]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/BasicBlock.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / BasicBlock.cpp
1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24
25 using namespace llvm;
26
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return F->getValueSymbolTable();
30   return nullptr;
31 }
32
33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40
41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50
51   setName(Name);
52 }
53
54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63
64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87
88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92
93 iterator_range<filter_iterator<BasicBlock::const_iterator,
94                                std::function<bool(const Instruction &)>>>
95 BasicBlock::instructionsWithoutDebug() const {
96   std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
97     return !isa<DbgInfoIntrinsic>(I);
98   };
99   return make_filter_range(*this, Fn);
100 }
101
102 iterator_range<filter_iterator<BasicBlock::iterator,
103                                std::function<bool(Instruction &)>>>
104 BasicBlock::instructionsWithoutDebug() {
105   std::function<bool(Instruction &)> Fn = [](Instruction &I) {
106     return !isa<DbgInfoIntrinsic>(I);
107   };
108   return make_filter_range(*this, Fn);
109 }
110
111 void BasicBlock::removeFromParent() {
112   getParent()->getBasicBlockList().remove(getIterator());
113 }
114
115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
116   return getParent()->getBasicBlockList().erase(getIterator());
117 }
118
119 /// Unlink this basic block from its current function and
120 /// insert it into the function that MovePos lives in, right before MovePos.
121 void BasicBlock::moveBefore(BasicBlock *MovePos) {
122   MovePos->getParent()->getBasicBlockList().splice(
123       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
124 }
125
126 /// Unlink this basic block from its current function and
127 /// insert it into the function that MovePos lives in, right after MovePos.
128 void BasicBlock::moveAfter(BasicBlock *MovePos) {
129   MovePos->getParent()->getBasicBlockList().splice(
130       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
131       getIterator());
132 }
133
134 const Module *BasicBlock::getModule() const {
135   return getParent()->getParent();
136 }
137
138 const TerminatorInst *BasicBlock::getTerminator() const {
139   if (InstList.empty()) return nullptr;
140   return dyn_cast<TerminatorInst>(&InstList.back());
141 }
142
143 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
144   if (InstList.empty())
145     return nullptr;
146   const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
147   if (!RI || RI == &InstList.front())
148     return nullptr;
149
150   const Instruction *Prev = RI->getPrevNode();
151   if (!Prev)
152     return nullptr;
153
154   if (Value *RV = RI->getReturnValue()) {
155     if (RV != Prev)
156       return nullptr;
157
158     // Look through the optional bitcast.
159     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
160       RV = BI->getOperand(0);
161       Prev = BI->getPrevNode();
162       if (!Prev || RV != Prev)
163         return nullptr;
164     }
165   }
166
167   if (auto *CI = dyn_cast<CallInst>(Prev)) {
168     if (CI->isMustTailCall())
169       return CI;
170   }
171   return nullptr;
172 }
173
174 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
175   if (InstList.empty())
176     return nullptr;
177   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
178   if (!RI || RI == &InstList.front())
179     return nullptr;
180
181   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
182     if (Function *F = CI->getCalledFunction())
183       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
184         return CI;
185
186   return nullptr;
187 }
188
189 const Instruction* BasicBlock::getFirstNonPHI() const {
190   for (const Instruction &I : *this)
191     if (!isa<PHINode>(I))
192       return &I;
193   return nullptr;
194 }
195
196 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
197   for (const Instruction &I : *this)
198     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
199       return &I;
200   return nullptr;
201 }
202
203 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
204   for (const Instruction &I : *this) {
205     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
206       continue;
207
208     if (auto *II = dyn_cast<IntrinsicInst>(&I))
209       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
210           II->getIntrinsicID() == Intrinsic::lifetime_end)
211         continue;
212
213     return &I;
214   }
215   return nullptr;
216 }
217
218 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
219   const Instruction *FirstNonPHI = getFirstNonPHI();
220   if (!FirstNonPHI)
221     return end();
222
223   const_iterator InsertPt = FirstNonPHI->getIterator();
224   if (InsertPt->isEHPad()) ++InsertPt;
225   return InsertPt;
226 }
227
228 void BasicBlock::dropAllReferences() {
229   for (Instruction &I : *this)
230     I.dropAllReferences();
231 }
232
233 /// If this basic block has a single predecessor block,
234 /// return the block, otherwise return a null pointer.
235 const BasicBlock *BasicBlock::getSinglePredecessor() const {
236   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
237   if (PI == E) return nullptr;         // No preds.
238   const BasicBlock *ThePred = *PI;
239   ++PI;
240   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
241 }
242
243 /// If this basic block has a unique predecessor block,
244 /// return the block, otherwise return a null pointer.
245 /// Note that unique predecessor doesn't mean single edge, there can be
246 /// multiple edges from the unique predecessor to this block (for example
247 /// a switch statement with multiple cases having the same destination).
248 const BasicBlock *BasicBlock::getUniquePredecessor() const {
249   const_pred_iterator PI = pred_begin(this), E = pred_end(this);
250   if (PI == E) return nullptr; // No preds.
251   const BasicBlock *PredBB = *PI;
252   ++PI;
253   for (;PI != E; ++PI) {
254     if (*PI != PredBB)
255       return nullptr;
256     // The same predecessor appears multiple times in the predecessor list.
257     // This is OK.
258   }
259   return PredBB;
260 }
261
262 const BasicBlock *BasicBlock::getSingleSuccessor() const {
263   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
264   if (SI == E) return nullptr; // no successors
265   const BasicBlock *TheSucc = *SI;
266   ++SI;
267   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
268 }
269
270 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
271   succ_const_iterator SI = succ_begin(this), E = succ_end(this);
272   if (SI == E) return nullptr; // No successors
273   const BasicBlock *SuccBB = *SI;
274   ++SI;
275   for (;SI != E; ++SI) {
276     if (*SI != SuccBB)
277       return nullptr;
278     // The same successor appears multiple times in the successor list.
279     // This is OK.
280   }
281   return SuccBB;
282 }
283
284 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
285   PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
286   return make_range<phi_iterator>(P, nullptr);
287 }
288
289 /// This method is used to notify a BasicBlock that the
290 /// specified Predecessor of the block is no longer able to reach it.  This is
291 /// actually not used to update the Predecessor list, but is actually used to
292 /// update the PHI nodes that reside in the block.  Note that this should be
293 /// called while the predecessor still refers to this block.
294 ///
295 void BasicBlock::removePredecessor(BasicBlock *Pred,
296                                    bool DontDeleteUselessPHIs) {
297   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
298           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
299          "removePredecessor: BB is not a predecessor!");
300
301   if (InstList.empty()) return;
302   PHINode *APN = dyn_cast<PHINode>(&front());
303   if (!APN) return;   // Quick exit.
304
305   // If there are exactly two predecessors, then we want to nuke the PHI nodes
306   // altogether.  However, we cannot do this, if this in this case:
307   //
308   //  Loop:
309   //    %x = phi [X, Loop]
310   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
311   //    br Loop                 ;; %x2 does not dominate all uses
312   //
313   // This is because the PHI node input is actually taken from the predecessor
314   // basic block.  The only case this can happen is with a self loop, so we
315   // check for this case explicitly now.
316   //
317   unsigned max_idx = APN->getNumIncomingValues();
318   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
319   if (max_idx == 2) {
320     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
321
322     // Disable PHI elimination!
323     if (this == Other) max_idx = 3;
324   }
325
326   // <= Two predecessors BEFORE I remove one?
327   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
328     // Yup, loop through and nuke the PHI nodes
329     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
330       // Remove the predecessor first.
331       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
332
333       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
334       if (max_idx == 2) {
335         if (PN->getIncomingValue(0) != PN)
336           PN->replaceAllUsesWith(PN->getIncomingValue(0));
337         else
338           // We are left with an infinite loop with no entries: kill the PHI.
339           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
340         getInstList().pop_front();    // Remove the PHI node
341       }
342
343       // If the PHI node already only had one entry, it got deleted by
344       // removeIncomingValue.
345     }
346   } else {
347     // Okay, now we know that we need to remove predecessor #pred_idx from all
348     // PHI nodes.  Iterate over each PHI node fixing them up
349     PHINode *PN;
350     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
351       ++II;
352       PN->removeIncomingValue(Pred, false);
353       // If all incoming values to the Phi are the same, we can replace the Phi
354       // with that value.
355       Value* PNV = nullptr;
356       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
357         if (PNV != PN) {
358           PN->replaceAllUsesWith(PNV);
359           PN->eraseFromParent();
360         }
361     }
362   }
363 }
364
365 bool BasicBlock::canSplitPredecessors() const {
366   const Instruction *FirstNonPHI = getFirstNonPHI();
367   if (isa<LandingPadInst>(FirstNonPHI))
368     return true;
369   // This is perhaps a little conservative because constructs like
370   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
371   // cannot handle such things just yet.
372   if (FirstNonPHI->isEHPad())
373     return false;
374   return true;
375 }
376
377 bool BasicBlock::isLegalToHoistInto() const {
378   auto *Term = getTerminator();
379   // No terminator means the block is under construction.
380   if (!Term)
381     return true;
382
383   // If the block has no successors, there can be no instructions to hoist.
384   assert(Term->getNumSuccessors() > 0);
385
386   // Instructions should not be hoisted across exception handling boundaries.
387   return !Term->isExceptional();
388 }
389
390 /// This splits a basic block into two at the specified
391 /// instruction.  Note that all instructions BEFORE the specified iterator stay
392 /// as part of the original basic block, an unconditional branch is added to
393 /// the new BB, and the rest of the instructions in the BB are moved to the new
394 /// BB, including the old terminator.  This invalidates the iterator.
395 ///
396 /// Note that this only works on well formed basic blocks (must have a
397 /// terminator), and 'I' must not be the end of instruction list (which would
398 /// cause a degenerate basic block to be formed, having a terminator inside of
399 /// the basic block).
400 ///
401 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
402   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
403   assert(I != InstList.end() &&
404          "Trying to get me to create degenerate basic block!");
405
406   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
407                                        this->getNextNode());
408
409   // Save DebugLoc of split point before invalidating iterator.
410   DebugLoc Loc = I->getDebugLoc();
411   // Move all of the specified instructions from the original basic block into
412   // the new basic block.
413   New->getInstList().splice(New->end(), this->getInstList(), I, end());
414
415   // Add a branch instruction to the newly formed basic block.
416   BranchInst *BI = BranchInst::Create(New, this);
417   BI->setDebugLoc(Loc);
418
419   // Now we must loop through all of the successors of the New block (which
420   // _were_ the successors of the 'this' block), and update any PHI nodes in
421   // successors.  If there were PHI nodes in the successors, then they need to
422   // know that incoming branches will be from New, not from Old.
423   //
424   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
425     // Loop over any phi nodes in the basic block, updating the BB field of
426     // incoming values...
427     BasicBlock *Successor = *I;
428     for (auto &PN : Successor->phis()) {
429       int Idx = PN.getBasicBlockIndex(this);
430       while (Idx != -1) {
431         PN.setIncomingBlock((unsigned)Idx, New);
432         Idx = PN.getBasicBlockIndex(this);
433       }
434     }
435   }
436   return New;
437 }
438
439 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
440   TerminatorInst *TI = getTerminator();
441   if (!TI)
442     // Cope with being called on a BasicBlock that doesn't have a terminator
443     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
444     return;
445   for (BasicBlock *Succ : TI->successors()) {
446     // N.B. Succ might not be a complete BasicBlock, so don't assume
447     // that it ends with a non-phi instruction.
448     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
449       PHINode *PN = dyn_cast<PHINode>(II);
450       if (!PN)
451         break;
452       int i;
453       while ((i = PN->getBasicBlockIndex(this)) >= 0)
454         PN->setIncomingBlock(i, New);
455     }
456   }
457 }
458
459 /// Return true if this basic block is a landing pad. I.e., it's
460 /// the destination of the 'unwind' edge of an invoke instruction.
461 bool BasicBlock::isLandingPad() const {
462   return isa<LandingPadInst>(getFirstNonPHI());
463 }
464
465 /// Return the landingpad instruction associated with the landing pad.
466 const LandingPadInst *BasicBlock::getLandingPadInst() const {
467   return dyn_cast<LandingPadInst>(getFirstNonPHI());
468 }
469
470 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
471   const TerminatorInst *TI = getTerminator();
472   if (MDNode *MDIrrLoopHeader =
473       TI->getMetadata(LLVMContext::MD_irr_loop)) {
474     MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
475     if (MDName->getString().equals("loop_header_weight")) {
476       auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
477       return Optional<uint64_t>(CI->getValue().getZExtValue());
478     }
479   }
480   return Optional<uint64_t>();
481 }
482
483 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
484   while (isa<DbgInfoIntrinsic>(It))
485     ++It;
486   return It;
487 }