SymbolResolver &Resolver)
188     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
189 RuntimeDyldELF::~RuntimeDyldELF() {}
190
191 void RuntimeDyldELF::registerEHFrames() {
192   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
193     SID EHFrameSID = UnregisteredEHFrameSections[i];
194     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
195     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
196     size_t EHFrameSize = Sections[EHFrameSID].getSize();
197     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
198     RegisteredEHFrameSections.push_back(EHFrameSID);
199   }
200   UnregisteredEHFrameSections.clear();
201 }
202
203 void RuntimeDyldELF::deregisterEHFrames() {
204   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
205     SID EHFrameSID = RegisteredEHFrameSections[i];
206     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
207     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
208     size_t EHFrameSize = Sections[EHFrameSID].getSize();
209     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
210   }
211   RegisteredEHFrameSections.clear();
212 }
213
214 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
215 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
216   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
217     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
218   else {
219     HasError = true;
220     raw_string_ostream ErrStream(ErrorStr);
221     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
222     return nullptr;
223   }
224 }
225
226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
227                                              uint64_t Offset, uint64_t Value,
228                                              uint32_t Type, int64_t Addend,
229                                              uint64_t SymOffset) {
230   switch (Type) {
231   default:
232     llvm_unreachable("Relocation type not implemented yet!");
233     break;
234   case ELF::R_X86_64_64: {
235     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
236         Value + Addend;
237     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
238                  << format("%p\n", Section.getAddressWithOffset(Offset)));
239     break;
240   }
241   case ELF::R_X86_64_32:
242   case ELF::R_X86_64_32S: {
243     Value += Addend;
244     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
245            (Type == ELF::R_X86_64_32S &&
246             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
247     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
248     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
249         TruncatedAddr;
250     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
251                  << format("%p\n", Section.getAddressWithOffset(Offset)));
252     break;
253   }
254   case ELF::R_X86_64_PC8: {
255     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
256     int64_t RealOffset = Value + Addend - FinalAddress;
257     assert(isInt<8>(RealOffset));
258     int8_t TruncOffset = (RealOffset & 0xFF);
259     Section.getAddress()[Offset] = TruncOffset;
260     break;
261   }
262   case ELF::R_X86_64_PC32: {
263     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
264     int64_t RealOffset = Value + Addend - FinalAddress;
265     assert(isInt<32>(RealOffset));
266     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
267     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
268         TruncOffset;
269     break;
270   }
271   case ELF::R_X86_64_PC64: {
272     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
273     int64_t RealOffset = Value + Addend - FinalAddress;
274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275         RealOffset;
276     break;
277   }
278   }
279 }
280
281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
282                                           uint64_t Offset, uint32_t Value,
283                                           uint32_t Type, int32_t Addend) {
284   switch (Type) {
285   case ELF::R_386_32: {
286     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287         Value + Addend;
288     break;
289   }
290   case ELF::R_386_PC32: {
291     uint32_t FinalAddress =
292         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
293     uint32_t RealOffset = Value + Addend - FinalAddress;
294     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
295         RealOffset;
296     break;
297   }
298   default:
299     // There are other relocation types, but it appears these are the
300     // only ones currently used by the LLVM ELF object writer
301     llvm_unreachable("Relocation type not implemented yet!");
302     break;
303   }
304 }
305
306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
307                                               uint64_t Offset, uint64_t Value,
308                                               uint32_t Type, int64_t Addend) {
309   uint32_t *TargetPtr =
310       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
311   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312
313   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
314                << format("%llx", Section.getAddressWithOffset(Offset))
315                << " FinalAddress: 0x" << format("%llx", FinalAddress)
316                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
317                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
318                << "\n");
319
320   switch (Type) {
321   default:
322     llvm_unreachable("Relocation type not implemented yet!");
323     break;
324   case ELF::R_AARCH64_ABS64: {
325     uint64_t *TargetPtr =
326         reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
327     *TargetPtr = Value + Addend;
328     break;
329   }
330   case ELF::R_AARCH64_PREL32: {
331     uint64_t Result = Value + Addend - FinalAddress;
332     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
333            static_cast<int64_t>(Result) <= UINT32_MAX);
334     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
335     break;
336   }
337   case ELF::R_AARCH64_CALL26: // fallthrough
338   case ELF::R_AARCH64_JUMP26: {
339     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
340     // calculation.
341     uint64_t BranchImm = Value + Addend - FinalAddress;
342
343     // "Check that -2^27 <= result < 2^27".
344     assert(isInt<28>(BranchImm));
345
346     // AArch64 code is emitted with .rela relocations. The data already in any
347     // bits affected by the relocation on entry is garbage.
348     *TargetPtr &= 0xfc000000U;
349     // Immediate goes in bits 25:0 of B and BL.
350     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
351     break;
352   }
353   case ELF::R_AARCH64_MOVW_UABS_G3: {
354     uint64_t Result = Value + Addend;
355
356     // AArch64 code is emitted with .rela relocations. The data already in any
357     // bits affected by the relocation on entry is garbage.
358     *TargetPtr &= 0xffe0001fU;
359     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
360     *TargetPtr |= Result >> (48 - 5);
361     // Shift must be "lsl #48", in bits 22:21
362     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
363     break;
364   }
365   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
366     uint64_t Result = Value + Addend;
367
368     // AArch64 code is emitted with .rela relocations. The data already in any
369     // bits affected by the relocation on entry is garbage.
370     *TargetPtr &= 0xffe0001fU;
371     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
372     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
373     // Shift must be "lsl #32", in bits 22:21
374     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
375     break;
376   }
377   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
378     uint64_t Result = Value + Addend;
379
380     // AArch64 code is emitted with .rela relocations. The data already in any
381     // bits affected by the relocation on entry is garbage.
382     *TargetPtr &= 0xffe0001fU;
383     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
384     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
385     // Shift must be "lsl #16", in bits 22:2
386     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
387     break;
388   }
389   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
390     uint64_t Result = Value + Addend;
391
392     // AArch64 code is emitted with .rela relocations. The data already in any
393     // bits affected by the relocation on entry is garbage.
394     *TargetPtr &= 0xffe0001fU;
395     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
396     *TargetPtr |= ((Result & 0xffffU) << 5);
397     // Shift must be "lsl #0", in bits 22:21.
398     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
399     break;
400   }
401   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
402     // Operation: Page(S+A) - Page(P)
403     uint64_t Result =
404         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
405
406     // Check that -2^32 <= X < 2^32
407     assert(isInt<33>(Result) && "overflow check failed for relocation");
408
409     // AArch64 code is emitted with .rela relocations. The data already in any
410     // bits affected by the relocation on entry is garbage.
411     *TargetPtr &= 0x9f00001fU;
412     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
413     // from bits 32:12 of X.
414     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
415     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
416     break;
417   }
418   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
419     // Operation: S + A
420     uint64_t Result = Value + Addend;
421
422     // AArch64 code is emitted with .rela relocations. The data already in any
423     // bits affected by the relocation on entry is garbage.
424     *TargetPtr &= 0xffc003ffU;
425     // Immediate goes in bits 21:10 of LD/ST instruction, taken
426     // from bits 11:2 of X
427     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
428     break;
429   }
430   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
431     // Operation: S + A
432     uint64_t Result = Value + Addend;
433
434     // AArch64 code is emitted with .rela relocations. The data already in any
435     // bits affected by the relocation on entry is garbage.
436     *TargetPtr &= 0xffc003ffU;
437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
438     // from bits 11:3 of X
439     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
440     break;
441   }
442   }
443 }
444
445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
446                                           uint64_t Offset, uint32_t Value,
447                                           uint32_t Type, int32_t Addend) {
448   // TODO: Add Thumb relocations.
449   uint32_t *TargetPtr =
450       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
451   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
452   Value += Addend;
453
454   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
455                << Section.getAddressWithOffset(Offset)
456                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
457                << format("%x", Value) << " Type: " << format("%x", Type)
458                << " Addend: " << format("%x", Addend) << "\n");
459
460   switch (Type) {
461   default:
462     llvm_unreachable("Not implemented relocation type!");
463
464   case ELF::R_ARM_NONE:
465     break;
466   case ELF::R_ARM_PREL31:
467   case ELF::R_ARM_TARGET1:
468   case ELF::R_ARM_ABS32:
469     *TargetPtr = Value;
470     break;
471     // Write first 16 bit of 32 bit value to the mov instruction.
472     // Last 4 bit should be shifted.
473   case ELF::R_ARM_MOVW_ABS_NC:
474   case ELF::R_ARM_MOVT_ABS:
475     if (Type == ELF::R_ARM_MOVW_ABS_NC)
476       Value = Value & 0xFFFF;
477     else if (Type == ELF::R_ARM_MOVT_ABS)
478       Value = (Value >> 16) & 0xFFFF;
479     *TargetPtr &= ~0x000F0FFF;
480     *TargetPtr |= Value & 0xFFF;
481     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
482     break;
483     // Write 24 bit relative value to the branch instruction.
484   case ELF::R_ARM_PC24: // Fall through.
485   case ELF::R_ARM_CALL: // Fall through.
486   case ELF::R_ARM_JUMP24:
487     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
488     RelValue = (RelValue & 0x03FFFFFC) >> 2;
489     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
490     *TargetPtr &= 0xFF000000;
491     *TargetPtr |= RelValue;
492     break;
493   }
494 }
495
496 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
497                                            uint64_t Offset, uint32_t Value,
498                                            uint32_t Type, int32_t Addend) {
499   uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
500   Value += Addend;
501
502   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
503                << Section.getAddressWithOffset(Offset) << " FinalAddress: "
504                << format("%p", Section.getLoadAddressWithOffset(Offset))
505                << " Value: " << format("%x", Value)
506                << " Type: " << format("%x", Type)
507                << " Addend: " << format("%x", Addend) << "\n");
508
509   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
510
511   switch (Type) {
512   default:
513     llvm_unreachable("Not implemented relocation type!");
514     break;
515   case ELF::R_MIPS_32:
516     writeBytesUnaligned(Value, TargetPtr, 4);
517     break;
518   case ELF::R_MIPS_26:
519     Insn &= 0xfc000000;
520     Insn |= (Value & 0x0fffffff) >> 2;
521     writeBytesUnaligned(Insn, TargetPtr, 4);
522     break;
523   case ELF::R_MIPS_HI16:
524     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
525     Insn &= 0xffff0000;
526     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
527     writeBytesUnaligned(Insn, TargetPtr, 4);
528     break;
529   case ELF::R_MIPS_LO16:
530     Insn &= 0xffff0000;
531     Insn |= Value & 0xffff;
532     writeBytesUnaligned(Insn, TargetPtr, 4);
533     break;
534   case ELF::R_MIPS_PC32: {
535     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
536     writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
537     break;
538   }
539   case ELF::R_MIPS_PC16: {
540     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
541     Insn &= 0xffff0000;
542     Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
543     writeBytesUnaligned(Insn, TargetPtr, 4);
544     break;
545   }
546   case ELF::R_MIPS_PC19_S2: {
547     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
548     Insn &= 0xfff80000;
549     Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
550     writeBytesUnaligned(Insn, TargetPtr, 4);
551     break;
552   }
553   case ELF::R_MIPS_PC21_S2: {
554     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
555     Insn &= 0xffe00000;
556     Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
557     writeBytesUnaligned(Insn, TargetPtr, 4);
558     break;
559   }
560   case ELF::R_MIPS_PC26_S2: {
561     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
562     Insn &= 0xfc000000;
563     Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
564     writeBytesUnaligned(Insn, TargetPtr, 4);
565     break;
566   }
567   case ELF::R_MIPS_PCHI16: {
568     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
569     Insn &= 0xffff0000;
570     Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
571     writeBytesUnaligned(Insn, TargetPtr, 4);
572     break;
573   }
574   case ELF::R_MIPS_PCLO16: {
575     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
576     Insn &= 0xffff0000;
577     Insn |= (Value - FinalAddress) & 0xffff;
578     writeBytesUnaligned(Insn, TargetPtr, 4);
579     break;
580   }
581   }
582 }
583
584 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
585   if (Arch == Triple::UnknownArch ||
586       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
587     IsMipsO32ABI = false;
588     IsMipsN64ABI = false;
589     return;
590   }
591   unsigned AbiVariant;
592   Obj.getPlatformFlags(AbiVariant);
593   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
594   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
595   if (AbiVariant & ELF::EF_MIPS_ABI2)
596     llvm_unreachable("Mips N32 ABI is not supported yet");
597 }
598
599 void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
600                                              uint64_t Offset, uint64_t Value,
601                                              uint32_t Type, int64_t Addend,
602                                              uint64_t SymOffset,
603                                              SID SectionID) {
604   uint32_t r_type = Type & 0xff;
605   uint32_t r_type2 = (Type >> 8) & 0xff;
606   uint32_t r_type3 = (Type >> 16) & 0xff;
607
608   // RelType is used to keep information for which relocation type we are
609   // applying relocation.
610   uint32_t RelType = r_type;
611   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
612                                                      RelType, Addend,
613                                                      SymOffset, SectionID);
614   if (r_type2 != ELF::R_MIPS_NONE) {
615     RelType = r_type2;
616     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
617                                                CalculatedValue, SymOffset,
618                                                SectionID);
619   }
620   if (r_type3 != ELF::R_MIPS_NONE) {
621     RelType = r_type3;
622     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
623                                                CalculatedValue, SymOffset,
624                                                SectionID);
625   }
626   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
627                         RelType);
628 }
629
630 int64_t
631 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
632                                          uint64_t Offset, uint64_t Value,
633                                          uint32_t Type, int64_t Addend,
634                                          uint64_t SymOffset, SID SectionID) {
635
636   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
637                << format("%llx", Section.getAddressWithOffset(Offset))
638                << " FinalAddress: 0x"
639                << format("%llx", Section.getLoadAddressWithOffset(Offset))
640                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
641                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
642                << " SymOffset: " << format("%x", SymOffset) << "\n");
643
644   switch (Type) {
645   default:
646     llvm_unreachable("Not implemented relocation type!");
647     break;
648   case ELF::R_MIPS_JALR:
649   case ELF::R_MIPS_NONE:
650     break;
651   case ELF::R_MIPS_32:
652   case ELF::R_MIPS_64:
653     return Value + Addend;
654   case ELF::R_MIPS_26:
655     return ((Value + Addend) >> 2) & 0x3ffffff;
656   case ELF::R_MIPS_GPREL16: {
657     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
658     return Value + Addend - (GOTAddr + 0x7ff0);
659   }
660   case ELF::R_MIPS_SUB:
661     return Value - Addend;
662   case ELF::R_MIPS_HI16:
663     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
664     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
665   case ELF::R_MIPS_LO16:
666     return (Value + Addend) & 0xffff;
667   case ELF::R_MIPS_CALL16:
668   case ELF::R_MIPS_GOT_DISP:
669   case ELF::R_MIPS_GOT_PAGE: {
670     uint8_t *LocalGOTAddr =
671         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
672     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
673
674     Value += Addend;
675     if (Type == ELF::R_MIPS_GOT_PAGE)
676       Value = (Value + 0x8000) & ~0xffff;
677
678     if (GOTEntry)
679       assert(GOTEntry == Value &&
680                    "GOT entry has two different addresses.");
681     else
682       writeBytesUnaligned(Value, LocalGOTAddr, 8);
683
684     return (SymOffset - 0x7ff0) & 0xffff;
685   }
686   case ELF::R_MIPS_GOT_OFST: {
687     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
688     return (Value + Addend - page) & 0xffff;
689   }
690   case ELF::R_MIPS_GPREL32: {
691     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
692     return Value + Addend - (GOTAddr + 0x7ff0);
693   }
694   case ELF::R_MIPS_PC16: {
695     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
696     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
697   }
698   case ELF::R_MIPS_PC32: {
699     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
700     return Value + Addend - FinalAddress;
701   }
702   case ELF::R_MIPS_PC18_S3: {
703     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
704     return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
705   }
706   case ELF::R_MIPS_PC19_S2: {
707     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
708     return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
709   }
710   case ELF::R_MIPS_PC21_S2: {
711     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
712     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
713   }
714   case ELF::R_MIPS_PC26_S2: {
715     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
716     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
717   }
718   case ELF::R_MIPS_PCHI16: {
719     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
720     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
721   }
722   case ELF::R_MIPS_PCLO16: {
723     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
724     return (Value + Addend - FinalAddress) & 0xffff;
725   }
726   }
727   return 0;
728 }
729
730 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
731                                            int64_t CalculatedValue,
732                                            uint32_t Type) {
733   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
734
735   switch (Type) {
736     default:
737       break;
738     case ELF::R_MIPS_32:
739     case ELF::R_MIPS_GPREL32:
740     case ELF::R_MIPS_PC32:
741       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
742       break;
743     case ELF::R_MIPS_64:
744     case ELF::R_MIPS_SUB:
745       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
746       break;
747     case ELF::R_MIPS_26:
748     case ELF::R_MIPS_PC26_S2:
749       Insn = (Insn & 0xfc000000) | CalculatedValue;
750       writeBytesUnaligned(Insn, TargetPtr, 4);
751       break;
752     case ELF::R_MIPS_GPREL16:
753       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
754       writeBytesUnaligned(Insn, TargetPtr, 4);
755       break;
756     case ELF::R_MIPS_HI16:
757     case ELF::R_MIPS_LO16:
758     case ELF::R_MIPS_PCHI16:
759     case ELF::R_MIPS_PCLO16:
760     case ELF::R_MIPS_PC16:
761     case ELF::R_MIPS_CALL16:
762     case ELF::R_MIPS_GOT_DISP:
763     case ELF::R_MIPS_GOT_PAGE:
764     case ELF::R_MIPS_GOT_OFST:
765       Insn = (Insn & 0xffff0000) | CalculatedValue;
766       writeBytesUnaligned(Insn, TargetPtr, 4);
767       break;
768     case ELF::R_MIPS_PC18_S3:
769       Insn = (Insn & 0xfffc0000) | CalculatedValue;
770       writeBytesUnaligned(Insn, TargetPtr, 4);
771       break;
772     case ELF::R_MIPS_PC19_S2:
773       Insn = (Insn & 0xfff80000) | CalculatedValue;
774       writeBytesUnaligned(Insn, TargetPtr, 4);
775       break;
776     case ELF::R_MIPS_PC21_S2:
777       Insn = (Insn & 0xffe00000) | CalculatedValue;
778       writeBytesUnaligned(Insn, TargetPtr, 4);
779       break;
780     }
781 }
782
783 // Return the .TOC. section and offset.
784 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
785                                           ObjSectionToIDMap &LocalSections,
786                                           RelocationValueRef &Rel) {
787   // Set a default SectionID in case we do not find a TOC section below.
788   // This may happen for references to TOC base base (sym@toc, .odp
789   // relocation) without a .toc directive.  In this case just use the
790   // first section (which is usually the .odp) since the code won't
791   // reference the .toc base directly.
792   Rel.SymbolName = nullptr;
793   Rel.SectionID = 0;
794
795   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
796   // order. The TOC starts where the first of these sections starts.
797   for (auto &Section: Obj.sections()) {
798     StringRef SectionName;
799     if (auto EC = Section.getName(SectionName))
800       return errorCodeToError(EC);
801
802     if (SectionName == ".got"
803         || SectionName == ".toc"
804         || SectionName == ".tocbss"
805         || SectionName == ".plt") {
806       if (auto SectionIDOrErr =
807             findOrEmitSection(Obj, Section, false, LocalSections))
808         Rel.SectionID = *SectionIDOrErr;
809       else
810         return SectionIDOrErr.takeError();
811       break;
812     }
813   }
814
815   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
816   // thus permitting a full 64 Kbytes segment.
817   Rel.Addend = 0x8000;
818
819   return Error::success();
820 }
821
822 // Returns the sections and offset associated with the ODP entry referenced
823 // by Symbol.
824 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
825                                           ObjSectionToIDMap &LocalSections,
826                                           RelocationValueRef &Rel) {
827   // Get the ELF symbol value (st_value) to compare with Relocation offset in
828   // .opd entries
829   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
830        si != se; ++si) {
831     section_iterator RelSecI = si->getRelocatedSection();
832     if (RelSecI == Obj.section_end())
833       continue;
834
835     StringRef RelSectionName;
836     if (auto EC = RelSecI->getName(RelSectionName))
837       return errorCodeToError(EC);
838
839     if (RelSectionName != ".opd")
840       continue;
841
842     for (elf_relocation_iterator i = si->relocation_begin(),
843                                  e = si->relocation_end();
844          i != e;) {
845       // The R_PPC64_ADDR64 relocation indicates the first field
846       // of a .opd entry
847       uint64_t TypeFunc = i->getType();
848       if (TypeFunc != ELF::R_PPC64_ADDR64) {
849         ++i;
850         continue;
851       }
852
853       uint64_t TargetSymbolOffset = i->getOffset();
854       symbol_iterator TargetSymbol = i->getSymbol();
855       int64_t Addend;
856       if (auto AddendOrErr = i->getAddend())
857         Addend = *AddendOrErr;
858       else
859         return errorCodeToError(AddendOrErr.getError());
860
861       ++i;
862       if (i == e)
863         break;
864
865       // Just check if following relocation is a R_PPC64_TOC
866       uint64_t TypeTOC = i->getType();
867       if (TypeTOC != ELF::R_PPC64_TOC)
868         continue;
869
870       // Finally compares the Symbol value and the target symbol offset
871       // to check if this .opd entry refers to the symbol the relocation
872       // points to.
873       if (Rel.Addend != (int64_t)TargetSymbolOffset)
874         continue;
875
876       section_iterator TSI = Obj.section_end();
877       if (auto TSIOrErr = TargetSymbol->getSection())
878         TSI = *TSIOrErr;
879       else
880         return TSIOrErr.takeError();
881       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
882
883       bool IsCode = TSI->isText();
884       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
885                                                   LocalSections))
886         Rel.SectionID = *SectionIDOrErr;
887       else
888         return SectionIDOrErr.takeError();
889       Rel.Addend = (intptr_t)Addend;
890       return Error::success();
891     }
892   }
893   llvm_unreachable("Attempting to get address of ODP entry!");
894 }
895
896 // Relocation masks following the #lo(value), #hi(value), #ha(value),
897 // #higher(value), #highera(value), #highest(value), and #highesta(value)
898 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
899 // document.
900
901 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
902
903 static inline uint16_t applyPPChi(uint64_t value) {
904   return (value >> 16) & 0xffff;
905 }
906
907 static inline uint16_t applyPPCha (uint64_t value) {
908   return ((value + 0x8000) >> 16) & 0xffff;
909 }
910
911 static inline uint16_t applyPPChigher(uint64_t value) {
912   return (value >> 32) & 0xffff;
913 }
914
915 static inline uint16_t applyPPChighera (uint64_t value) {
916   return ((value + 0x8000) >> 32) & 0xffff;
917 }
918
919 static inline uint16_t applyPPChighest(uint64_t value) {
920   return (value >> 48) & 0xffff;
921 }
922
923 static inline uint16_t applyPPChighesta (uint64_t value) {
924   return ((value + 0x8000) >> 48) & 0xffff;
925 }
926
927 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
928                                             uint64_t Offset, uint64_t Value,
929                                             uint32_t Type, int64_t Addend) {
930   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
931   switch (Type) {
932   default:
933     llvm_unreachable("Relocation type not implemented yet!");
934     break;
935   case ELF::R_PPC_ADDR16_LO:
936     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
937     break;
938   case ELF::R_PPC_ADDR16_HI:
939     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
940     break;
941   case ELF::R_PPC_ADDR16_HA:
942     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
943     break;
944   }
945 }
946
947 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
948                                             uint64_t Offset, uint64_t Value,
949                                             uint32_t Type, int64_t Addend) {
950   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
951   switch (Type) {
952   default:
953     llvm_unreachable("Relocation type not implemented yet!");
954     break;
955   case ELF::R_PPC64_ADDR16:
956     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
957     break;
958   case ELF::R_PPC64_ADDR16_DS:
959     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
960     break;
961   case ELF::R_PPC64_ADDR16_LO:
962     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
963     break;
964   case ELF::R_PPC64_ADDR16_LO_DS:
965     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
966     break;
967   case ELF::R_PPC64_ADDR16_HI:
968     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
969     break;
970   case ELF::R_PPC64_ADDR16_HA:
971     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
972     break;
973   case ELF::R_PPC64_ADDR16_HIGHER:
974     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
975     break;
976   case ELF::R_PPC64_ADDR16_HIGHERA:
977     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
978     break;
979   case ELF::R_PPC64_ADDR16_HIGHEST:
980     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
981     break;
982   case ELF::R_PPC64_ADDR16_HIGHESTA:
983     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
984     break;
985   case ELF::R_PPC64_ADDR14: {
986     assert(((Value + Addend) & 3) == 0);
987     // Preserve the AA/LK bits in the branch instruction
988     uint8_t aalk = *(LocalAddress + 3);
989     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
990   } break;
991   case ELF::R_PPC64_REL16_LO: {
992     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
993     uint64_t Delta = Value - FinalAddress + Addend;
994     writeInt16BE(LocalAddress, applyPPClo(Delta));
995   } break;
996   case ELF::R_PPC64_REL16_HI: {
997     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
998     uint64_t Delta = Value - FinalAddress + Addend;
999     writeInt16BE(LocalAddress, applyPPChi(Delta));
1000   } break;
1001   case ELF::R_PPC64_REL16_HA: {
1002     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1003     uint64_t Delta = Value - FinalAddress + Addend;
1004     writeInt16BE(LocalAddress, applyPPCha(Delta));
1005   } break;
1006   case ELF::R_PPC64_ADDR32: {
1007     int32_t Result = static_cast<int32_t>(Value + Addend);
1008     if (SignExtend32<32>(Result) != Result)
1009       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1010     writeInt32BE(LocalAddress, Result);
1011   } break;
1012   case ELF::R_PPC64_REL24: {
1013     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1014     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1015     if (SignExtend32<26>(delta) != delta)
1016       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1017     // Generates a 'bl <address>' instruction
1018     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
1019   } break;
1020   case ELF::R_PPC64_REL32: {
1021     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1022     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1023     if (SignExtend32<32>(delta) != delta)
1024       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1025     writeInt32BE(LocalAddress, delta);
1026   } break;
1027   case ELF::R_PPC64_REL64: {
1028     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1029     uint64_t Delta = Value - FinalAddress + Addend;
1030     writeInt64BE(LocalAddress, Delta);
1031   } break;
1032   case ELF::R_PPC64_ADDR64:
1033     writeInt64BE(LocalAddress, Value + Addend);
1034     break;
1035   }
1036 }
1037
1038 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1039                                               uint64_t Offset, uint64_t Value,
1040                                               uint32_t Type, int64_t Addend) {
1041   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1042   switch (Type) {
1043   default:
1044     llvm_unreachable("Relocation type not implemented yet!");
1045     break;
1046   case ELF::R_390_PC16DBL:
1047   case ELF::R_390_PLT16DBL: {
1048     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1049     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1050     writeInt16BE(LocalAddress, Delta / 2);
1051     break;
1052   }
1053   case ELF::R_390_PC32DBL:
1054   case ELF::R_390_PLT32DBL: {
1055     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1056     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1057     writeInt32BE(LocalAddress, Delta / 2);
1058     break;
1059   }
1060   case ELF::R_390_PC32: {
1061     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1062     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1063     writeInt32BE(LocalAddress, Delta);
1064     break;
1065   }
1066   case ELF::R_390_64:
1067     writeInt64BE(LocalAddress, Value + Addend);
1068     break;
1069   case ELF::R_390_PC64: {
1070     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1071     writeInt64BE(LocalAddress, Delta);
1072     break;
1073   }
1074   }
1075 }
1076
1077 // The target location for the relocation is described by RE.SectionID and
1078 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1079 // SectionEntry has three members describing its location.
1080 // SectionEntry::Address is the address at which the section has been loaded
1081 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1082 // address that the section will have in the target process.
1083 // SectionEntry::ObjAddress is the address of the bits for this section in the
1084 // original emitted object image (also in the current address space).
1085 //
1086 // Relocations will be applied as if the section were loaded at
1087 // SectionEntry::LoadAddress, but they will be applied at an address based
1088 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1089 // Target memory contents if they are required for value calculations.
1090 //
1091 // The Value parameter here is the load address of the symbol for the
1092 // relocation to be applied.  For relocations which refer to symbols in the
1093 // current object Value will be the LoadAddress of the section in which
1094 // the symbol resides (RE.Addend provides additional information about the
1095 // symbol location).  For external symbols, Value will be the address of the
1096 // symbol in the target address space.
1097 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1098                                        uint64_t Value) {
1099   const SectionEntry &Section = Sections[RE.SectionID];
1100   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1101                            RE.SymOffset, RE.SectionID);
1102 }
1103
1104 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1105                                        uint64_t Offset, uint64_t Value,
1106                                        uint32_t Type, int64_t Addend,
1107                                        uint64_t SymOffset, SID SectionID) {
1108   switch (Arch) {
1109   case Triple::x86_64:
1110     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1111     break;
1112   case Triple::x86:
1113     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1114                          (uint32_t)(Addend & 0xffffffffL));
1115     break;
1116   case Triple::aarch64:
1117   case Triple::aarch64_be:
1118     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1119     break;
1120   case Triple::arm: // Fall through.
1121   case Triple::armeb:
1122   case Triple::thumb:
1123   case Triple::thumbeb:
1124     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1125                          (uint32_t)(Addend & 0xffffffffL));
1126     break;
1127   case Triple::mips: // Fall through.
1128   case Triple::mipsel:
1129   case Triple::mips64:
1130   case Triple::mips64el:
1131     if (IsMipsO32ABI)
1132       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
1133                             Type, (uint32_t)(Addend & 0xffffffffL));
1134     else if (IsMipsN64ABI)
1135       resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
1136                               SectionID);
1137     else
1138       llvm_unreachable("Mips ABI not handled");
1139     break;
1140   case Triple::ppc:
1141     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1142     break;
1143   case Triple::ppc64: // Fall through.
1144   case Triple::ppc64le:
1145     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1146     break;
1147   case Triple::systemz:
1148     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1149     break;
1150   default:
1151     llvm_unreachable("Unsupported CPU type!");
1152   }
1153 }
1154
1155 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1156   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1157 }
1158
1159 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1160   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1161   if (Value.SymbolName)
1162     addRelocationForSymbol(RE, Value.SymbolName);
1163   else
1164     addRelocationForSection(RE, Value.SectionID);
1165 }
1166
1167 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1168                                                  bool IsLocal) const {
1169   switch (RelType) {
1170   case ELF::R_MICROMIPS_GOT16:
1171     if (IsLocal)
1172       return ELF::R_MICROMIPS_LO16;
1173     break;
1174   case ELF::R_MICROMIPS_HI16:
1175     return ELF::R_MICROMIPS_LO16;
1176   case ELF::R_MIPS_GOT16:
1177     if (IsLocal)
1178       return ELF::R_MIPS_LO16;
1179     break;
1180   case ELF::R_MIPS_HI16:
1181     return ELF::R_MIPS_LO16;
1182   case ELF::R_MIPS_PCHI16:
1183     return ELF::R_MIPS_PCLO16;
1184   default:
1185     break;
1186   }
1187   return ELF::R_MIPS_NONE;
1188 }
1189
1190 Expected<relocation_iterator>
1191 RuntimeDyldELF::processRelocationRef(
1192     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1193     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1194   const auto &Obj = cast<ELFObjectFileBase>(O);
1195   uint64_t RelType = RelI->getType();
1196   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
1197   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
1198   elf_symbol_iterator Symbol = RelI->getSymbol();
1199
1200   // Obtain the symbol name which is referenced in the relocation
1201   StringRef TargetName;
1202   if (Symbol != Obj.symbol_end()) {
1203     if (auto TargetNameOrErr = Symbol->getName())
1204       TargetName = *TargetNameOrErr;
1205     else
1206       return TargetNameOrErr.takeError();
1207   }
1208   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1209                << " TargetName: " << TargetName << "\n");
1210   RelocationValueRef Value;
1211   // First search for the symbol in the local symbol table
1212   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1213
1214   // Search for the symbol in the global symbol table
1215   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1216   if (Symbol != Obj.symbol_end()) {
1217     gsi = GlobalSymbolTable.find(TargetName.data());
1218     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1219     if (!SymTypeOrErr) {
1220       std::string Buf;
1221       raw_string_ostream OS(Buf);
1222       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1223       OS.flush();
1224       report_fatal_error(Buf);
1225     }
1226     SymType = *SymTypeOrErr;
1227   }
1228   if (gsi != GlobalSymbolTable.end()) {
1229     const auto &SymInfo = gsi->second;
1230     Value.SectionID = SymInfo.getSectionID();
1231     Value.Offset = SymInfo.getOffset();
1232     Value.Addend = SymInfo.getOffset() + Addend;
1233   } else {
1234     switch (SymType) {
1235     case SymbolRef::ST_Debug: {
1236       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1237       // and can be changed by another developers. Maybe best way is add
1238       // a new symbol type ST_Section to SymbolRef and use it.
1239       auto SectionOrErr = Symbol->getSection();
1240       if (!SectionOrErr) {
1241         std::string Buf;
1242         raw_string_ostream OS(Buf);
1243         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1244         OS.flush();
1245         report_fatal_error(Buf);
1246       }
1247       section_iterator si = *SectionOrErr;
1248       if (si == Obj.section_end())
1249         llvm_unreachable("Symbol section not found, bad object file format!");
1250       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1251       bool isCode = si->isText();
1252       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1253                                                   ObjSectionToID))
1254         Value.SectionID = *SectionIDOrErr;
1255       else
1256         return SectionIDOrErr.takeError();
1257       Value.Addend = Addend;
1258       break;
1259     }
1260     case SymbolRef::ST_Data:
1261     case SymbolRef::ST_Unknown: {
1262       Value.SymbolName = TargetName.data();
1263       Value.Addend = Addend;
1264
1265       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1266       // will manifest here as a NULL symbol name.
1267       // We can set this as a valid (but empty) symbol name, and rely
1268       // on addRelocationForSymbol to handle this.
1269       if (!Value.SymbolName)
1270         Value.SymbolName = "";
1271       break;
1272     }
1273     default:
1274       llvm_unreachable("Unresolved symbol type!");
1275       break;
1276     }
1277   }
1278
1279   uint64_t Offset = RelI->getOffset();
1280
1281   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1282                << "\n");
1283   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1284       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1285     // This is an AArch64 branch relocation, need to use a stub function.
1286     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1287     SectionEntry &Section = Sections[SectionID];
1288
1289     // Look for an existing stub.
1290     StubMap::const_iterator i = Stubs.find(Value);
1291     if (i != Stubs.end()) {
1292       resolveRelocation(Section, Offset,
1293                         (uint64_t)Section.getAddressWithOffset(i->second),
1294                         RelType, 0);
1295       DEBUG(dbgs() << " Stub function found\n");
1296     } else {
1297       // Create a new stub function.
1298       DEBUG(dbgs() << " Create a new stub function\n");
1299       Stubs[Value] = Section.getStubOffset();
1300       uint8_t *StubTargetAddr = createStubFunction(
1301           Section.getAddressWithOffset(Section.getStubOffset()));
1302
1303       RelocationEntry REmovz_g3(SectionID,
1304                                 StubTargetAddr - Section.getAddress(),
1305                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1306       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1307                                                Section.getAddress() + 4,
1308                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1309       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1310                                                Section.getAddress() + 8,
1311                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1312       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1313                                                Section.getAddress() + 12,
1314                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1315
1316       if (Value.SymbolName) {
1317         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1318         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1319         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1320         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1321       } else {
1322         addRelocationForSection(REmovz_g3, Value.SectionID);
1323         addRelocationForSection(REmovk_g2, Value.SectionID);
1324         addRelocationForSection(REmovk_g1, Value.SectionID);
1325         addRelocationForSection(REmovk_g0, Value.SectionID);
1326       }
1327       resolveRelocation(Section, Offset,
1328                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1329                             Section.getStubOffset())),
1330                         RelType, 0);
1331       Section.advanceStubOffset(getMaxStubSize());
1332     }
1333   } else if (Arch == Triple::arm) {
1334     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1335       RelType == ELF::R_ARM_JUMP24) {
1336       // This is an ARM branch relocation, need to use a stub function.
1337       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1338       SectionEntry &Section = Sections[SectionID];
1339
1340       // Look for an existing stub.
1341       StubMap::const_iterator i = Stubs.find(Value);
1342       if (i != Stubs.end()) {
1343         resolveRelocation(
1344             Section, Offset,
1345             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1346             RelType, 0);
1347         DEBUG(dbgs() << " Stub function found\n");
1348       } else {
1349         // Create a new stub function.
1350         DEBUG(dbgs() << " Create a new stub function\n");
1351         Stubs[Value] = Section.getStubOffset();
1352         uint8_t *StubTargetAddr = createStubFunction(
1353             Section.getAddressWithOffset(Section.getStubOffset()));
1354         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1355                            ELF::R_ARM_ABS32, Value.Addend);
1356         if (Value.SymbolName)
1357           addRelocationForSymbol(RE, Value.SymbolName);
1358         else
1359           addRelocationForSection(RE, Value.SectionID);
1360
1361         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1362                                                Section.getAddressWithOffset(
1363                                                    Section.getStubOffset())),
1364                           RelType, 0);
1365         Section.advanceStubOffset(getMaxStubSize());
1366       }
1367     } else {
1368       uint32_t *Placeholder =
1369         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1370       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1371           RelType == ELF::R_ARM_ABS32) {
1372         Value.Addend += *Placeholder;
1373       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1374         // See ELF for ARM documentation
1375         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1376       }
1377       processSimpleRelocation(SectionID, Offset, RelType, Value);
1378     }
1379   } else if (IsMipsO32ABI) {
1380     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1381         computePlaceholderAddress(SectionID, Offset));
1382     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1383     if (RelType == ELF::R_MIPS_26) {
1384       // This is an Mips branch relocation, need to use a stub function.
1385       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1386       SectionEntry &Section = Sections[SectionID];
1387
1388       // Extract the addend from the instruction.
1389       // We shift up by two since the Value will be down shifted again
1390       // when applying the relocation.
1391       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1392
1393       Value.Addend += Addend;
1394
1395       //  Look up for existing stub.
1396       StubMap::const_iterator i = Stubs.find(Value);
1397       if (i != Stubs.end()) {
1398         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1399         addRelocationForSection(RE, SectionID);
1400         DEBUG(dbgs() << " Stub function found\n");
1401       } else {
1402         // Create a new stub function.
1403         DEBUG(dbgs() << " Create a new stub function\n");
1404         Stubs[Value] = Section.getStubOffset();
1405
1406         unsigned AbiVariant;
1407         O.getPlatformFlags(AbiVariant);
1408
1409         uint8_t *StubTargetAddr = createStubFunction(
1410             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1411
1412         // Creating Hi and Lo relocations for the filled stub instructions.
1413         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1414                              ELF::R_MIPS_HI16, Value.Addend);
1415         RelocationEntry RELo(SectionID,
1416                              StubTargetAddr - Section.getAddress() + 4,
1417                              ELF::R_MIPS_LO16, Value.Addend);
1418
1419         if (Value.SymbolName) {
1420           addRelocationForSymbol(REHi, Value.SymbolName);
1421           addRelocationForSymbol(RELo, Value.SymbolName);
1422         }
1423         else {
1424           addRelocationForSection(REHi, Value.SectionID);
1425           addRelocationForSection(RELo, Value.SectionID);
1426         }
1427
1428         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1429         addRelocationForSection(RE, SectionID);
1430         Section.advanceStubOffset(getMaxStubSize());
1431       }
1432     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1433       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1434       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1435       PendingRelocs.push_back(std::make_pair(Value, RE));
1436     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1437       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1438       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1439         const RelocationValueRef &MatchingValue = I->first;
1440         RelocationEntry &Reloc = I->second;
1441         if (MatchingValue == Value &&
1442             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1443             SectionID == Reloc.SectionID) {
1444           Reloc.Addend += Addend;
1445           if (Value.SymbolName)
1446             addRelocationForSymbol(Reloc, Value.SymbolName);
1447           else
1448             addRelocationForSection(Reloc, Value.SectionID);
1449           I = PendingRelocs.erase(I);
1450         } else
1451           ++I;
1452       }
1453       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1454       if (Value.SymbolName)
1455         addRelocationForSymbol(RE, Value.SymbolName);
1456       else
1457         addRelocationForSection(RE, Value.SectionID);
1458     } else {
1459       if (RelType == ELF::R_MIPS_32)
1460         Value.Addend += Opcode;
1461       else if (RelType == ELF::R_MIPS_PC16)
1462         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1463       else if (RelType == ELF::R_MIPS_PC19_S2)
1464         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1465       else if (RelType == ELF::R_MIPS_PC21_S2)
1466         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1467       else if (RelType == ELF::R_MIPS_PC26_S2)
1468         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1469       processSimpleRelocation(SectionID, Offset, RelType, Value);
1470     }
1471   } else if (IsMipsN64ABI) {
1472     uint32_t r_type = RelType & 0xff;
1473     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1474     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1475         || r_type == ELF::R_MIPS_GOT_DISP) {
1476       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1477       if (i != GOTSymbolOffsets.end())
1478         RE.SymOffset = i->second;
1479       else {
1480         RE.SymOffset = allocateGOTEntries(SectionID, 1);
1481         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1482       }
1483     }
1484     if (Value.SymbolName)
1485       addRelocationForSymbol(RE, Value.SymbolName);
1486     else
1487       addRelocationForSection(RE, Value.SectionID);
1488   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1489     if (RelType == ELF::R_PPC64_REL24) {
1490       // Determine ABI variant in use for this object.
1491       unsigned AbiVariant;
1492       Obj.getPlatformFlags(AbiVariant);
1493       AbiVariant &= ELF::EF_PPC64_ABI;
1494       // A PPC branch relocation will need a stub function if the target is
1495       // an external symbol (Symbol::ST_Unknown) or if the target address
1496       // is not within the signed 24-bits branch address.
1497       SectionEntry &Section = Sections[SectionID];
1498       uint8_t *Target = Section.getAddressWithOffset(Offset);
1499       bool RangeOverflow = false;
1500       if (SymType != SymbolRef::ST_Unknown) {
1501         if (AbiVariant != 2) {
1502           // In the ELFv1 ABI, a function call may point to the .opd entry,
1503           // so the final symbol value is calculated based on the relocation
1504           // values in the .opd section.
1505           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1506             return std::move(Err);
1507         } else {
1508           // In the ELFv2 ABI, a function symbol may provide a local entry
1509           // point, which must be used for direct calls.
1510           uint8_t SymOther = Symbol->getOther();
1511           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1512         }
1513         uint8_t *RelocTarget =
1514             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1515         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1516         // If it is within 26-bits branch range, just set the branch target
1517         if (SignExtend32<26>(delta) == delta) {
1518           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1519           if (Value.SymbolName)
1520             addRelocationForSymbol(RE, Value.SymbolName);
1521           else
1522             addRelocationForSection(RE, Value.SectionID);
1523         } else {
1524           RangeOverflow = true;
1525         }
1526       }
1527       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1528         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1529         // larger than 24-bits.
1530         StubMap::const_iterator i = Stubs.find(Value);
1531         if (i != Stubs.end()) {
1532           // Symbol function stub already created, just relocate to it
1533           resolveRelocation(Section, Offset,
1534                             reinterpret_cast<uint64_t>(
1535                                 Section.getAddressWithOffset(i->second)),
1536                             RelType, 0);
1537           DEBUG(dbgs() << " Stub function found\n");
1538         } else {
1539           // Create a new stub function.
1540           DEBUG(dbgs() << " Create a new stub function\n");
1541           Stubs[Value] = Section.getStubOffset();
1542           uint8_t *StubTargetAddr = createStubFunction(
1543               Section.getAddressWithOffset(Section.getStubOffset()),
1544               AbiVariant);
1545           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1546                              ELF::R_PPC64_ADDR64, Value.Addend);
1547
1548           // Generates the 64-bits address loads as exemplified in section
1549           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1550           // apply to the low part of the instructions, so we have to update
1551           // the offset according to the target endianness.
1552           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1553           if (!IsTargetLittleEndian)
1554             StubRelocOffset += 2;
1555
1556           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1557                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1558           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1559                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1560           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1561                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1562           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1563                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1564
1565           if (Value.SymbolName) {
1566             addRelocationForSymbol(REhst, Value.SymbolName);
1567             addRelocationForSymbol(REhr, Value.SymbolName);
1568             addRelocationForSymbol(REh, Value.SymbolName);
1569             addRelocationForSymbol(REl, Value.SymbolName);
1570           } else {
1571             addRelocationForSection(REhst, Value.SectionID);
1572             addRelocationForSection(REhr, Value.SectionID);
1573             addRelocationForSection(REh, Value.SectionID);
1574             addRelocationForSection(REl, Value.SectionID);
1575           }
1576
1577           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1578                                                  Section.getAddressWithOffset(
1579                                                      Section.getStubOffset())),
1580                             RelType, 0);
1581           Section.advanceStubOffset(getMaxStubSize());
1582         }
1583         if (SymType == SymbolRef::ST_Unknown) {
1584           // Restore the TOC for external calls
1585           if (AbiVariant == 2)
1586             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1587           else
1588             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1589         }
1590       }
1591     } else if (RelType == ELF::R_PPC64_TOC16 ||
1592                RelType == ELF::R_PPC64_TOC16_DS ||
1593                RelType == ELF::R_PPC64_TOC16_LO ||
1594                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1595                RelType == ELF::R_PPC64_TOC16_HI ||
1596                RelType == ELF::R_PPC64_TOC16_HA) {
1597       // These relocations are supposed to subtract the TOC address from
1598       // the final value.  This does not fit cleanly into the RuntimeDyld
1599       // scheme, since there may be *two* sections involved in determining
1600       // the relocation value (the section of the symbol referred to by the
1601       // relocation, and the TOC section associated with the current module).
1602       //
1603       // Fortunately, these relocations are currently only ever generated
1604       // referring to symbols that themselves reside in the TOC, which means
1605       // that the two sections are actually the same.  Thus they cancel out
1606       // and we can immediately resolve the relocation right now.
1607       switch (RelType) {
1608       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1609       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1610       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1611       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1612       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1613       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1614       default: llvm_unreachable("Wrong relocation type.");
1615       }
1616
1617       RelocationValueRef TOCValue;
1618       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1619         return std::move(Err);
1620       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1621         llvm_unreachable("Unsupported TOC relocation.");
1622       Value.Addend -= TOCValue.Addend;
1623       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1624     } else {
1625       // There are two ways to refer to the TOC address directly: either
1626       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1627       // ignored), or via any relocation that refers to the magic ".TOC."
1628       // symbols (in which case the addend is respected).
1629       if (RelType == ELF::R_PPC64_TOC) {
1630         RelType = ELF::R_PPC64_ADDR64;
1631         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1632           return std::move(Err);
1633       } else if (TargetName == ".TOC.") {
1634         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1635           return std::move(Err);
1636         Value.Addend += Addend;
1637       }
1638
1639       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1640
1641       if (Value.SymbolName)
1642         addRelocationForSymbol(RE, Value.SymbolName);
1643       else
1644         addRelocationForSection(RE, Value.SectionID);
1645     }
1646   } else if (Arch == Triple::systemz &&
1647              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1648     // Create function stubs for both PLT and GOT references, regardless of
1649     // whether the GOT reference is to data or code.  The stub contains the
1650     // full address of the symbol, as needed by GOT references, and the
1651     // executable part only adds an overhead of 8 bytes.
1652     //
1653     // We could try to conserve space by allocating the code and data
1654     // parts of the stub separately.  However, as things stand, we allocate
1655     // a stub for every relocation, so using a GOT in JIT code should be
1656     // no less space efficient than using an explicit constant pool.
1657     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1658     SectionEntry &Section = Sections[SectionID];
1659
1660     // Look for an existing stub.
1661     StubMap::const_iterator i = Stubs.find(Value);
1662     uintptr_t StubAddress;
1663     if (i != Stubs.end()) {
1664       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1665       DEBUG(dbgs() << " Stub function found\n");
1666     } else {
1667       // Create a new stub function.
1668       DEBUG(dbgs() << " Create a new stub function\n");
1669
1670       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1671       uintptr_t StubAlignment = getStubAlignment();
1672       StubAddress =
1673           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1674           -StubAlignment;
1675       unsigned StubOffset = StubAddress - BaseAddress;
1676
1677       Stubs[Value] = StubOffset;
1678       createStubFunction((uint8_t *)StubAddress);
1679       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1680                          Value.Offset);
1681       if (Value.SymbolName)
1682         addRelocationForSymbol(RE, Value.SymbolName);
1683       else
1684         addRelocationForSection(RE, Value.SectionID);
1685       Section.advanceStubOffset(getMaxStubSize());
1686     }
1687
1688     if (RelType == ELF::R_390_GOTENT)
1689       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1690                         Addend);
1691     else
1692       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1693   } else if (Arch == Triple::x86_64) {
1694     if (RelType == ELF::R_X86_64_PLT32) {
1695       // The way the PLT relocations normally work is that the linker allocates
1696       // the
1697       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1698       // entry will then jump to an address provided by the GOT.  On first call,
1699       // the
1700       // GOT address will point back into PLT code that resolves the symbol. After
1701       // the first call, the GOT entry points to the actual function.
1702       //
1703       // For local functions we're ignoring all of that here and just replacing
1704       // the PLT32 relocation type with PC32, which will translate the relocation
1705       // into a PC-relative call directly to the function. For external symbols we
1706       // can't be sure the function will be within 2^32 bytes of the call site, so
1707       // we need to create a stub, which calls into the GOT.  This case is
1708       // equivalent to the usual PLT implementation except that we use the stub
1709       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1710       // rather than allocating a PLT section.
1711       if (Value.SymbolName) {
1712         // This is a call to an external function.
1713         // Look for an existing stub.
1714         SectionEntry &Section = Sections[SectionID];
1715         StubMap::const_iterator i = Stubs.find(Value);
1716         uintptr_t StubAddress;
1717         if (i != Stubs.end()) {
1718           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1719           DEBUG(dbgs() << " Stub function found\n");
1720         } else {
1721           // Create a new stub function (equivalent to a PLT entry).
1722           DEBUG(dbgs() << " Create a new stub function\n");
1723
1724           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1725           uintptr_t StubAlignment = getStubAlignment();
1726           StubAddress =
1727               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1728               -StubAlignment;
1729           unsigned StubOffset = StubAddress - BaseAddress;
1730           Stubs[Value] = StubOffset;
1731           createStubFunction((uint8_t *)StubAddress);
1732
1733           // Bump our stub offset counter
1734           Section.advanceStubOffset(getMaxStubSize());
1735
1736           // Allocate a GOT Entry
1737           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1738
1739           // The load of the GOT address has an addend of -4
1740           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1741
1742           // Fill in the value of the symbol we're targeting into the GOT
1743           addRelocationForSymbol(
1744               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1745               Value.SymbolName);
1746         }
1747
1748         // Make the target call a call into the stub table.
1749         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1750                           Addend);
1751       } else {
1752         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1753                   Value.Offset);
1754         addRelocationForSection(RE, Value.SectionID);
1755       }
1756     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1757                RelType == ELF::R_X86_64_GOTPCRELX ||
1758                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1759       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1760       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1761
1762       // Fill in the value of the symbol we're targeting into the GOT
1763       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1764       if (Value.SymbolName)
1765         addRelocationForSymbol(RE, Value.SymbolName);
1766       else
1767         addRelocationForSection(RE, Value.SectionID);
1768     } else if (RelType == ELF::R_X86_64_PC32) {
1769       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1770       processSimpleRelocation(SectionID, Offset, RelType, Value);
1771     } else if (RelType == ELF::R_X86_64_PC64) {
1772       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1773       processSimpleRelocation(SectionID, Offset, RelType, Value);
1774     } else {
1775       processSimpleRelocation(SectionID, Offset, RelType, Value);
1776     }
1777   } else {
1778     if (Arch == Triple::x86) {
1779       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1780     }
1781     processSimpleRelocation(SectionID, Offset, RelType, Value);
1782   }
1783   return ++RelI;
1784 }
1785
1786 size_t RuntimeDyldELF::getGOTEntrySize() {
1787   // We don't use the GOT in all of these cases, but it's essentially free
1788   // to put them all here.
1789   size_t Result = 0;
1790   switch (Arch) {
1791   case Triple::x86_64:
1792   case Triple::aarch64:
1793   case Triple::aarch64_be:
1794   case Triple::ppc64:
1795   case Triple::ppc64le:
1796   case Triple::systemz:
1797     Result = sizeof(uint64_t);
1798     break;
1799   case Triple::x86:
1800   case Triple::arm:
1801   case Triple::thumb:
1802     Result = sizeof(uint32_t);
1803     break;
1804   case Triple::mips:
1805   case Triple::mipsel:
1806   case Triple::mips64:
1807   case Triple::mips64el:
1808     if (IsMipsO32ABI)
1809       Result = sizeof(uint32_t);
1810     else if (IsMipsN64ABI)
1811       Result = sizeof(uint64_t);
1812     else
1813       llvm_unreachable("Mips ABI not handled");
1814     break;
1815   default:
1816     llvm_unreachable("Unsupported CPU type!");
1817   }
1818   return Result;
1819 }
1820
1821 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1822 {
1823   (void)SectionID; // The GOT Section is the same for all section in the object file
1824   if (GOTSectionID == 0) {
1825     GOTSectionID = Sections.size();
1826     // Reserve a section id. We'll allocate the section later
1827     // once we know the total size
1828     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1829   }
1830   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1831   CurrentGOTIndex += no;
1832   return StartOffset;
1833 }
1834
1835 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1836 {
1837   // Fill in the relative address of the GOT Entry into the stub
1838   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1839   addRelocationForSection(GOTRE, GOTSectionID);
1840 }
1841
1842 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1843                                                    uint32_t Type)
1844 {
1845   (void)SectionID; // The GOT Section is the same for all section in the object file
1846   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1847 }
1848
1849 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1850                                   ObjSectionToIDMap &SectionMap) {
1851   if (IsMipsO32ABI)
1852     if (!PendingRelocs.empty())
1853       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1854
1855   // If necessary, allocate the global offset table
1856   if (GOTSectionID != 0) {
1857     // Allocate memory for the section
1858     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1859     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1860                                                 GOTSectionID, ".got", false);
1861     if (!Addr)
1862       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1863
1864     Sections[GOTSectionID] =
1865         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1866
1867     if (Checker)
1868       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1869
1870     // For now, initialize all GOT entries to zero.  We'll fill them in as
1871     // needed when GOT-based relocations are applied.
1872     memset(Addr, 0, TotalSize);
1873     if (IsMipsN64ABI) {
1874       // To correctly resolve Mips GOT relocations, we need a mapping from
1875       // object's sections to GOTs.
1876       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1877            SI != SE; ++SI) {
1878         if (SI->relocation_begin() != SI->relocation_end()) {
1879           section_iterator RelocatedSection = SI->getRelocatedSection();
1880           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1881           assert (i != SectionMap.end());
1882           SectionToGOTMap[i->second] = GOTSectionID;
1883         }
1884       }
1885       GOTSymbolOffsets.clear();
1886     }
1887   }
1888
1889   // Look for and record the EH frame section.
1890   ObjSectionToIDMap::iterator i, e;
1891   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1892     const SectionRef &Section = i->first;
1893     StringRef Name;
1894     Section.getName(Name);
1895     if (Name == ".eh_frame") {
1896       UnregisteredEHFrameSections.push_back(i->second);
1897       break;
1898     }
1899   }
1900
1901   GOTSectionID = 0;
1902   CurrentGOTIndex = 0;
1903
1904   return Error::success();
1905 }
1906
1907 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1908   return Obj.isELF();
1909 }
1910
1911 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1912   if (Arch != Triple::x86_64)
1913     return true;  // Conservative answer
1914
1915   switch (R.getType()) {
1916   default:
1917     return true;  // Conservative answer
1918
1919
1920   case ELF::R_X86_64_GOTPCREL:
1921   case ELF::R_X86_64_GOTPCRELX:
1922   case ELF::R_X86_64_REX_GOTPCRELX:
1923   case ELF::R_X86_64_PC32:
1924   case ELF::R_X86_64_PC64:
1925   case ELF::R_X86_64_64:
1926     // We know that these reloation types won't need a stub function.  This list
1927     // can be extended as needed.
1928     return false;
1929   }
1930 }
1931
1932 } // namespace llvm