]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/AsmWriter.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / AsmWriter.cpp
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalIndirectSymbol.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRPrintingPasses.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSlotTracker.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Statepoint.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/TypeFinder.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/UseListOrder.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/AtomicOrdering.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormattedStream.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <memory>
82 #include <string>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86
87 using namespace llvm;
88
89 // Make virtual table appear in this compilation unit.
90 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
91
92 //===----------------------------------------------------------------------===//
93 // Helper Functions
94 //===----------------------------------------------------------------------===//
95
96 namespace {
97
98 struct OrderMap {
99   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
100
101   unsigned size() const { return IDs.size(); }
102   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
103
104   std::pair<unsigned, bool> lookup(const Value *V) const {
105     return IDs.lookup(V);
106   }
107
108   void index(const Value *V) {
109     // Explicitly sequence get-size and insert-value operations to avoid UB.
110     unsigned ID = IDs.size() + 1;
111     IDs[V].first = ID;
112   }
113 };
114
115 } // end anonymous namespace
116
117 static void orderValue(const Value *V, OrderMap &OM) {
118   if (OM.lookup(V).first)
119     return;
120
121   if (const Constant *C = dyn_cast<Constant>(V))
122     if (C->getNumOperands() && !isa<GlobalValue>(C))
123       for (const Value *Op : C->operands())
124         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
125           orderValue(Op, OM);
126
127   // Note: we cannot cache this lookup above, since inserting into the map
128   // changes the map's size, and thus affects the other IDs.
129   OM.index(V);
130 }
131
132 static OrderMap orderModule(const Module *M) {
133   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
134   // and ValueEnumerator::incorporateFunction().
135   OrderMap OM;
136
137   for (const GlobalVariable &G : M->globals()) {
138     if (G.hasInitializer())
139       if (!isa<GlobalValue>(G.getInitializer()))
140         orderValue(G.getInitializer(), OM);
141     orderValue(&G, OM);
142   }
143   for (const GlobalAlias &A : M->aliases()) {
144     if (!isa<GlobalValue>(A.getAliasee()))
145       orderValue(A.getAliasee(), OM);
146     orderValue(&A, OM);
147   }
148   for (const GlobalIFunc &I : M->ifuncs()) {
149     if (!isa<GlobalValue>(I.getResolver()))
150       orderValue(I.getResolver(), OM);
151     orderValue(&I, OM);
152   }
153   for (const Function &F : *M) {
154     for (const Use &U : F.operands())
155       if (!isa<GlobalValue>(U.get()))
156         orderValue(U.get(), OM);
157
158     orderValue(&F, OM);
159
160     if (F.isDeclaration())
161       continue;
162
163     for (const Argument &A : F.args())
164       orderValue(&A, OM);
165     for (const BasicBlock &BB : F) {
166       orderValue(&BB, OM);
167       for (const Instruction &I : BB) {
168         for (const Value *Op : I.operands())
169           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
170               isa<InlineAsm>(*Op))
171             orderValue(Op, OM);
172         orderValue(&I, OM);
173       }
174     }
175   }
176   return OM;
177 }
178
179 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
180                                          unsigned ID, const OrderMap &OM,
181                                          UseListOrderStack &Stack) {
182   // Predict use-list order for this one.
183   using Entry = std::pair<const Use *, unsigned>;
184   SmallVector<Entry, 64> List;
185   for (const Use &U : V->uses())
186     // Check if this user will be serialized.
187     if (OM.lookup(U.getUser()).first)
188       List.push_back(std::make_pair(&U, List.size()));
189
190   if (List.size() < 2)
191     // We may have lost some users.
192     return;
193
194   bool GetsReversed =
195       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
196   if (auto *BA = dyn_cast<BlockAddress>(V))
197     ID = OM.lookup(BA->getBasicBlock()).first;
198   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
199     const Use *LU = L.first;
200     const Use *RU = R.first;
201     if (LU == RU)
202       return false;
203
204     auto LID = OM.lookup(LU->getUser()).first;
205     auto RID = OM.lookup(RU->getUser()).first;
206
207     // If ID is 4, then expect: 7 6 5 1 2 3.
208     if (LID < RID) {
209       if (GetsReversed)
210         if (RID <= ID)
211           return true;
212       return false;
213     }
214     if (RID < LID) {
215       if (GetsReversed)
216         if (LID <= ID)
217           return false;
218       return true;
219     }
220
221     // LID and RID are equal, so we have different operands of the same user.
222     // Assume operands are added in order for all instructions.
223     if (GetsReversed)
224       if (LID <= ID)
225         return LU->getOperandNo() < RU->getOperandNo();
226     return LU->getOperandNo() > RU->getOperandNo();
227   });
228
229   if (std::is_sorted(
230           List.begin(), List.end(),
231           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
232     // Order is already correct.
233     return;
234
235   // Store the shuffle.
236   Stack.emplace_back(V, F, List.size());
237   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
238   for (size_t I = 0, E = List.size(); I != E; ++I)
239     Stack.back().Shuffle[I] = List[I].second;
240 }
241
242 static void predictValueUseListOrder(const Value *V, const Function *F,
243                                      OrderMap &OM, UseListOrderStack &Stack) {
244   auto &IDPair = OM[V];
245   assert(IDPair.first && "Unmapped value");
246   if (IDPair.second)
247     // Already predicted.
248     return;
249
250   // Do the actual prediction.
251   IDPair.second = true;
252   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
253     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
254
255   // Recursive descent into constants.
256   if (const Constant *C = dyn_cast<Constant>(V))
257     if (C->getNumOperands()) // Visit GlobalValues.
258       for (const Value *Op : C->operands())
259         if (isa<Constant>(Op)) // Visit GlobalValues.
260           predictValueUseListOrder(Op, F, OM, Stack);
261 }
262
263 static UseListOrderStack predictUseListOrder(const Module *M) {
264   OrderMap OM = orderModule(M);
265
266   // Use-list orders need to be serialized after all the users have been added
267   // to a value, or else the shuffles will be incomplete.  Store them per
268   // function in a stack.
269   //
270   // Aside from function order, the order of values doesn't matter much here.
271   UseListOrderStack Stack;
272
273   // We want to visit the functions backward now so we can list function-local
274   // constants in the last Function they're used in.  Module-level constants
275   // have already been visited above.
276   for (const Function &F : make_range(M->rbegin(), M->rend())) {
277     if (F.isDeclaration())
278       continue;
279     for (const BasicBlock &BB : F)
280       predictValueUseListOrder(&BB, &F, OM, Stack);
281     for (const Argument &A : F.args())
282       predictValueUseListOrder(&A, &F, OM, Stack);
283     for (const BasicBlock &BB : F)
284       for (const Instruction &I : BB)
285         for (const Value *Op : I.operands())
286           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
287             predictValueUseListOrder(Op, &F, OM, Stack);
288     for (const BasicBlock &BB : F)
289       for (const Instruction &I : BB)
290         predictValueUseListOrder(&I, &F, OM, Stack);
291   }
292
293   // Visit globals last.
294   for (const GlobalVariable &G : M->globals())
295     predictValueUseListOrder(&G, nullptr, OM, Stack);
296   for (const Function &F : *M)
297     predictValueUseListOrder(&F, nullptr, OM, Stack);
298   for (const GlobalAlias &A : M->aliases())
299     predictValueUseListOrder(&A, nullptr, OM, Stack);
300   for (const GlobalIFunc &I : M->ifuncs())
301     predictValueUseListOrder(&I, nullptr, OM, Stack);
302   for (const GlobalVariable &G : M->globals())
303     if (G.hasInitializer())
304       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
305   for (const GlobalAlias &A : M->aliases())
306     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
307   for (const GlobalIFunc &I : M->ifuncs())
308     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
309   for (const Function &F : *M)
310     for (const Use &U : F.operands())
311       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
312
313   return Stack;
314 }
315
316 static const Module *getModuleFromVal(const Value *V) {
317   if (const Argument *MA = dyn_cast<Argument>(V))
318     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
319
320   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
321     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
322
323   if (const Instruction *I = dyn_cast<Instruction>(V)) {
324     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
325     return M ? M->getParent() : nullptr;
326   }
327
328   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
329     return GV->getParent();
330
331   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
332     for (const User *U : MAV->users())
333       if (isa<Instruction>(U))
334         if (const Module *M = getModuleFromVal(U))
335           return M;
336     return nullptr;
337   }
338
339   return nullptr;
340 }
341
342 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
343   switch (cc) {
344   default:                         Out << "cc" << cc; break;
345   case CallingConv::Fast:          Out << "fastcc"; break;
346   case CallingConv::Cold:          Out << "coldcc"; break;
347   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
348   case CallingConv::AnyReg:        Out << "anyregcc"; break;
349   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
350   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
351   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
352   case CallingConv::GHC:           Out << "ghccc"; break;
353   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
354   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
355   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
356   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
357   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
358   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
359   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
360   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
361   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
362   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
363   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
364   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
365   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
366   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
367   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
368   case CallingConv::Win64:         Out << "win64cc"; break;
369   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
370   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
371   case CallingConv::Swift:         Out << "swiftcc"; break;
372   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
373   case CallingConv::HHVM:          Out << "hhvmcc"; break;
374   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
375   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
376   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
377   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
378   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
379   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
380   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
381   }
382 }
383
384 void llvm::PrintEscapedString(StringRef Name, raw_ostream &Out) {
385   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
386     unsigned char C = Name[i];
387     if (isprint(C) && C != '\\' && C != '"')
388       Out << C;
389     else
390       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
391   }
392 }
393
394 enum PrefixType {
395   GlobalPrefix,
396   ComdatPrefix,
397   LabelPrefix,
398   LocalPrefix,
399   NoPrefix
400 };
401
402 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
403   assert(!Name.empty() && "Cannot get empty name!");
404
405   // Scan the name to see if it needs quotes first.
406   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
407   if (!NeedsQuotes) {
408     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
409       // By making this unsigned, the value passed in to isalnum will always be
410       // in the range 0-255.  This is important when building with MSVC because
411       // its implementation will assert.  This situation can arise when dealing
412       // with UTF-8 multibyte characters.
413       unsigned char C = Name[i];
414       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
415           C != '_') {
416         NeedsQuotes = true;
417         break;
418       }
419     }
420   }
421
422   // If we didn't need any quotes, just write out the name in one blast.
423   if (!NeedsQuotes) {
424     OS << Name;
425     return;
426   }
427
428   // Okay, we need quotes.  Output the quotes and escape any scary characters as
429   // needed.
430   OS << '"';
431   PrintEscapedString(Name, OS);
432   OS << '"';
433 }
434
435 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
436 /// (if the string only contains simple characters) or is surrounded with ""'s
437 /// (if it has special chars in it). Print it out.
438 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
439   switch (Prefix) {
440   case NoPrefix:
441     break;
442   case GlobalPrefix:
443     OS << '@';
444     break;
445   case ComdatPrefix:
446     OS << '$';
447     break;
448   case LabelPrefix:
449     break;
450   case LocalPrefix:
451     OS << '%';
452     break;
453   }
454   printLLVMNameWithoutPrefix(OS, Name);
455 }
456
457 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
458 /// (if the string only contains simple characters) or is surrounded with ""'s
459 /// (if it has special chars in it). Print it out.
460 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
461   PrintLLVMName(OS, V->getName(),
462                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
463 }
464
465 namespace {
466
467 class TypePrinting {
468 public:
469   /// NamedTypes - The named types that are used by the current module.
470   TypeFinder NamedTypes;
471
472   /// NumberedTypes - The numbered types, along with their value.
473   DenseMap<StructType*, unsigned> NumberedTypes;
474
475   TypePrinting() = default;
476   TypePrinting(const TypePrinting &) = delete;
477   TypePrinting &operator=(const TypePrinting &) = delete;
478
479   void incorporateTypes(const Module &M);
480
481   void print(Type *Ty, raw_ostream &OS);
482
483   void printStructBody(StructType *Ty, raw_ostream &OS);
484 };
485
486 } // end anonymous namespace
487
488 void TypePrinting::incorporateTypes(const Module &M) {
489   NamedTypes.run(M, false);
490
491   // The list of struct types we got back includes all the struct types, split
492   // the unnamed ones out to a numbering and remove the anonymous structs.
493   unsigned NextNumber = 0;
494
495   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
496   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
497     StructType *STy = *I;
498
499     // Ignore anonymous types.
500     if (STy->isLiteral())
501       continue;
502
503     if (STy->getName().empty())
504       NumberedTypes[STy] = NextNumber++;
505     else
506       *NextToUse++ = STy;
507   }
508
509   NamedTypes.erase(NextToUse, NamedTypes.end());
510 }
511
512
513 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
514 /// use of type names or up references to shorten the type name where possible.
515 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
516   switch (Ty->getTypeID()) {
517   case Type::VoidTyID:      OS << "void"; return;
518   case Type::HalfTyID:      OS << "half"; return;
519   case Type::FloatTyID:     OS << "float"; return;
520   case Type::DoubleTyID:    OS << "double"; return;
521   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
522   case Type::FP128TyID:     OS << "fp128"; return;
523   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
524   case Type::LabelTyID:     OS << "label"; return;
525   case Type::MetadataTyID:  OS << "metadata"; return;
526   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
527   case Type::TokenTyID:     OS << "token"; return;
528   case Type::IntegerTyID:
529     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
530     return;
531
532   case Type::FunctionTyID: {
533     FunctionType *FTy = cast<FunctionType>(Ty);
534     print(FTy->getReturnType(), OS);
535     OS << " (";
536     for (FunctionType::param_iterator I = FTy->param_begin(),
537          E = FTy->param_end(); I != E; ++I) {
538       if (I != FTy->param_begin())
539         OS << ", ";
540       print(*I, OS);
541     }
542     if (FTy->isVarArg()) {
543       if (FTy->getNumParams()) OS << ", ";
544       OS << "...";
545     }
546     OS << ')';
547     return;
548   }
549   case Type::StructTyID: {
550     StructType *STy = cast<StructType>(Ty);
551
552     if (STy->isLiteral())
553       return printStructBody(STy, OS);
554
555     if (!STy->getName().empty())
556       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
557
558     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
559     if (I != NumberedTypes.end())
560       OS << '%' << I->second;
561     else  // Not enumerated, print the hex address.
562       OS << "%\"type " << STy << '\"';
563     return;
564   }
565   case Type::PointerTyID: {
566     PointerType *PTy = cast<PointerType>(Ty);
567     print(PTy->getElementType(), OS);
568     if (unsigned AddressSpace = PTy->getAddressSpace())
569       OS << " addrspace(" << AddressSpace << ')';
570     OS << '*';
571     return;
572   }
573   case Type::ArrayTyID: {
574     ArrayType *ATy = cast<ArrayType>(Ty);
575     OS << '[' << ATy->getNumElements() << " x ";
576     print(ATy->getElementType(), OS);
577     OS << ']';
578     return;
579   }
580   case Type::VectorTyID: {
581     VectorType *PTy = cast<VectorType>(Ty);
582     OS << "<" << PTy->getNumElements() << " x ";
583     print(PTy->getElementType(), OS);
584     OS << '>';
585     return;
586   }
587   }
588   llvm_unreachable("Invalid TypeID");
589 }
590
591 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
592   if (STy->isOpaque()) {
593     OS << "opaque";
594     return;
595   }
596
597   if (STy->isPacked())
598     OS << '<';
599
600   if (STy->getNumElements() == 0) {
601     OS << "{}";
602   } else {
603     StructType::element_iterator I = STy->element_begin();
604     OS << "{ ";
605     print(*I++, OS);
606     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
607       OS << ", ";
608       print(*I, OS);
609     }
610
611     OS << " }";
612   }
613   if (STy->isPacked())
614     OS << '>';
615 }
616
617 namespace llvm {
618
619 //===----------------------------------------------------------------------===//
620 // SlotTracker Class: Enumerate slot numbers for unnamed values
621 //===----------------------------------------------------------------------===//
622 /// This class provides computation of slot numbers for LLVM Assembly writing.
623 ///
624 class SlotTracker {
625 public:
626   /// ValueMap - A mapping of Values to slot numbers.
627   using ValueMap = DenseMap<const Value *, unsigned>;
628
629 private:
630   /// TheModule - The module for which we are holding slot numbers.
631   const Module* TheModule;
632
633   /// TheFunction - The function for which we are holding slot numbers.
634   const Function* TheFunction = nullptr;
635   bool FunctionProcessed = false;
636   bool ShouldInitializeAllMetadata;
637
638   /// mMap - The slot map for the module level data.
639   ValueMap mMap;
640   unsigned mNext = 0;
641
642   /// fMap - The slot map for the function level data.
643   ValueMap fMap;
644   unsigned fNext = 0;
645
646   /// mdnMap - Map for MDNodes.
647   DenseMap<const MDNode*, unsigned> mdnMap;
648   unsigned mdnNext = 0;
649
650   /// asMap - The slot map for attribute sets.
651   DenseMap<AttributeSet, unsigned> asMap;
652   unsigned asNext = 0;
653
654 public:
655   /// Construct from a module.
656   ///
657   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
658   /// functions, giving correct numbering for metadata referenced only from
659   /// within a function (even if no functions have been initialized).
660   explicit SlotTracker(const Module *M,
661                        bool ShouldInitializeAllMetadata = false);
662
663   /// Construct from a function, starting out in incorp state.
664   ///
665   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
666   /// functions, giving correct numbering for metadata referenced only from
667   /// within a function (even if no functions have been initialized).
668   explicit SlotTracker(const Function *F,
669                        bool ShouldInitializeAllMetadata = false);
670
671   SlotTracker(const SlotTracker &) = delete;
672   SlotTracker &operator=(const SlotTracker &) = delete;
673
674   /// Return the slot number of the specified value in it's type
675   /// plane.  If something is not in the SlotTracker, return -1.
676   int getLocalSlot(const Value *V);
677   int getGlobalSlot(const GlobalValue *V);
678   int getMetadataSlot(const MDNode *N);
679   int getAttributeGroupSlot(AttributeSet AS);
680
681   /// If you'd like to deal with a function instead of just a module, use
682   /// this method to get its data into the SlotTracker.
683   void incorporateFunction(const Function *F) {
684     TheFunction = F;
685     FunctionProcessed = false;
686   }
687
688   const Function *getFunction() const { return TheFunction; }
689
690   /// After calling incorporateFunction, use this method to remove the
691   /// most recently incorporated function from the SlotTracker. This
692   /// will reset the state of the machine back to just the module contents.
693   void purgeFunction();
694
695   /// MDNode map iterators.
696   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
697
698   mdn_iterator mdn_begin() { return mdnMap.begin(); }
699   mdn_iterator mdn_end() { return mdnMap.end(); }
700   unsigned mdn_size() const { return mdnMap.size(); }
701   bool mdn_empty() const { return mdnMap.empty(); }
702
703   /// AttributeSet map iterators.
704   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
705
706   as_iterator as_begin()   { return asMap.begin(); }
707   as_iterator as_end()     { return asMap.end(); }
708   unsigned as_size() const { return asMap.size(); }
709   bool as_empty() const    { return asMap.empty(); }
710
711   /// This function does the actual initialization.
712   inline void initialize();
713
714   // Implementation Details
715 private:
716   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
717   void CreateModuleSlot(const GlobalValue *V);
718
719   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
720   void CreateMetadataSlot(const MDNode *N);
721
722   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
723   void CreateFunctionSlot(const Value *V);
724
725   /// \brief Insert the specified AttributeSet into the slot table.
726   void CreateAttributeSetSlot(AttributeSet AS);
727
728   /// Add all of the module level global variables (and their initializers)
729   /// and function declarations, but not the contents of those functions.
730   void processModule();
731
732   /// Add all of the functions arguments, basic blocks, and instructions.
733   void processFunction();
734
735   /// Add the metadata directly attached to a GlobalObject.
736   void processGlobalObjectMetadata(const GlobalObject &GO);
737
738   /// Add all of the metadata from a function.
739   void processFunctionMetadata(const Function &F);
740
741   /// Add all of the metadata from an instruction.
742   void processInstructionMetadata(const Instruction &I);
743 };
744
745 } // end namespace llvm
746
747 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
748                                      const Function *F)
749     : M(M), F(F), Machine(&Machine) {}
750
751 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
752                                      bool ShouldInitializeAllMetadata)
753     : ShouldCreateStorage(M),
754       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
755
756 ModuleSlotTracker::~ModuleSlotTracker() = default;
757
758 SlotTracker *ModuleSlotTracker::getMachine() {
759   if (!ShouldCreateStorage)
760     return Machine;
761
762   ShouldCreateStorage = false;
763   MachineStorage =
764       llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
765   Machine = MachineStorage.get();
766   return Machine;
767 }
768
769 void ModuleSlotTracker::incorporateFunction(const Function &F) {
770   // Using getMachine() may lazily create the slot tracker.
771   if (!getMachine())
772     return;
773
774   // Nothing to do if this is the right function already.
775   if (this->F == &F)
776     return;
777   if (this->F)
778     Machine->purgeFunction();
779   Machine->incorporateFunction(&F);
780   this->F = &F;
781 }
782
783 int ModuleSlotTracker::getLocalSlot(const Value *V) {
784   assert(F && "No function incorporated");
785   return Machine->getLocalSlot(V);
786 }
787
788 static SlotTracker *createSlotTracker(const Value *V) {
789   if (const Argument *FA = dyn_cast<Argument>(V))
790     return new SlotTracker(FA->getParent());
791
792   if (const Instruction *I = dyn_cast<Instruction>(V))
793     if (I->getParent())
794       return new SlotTracker(I->getParent()->getParent());
795
796   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
797     return new SlotTracker(BB->getParent());
798
799   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
800     return new SlotTracker(GV->getParent());
801
802   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
803     return new SlotTracker(GA->getParent());
804
805   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
806     return new SlotTracker(GIF->getParent());
807
808   if (const Function *Func = dyn_cast<Function>(V))
809     return new SlotTracker(Func);
810
811   return nullptr;
812 }
813
814 #if 0
815 #define ST_DEBUG(X) dbgs() << X
816 #else
817 #define ST_DEBUG(X)
818 #endif
819
820 // Module level constructor. Causes the contents of the Module (sans functions)
821 // to be added to the slot table.
822 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
823     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
824
825 // Function level constructor. Causes the contents of the Module and the one
826 // function provided to be added to the slot table.
827 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
828     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
829       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
830
831 inline void SlotTracker::initialize() {
832   if (TheModule) {
833     processModule();
834     TheModule = nullptr; ///< Prevent re-processing next time we're called.
835   }
836
837   if (TheFunction && !FunctionProcessed)
838     processFunction();
839 }
840
841 // Iterate through all the global variables, functions, and global
842 // variable initializers and create slots for them.
843 void SlotTracker::processModule() {
844   ST_DEBUG("begin processModule!\n");
845
846   // Add all of the unnamed global variables to the value table.
847   for (const GlobalVariable &Var : TheModule->globals()) {
848     if (!Var.hasName())
849       CreateModuleSlot(&Var);
850     processGlobalObjectMetadata(Var);
851     auto Attrs = Var.getAttributes();
852     if (Attrs.hasAttributes())
853       CreateAttributeSetSlot(Attrs);
854   }
855
856   for (const GlobalAlias &A : TheModule->aliases()) {
857     if (!A.hasName())
858       CreateModuleSlot(&A);
859   }
860
861   for (const GlobalIFunc &I : TheModule->ifuncs()) {
862     if (!I.hasName())
863       CreateModuleSlot(&I);
864   }
865
866   // Add metadata used by named metadata.
867   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
868     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
869       CreateMetadataSlot(NMD.getOperand(i));
870   }
871
872   for (const Function &F : *TheModule) {
873     if (!F.hasName())
874       // Add all the unnamed functions to the table.
875       CreateModuleSlot(&F);
876
877     if (ShouldInitializeAllMetadata)
878       processFunctionMetadata(F);
879
880     // Add all the function attributes to the table.
881     // FIXME: Add attributes of other objects?
882     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
883     if (FnAttrs.hasAttributes())
884       CreateAttributeSetSlot(FnAttrs);
885   }
886
887   ST_DEBUG("end processModule!\n");
888 }
889
890 // Process the arguments, basic blocks, and instructions  of a function.
891 void SlotTracker::processFunction() {
892   ST_DEBUG("begin processFunction!\n");
893   fNext = 0;
894
895   // Process function metadata if it wasn't hit at the module-level.
896   if (!ShouldInitializeAllMetadata)
897     processFunctionMetadata(*TheFunction);
898
899   // Add all the function arguments with no names.
900   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
901       AE = TheFunction->arg_end(); AI != AE; ++AI)
902     if (!AI->hasName())
903       CreateFunctionSlot(&*AI);
904
905   ST_DEBUG("Inserting Instructions:\n");
906
907   // Add all of the basic blocks and instructions with no names.
908   for (auto &BB : *TheFunction) {
909     if (!BB.hasName())
910       CreateFunctionSlot(&BB);
911
912     for (auto &I : BB) {
913       if (!I.getType()->isVoidTy() && !I.hasName())
914         CreateFunctionSlot(&I);
915
916       // We allow direct calls to any llvm.foo function here, because the
917       // target may not be linked into the optimizer.
918       if (auto CS = ImmutableCallSite(&I)) {
919         // Add all the call attributes to the table.
920         AttributeSet Attrs = CS.getAttributes().getFnAttributes();
921         if (Attrs.hasAttributes())
922           CreateAttributeSetSlot(Attrs);
923       }
924     }
925   }
926
927   FunctionProcessed = true;
928
929   ST_DEBUG("end processFunction!\n");
930 }
931
932 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
933   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
934   GO.getAllMetadata(MDs);
935   for (auto &MD : MDs)
936     CreateMetadataSlot(MD.second);
937 }
938
939 void SlotTracker::processFunctionMetadata(const Function &F) {
940   processGlobalObjectMetadata(F);
941   for (auto &BB : F) {
942     for (auto &I : BB)
943       processInstructionMetadata(I);
944   }
945 }
946
947 void SlotTracker::processInstructionMetadata(const Instruction &I) {
948   // Process metadata used directly by intrinsics.
949   if (const CallInst *CI = dyn_cast<CallInst>(&I))
950     if (Function *F = CI->getCalledFunction())
951       if (F->isIntrinsic())
952         for (auto &Op : I.operands())
953           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
954             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
955               CreateMetadataSlot(N);
956
957   // Process metadata attached to this instruction.
958   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
959   I.getAllMetadata(MDs);
960   for (auto &MD : MDs)
961     CreateMetadataSlot(MD.second);
962 }
963
964 /// Clean up after incorporating a function. This is the only way to get out of
965 /// the function incorporation state that affects get*Slot/Create*Slot. Function
966 /// incorporation state is indicated by TheFunction != 0.
967 void SlotTracker::purgeFunction() {
968   ST_DEBUG("begin purgeFunction!\n");
969   fMap.clear(); // Simply discard the function level map
970   TheFunction = nullptr;
971   FunctionProcessed = false;
972   ST_DEBUG("end purgeFunction!\n");
973 }
974
975 /// getGlobalSlot - Get the slot number of a global value.
976 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
977   // Check for uninitialized state and do lazy initialization.
978   initialize();
979
980   // Find the value in the module map
981   ValueMap::iterator MI = mMap.find(V);
982   return MI == mMap.end() ? -1 : (int)MI->second;
983 }
984
985 /// getMetadataSlot - Get the slot number of a MDNode.
986 int SlotTracker::getMetadataSlot(const MDNode *N) {
987   // Check for uninitialized state and do lazy initialization.
988   initialize();
989
990   // Find the MDNode in the module map
991   mdn_iterator MI = mdnMap.find(N);
992   return MI == mdnMap.end() ? -1 : (int)MI->second;
993 }
994
995 /// getLocalSlot - Get the slot number for a value that is local to a function.
996 int SlotTracker::getLocalSlot(const Value *V) {
997   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
998
999   // Check for uninitialized state and do lazy initialization.
1000   initialize();
1001
1002   ValueMap::iterator FI = fMap.find(V);
1003   return FI == fMap.end() ? -1 : (int)FI->second;
1004 }
1005
1006 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1007   // Check for uninitialized state and do lazy initialization.
1008   initialize();
1009
1010   // Find the AttributeSet in the module map.
1011   as_iterator AI = asMap.find(AS);
1012   return AI == asMap.end() ? -1 : (int)AI->second;
1013 }
1014
1015 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1016 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1017   assert(V && "Can't insert a null Value into SlotTracker!");
1018   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1019   assert(!V->hasName() && "Doesn't need a slot!");
1020
1021   unsigned DestSlot = mNext++;
1022   mMap[V] = DestSlot;
1023
1024   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1025            DestSlot << " [");
1026   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1027   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1028             (isa<Function>(V) ? 'F' :
1029              (isa<GlobalAlias>(V) ? 'A' :
1030               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1031 }
1032
1033 /// CreateSlot - Create a new slot for the specified value if it has no name.
1034 void SlotTracker::CreateFunctionSlot(const Value *V) {
1035   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1036
1037   unsigned DestSlot = fNext++;
1038   fMap[V] = DestSlot;
1039
1040   // G = Global, F = Function, o = other
1041   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1042            DestSlot << " [o]\n");
1043 }
1044
1045 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1046 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1047   assert(N && "Can't insert a null Value into SlotTracker!");
1048
1049   unsigned DestSlot = mdnNext;
1050   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1051     return;
1052   ++mdnNext;
1053
1054   // Recursively add any MDNodes referenced by operands.
1055   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1056     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1057       CreateMetadataSlot(Op);
1058 }
1059
1060 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1061   assert(AS.hasAttributes() && "Doesn't need a slot!");
1062
1063   as_iterator I = asMap.find(AS);
1064   if (I != asMap.end())
1065     return;
1066
1067   unsigned DestSlot = asNext++;
1068   asMap[AS] = DestSlot;
1069 }
1070
1071 //===----------------------------------------------------------------------===//
1072 // AsmWriter Implementation
1073 //===----------------------------------------------------------------------===//
1074
1075 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1076                                    TypePrinting *TypePrinter,
1077                                    SlotTracker *Machine,
1078                                    const Module *Context);
1079
1080 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1081                                    TypePrinting *TypePrinter,
1082                                    SlotTracker *Machine, const Module *Context,
1083                                    bool FromValue = false);
1084
1085 static void writeAtomicRMWOperation(raw_ostream &Out,
1086                                     AtomicRMWInst::BinOp Op) {
1087   switch (Op) {
1088   default: Out << " <unknown operation " << Op << ">"; break;
1089   case AtomicRMWInst::Xchg: Out << " xchg"; break;
1090   case AtomicRMWInst::Add:  Out << " add"; break;
1091   case AtomicRMWInst::Sub:  Out << " sub"; break;
1092   case AtomicRMWInst::And:  Out << " and"; break;
1093   case AtomicRMWInst::Nand: Out << " nand"; break;
1094   case AtomicRMWInst::Or:   Out << " or"; break;
1095   case AtomicRMWInst::Xor:  Out << " xor"; break;
1096   case AtomicRMWInst::Max:  Out << " max"; break;
1097   case AtomicRMWInst::Min:  Out << " min"; break;
1098   case AtomicRMWInst::UMax: Out << " umax"; break;
1099   case AtomicRMWInst::UMin: Out << " umin"; break;
1100   }
1101 }
1102
1103 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1104   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1105     // Unsafe algebra implies all the others, no need to write them all out
1106     if (FPO->hasUnsafeAlgebra())
1107       Out << " fast";
1108     else {
1109       if (FPO->hasNoNaNs())
1110         Out << " nnan";
1111       if (FPO->hasNoInfs())
1112         Out << " ninf";
1113       if (FPO->hasNoSignedZeros())
1114         Out << " nsz";
1115       if (FPO->hasAllowReciprocal())
1116         Out << " arcp";
1117       if (FPO->hasAllowContract())
1118         Out << " contract";
1119     }
1120   }
1121
1122   if (const OverflowingBinaryOperator *OBO =
1123         dyn_cast<OverflowingBinaryOperator>(U)) {
1124     if (OBO->hasNoUnsignedWrap())
1125       Out << " nuw";
1126     if (OBO->hasNoSignedWrap())
1127       Out << " nsw";
1128   } else if (const PossiblyExactOperator *Div =
1129                dyn_cast<PossiblyExactOperator>(U)) {
1130     if (Div->isExact())
1131       Out << " exact";
1132   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1133     if (GEP->isInBounds())
1134       Out << " inbounds";
1135   }
1136 }
1137
1138 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1139                                   TypePrinting &TypePrinter,
1140                                   SlotTracker *Machine,
1141                                   const Module *Context) {
1142   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1143     if (CI->getType()->isIntegerTy(1)) {
1144       Out << (CI->getZExtValue() ? "true" : "false");
1145       return;
1146     }
1147     Out << CI->getValue();
1148     return;
1149   }
1150
1151   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1152     const APFloat &APF = CFP->getValueAPF();
1153     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1154         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1155       // We would like to output the FP constant value in exponential notation,
1156       // but we cannot do this if doing so will lose precision.  Check here to
1157       // make sure that we only output it in exponential format if we can parse
1158       // the value back and get the same value.
1159       //
1160       bool ignored;
1161       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1162       bool isInf = APF.isInfinity();
1163       bool isNaN = APF.isNaN();
1164       if (!isInf && !isNaN) {
1165         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1166         SmallString<128> StrVal;
1167         APF.toString(StrVal, 6, 0, false);
1168         // Check to make sure that the stringized number is not some string like
1169         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1170         // that the string matches the "[-+]?[0-9]" regex.
1171         //
1172         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1173                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1174                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1175                "[-+]?[0-9] regex does not match!");
1176         // Reparse stringized version!
1177         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1178           Out << StrVal;
1179           return;
1180         }
1181       }
1182       // Otherwise we could not reparse it to exactly the same value, so we must
1183       // output the string in hexadecimal format!  Note that loading and storing
1184       // floating point types changes the bits of NaNs on some hosts, notably
1185       // x86, so we must not use these types.
1186       static_assert(sizeof(double) == sizeof(uint64_t),
1187                     "assuming that double is 64 bits!");
1188       APFloat apf = APF;
1189       // Floats are represented in ASCII IR as double, convert.
1190       if (!isDouble)
1191         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1192                           &ignored);
1193       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1194       return;
1195     }
1196
1197     // Either half, or some form of long double.
1198     // These appear as a magic letter identifying the type, then a
1199     // fixed number of hex digits.
1200     Out << "0x";
1201     APInt API = APF.bitcastToAPInt();
1202     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1203       Out << 'K';
1204       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1205                                   /*Upper=*/true);
1206       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1207                                   /*Upper=*/true);
1208       return;
1209     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1210       Out << 'L';
1211       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1212                                   /*Upper=*/true);
1213       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1214                                   /*Upper=*/true);
1215     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1216       Out << 'M';
1217       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1218                                   /*Upper=*/true);
1219       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1220                                   /*Upper=*/true);
1221     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1222       Out << 'H';
1223       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1224                                   /*Upper=*/true);
1225     } else
1226       llvm_unreachable("Unsupported floating point type");
1227     return;
1228   }
1229
1230   if (isa<ConstantAggregateZero>(CV)) {
1231     Out << "zeroinitializer";
1232     return;
1233   }
1234
1235   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1236     Out << "blockaddress(";
1237     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1238                            Context);
1239     Out << ", ";
1240     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1241                            Context);
1242     Out << ")";
1243     return;
1244   }
1245
1246   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1247     Type *ETy = CA->getType()->getElementType();
1248     Out << '[';
1249     TypePrinter.print(ETy, Out);
1250     Out << ' ';
1251     WriteAsOperandInternal(Out, CA->getOperand(0),
1252                            &TypePrinter, Machine,
1253                            Context);
1254     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1255       Out << ", ";
1256       TypePrinter.print(ETy, Out);
1257       Out << ' ';
1258       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1259                              Context);
1260     }
1261     Out << ']';
1262     return;
1263   }
1264
1265   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1266     // As a special case, print the array as a string if it is an array of
1267     // i8 with ConstantInt values.
1268     if (CA->isString()) {
1269       Out << "c\"";
1270       PrintEscapedString(CA->getAsString(), Out);
1271       Out << '"';
1272       return;
1273     }
1274
1275     Type *ETy = CA->getType()->getElementType();
1276     Out << '[';
1277     TypePrinter.print(ETy, Out);
1278     Out << ' ';
1279     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1280                            &TypePrinter, Machine,
1281                            Context);
1282     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1283       Out << ", ";
1284       TypePrinter.print(ETy, Out);
1285       Out << ' ';
1286       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1287                              Machine, Context);
1288     }
1289     Out << ']';
1290     return;
1291   }
1292
1293   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1294     if (CS->getType()->isPacked())
1295       Out << '<';
1296     Out << '{';
1297     unsigned N = CS->getNumOperands();
1298     if (N) {
1299       Out << ' ';
1300       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1301       Out << ' ';
1302
1303       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1304                              Context);
1305
1306       for (unsigned i = 1; i < N; i++) {
1307         Out << ", ";
1308         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1309         Out << ' ';
1310
1311         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1312                                Context);
1313       }
1314       Out << ' ';
1315     }
1316
1317     Out << '}';
1318     if (CS->getType()->isPacked())
1319       Out << '>';
1320     return;
1321   }
1322
1323   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1324     Type *ETy = CV->getType()->getVectorElementType();
1325     Out << '<';
1326     TypePrinter.print(ETy, Out);
1327     Out << ' ';
1328     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1329                            Machine, Context);
1330     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1331       Out << ", ";
1332       TypePrinter.print(ETy, Out);
1333       Out << ' ';
1334       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1335                              Machine, Context);
1336     }
1337     Out << '>';
1338     return;
1339   }
1340
1341   if (isa<ConstantPointerNull>(CV)) {
1342     Out << "null";
1343     return;
1344   }
1345
1346   if (isa<ConstantTokenNone>(CV)) {
1347     Out << "none";
1348     return;
1349   }
1350
1351   if (isa<UndefValue>(CV)) {
1352     Out << "undef";
1353     return;
1354   }
1355
1356   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1357     Out << CE->getOpcodeName();
1358     WriteOptimizationInfo(Out, CE);
1359     if (CE->isCompare())
1360       Out << ' ' << CmpInst::getPredicateName(
1361                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1362     Out << " (";
1363
1364     Optional<unsigned> InRangeOp;
1365     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1366       TypePrinter.print(GEP->getSourceElementType(), Out);
1367       Out << ", ";
1368       InRangeOp = GEP->getInRangeIndex();
1369       if (InRangeOp)
1370         ++*InRangeOp;
1371     }
1372
1373     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1374       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1375         Out << "inrange ";
1376       TypePrinter.print((*OI)->getType(), Out);
1377       Out << ' ';
1378       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1379       if (OI+1 != CE->op_end())
1380         Out << ", ";
1381     }
1382
1383     if (CE->hasIndices()) {
1384       ArrayRef<unsigned> Indices = CE->getIndices();
1385       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1386         Out << ", " << Indices[i];
1387     }
1388
1389     if (CE->isCast()) {
1390       Out << " to ";
1391       TypePrinter.print(CE->getType(), Out);
1392     }
1393
1394     Out << ')';
1395     return;
1396   }
1397
1398   Out << "<placeholder or erroneous Constant>";
1399 }
1400
1401 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1402                          TypePrinting *TypePrinter, SlotTracker *Machine,
1403                          const Module *Context) {
1404   Out << "!{";
1405   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1406     const Metadata *MD = Node->getOperand(mi);
1407     if (!MD)
1408       Out << "null";
1409     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1410       Value *V = MDV->getValue();
1411       TypePrinter->print(V->getType(), Out);
1412       Out << ' ';
1413       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1414     } else {
1415       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1416     }
1417     if (mi + 1 != me)
1418       Out << ", ";
1419   }
1420
1421   Out << "}";
1422 }
1423
1424 namespace {
1425
1426 struct FieldSeparator {
1427   bool Skip = true;
1428   const char *Sep;
1429
1430   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1431 };
1432
1433 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1434   if (FS.Skip) {
1435     FS.Skip = false;
1436     return OS;
1437   }
1438   return OS << FS.Sep;
1439 }
1440
1441 struct MDFieldPrinter {
1442   raw_ostream &Out;
1443   FieldSeparator FS;
1444   TypePrinting *TypePrinter = nullptr;
1445   SlotTracker *Machine = nullptr;
1446   const Module *Context = nullptr;
1447
1448   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1449   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1450                  SlotTracker *Machine, const Module *Context)
1451       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1452   }
1453
1454   void printTag(const DINode *N);
1455   void printMacinfoType(const DIMacroNode *N);
1456   void printChecksumKind(const DIFile *N);
1457   void printString(StringRef Name, StringRef Value,
1458                    bool ShouldSkipEmpty = true);
1459   void printMetadata(StringRef Name, const Metadata *MD,
1460                      bool ShouldSkipNull = true);
1461   template <class IntTy>
1462   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1463   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1464   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1465   template <class IntTy, class Stringifier>
1466   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1467                       bool ShouldSkipZero = true);
1468   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1469 };
1470
1471 } // end anonymous namespace
1472
1473 void MDFieldPrinter::printTag(const DINode *N) {
1474   Out << FS << "tag: ";
1475   auto Tag = dwarf::TagString(N->getTag());
1476   if (!Tag.empty())
1477     Out << Tag;
1478   else
1479     Out << N->getTag();
1480 }
1481
1482 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1483   Out << FS << "type: ";
1484   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1485   if (!Type.empty())
1486     Out << Type;
1487   else
1488     Out << N->getMacinfoType();
1489 }
1490
1491 void MDFieldPrinter::printChecksumKind(const DIFile *N) {
1492   if (N->getChecksumKind() == DIFile::CSK_None)
1493     // Skip CSK_None checksum kind.
1494     return;
1495   Out << FS << "checksumkind: " << N->getChecksumKindAsString();
1496 }
1497
1498 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1499                                  bool ShouldSkipEmpty) {
1500   if (ShouldSkipEmpty && Value.empty())
1501     return;
1502
1503   Out << FS << Name << ": \"";
1504   PrintEscapedString(Value, Out);
1505   Out << "\"";
1506 }
1507
1508 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1509                                    TypePrinting *TypePrinter,
1510                                    SlotTracker *Machine,
1511                                    const Module *Context) {
1512   if (!MD) {
1513     Out << "null";
1514     return;
1515   }
1516   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1517 }
1518
1519 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1520                                    bool ShouldSkipNull) {
1521   if (ShouldSkipNull && !MD)
1522     return;
1523
1524   Out << FS << Name << ": ";
1525   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1526 }
1527
1528 template <class IntTy>
1529 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1530   if (ShouldSkipZero && !Int)
1531     return;
1532
1533   Out << FS << Name << ": " << Int;
1534 }
1535
1536 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1537                                Optional<bool> Default) {
1538   if (Default && Value == *Default)
1539     return;
1540   Out << FS << Name << ": " << (Value ? "true" : "false");
1541 }
1542
1543 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1544   if (!Flags)
1545     return;
1546
1547   Out << FS << Name << ": ";
1548
1549   SmallVector<DINode::DIFlags, 8> SplitFlags;
1550   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1551
1552   FieldSeparator FlagsFS(" | ");
1553   for (auto F : SplitFlags) {
1554     auto StringF = DINode::getFlagString(F);
1555     assert(!StringF.empty() && "Expected valid flag");
1556     Out << FlagsFS << StringF;
1557   }
1558   if (Extra || SplitFlags.empty())
1559     Out << FlagsFS << Extra;
1560 }
1561
1562 void MDFieldPrinter::printEmissionKind(StringRef Name,
1563                                        DICompileUnit::DebugEmissionKind EK) {
1564   Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
1565 }
1566
1567 template <class IntTy, class Stringifier>
1568 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1569                                     Stringifier toString, bool ShouldSkipZero) {
1570   if (!Value)
1571     return;
1572
1573   Out << FS << Name << ": ";
1574   auto S = toString(Value);
1575   if (!S.empty())
1576     Out << S;
1577   else
1578     Out << Value;
1579 }
1580
1581 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1582                                TypePrinting *TypePrinter, SlotTracker *Machine,
1583                                const Module *Context) {
1584   Out << "!GenericDINode(";
1585   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1586   Printer.printTag(N);
1587   Printer.printString("header", N->getHeader());
1588   if (N->getNumDwarfOperands()) {
1589     Out << Printer.FS << "operands: {";
1590     FieldSeparator IFS;
1591     for (auto &I : N->dwarf_operands()) {
1592       Out << IFS;
1593       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1594     }
1595     Out << "}";
1596   }
1597   Out << ")";
1598 }
1599
1600 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1601                             TypePrinting *TypePrinter, SlotTracker *Machine,
1602                             const Module *Context) {
1603   Out << "!DILocation(";
1604   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1605   // Always output the line, since 0 is a relevant and important value for it.
1606   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1607   Printer.printInt("column", DL->getColumn());
1608   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1609   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1610   Out << ")";
1611 }
1612
1613 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1614                             TypePrinting *, SlotTracker *, const Module *) {
1615   Out << "!DISubrange(";
1616   MDFieldPrinter Printer(Out);
1617   Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1618   Printer.printInt("lowerBound", N->getLowerBound());
1619   Out << ")";
1620 }
1621
1622 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1623                               TypePrinting *, SlotTracker *, const Module *) {
1624   Out << "!DIEnumerator(";
1625   MDFieldPrinter Printer(Out);
1626   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1627   Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1628   Out << ")";
1629 }
1630
1631 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1632                              TypePrinting *, SlotTracker *, const Module *) {
1633   Out << "!DIBasicType(";
1634   MDFieldPrinter Printer(Out);
1635   if (N->getTag() != dwarf::DW_TAG_base_type)
1636     Printer.printTag(N);
1637   Printer.printString("name", N->getName());
1638   Printer.printInt("size", N->getSizeInBits());
1639   Printer.printInt("align", N->getAlignInBits());
1640   Printer.printDwarfEnum("encoding", N->getEncoding(),
1641                          dwarf::AttributeEncodingString);
1642   Out << ")";
1643 }
1644
1645 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1646                                TypePrinting *TypePrinter, SlotTracker *Machine,
1647                                const Module *Context) {
1648   Out << "!DIDerivedType(";
1649   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1650   Printer.printTag(N);
1651   Printer.printString("name", N->getName());
1652   Printer.printMetadata("scope", N->getRawScope());
1653   Printer.printMetadata("file", N->getRawFile());
1654   Printer.printInt("line", N->getLine());
1655   Printer.printMetadata("baseType", N->getRawBaseType(),
1656                         /* ShouldSkipNull */ false);
1657   Printer.printInt("size", N->getSizeInBits());
1658   Printer.printInt("align", N->getAlignInBits());
1659   Printer.printInt("offset", N->getOffsetInBits());
1660   Printer.printDIFlags("flags", N->getFlags());
1661   Printer.printMetadata("extraData", N->getRawExtraData());
1662   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1663     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1664                      /* ShouldSkipZero */ false);
1665   Out << ")";
1666 }
1667
1668 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1669                                  TypePrinting *TypePrinter,
1670                                  SlotTracker *Machine, const Module *Context) {
1671   Out << "!DICompositeType(";
1672   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1673   Printer.printTag(N);
1674   Printer.printString("name", N->getName());
1675   Printer.printMetadata("scope", N->getRawScope());
1676   Printer.printMetadata("file", N->getRawFile());
1677   Printer.printInt("line", N->getLine());
1678   Printer.printMetadata("baseType", N->getRawBaseType());
1679   Printer.printInt("size", N->getSizeInBits());
1680   Printer.printInt("align", N->getAlignInBits());
1681   Printer.printInt("offset", N->getOffsetInBits());
1682   Printer.printDIFlags("flags", N->getFlags());
1683   Printer.printMetadata("elements", N->getRawElements());
1684   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1685                          dwarf::LanguageString);
1686   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1687   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1688   Printer.printString("identifier", N->getIdentifier());
1689   Out << ")";
1690 }
1691
1692 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1693                                   TypePrinting *TypePrinter,
1694                                   SlotTracker *Machine, const Module *Context) {
1695   Out << "!DISubroutineType(";
1696   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1697   Printer.printDIFlags("flags", N->getFlags());
1698   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1699   Printer.printMetadata("types", N->getRawTypeArray(),
1700                         /* ShouldSkipNull */ false);
1701   Out << ")";
1702 }
1703
1704 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1705                         SlotTracker *, const Module *) {
1706   Out << "!DIFile(";
1707   MDFieldPrinter Printer(Out);
1708   Printer.printString("filename", N->getFilename(),
1709                       /* ShouldSkipEmpty */ false);
1710   Printer.printString("directory", N->getDirectory(),
1711                       /* ShouldSkipEmpty */ false);
1712   Printer.printChecksumKind(N);
1713   Printer.printString("checksum", N->getChecksum(), /* ShouldSkipEmpty */ true);
1714   Out << ")";
1715 }
1716
1717 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1718                                TypePrinting *TypePrinter, SlotTracker *Machine,
1719                                const Module *Context) {
1720   Out << "!DICompileUnit(";
1721   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1722   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1723                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1724   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1725   Printer.printString("producer", N->getProducer());
1726   Printer.printBool("isOptimized", N->isOptimized());
1727   Printer.printString("flags", N->getFlags());
1728   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1729                    /* ShouldSkipZero */ false);
1730   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1731   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1732   Printer.printMetadata("enums", N->getRawEnumTypes());
1733   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1734   Printer.printMetadata("globals", N->getRawGlobalVariables());
1735   Printer.printMetadata("imports", N->getRawImportedEntities());
1736   Printer.printMetadata("macros", N->getRawMacros());
1737   Printer.printInt("dwoId", N->getDWOId());
1738   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1739   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1740                     false);
1741   Out << ")";
1742 }
1743
1744 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1745                               TypePrinting *TypePrinter, SlotTracker *Machine,
1746                               const Module *Context) {
1747   Out << "!DISubprogram(";
1748   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1749   Printer.printString("name", N->getName());
1750   Printer.printString("linkageName", N->getLinkageName());
1751   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1752   Printer.printMetadata("file", N->getRawFile());
1753   Printer.printInt("line", N->getLine());
1754   Printer.printMetadata("type", N->getRawType());
1755   Printer.printBool("isLocal", N->isLocalToUnit());
1756   Printer.printBool("isDefinition", N->isDefinition());
1757   Printer.printInt("scopeLine", N->getScopeLine());
1758   Printer.printMetadata("containingType", N->getRawContainingType());
1759   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1760                          dwarf::VirtualityString);
1761   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1762       N->getVirtualIndex() != 0)
1763     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1764   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1765   Printer.printDIFlags("flags", N->getFlags());
1766   Printer.printBool("isOptimized", N->isOptimized());
1767   Printer.printMetadata("unit", N->getRawUnit());
1768   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1769   Printer.printMetadata("declaration", N->getRawDeclaration());
1770   Printer.printMetadata("variables", N->getRawVariables());
1771   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1772   Out << ")";
1773 }
1774
1775 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1776                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1777                                 const Module *Context) {
1778   Out << "!DILexicalBlock(";
1779   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1780   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1781   Printer.printMetadata("file", N->getRawFile());
1782   Printer.printInt("line", N->getLine());
1783   Printer.printInt("column", N->getColumn());
1784   Out << ")";
1785 }
1786
1787 static void writeDILexicalBlockFile(raw_ostream &Out,
1788                                     const DILexicalBlockFile *N,
1789                                     TypePrinting *TypePrinter,
1790                                     SlotTracker *Machine,
1791                                     const Module *Context) {
1792   Out << "!DILexicalBlockFile(";
1793   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1794   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1795   Printer.printMetadata("file", N->getRawFile());
1796   Printer.printInt("discriminator", N->getDiscriminator(),
1797                    /* ShouldSkipZero */ false);
1798   Out << ")";
1799 }
1800
1801 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1802                              TypePrinting *TypePrinter, SlotTracker *Machine,
1803                              const Module *Context) {
1804   Out << "!DINamespace(";
1805   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1806   Printer.printString("name", N->getName());
1807   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1808   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
1809   Out << ")";
1810 }
1811
1812 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1813                          TypePrinting *TypePrinter, SlotTracker *Machine,
1814                          const Module *Context) {
1815   Out << "!DIMacro(";
1816   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1817   Printer.printMacinfoType(N);
1818   Printer.printInt("line", N->getLine());
1819   Printer.printString("name", N->getName());
1820   Printer.printString("value", N->getValue());
1821   Out << ")";
1822 }
1823
1824 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1825                              TypePrinting *TypePrinter, SlotTracker *Machine,
1826                              const Module *Context) {
1827   Out << "!DIMacroFile(";
1828   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1829   Printer.printInt("line", N->getLine());
1830   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1831   Printer.printMetadata("nodes", N->getRawElements());
1832   Out << ")";
1833 }
1834
1835 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1836                           TypePrinting *TypePrinter, SlotTracker *Machine,
1837                           const Module *Context) {
1838   Out << "!DIModule(";
1839   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1841   Printer.printString("name", N->getName());
1842   Printer.printString("configMacros", N->getConfigurationMacros());
1843   Printer.printString("includePath", N->getIncludePath());
1844   Printer.printString("isysroot", N->getISysRoot());
1845   Out << ")";
1846 }
1847
1848
1849 static void writeDITemplateTypeParameter(raw_ostream &Out,
1850                                          const DITemplateTypeParameter *N,
1851                                          TypePrinting *TypePrinter,
1852                                          SlotTracker *Machine,
1853                                          const Module *Context) {
1854   Out << "!DITemplateTypeParameter(";
1855   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1856   Printer.printString("name", N->getName());
1857   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1858   Out << ")";
1859 }
1860
1861 static void writeDITemplateValueParameter(raw_ostream &Out,
1862                                           const DITemplateValueParameter *N,
1863                                           TypePrinting *TypePrinter,
1864                                           SlotTracker *Machine,
1865                                           const Module *Context) {
1866   Out << "!DITemplateValueParameter(";
1867   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1868   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1869     Printer.printTag(N);
1870   Printer.printString("name", N->getName());
1871   Printer.printMetadata("type", N->getRawType());
1872   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1873   Out << ")";
1874 }
1875
1876 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1877                                   TypePrinting *TypePrinter,
1878                                   SlotTracker *Machine, const Module *Context) {
1879   Out << "!DIGlobalVariable(";
1880   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1881   Printer.printString("name", N->getName());
1882   Printer.printString("linkageName", N->getLinkageName());
1883   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1884   Printer.printMetadata("file", N->getRawFile());
1885   Printer.printInt("line", N->getLine());
1886   Printer.printMetadata("type", N->getRawType());
1887   Printer.printBool("isLocal", N->isLocalToUnit());
1888   Printer.printBool("isDefinition", N->isDefinition());
1889   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1890   Printer.printInt("align", N->getAlignInBits());
1891   Out << ")";
1892 }
1893
1894 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1895                                  TypePrinting *TypePrinter,
1896                                  SlotTracker *Machine, const Module *Context) {
1897   Out << "!DILocalVariable(";
1898   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1899   Printer.printString("name", N->getName());
1900   Printer.printInt("arg", N->getArg());
1901   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1902   Printer.printMetadata("file", N->getRawFile());
1903   Printer.printInt("line", N->getLine());
1904   Printer.printMetadata("type", N->getRawType());
1905   Printer.printDIFlags("flags", N->getFlags());
1906   Printer.printInt("align", N->getAlignInBits());
1907   Out << ")";
1908 }
1909
1910 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1911                               TypePrinting *TypePrinter, SlotTracker *Machine,
1912                               const Module *Context) {
1913   Out << "!DIExpression(";
1914   FieldSeparator FS;
1915   if (N->isValid()) {
1916     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1917       auto OpStr = dwarf::OperationEncodingString(I->getOp());
1918       assert(!OpStr.empty() && "Expected valid opcode");
1919
1920       Out << FS << OpStr;
1921       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1922         Out << FS << I->getArg(A);
1923     }
1924   } else {
1925     for (const auto &I : N->getElements())
1926       Out << FS << I;
1927   }
1928   Out << ")";
1929 }
1930
1931 static void writeDIGlobalVariableExpression(raw_ostream &Out,
1932                                             const DIGlobalVariableExpression *N,
1933                                             TypePrinting *TypePrinter,
1934                                             SlotTracker *Machine,
1935                                             const Module *Context) {
1936   Out << "!DIGlobalVariableExpression(";
1937   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1938   Printer.printMetadata("var", N->getVariable());
1939   Printer.printMetadata("expr", N->getExpression());
1940   Out << ")";
1941 }
1942
1943 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1944                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1945                                 const Module *Context) {
1946   Out << "!DIObjCProperty(";
1947   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1948   Printer.printString("name", N->getName());
1949   Printer.printMetadata("file", N->getRawFile());
1950   Printer.printInt("line", N->getLine());
1951   Printer.printString("setter", N->getSetterName());
1952   Printer.printString("getter", N->getGetterName());
1953   Printer.printInt("attributes", N->getAttributes());
1954   Printer.printMetadata("type", N->getRawType());
1955   Out << ")";
1956 }
1957
1958 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1959                                   TypePrinting *TypePrinter,
1960                                   SlotTracker *Machine, const Module *Context) {
1961   Out << "!DIImportedEntity(";
1962   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1963   Printer.printTag(N);
1964   Printer.printString("name", N->getName());
1965   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1966   Printer.printMetadata("entity", N->getRawEntity());
1967   Printer.printMetadata("file", N->getRawFile());
1968   Printer.printInt("line", N->getLine());
1969   Out << ")";
1970 }
1971
1972 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1973                                     TypePrinting *TypePrinter,
1974                                     SlotTracker *Machine,
1975                                     const Module *Context) {
1976   if (Node->isDistinct())
1977     Out << "distinct ";
1978   else if (Node->isTemporary())
1979     Out << "<temporary!> "; // Handle broken code.
1980
1981   switch (Node->getMetadataID()) {
1982   default:
1983     llvm_unreachable("Expected uniquable MDNode");
1984 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1985   case Metadata::CLASS##Kind:                                                  \
1986     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
1987     break;
1988 #include "llvm/IR/Metadata.def"
1989   }
1990 }
1991
1992 // Full implementation of printing a Value as an operand with support for
1993 // TypePrinting, etc.
1994 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1995                                    TypePrinting *TypePrinter,
1996                                    SlotTracker *Machine,
1997                                    const Module *Context) {
1998   if (V->hasName()) {
1999     PrintLLVMName(Out, V);
2000     return;
2001   }
2002
2003   const Constant *CV = dyn_cast<Constant>(V);
2004   if (CV && !isa<GlobalValue>(CV)) {
2005     assert(TypePrinter && "Constants require TypePrinting!");
2006     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2007     return;
2008   }
2009
2010   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2011     Out << "asm ";
2012     if (IA->hasSideEffects())
2013       Out << "sideeffect ";
2014     if (IA->isAlignStack())
2015       Out << "alignstack ";
2016     // We don't emit the AD_ATT dialect as it's the assumed default.
2017     if (IA->getDialect() == InlineAsm::AD_Intel)
2018       Out << "inteldialect ";
2019     Out << '"';
2020     PrintEscapedString(IA->getAsmString(), Out);
2021     Out << "\", \"";
2022     PrintEscapedString(IA->getConstraintString(), Out);
2023     Out << '"';
2024     return;
2025   }
2026
2027   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2028     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2029                            Context, /* FromValue */ true);
2030     return;
2031   }
2032
2033   char Prefix = '%';
2034   int Slot;
2035   // If we have a SlotTracker, use it.
2036   if (Machine) {
2037     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2038       Slot = Machine->getGlobalSlot(GV);
2039       Prefix = '@';
2040     } else {
2041       Slot = Machine->getLocalSlot(V);
2042
2043       // If the local value didn't succeed, then we may be referring to a value
2044       // from a different function.  Translate it, as this can happen when using
2045       // address of blocks.
2046       if (Slot == -1)
2047         if ((Machine = createSlotTracker(V))) {
2048           Slot = Machine->getLocalSlot(V);
2049           delete Machine;
2050         }
2051     }
2052   } else if ((Machine = createSlotTracker(V))) {
2053     // Otherwise, create one to get the # and then destroy it.
2054     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2055       Slot = Machine->getGlobalSlot(GV);
2056       Prefix = '@';
2057     } else {
2058       Slot = Machine->getLocalSlot(V);
2059     }
2060     delete Machine;
2061     Machine = nullptr;
2062   } else {
2063     Slot = -1;
2064   }
2065
2066   if (Slot != -1)
2067     Out << Prefix << Slot;
2068   else
2069     Out << "<badref>";
2070 }
2071
2072 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2073                                    TypePrinting *TypePrinter,
2074                                    SlotTracker *Machine, const Module *Context,
2075                                    bool FromValue) {
2076   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2077     std::unique_ptr<SlotTracker> MachineStorage;
2078     if (!Machine) {
2079       MachineStorage = make_unique<SlotTracker>(Context);
2080       Machine = MachineStorage.get();
2081     }
2082     int Slot = Machine->getMetadataSlot(N);
2083     if (Slot == -1)
2084       // Give the pointer value instead of "badref", since this comes up all
2085       // the time when debugging.
2086       Out << "<" << N << ">";
2087     else
2088       Out << '!' << Slot;
2089     return;
2090   }
2091
2092   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2093     Out << "!\"";
2094     PrintEscapedString(MDS->getString(), Out);
2095     Out << '"';
2096     return;
2097   }
2098
2099   auto *V = cast<ValueAsMetadata>(MD);
2100   assert(TypePrinter && "TypePrinter required for metadata values");
2101   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2102          "Unexpected function-local metadata outside of value argument");
2103
2104   TypePrinter->print(V->getValue()->getType(), Out);
2105   Out << ' ';
2106   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2107 }
2108
2109 namespace {
2110
2111 class AssemblyWriter {
2112   formatted_raw_ostream &Out;
2113   const Module *TheModule;
2114   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2115   SlotTracker &Machine;
2116   TypePrinting TypePrinter;
2117   AssemblyAnnotationWriter *AnnotationWriter;
2118   SetVector<const Comdat *> Comdats;
2119   bool IsForDebug;
2120   bool ShouldPreserveUseListOrder;
2121   UseListOrderStack UseListOrders;
2122   SmallVector<StringRef, 8> MDNames;
2123   /// Synchronization scope names registered with LLVMContext.
2124   SmallVector<StringRef, 8> SSNs;
2125
2126 public:
2127   /// Construct an AssemblyWriter with an external SlotTracker
2128   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2129                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2130                  bool ShouldPreserveUseListOrder = false);
2131
2132   void printMDNodeBody(const MDNode *MD);
2133   void printNamedMDNode(const NamedMDNode *NMD);
2134
2135   void printModule(const Module *M);
2136
2137   void writeOperand(const Value *Op, bool PrintType);
2138   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2139   void writeOperandBundles(ImmutableCallSite CS);
2140   void writeSyncScope(const LLVMContext &Context,
2141                       SyncScope::ID SSID);
2142   void writeAtomic(const LLVMContext &Context,
2143                    AtomicOrdering Ordering,
2144                    SyncScope::ID SSID);
2145   void writeAtomicCmpXchg(const LLVMContext &Context,
2146                           AtomicOrdering SuccessOrdering,
2147                           AtomicOrdering FailureOrdering,
2148                           SyncScope::ID SSID);
2149
2150   void writeAllMDNodes();
2151   void writeMDNode(unsigned Slot, const MDNode *Node);
2152   void writeAllAttributeGroups();
2153
2154   void printTypeIdentities();
2155   void printGlobal(const GlobalVariable *GV);
2156   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2157   void printComdat(const Comdat *C);
2158   void printFunction(const Function *F);
2159   void printArgument(const Argument *FA, AttributeSet Attrs);
2160   void printBasicBlock(const BasicBlock *BB);
2161   void printInstructionLine(const Instruction &I);
2162   void printInstruction(const Instruction &I);
2163
2164   void printUseListOrder(const UseListOrder &Order);
2165   void printUseLists(const Function *F);
2166
2167 private:
2168   /// \brief Print out metadata attachments.
2169   void printMetadataAttachments(
2170       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2171       StringRef Separator);
2172
2173   // printInfoComment - Print a little comment after the instruction indicating
2174   // which slot it occupies.
2175   void printInfoComment(const Value &V);
2176
2177   // printGCRelocateComment - print comment after call to the gc.relocate
2178   // intrinsic indicating base and derived pointer names.
2179   void printGCRelocateComment(const GCRelocateInst &Relocate);
2180 };
2181
2182 } // end anonymous namespace
2183
2184 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2185                                const Module *M, AssemblyAnnotationWriter *AAW,
2186                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2187     : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2188       IsForDebug(IsForDebug),
2189       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2190   if (!TheModule)
2191     return;
2192   TypePrinter.incorporateTypes(*TheModule);
2193   for (const GlobalObject &GO : TheModule->global_objects())
2194     if (const Comdat *C = GO.getComdat())
2195       Comdats.insert(C);
2196 }
2197
2198 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2199   if (!Operand) {
2200     Out << "<null operand!>";
2201     return;
2202   }
2203   if (PrintType) {
2204     TypePrinter.print(Operand->getType(), Out);
2205     Out << ' ';
2206   }
2207   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2208 }
2209
2210 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2211                                     SyncScope::ID SSID) {
2212   switch (SSID) {
2213   case SyncScope::System: {
2214     break;
2215   }
2216   default: {
2217     if (SSNs.empty())
2218       Context.getSyncScopeNames(SSNs);
2219
2220     Out << " syncscope(\"";
2221     PrintEscapedString(SSNs[SSID], Out);
2222     Out << "\")";
2223     break;
2224   }
2225   }
2226 }
2227
2228 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2229                                  AtomicOrdering Ordering,
2230                                  SyncScope::ID SSID) {
2231   if (Ordering == AtomicOrdering::NotAtomic)
2232     return;
2233
2234   writeSyncScope(Context, SSID);
2235   Out << " " << toIRString(Ordering);
2236 }
2237
2238 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2239                                         AtomicOrdering SuccessOrdering,
2240                                         AtomicOrdering FailureOrdering,
2241                                         SyncScope::ID SSID) {
2242   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2243          FailureOrdering != AtomicOrdering::NotAtomic);
2244
2245   writeSyncScope(Context, SSID);
2246   Out << " " << toIRString(SuccessOrdering);
2247   Out << " " << toIRString(FailureOrdering);
2248 }
2249
2250 void AssemblyWriter::writeParamOperand(const Value *Operand,
2251                                        AttributeSet Attrs) {
2252   if (!Operand) {
2253     Out << "<null operand!>";
2254     return;
2255   }
2256
2257   // Print the type
2258   TypePrinter.print(Operand->getType(), Out);
2259   // Print parameter attributes list
2260   if (Attrs.hasAttributes())
2261     Out << ' ' << Attrs.getAsString();
2262   Out << ' ';
2263   // Print the operand
2264   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2265 }
2266
2267 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2268   if (!CS.hasOperandBundles())
2269     return;
2270
2271   Out << " [ ";
2272
2273   bool FirstBundle = true;
2274   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2275     OperandBundleUse BU = CS.getOperandBundleAt(i);
2276
2277     if (!FirstBundle)
2278       Out << ", ";
2279     FirstBundle = false;
2280
2281     Out << '"';
2282     PrintEscapedString(BU.getTagName(), Out);
2283     Out << '"';
2284
2285     Out << '(';
2286
2287     bool FirstInput = true;
2288     for (const auto &Input : BU.Inputs) {
2289       if (!FirstInput)
2290         Out << ", ";
2291       FirstInput = false;
2292
2293       TypePrinter.print(Input->getType(), Out);
2294       Out << " ";
2295       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2296     }
2297
2298     Out << ')';
2299   }
2300
2301   Out << " ]";
2302 }
2303
2304 void AssemblyWriter::printModule(const Module *M) {
2305   Machine.initialize();
2306
2307   if (ShouldPreserveUseListOrder)
2308     UseListOrders = predictUseListOrder(M);
2309
2310   if (!M->getModuleIdentifier().empty() &&
2311       // Don't print the ID if it will start a new line (which would
2312       // require a comment char before it).
2313       M->getModuleIdentifier().find('\n') == std::string::npos)
2314     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2315
2316   if (!M->getSourceFileName().empty()) {
2317     Out << "source_filename = \"";
2318     PrintEscapedString(M->getSourceFileName(), Out);
2319     Out << "\"\n";
2320   }
2321
2322   const std::string &DL = M->getDataLayoutStr();
2323   if (!DL.empty())
2324     Out << "target datalayout = \"" << DL << "\"\n";
2325   if (!M->getTargetTriple().empty())
2326     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2327
2328   if (!M->getModuleInlineAsm().empty()) {
2329     Out << '\n';
2330
2331     // Split the string into lines, to make it easier to read the .ll file.
2332     StringRef Asm = M->getModuleInlineAsm();
2333     do {
2334       StringRef Front;
2335       std::tie(Front, Asm) = Asm.split('\n');
2336
2337       // We found a newline, print the portion of the asm string from the
2338       // last newline up to this newline.
2339       Out << "module asm \"";
2340       PrintEscapedString(Front, Out);
2341       Out << "\"\n";
2342     } while (!Asm.empty());
2343   }
2344
2345   printTypeIdentities();
2346
2347   // Output all comdats.
2348   if (!Comdats.empty())
2349     Out << '\n';
2350   for (const Comdat *C : Comdats) {
2351     printComdat(C);
2352     if (C != Comdats.back())
2353       Out << '\n';
2354   }
2355
2356   // Output all globals.
2357   if (!M->global_empty()) Out << '\n';
2358   for (const GlobalVariable &GV : M->globals()) {
2359     printGlobal(&GV); Out << '\n';
2360   }
2361
2362   // Output all aliases.
2363   if (!M->alias_empty()) Out << "\n";
2364   for (const GlobalAlias &GA : M->aliases())
2365     printIndirectSymbol(&GA);
2366
2367   // Output all ifuncs.
2368   if (!M->ifunc_empty()) Out << "\n";
2369   for (const GlobalIFunc &GI : M->ifuncs())
2370     printIndirectSymbol(&GI);
2371
2372   // Output global use-lists.
2373   printUseLists(nullptr);
2374
2375   // Output all of the functions.
2376   for (const Function &F : *M)
2377     printFunction(&F);
2378   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2379
2380   // Output all attribute groups.
2381   if (!Machine.as_empty()) {
2382     Out << '\n';
2383     writeAllAttributeGroups();
2384   }
2385
2386   // Output named metadata.
2387   if (!M->named_metadata_empty()) Out << '\n';
2388
2389   for (const NamedMDNode &Node : M->named_metadata())
2390     printNamedMDNode(&Node);
2391
2392   // Output metadata.
2393   if (!Machine.mdn_empty()) {
2394     Out << '\n';
2395     writeAllMDNodes();
2396   }
2397 }
2398
2399 static void printMetadataIdentifier(StringRef Name,
2400                                     formatted_raw_ostream &Out) {
2401   if (Name.empty()) {
2402     Out << "<empty name> ";
2403   } else {
2404     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2405         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2406       Out << Name[0];
2407     else
2408       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2409     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2410       unsigned char C = Name[i];
2411       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2412           C == '.' || C == '_')
2413         Out << C;
2414       else
2415         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2416     }
2417   }
2418 }
2419
2420 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2421   Out << '!';
2422   printMetadataIdentifier(NMD->getName(), Out);
2423   Out << " = !{";
2424   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2425     if (i)
2426       Out << ", ";
2427     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2428     if (Slot == -1)
2429       Out << "<badref>";
2430     else
2431       Out << '!' << Slot;
2432   }
2433   Out << "}\n";
2434 }
2435
2436 static const char *getLinkagePrintName(GlobalValue::LinkageTypes LT) {
2437   switch (LT) {
2438   case GlobalValue::ExternalLinkage:
2439     return "";
2440   case GlobalValue::PrivateLinkage:
2441     return "private ";
2442   case GlobalValue::InternalLinkage:
2443     return "internal ";
2444   case GlobalValue::LinkOnceAnyLinkage:
2445     return "linkonce ";
2446   case GlobalValue::LinkOnceODRLinkage:
2447     return "linkonce_odr ";
2448   case GlobalValue::WeakAnyLinkage:
2449     return "weak ";
2450   case GlobalValue::WeakODRLinkage:
2451     return "weak_odr ";
2452   case GlobalValue::CommonLinkage:
2453     return "common ";
2454   case GlobalValue::AppendingLinkage:
2455     return "appending ";
2456   case GlobalValue::ExternalWeakLinkage:
2457     return "extern_weak ";
2458   case GlobalValue::AvailableExternallyLinkage:
2459     return "available_externally ";
2460   }
2461   llvm_unreachable("invalid linkage");
2462 }
2463
2464 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2465                             formatted_raw_ostream &Out) {
2466   switch (Vis) {
2467   case GlobalValue::DefaultVisibility: break;
2468   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
2469   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2470   }
2471 }
2472
2473 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2474                                  formatted_raw_ostream &Out) {
2475   switch (SCT) {
2476   case GlobalValue::DefaultStorageClass: break;
2477   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2478   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2479   }
2480 }
2481
2482 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2483                                   formatted_raw_ostream &Out) {
2484   switch (TLM) {
2485     case GlobalVariable::NotThreadLocal:
2486       break;
2487     case GlobalVariable::GeneralDynamicTLSModel:
2488       Out << "thread_local ";
2489       break;
2490     case GlobalVariable::LocalDynamicTLSModel:
2491       Out << "thread_local(localdynamic) ";
2492       break;
2493     case GlobalVariable::InitialExecTLSModel:
2494       Out << "thread_local(initialexec) ";
2495       break;
2496     case GlobalVariable::LocalExecTLSModel:
2497       Out << "thread_local(localexec) ";
2498       break;
2499   }
2500 }
2501
2502 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
2503   switch (UA) {
2504   case GlobalVariable::UnnamedAddr::None:
2505     return "";
2506   case GlobalVariable::UnnamedAddr::Local:
2507     return "local_unnamed_addr";
2508   case GlobalVariable::UnnamedAddr::Global:
2509     return "unnamed_addr";
2510   }
2511   llvm_unreachable("Unknown UnnamedAddr");
2512 }
2513
2514 static void maybePrintComdat(formatted_raw_ostream &Out,
2515                              const GlobalObject &GO) {
2516   const Comdat *C = GO.getComdat();
2517   if (!C)
2518     return;
2519
2520   if (isa<GlobalVariable>(GO))
2521     Out << ',';
2522   Out << " comdat";
2523
2524   if (GO.getName() == C->getName())
2525     return;
2526
2527   Out << '(';
2528   PrintLLVMName(Out, C->getName(), ComdatPrefix);
2529   Out << ')';
2530 }
2531
2532 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2533   if (GV->isMaterializable())
2534     Out << "; Materializable\n";
2535
2536   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2537   Out << " = ";
2538
2539   if (!GV->hasInitializer() && GV->hasExternalLinkage())
2540     Out << "external ";
2541
2542   Out << getLinkagePrintName(GV->getLinkage());
2543   PrintVisibility(GV->getVisibility(), Out);
2544   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2545   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2546   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
2547   if (!UA.empty())
2548       Out << UA << ' ';
2549
2550   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2551     Out << "addrspace(" << AddressSpace << ") ";
2552   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2553   Out << (GV->isConstant() ? "constant " : "global ");
2554   TypePrinter.print(GV->getValueType(), Out);
2555
2556   if (GV->hasInitializer()) {
2557     Out << ' ';
2558     writeOperand(GV->getInitializer(), false);
2559   }
2560
2561   if (GV->hasSection()) {
2562     Out << ", section \"";
2563     PrintEscapedString(GV->getSection(), Out);
2564     Out << '"';
2565   }
2566   maybePrintComdat(Out, *GV);
2567   if (GV->getAlignment())
2568     Out << ", align " << GV->getAlignment();
2569
2570   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2571   GV->getAllMetadata(MDs);
2572   printMetadataAttachments(MDs, ", ");
2573
2574   auto Attrs = GV->getAttributes();
2575   if (Attrs.hasAttributes())
2576     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
2577
2578   printInfoComment(*GV);
2579 }
2580
2581 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
2582   if (GIS->isMaterializable())
2583     Out << "; Materializable\n";
2584
2585   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
2586   Out << " = ";
2587
2588   Out << getLinkagePrintName(GIS->getLinkage());
2589   PrintVisibility(GIS->getVisibility(), Out);
2590   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
2591   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
2592   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
2593   if (!UA.empty())
2594       Out << UA << ' ';
2595
2596   if (isa<GlobalAlias>(GIS))
2597     Out << "alias ";
2598   else if (isa<GlobalIFunc>(GIS))
2599     Out << "ifunc ";
2600   else
2601     llvm_unreachable("Not an alias or ifunc!");
2602
2603   TypePrinter.print(GIS->getValueType(), Out);
2604
2605   Out << ", ";
2606
2607   const Constant *IS = GIS->getIndirectSymbol();
2608
2609   if (!IS) {
2610     TypePrinter.print(GIS->getType(), Out);
2611     Out << " <<NULL ALIASEE>>";
2612   } else {
2613     writeOperand(IS, !isa<ConstantExpr>(IS));
2614   }
2615
2616   printInfoComment(*GIS);
2617   Out << '\n';
2618 }
2619
2620 void AssemblyWriter::printComdat(const Comdat *C) {
2621   C->print(Out);
2622 }
2623
2624 void AssemblyWriter::printTypeIdentities() {
2625   if (TypePrinter.NumberedTypes.empty() &&
2626       TypePrinter.NamedTypes.empty())
2627     return;
2628
2629   Out << '\n';
2630
2631   // We know all the numbers that each type is used and we know that it is a
2632   // dense assignment.  Convert the map to an index table.
2633   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2634   for (DenseMap<StructType*, unsigned>::iterator I =
2635        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2636        I != E; ++I) {
2637     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2638     NumberedTypes[I->second] = I->first;
2639   }
2640
2641   // Emit all numbered types.
2642   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2643     Out << '%' << i << " = type ";
2644
2645     // Make sure we print out at least one level of the type structure, so
2646     // that we do not get %2 = type %2
2647     TypePrinter.printStructBody(NumberedTypes[i], Out);
2648     Out << '\n';
2649   }
2650
2651   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2652     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2653     Out << " = type ";
2654
2655     // Make sure we print out at least one level of the type structure, so
2656     // that we do not get %FILE = type %FILE
2657     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2658     Out << '\n';
2659   }
2660 }
2661
2662 /// printFunction - Print all aspects of a function.
2663 void AssemblyWriter::printFunction(const Function *F) {
2664   // Print out the return type and name.
2665   Out << '\n';
2666
2667   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2668
2669   if (F->isMaterializable())
2670     Out << "; Materializable\n";
2671
2672   const AttributeList &Attrs = F->getAttributes();
2673   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
2674     AttributeSet AS = Attrs.getFnAttributes();
2675     std::string AttrStr;
2676
2677     for (const Attribute &Attr : AS) {
2678       if (!Attr.isStringAttribute()) {
2679         if (!AttrStr.empty()) AttrStr += ' ';
2680         AttrStr += Attr.getAsString();
2681       }
2682     }
2683
2684     if (!AttrStr.empty())
2685       Out << "; Function Attrs: " << AttrStr << '\n';
2686   }
2687
2688   Machine.incorporateFunction(F);
2689
2690   if (F->isDeclaration()) {
2691     Out << "declare";
2692     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2693     F->getAllMetadata(MDs);
2694     printMetadataAttachments(MDs, " ");
2695     Out << ' ';
2696   } else
2697     Out << "define ";
2698
2699   Out << getLinkagePrintName(F->getLinkage());
2700   PrintVisibility(F->getVisibility(), Out);
2701   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2702
2703   // Print the calling convention.
2704   if (F->getCallingConv() != CallingConv::C) {
2705     PrintCallingConv(F->getCallingConv(), Out);
2706     Out << " ";
2707   }
2708
2709   FunctionType *FT = F->getFunctionType();
2710   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
2711     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
2712   TypePrinter.print(F->getReturnType(), Out);
2713   Out << ' ';
2714   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2715   Out << '(';
2716
2717   // Loop over the arguments, printing them...
2718   if (F->isDeclaration() && !IsForDebug) {
2719     // We're only interested in the type here - don't print argument names.
2720     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2721       // Insert commas as we go... the first arg doesn't get a comma
2722       if (I)
2723         Out << ", ";
2724       // Output type...
2725       TypePrinter.print(FT->getParamType(I), Out);
2726
2727       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
2728       if (ArgAttrs.hasAttributes())
2729         Out << ' ' << ArgAttrs.getAsString();
2730     }
2731   } else {
2732     // The arguments are meaningful here, print them in detail.
2733     for (const Argument &Arg : F->args()) {
2734       // Insert commas as we go... the first arg doesn't get a comma
2735       if (Arg.getArgNo() != 0)
2736         Out << ", ";
2737       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
2738     }
2739   }
2740
2741   // Finish printing arguments...
2742   if (FT->isVarArg()) {
2743     if (FT->getNumParams()) Out << ", ";
2744     Out << "...";  // Output varargs portion of signature!
2745   }
2746   Out << ')';
2747   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
2748   if (!UA.empty())
2749     Out << ' ' << UA;
2750   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
2751     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2752   if (F->hasSection()) {
2753     Out << " section \"";
2754     PrintEscapedString(F->getSection(), Out);
2755     Out << '"';
2756   }
2757   maybePrintComdat(Out, *F);
2758   if (F->getAlignment())
2759     Out << " align " << F->getAlignment();
2760   if (F->hasGC())
2761     Out << " gc \"" << F->getGC() << '"';
2762   if (F->hasPrefixData()) {
2763     Out << " prefix ";
2764     writeOperand(F->getPrefixData(), true);
2765   }
2766   if (F->hasPrologueData()) {
2767     Out << " prologue ";
2768     writeOperand(F->getPrologueData(), true);
2769   }
2770   if (F->hasPersonalityFn()) {
2771     Out << " personality ";
2772     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2773   }
2774
2775   if (F->isDeclaration()) {
2776     Out << '\n';
2777   } else {
2778     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2779     F->getAllMetadata(MDs);
2780     printMetadataAttachments(MDs, " ");
2781
2782     Out << " {";
2783     // Output all of the function's basic blocks.
2784     for (const BasicBlock &BB : *F)
2785       printBasicBlock(&BB);
2786
2787     // Output the function's use-lists.
2788     printUseLists(F);
2789
2790     Out << "}\n";
2791   }
2792
2793   Machine.purgeFunction();
2794 }
2795
2796 /// printArgument - This member is called for every argument that is passed into
2797 /// the function.  Simply print it out
2798 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
2799   // Output type...
2800   TypePrinter.print(Arg->getType(), Out);
2801
2802   // Output parameter attributes list
2803   if (Attrs.hasAttributes())
2804     Out << ' ' << Attrs.getAsString();
2805
2806   // Output name, if available...
2807   if (Arg->hasName()) {
2808     Out << ' ';
2809     PrintLLVMName(Out, Arg);
2810   }
2811 }
2812
2813 /// printBasicBlock - This member is called for each basic block in a method.
2814 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2815   if (BB->hasName()) {              // Print out the label if it exists...
2816     Out << "\n";
2817     PrintLLVMName(Out, BB->getName(), LabelPrefix);
2818     Out << ':';
2819   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
2820     Out << "\n; <label>:";
2821     int Slot = Machine.getLocalSlot(BB);
2822     if (Slot != -1)
2823       Out << Slot << ":";
2824     else
2825       Out << "<badref>";
2826   }
2827
2828   if (!BB->getParent()) {
2829     Out.PadToColumn(50);
2830     Out << "; Error: Block without parent!";
2831   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
2832     // Output predecessors for the block.
2833     Out.PadToColumn(50);
2834     Out << ";";
2835     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2836
2837     if (PI == PE) {
2838       Out << " No predecessors!";
2839     } else {
2840       Out << " preds = ";
2841       writeOperand(*PI, false);
2842       for (++PI; PI != PE; ++PI) {
2843         Out << ", ";
2844         writeOperand(*PI, false);
2845       }
2846     }
2847   }
2848
2849   Out << "\n";
2850
2851   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2852
2853   // Output all of the instructions in the basic block...
2854   for (const Instruction &I : *BB) {
2855     printInstructionLine(I);
2856   }
2857
2858   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2859 }
2860
2861 /// printInstructionLine - Print an instruction and a newline character.
2862 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2863   printInstruction(I);
2864   Out << '\n';
2865 }
2866
2867 /// printGCRelocateComment - print comment after call to the gc.relocate
2868 /// intrinsic indicating base and derived pointer names.
2869 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2870   Out << " ; (";
2871   writeOperand(Relocate.getBasePtr(), false);
2872   Out << ", ";
2873   writeOperand(Relocate.getDerivedPtr(), false);
2874   Out << ")";
2875 }
2876
2877 /// printInfoComment - Print a little comment after the instruction indicating
2878 /// which slot it occupies.
2879 void AssemblyWriter::printInfoComment(const Value &V) {
2880   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2881     printGCRelocateComment(*Relocate);
2882
2883   if (AnnotationWriter)
2884     AnnotationWriter->printInfoComment(V, Out);
2885 }
2886
2887 // This member is called for each Instruction in a function..
2888 void AssemblyWriter::printInstruction(const Instruction &I) {
2889   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2890
2891   // Print out indentation for an instruction.
2892   Out << "  ";
2893
2894   // Print out name if it exists...
2895   if (I.hasName()) {
2896     PrintLLVMName(Out, &I);
2897     Out << " = ";
2898   } else if (!I.getType()->isVoidTy()) {
2899     // Print out the def slot taken.
2900     int SlotNum = Machine.getLocalSlot(&I);
2901     if (SlotNum == -1)
2902       Out << "<badref> = ";
2903     else
2904       Out << '%' << SlotNum << " = ";
2905   }
2906
2907   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2908     if (CI->isMustTailCall())
2909       Out << "musttail ";
2910     else if (CI->isTailCall())
2911       Out << "tail ";
2912     else if (CI->isNoTailCall())
2913       Out << "notail ";
2914   }
2915
2916   // Print out the opcode...
2917   Out << I.getOpcodeName();
2918
2919   // If this is an atomic load or store, print out the atomic marker.
2920   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
2921       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2922     Out << " atomic";
2923
2924   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2925     Out << " weak";
2926
2927   // If this is a volatile operation, print out the volatile marker.
2928   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
2929       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2930       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2931       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2932     Out << " volatile";
2933
2934   // Print out optimization information.
2935   WriteOptimizationInfo(Out, &I);
2936
2937   // Print out the compare instruction predicates
2938   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2939     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
2940
2941   // Print out the atomicrmw operation
2942   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2943     writeAtomicRMWOperation(Out, RMWI->getOperation());
2944
2945   // Print out the type of the operands...
2946   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2947
2948   // Special case conditional branches to swizzle the condition out to the front
2949   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2950     const BranchInst &BI(cast<BranchInst>(I));
2951     Out << ' ';
2952     writeOperand(BI.getCondition(), true);
2953     Out << ", ";
2954     writeOperand(BI.getSuccessor(0), true);
2955     Out << ", ";
2956     writeOperand(BI.getSuccessor(1), true);
2957
2958   } else if (isa<SwitchInst>(I)) {
2959     const SwitchInst& SI(cast<SwitchInst>(I));
2960     // Special case switch instruction to get formatting nice and correct.
2961     Out << ' ';
2962     writeOperand(SI.getCondition(), true);
2963     Out << ", ";
2964     writeOperand(SI.getDefaultDest(), true);
2965     Out << " [";
2966     for (auto Case : SI.cases()) {
2967       Out << "\n    ";
2968       writeOperand(Case.getCaseValue(), true);
2969       Out << ", ";
2970       writeOperand(Case.getCaseSuccessor(), true);
2971     }
2972     Out << "\n  ]";
2973   } else if (isa<IndirectBrInst>(I)) {
2974     // Special case indirectbr instruction to get formatting nice and correct.
2975     Out << ' ';
2976     writeOperand(Operand, true);
2977     Out << ", [";
2978
2979     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2980       if (i != 1)
2981         Out << ", ";
2982       writeOperand(I.getOperand(i), true);
2983     }
2984     Out << ']';
2985   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2986     Out << ' ';
2987     TypePrinter.print(I.getType(), Out);
2988     Out << ' ';
2989
2990     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2991       if (op) Out << ", ";
2992       Out << "[ ";
2993       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2994       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2995     }
2996   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2997     Out << ' ';
2998     writeOperand(I.getOperand(0), true);
2999     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3000       Out << ", " << *i;
3001   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3002     Out << ' ';
3003     writeOperand(I.getOperand(0), true); Out << ", ";
3004     writeOperand(I.getOperand(1), true);
3005     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3006       Out << ", " << *i;
3007   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3008     Out << ' ';
3009     TypePrinter.print(I.getType(), Out);
3010     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3011       Out << '\n';
3012
3013     if (LPI->isCleanup())
3014       Out << "          cleanup";
3015
3016     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3017       if (i != 0 || LPI->isCleanup()) Out << "\n";
3018       if (LPI->isCatch(i))
3019         Out << "          catch ";
3020       else
3021         Out << "          filter ";
3022
3023       writeOperand(LPI->getClause(i), true);
3024     }
3025   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3026     Out << " within ";
3027     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3028     Out << " [";
3029     unsigned Op = 0;
3030     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3031       if (Op > 0)
3032         Out << ", ";
3033       writeOperand(PadBB, /*PrintType=*/true);
3034       ++Op;
3035     }
3036     Out << "] unwind ";
3037     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3038       writeOperand(UnwindDest, /*PrintType=*/true);
3039     else
3040       Out << "to caller";
3041   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3042     Out << " within ";
3043     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3044     Out << " [";
3045     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3046          ++Op) {
3047       if (Op > 0)
3048         Out << ", ";
3049       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3050     }
3051     Out << ']';
3052   } else if (isa<ReturnInst>(I) && !Operand) {
3053     Out << " void";
3054   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3055     Out << " from ";
3056     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3057
3058     Out << " to ";
3059     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3060   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3061     Out << " from ";
3062     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3063
3064     Out << " unwind ";
3065     if (CRI->hasUnwindDest())
3066       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3067     else
3068       Out << "to caller";
3069   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3070     // Print the calling convention being used.
3071     if (CI->getCallingConv() != CallingConv::C) {
3072       Out << " ";
3073       PrintCallingConv(CI->getCallingConv(), Out);
3074     }
3075
3076     Operand = CI->getCalledValue();
3077     FunctionType *FTy = CI->getFunctionType();
3078     Type *RetTy = FTy->getReturnType();
3079     const AttributeList &PAL = CI->getAttributes();
3080
3081     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3082       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3083
3084     // If possible, print out the short form of the call instruction.  We can
3085     // only do this if the first argument is a pointer to a nonvararg function,
3086     // and if the return type is not a pointer to a function.
3087     //
3088     Out << ' ';
3089     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3090     Out << ' ';
3091     writeOperand(Operand, false);
3092     Out << '(';
3093     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3094       if (op > 0)
3095         Out << ", ";
3096       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3097     }
3098
3099     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3100     // is only to aid readability, musttail calls forward varargs by default.
3101     if (CI->isMustTailCall() && CI->getParent() &&
3102         CI->getParent()->getParent() &&
3103         CI->getParent()->getParent()->isVarArg())
3104       Out << ", ...";
3105
3106     Out << ')';
3107     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3108       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3109
3110     writeOperandBundles(CI);
3111   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3112     Operand = II->getCalledValue();
3113     FunctionType *FTy = II->getFunctionType();
3114     Type *RetTy = FTy->getReturnType();
3115     const AttributeList &PAL = II->getAttributes();
3116
3117     // Print the calling convention being used.
3118     if (II->getCallingConv() != CallingConv::C) {
3119       Out << " ";
3120       PrintCallingConv(II->getCallingConv(), Out);
3121     }
3122
3123     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3124       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3125
3126     // If possible, print out the short form of the invoke instruction. We can
3127     // only do this if the first argument is a pointer to a nonvararg function,
3128     // and if the return type is not a pointer to a function.
3129     //
3130     Out << ' ';
3131     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3132     Out << ' ';
3133     writeOperand(Operand, false);
3134     Out << '(';
3135     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3136       if (op)
3137         Out << ", ";
3138       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3139     }
3140
3141     Out << ')';
3142     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3143       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3144
3145     writeOperandBundles(II);
3146
3147     Out << "\n          to ";
3148     writeOperand(II->getNormalDest(), true);
3149     Out << " unwind ";
3150     writeOperand(II->getUnwindDest(), true);
3151   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3152     Out << ' ';
3153     if (AI->isUsedWithInAlloca())
3154       Out << "inalloca ";
3155     if (AI->isSwiftError())
3156       Out << "swifterror ";
3157     TypePrinter.print(AI->getAllocatedType(), Out);
3158
3159     // Explicitly write the array size if the code is broken, if it's an array
3160     // allocation, or if the type is not canonical for scalar allocations.  The
3161     // latter case prevents the type from mutating when round-tripping through
3162     // assembly.
3163     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3164         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3165       Out << ", ";
3166       writeOperand(AI->getArraySize(), true);
3167     }
3168     if (AI->getAlignment()) {
3169       Out << ", align " << AI->getAlignment();
3170     }
3171
3172     unsigned AddrSpace = AI->getType()->getAddressSpace();
3173     if (AddrSpace != 0) {
3174       Out << ", addrspace(" << AddrSpace << ')';
3175     }
3176   } else if (isa<CastInst>(I)) {
3177     if (Operand) {
3178       Out << ' ';
3179       writeOperand(Operand, true);   // Work with broken code
3180     }
3181     Out << " to ";
3182     TypePrinter.print(I.getType(), Out);
3183   } else if (isa<VAArgInst>(I)) {
3184     if (Operand) {
3185       Out << ' ';
3186       writeOperand(Operand, true);   // Work with broken code
3187     }
3188     Out << ", ";
3189     TypePrinter.print(I.getType(), Out);
3190   } else if (Operand) {   // Print the normal way.
3191     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3192       Out << ' ';
3193       TypePrinter.print(GEP->getSourceElementType(), Out);
3194       Out << ',';
3195     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3196       Out << ' ';
3197       TypePrinter.print(LI->getType(), Out);
3198       Out << ',';
3199     }
3200
3201     // PrintAllTypes - Instructions who have operands of all the same type
3202     // omit the type from all but the first operand.  If the instruction has
3203     // different type operands (for example br), then they are all printed.
3204     bool PrintAllTypes = false;
3205     Type *TheType = Operand->getType();
3206
3207     // Select, Store and ShuffleVector always print all types.
3208     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3209         || isa<ReturnInst>(I)) {
3210       PrintAllTypes = true;
3211     } else {
3212       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3213         Operand = I.getOperand(i);
3214         // note that Operand shouldn't be null, but the test helps make dump()
3215         // more tolerant of malformed IR
3216         if (Operand && Operand->getType() != TheType) {
3217           PrintAllTypes = true;    // We have differing types!  Print them all!
3218           break;
3219         }
3220       }
3221     }
3222
3223     if (!PrintAllTypes) {
3224       Out << ' ';
3225       TypePrinter.print(TheType, Out);
3226     }
3227
3228     Out << ' ';
3229     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3230       if (i) Out << ", ";
3231       writeOperand(I.getOperand(i), PrintAllTypes);
3232     }
3233   }
3234
3235   // Print atomic ordering/alignment for memory operations
3236   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3237     if (LI->isAtomic())
3238       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
3239     if (LI->getAlignment())
3240       Out << ", align " << LI->getAlignment();
3241   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3242     if (SI->isAtomic())
3243       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
3244     if (SI->getAlignment())
3245       Out << ", align " << SI->getAlignment();
3246   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3247     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
3248                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
3249   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3250     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
3251                 RMWI->getSyncScopeID());
3252   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3253     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
3254   }
3255
3256   // Print Metadata info.
3257   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3258   I.getAllMetadata(InstMD);
3259   printMetadataAttachments(InstMD, ", ");
3260
3261   // Print a nice comment.
3262   printInfoComment(I);
3263 }
3264
3265 void AssemblyWriter::printMetadataAttachments(
3266     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3267     StringRef Separator) {
3268   if (MDs.empty())
3269     return;
3270
3271   if (MDNames.empty())
3272     MDs[0].second->getContext().getMDKindNames(MDNames);
3273
3274   for (const auto &I : MDs) {
3275     unsigned Kind = I.first;
3276     Out << Separator;
3277     if (Kind < MDNames.size()) {
3278       Out << "!";
3279       printMetadataIdentifier(MDNames[Kind], Out);
3280     } else
3281       Out << "!<unknown kind #" << Kind << ">";
3282     Out << ' ';
3283     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3284   }
3285 }
3286
3287 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3288   Out << '!' << Slot << " = ";
3289   printMDNodeBody(Node);
3290   Out << "\n";
3291 }
3292
3293 void AssemblyWriter::writeAllMDNodes() {
3294   SmallVector<const MDNode *, 16> Nodes;
3295   Nodes.resize(Machine.mdn_size());
3296   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3297        I != E; ++I)
3298     Nodes[I->second] = cast<MDNode>(I->first);
3299
3300   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3301     writeMDNode(i, Nodes[i]);
3302   }
3303 }
3304
3305 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3306   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3307 }
3308
3309 void AssemblyWriter::writeAllAttributeGroups() {
3310   std::vector<std::pair<AttributeSet, unsigned>> asVec;
3311   asVec.resize(Machine.as_size());
3312
3313   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3314        I != E; ++I)
3315     asVec[I->second] = *I;
3316
3317   for (const auto &I : asVec)
3318     Out << "attributes #" << I.second << " = { "
3319         << I.first.getAsString(true) << " }\n";
3320 }
3321
3322 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3323   bool IsInFunction = Machine.getFunction();
3324   if (IsInFunction)
3325     Out << "  ";
3326
3327   Out << "uselistorder";
3328   if (const BasicBlock *BB =
3329           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3330     Out << "_bb ";
3331     writeOperand(BB->getParent(), false);
3332     Out << ", ";
3333     writeOperand(BB, false);
3334   } else {
3335     Out << " ";
3336     writeOperand(Order.V, true);
3337   }
3338   Out << ", { ";
3339
3340   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3341   Out << Order.Shuffle[0];
3342   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3343     Out << ", " << Order.Shuffle[I];
3344   Out << " }\n";
3345 }
3346
3347 void AssemblyWriter::printUseLists(const Function *F) {
3348   auto hasMore =
3349       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3350   if (!hasMore())
3351     // Nothing to do.
3352     return;
3353
3354   Out << "\n; uselistorder directives\n";
3355   while (hasMore()) {
3356     printUseListOrder(UseListOrders.back());
3357     UseListOrders.pop_back();
3358   }
3359 }
3360
3361 //===----------------------------------------------------------------------===//
3362 //                       External Interface declarations
3363 //===----------------------------------------------------------------------===//
3364
3365 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3366                      bool ShouldPreserveUseListOrder,
3367                      bool IsForDebug) const {
3368   SlotTracker SlotTable(this->getParent());
3369   formatted_raw_ostream OS(ROS);
3370   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3371                    IsForDebug,
3372                    ShouldPreserveUseListOrder);
3373   W.printFunction(this);
3374 }
3375
3376 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3377                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3378   SlotTracker SlotTable(this);
3379   formatted_raw_ostream OS(ROS);
3380   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3381                    ShouldPreserveUseListOrder);
3382   W.printModule(this);
3383 }
3384
3385 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3386   SlotTracker SlotTable(getParent());
3387   formatted_raw_ostream OS(ROS);
3388   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3389   W.printNamedMDNode(this);
3390 }
3391
3392 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3393                         bool IsForDebug) const {
3394   Optional<SlotTracker> LocalST;
3395   SlotTracker *SlotTable;
3396   if (auto *ST = MST.getMachine())
3397     SlotTable = ST;
3398   else {
3399     LocalST.emplace(getParent());
3400     SlotTable = &*LocalST;
3401   }
3402
3403   formatted_raw_ostream OS(ROS);
3404   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
3405   W.printNamedMDNode(this);
3406 }
3407
3408 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3409   PrintLLVMName(ROS, getName(), ComdatPrefix);
3410   ROS << " = comdat ";
3411
3412   switch (getSelectionKind()) {
3413   case Comdat::Any:
3414     ROS << "any";
3415     break;
3416   case Comdat::ExactMatch:
3417     ROS << "exactmatch";
3418     break;
3419   case Comdat::Largest:
3420     ROS << "largest";
3421     break;
3422   case Comdat::NoDuplicates:
3423     ROS << "noduplicates";
3424     break;
3425   case Comdat::SameSize:
3426     ROS << "samesize";
3427     break;
3428   }
3429
3430   ROS << '\n';
3431 }
3432
3433 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
3434   TypePrinting TP;
3435   TP.print(const_cast<Type*>(this), OS);
3436
3437   if (NoDetails)
3438     return;
3439
3440   // If the type is a named struct type, print the body as well.
3441   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3442     if (!STy->isLiteral()) {
3443       OS << " = type ";
3444       TP.printStructBody(STy, OS);
3445     }
3446 }
3447
3448 static bool isReferencingMDNode(const Instruction &I) {
3449   if (const auto *CI = dyn_cast<CallInst>(&I))
3450     if (Function *F = CI->getCalledFunction())
3451       if (F->isIntrinsic())
3452         for (auto &Op : I.operands())
3453           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3454             if (isa<MDNode>(V->getMetadata()))
3455               return true;
3456   return false;
3457 }
3458
3459 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3460   bool ShouldInitializeAllMetadata = false;
3461   if (auto *I = dyn_cast<Instruction>(this))
3462     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3463   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3464     ShouldInitializeAllMetadata = true;
3465
3466   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3467   print(ROS, MST, IsForDebug);
3468 }
3469
3470 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3471                   bool IsForDebug) const {
3472   formatted_raw_ostream OS(ROS);
3473   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3474   SlotTracker &SlotTable =
3475       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3476   auto incorporateFunction = [&](const Function *F) {
3477     if (F)
3478       MST.incorporateFunction(*F);
3479   };
3480
3481   if (const Instruction *I = dyn_cast<Instruction>(this)) {
3482     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3483     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3484     W.printInstruction(*I);
3485   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3486     incorporateFunction(BB->getParent());
3487     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3488     W.printBasicBlock(BB);
3489   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3490     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3491     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3492       W.printGlobal(V);
3493     else if (const Function *F = dyn_cast<Function>(GV))
3494       W.printFunction(F);
3495     else
3496       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
3497   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3498     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3499   } else if (const Constant *C = dyn_cast<Constant>(this)) {
3500     TypePrinting TypePrinter;
3501     TypePrinter.print(C->getType(), OS);
3502     OS << ' ';
3503     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3504   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3505     this->printAsOperand(OS, /* PrintType */ true, MST);
3506   } else {
3507     llvm_unreachable("Unknown value to print out!");
3508   }
3509 }
3510
3511 /// Print without a type, skipping the TypePrinting object.
3512 ///
3513 /// \return \c true iff printing was successful.
3514 static bool printWithoutType(const Value &V, raw_ostream &O,
3515                              SlotTracker *Machine, const Module *M) {
3516   if (V.hasName() || isa<GlobalValue>(V) ||
3517       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3518     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3519     return true;
3520   }
3521   return false;
3522 }
3523
3524 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3525                                ModuleSlotTracker &MST) {
3526   TypePrinting TypePrinter;
3527   if (const Module *M = MST.getModule())
3528     TypePrinter.incorporateTypes(*M);
3529   if (PrintType) {
3530     TypePrinter.print(V.getType(), O);
3531     O << ' ';
3532   }
3533
3534   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3535                          MST.getModule());
3536 }
3537
3538 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3539                            const Module *M) const {
3540   if (!M)
3541     M = getModuleFromVal(this);
3542
3543   if (!PrintType)
3544     if (printWithoutType(*this, O, nullptr, M))
3545       return;
3546
3547   SlotTracker Machine(
3548       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3549   ModuleSlotTracker MST(Machine, M);
3550   printAsOperandImpl(*this, O, PrintType, MST);
3551 }
3552
3553 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3554                            ModuleSlotTracker &MST) const {
3555   if (!PrintType)
3556     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3557       return;
3558
3559   printAsOperandImpl(*this, O, PrintType, MST);
3560 }
3561
3562 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3563                               ModuleSlotTracker &MST, const Module *M,
3564                               bool OnlyAsOperand) {
3565   formatted_raw_ostream OS(ROS);
3566
3567   TypePrinting TypePrinter;
3568   if (M)
3569     TypePrinter.incorporateTypes(*M);
3570
3571   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3572                          /* FromValue */ true);
3573
3574   auto *N = dyn_cast<MDNode>(&MD);
3575   if (OnlyAsOperand || !N)
3576     return;
3577
3578   OS << " = ";
3579   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3580 }
3581
3582 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3583   ModuleSlotTracker MST(M, isa<MDNode>(this));
3584   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3585 }
3586
3587 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3588                               const Module *M) const {
3589   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3590 }
3591
3592 void Metadata::print(raw_ostream &OS, const Module *M,
3593                      bool /*IsForDebug*/) const {
3594   ModuleSlotTracker MST(M, isa<MDNode>(this));
3595   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3596 }
3597
3598 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3599                      const Module *M, bool /*IsForDebug*/) const {
3600   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3601 }
3602
3603 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3604 // Value::dump - allow easy printing of Values from the debugger.
3605 LLVM_DUMP_METHOD
3606 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3607
3608 // Type::dump - allow easy printing of Types from the debugger.
3609 LLVM_DUMP_METHOD
3610 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3611
3612 // Module::dump() - Allow printing of Modules from the debugger.
3613 LLVM_DUMP_METHOD
3614 void Module::dump() const {
3615   print(dbgs(), nullptr,
3616         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3617 }
3618
3619 // \brief Allow printing of Comdats from the debugger.
3620 LLVM_DUMP_METHOD
3621 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3622
3623 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3624 LLVM_DUMP_METHOD
3625 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3626
3627 LLVM_DUMP_METHOD
3628 void Metadata::dump() const { dump(nullptr); }
3629
3630 LLVM_DUMP_METHOD
3631 void Metadata::dump(const Module *M) const {
3632   print(dbgs(), M, /*IsForDebug=*/true);
3633   dbgs() << '\n';
3634 }
3635 #endif