]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Dominators.cpp
Merge ^/head r307383 through r307735.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Dominators.cpp
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GenericDomTreeConstruction.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace llvm;
29
30 // Always verify dominfo if expensive checking is enabled.
31 #ifdef EXPENSIVE_CHECKS
32 static bool VerifyDomInfo = true;
33 #else
34 static bool VerifyDomInfo = false;
35 #endif
36 static cl::opt<bool,true>
37 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38                cl::desc("Verify dominator info (time consuming)"));
39
40 bool BasicBlockEdge::isSingleEdge() const {
41   const TerminatorInst *TI = Start->getTerminator();
42   unsigned NumEdgesToEnd = 0;
43   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44     if (TI->getSuccessor(i) == End)
45       ++NumEdgesToEnd;
46     if (NumEdgesToEnd >= 2)
47       return false;
48   }
49   assert(NumEdgesToEnd == 1);
50   return true;
51 }
52
53 //===----------------------------------------------------------------------===//
54 //  DominatorTree Implementation
55 //===----------------------------------------------------------------------===//
56 //
57 // Provide public access to DominatorTree information.  Implementation details
58 // can be found in Dominators.h, GenericDomTree.h, and
59 // GenericDomTreeConstruction.h.
60 //
61 //===----------------------------------------------------------------------===//
62
63 template class llvm::DomTreeNodeBase<BasicBlock>;
64 template class llvm::DominatorTreeBase<BasicBlock>;
65
66 template void llvm::Calculate<Function, BasicBlock *>(
67     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
68 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
69     DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
70     Function &F);
71
72 // dominates - Return true if Def dominates a use in User. This performs
73 // the special checks necessary if Def and User are in the same basic block.
74 // Note that Def doesn't dominate a use in Def itself!
75 bool DominatorTree::dominates(const Instruction *Def,
76                               const Instruction *User) const {
77   const BasicBlock *UseBB = User->getParent();
78   const BasicBlock *DefBB = Def->getParent();
79
80   // Any unreachable use is dominated, even if Def == User.
81   if (!isReachableFromEntry(UseBB))
82     return true;
83
84   // Unreachable definitions don't dominate anything.
85   if (!isReachableFromEntry(DefBB))
86     return false;
87
88   // An instruction doesn't dominate a use in itself.
89   if (Def == User)
90     return false;
91
92   // The value defined by an invoke dominates an instruction only if it
93   // dominates every instruction in UseBB.
94   // A PHI is dominated only if the instruction dominates every possible use in
95   // the UseBB.
96   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
97     return dominates(Def, UseBB);
98
99   if (DefBB != UseBB)
100     return dominates(DefBB, UseBB);
101
102   // Loop through the basic block until we find Def or User.
103   BasicBlock::const_iterator I = DefBB->begin();
104   for (; &*I != Def && &*I != User; ++I)
105     /*empty*/;
106
107   return &*I == Def;
108 }
109
110 // true if Def would dominate a use in any instruction in UseBB.
111 // note that dominates(Def, Def->getParent()) is false.
112 bool DominatorTree::dominates(const Instruction *Def,
113                               const BasicBlock *UseBB) const {
114   const BasicBlock *DefBB = Def->getParent();
115
116   // Any unreachable use is dominated, even if DefBB == UseBB.
117   if (!isReachableFromEntry(UseBB))
118     return true;
119
120   // Unreachable definitions don't dominate anything.
121   if (!isReachableFromEntry(DefBB))
122     return false;
123
124   if (DefBB == UseBB)
125     return false;
126
127   // Invoke results are only usable in the normal destination, not in the
128   // exceptional destination.
129   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
130     BasicBlock *NormalDest = II->getNormalDest();
131     BasicBlockEdge E(DefBB, NormalDest);
132     return dominates(E, UseBB);
133   }
134
135   return dominates(DefBB, UseBB);
136 }
137
138 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
139                               const BasicBlock *UseBB) const {
140   // Assert that we have a single edge. We could handle them by simply
141   // returning false, but since isSingleEdge is linear on the number of
142   // edges, the callers can normally handle them more efficiently.
143   assert(BBE.isSingleEdge() &&
144          "This function is not efficient in handling multiple edges");
145
146   // If the BB the edge ends in doesn't dominate the use BB, then the
147   // edge also doesn't.
148   const BasicBlock *Start = BBE.getStart();
149   const BasicBlock *End = BBE.getEnd();
150   if (!dominates(End, UseBB))
151     return false;
152
153   // Simple case: if the end BB has a single predecessor, the fact that it
154   // dominates the use block implies that the edge also does.
155   if (End->getSinglePredecessor())
156     return true;
157
158   // The normal edge from the invoke is critical. Conceptually, what we would
159   // like to do is split it and check if the new block dominates the use.
160   // With X being the new block, the graph would look like:
161   //
162   //        DefBB
163   //          /\      .  .
164   //         /  \     .  .
165   //        /    \    .  .
166   //       /      \   |  |
167   //      A        X  B  C
168   //      |         \ | /
169   //      .          \|/
170   //      .      NormalDest
171   //      .
172   //
173   // Given the definition of dominance, NormalDest is dominated by X iff X
174   // dominates all of NormalDest's predecessors (X, B, C in the example). X
175   // trivially dominates itself, so we only have to find if it dominates the
176   // other predecessors. Since the only way out of X is via NormalDest, X can
177   // only properly dominate a node if NormalDest dominates that node too.
178   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
179        PI != E; ++PI) {
180     const BasicBlock *BB = *PI;
181     if (BB == Start)
182       continue;
183
184     if (!dominates(End, BB))
185       return false;
186   }
187   return true;
188 }
189
190 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
191   // Assert that we have a single edge. We could handle them by simply
192   // returning false, but since isSingleEdge is linear on the number of
193   // edges, the callers can normally handle them more efficiently.
194   assert(BBE.isSingleEdge() &&
195          "This function is not efficient in handling multiple edges");
196
197   Instruction *UserInst = cast<Instruction>(U.getUser());
198   // A PHI in the end of the edge is dominated by it.
199   PHINode *PN = dyn_cast<PHINode>(UserInst);
200   if (PN && PN->getParent() == BBE.getEnd() &&
201       PN->getIncomingBlock(U) == BBE.getStart())
202     return true;
203
204   // Otherwise use the edge-dominates-block query, which
205   // handles the crazy critical edge cases properly.
206   const BasicBlock *UseBB;
207   if (PN)
208     UseBB = PN->getIncomingBlock(U);
209   else
210     UseBB = UserInst->getParent();
211   return dominates(BBE, UseBB);
212 }
213
214 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
215   Instruction *UserInst = cast<Instruction>(U.getUser());
216   const BasicBlock *DefBB = Def->getParent();
217
218   // Determine the block in which the use happens. PHI nodes use
219   // their operands on edges; simulate this by thinking of the use
220   // happening at the end of the predecessor block.
221   const BasicBlock *UseBB;
222   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
223     UseBB = PN->getIncomingBlock(U);
224   else
225     UseBB = UserInst->getParent();
226
227   // Any unreachable use is dominated, even if Def == User.
228   if (!isReachableFromEntry(UseBB))
229     return true;
230
231   // Unreachable definitions don't dominate anything.
232   if (!isReachableFromEntry(DefBB))
233     return false;
234
235   // Invoke instructions define their return values on the edges to their normal
236   // successors, so we have to handle them specially.
237   // Among other things, this means they don't dominate anything in
238   // their own block, except possibly a phi, so we don't need to
239   // walk the block in any case.
240   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
241     BasicBlock *NormalDest = II->getNormalDest();
242     BasicBlockEdge E(DefBB, NormalDest);
243     return dominates(E, U);
244   }
245
246   // If the def and use are in different blocks, do a simple CFG dominator
247   // tree query.
248   if (DefBB != UseBB)
249     return dominates(DefBB, UseBB);
250
251   // Ok, def and use are in the same block. If the def is an invoke, it
252   // doesn't dominate anything in the block. If it's a PHI, it dominates
253   // everything in the block.
254   if (isa<PHINode>(UserInst))
255     return true;
256
257   // Otherwise, just loop through the basic block until we find Def or User.
258   BasicBlock::const_iterator I = DefBB->begin();
259   for (; &*I != Def && &*I != UserInst; ++I)
260     /*empty*/;
261
262   return &*I != UserInst;
263 }
264
265 bool DominatorTree::isReachableFromEntry(const Use &U) const {
266   Instruction *I = dyn_cast<Instruction>(U.getUser());
267
268   // ConstantExprs aren't really reachable from the entry block, but they
269   // don't need to be treated like unreachable code either.
270   if (!I) return true;
271
272   // PHI nodes use their operands on their incoming edges.
273   if (PHINode *PN = dyn_cast<PHINode>(I))
274     return isReachableFromEntry(PN->getIncomingBlock(U));
275
276   // Everything else uses their operands in their own block.
277   return isReachableFromEntry(I->getParent());
278 }
279
280 void DominatorTree::verifyDomTree() const {
281   Function &F = *getRoot()->getParent();
282
283   DominatorTree OtherDT;
284   OtherDT.recalculate(F);
285   if (compare(OtherDT)) {
286     errs() << "DominatorTree is not up to date!\nComputed:\n";
287     print(errs());
288     errs() << "\nActual:\n";
289     OtherDT.print(errs());
290     abort();
291   }
292 }
293
294 //===----------------------------------------------------------------------===//
295 //  DominatorTreeAnalysis and related pass implementations
296 //===----------------------------------------------------------------------===//
297 //
298 // This implements the DominatorTreeAnalysis which is used with the new pass
299 // manager. It also implements some methods from utility passes.
300 //
301 //===----------------------------------------------------------------------===//
302
303 DominatorTree DominatorTreeAnalysis::run(Function &F,
304                                          AnalysisManager<Function> &) {
305   DominatorTree DT;
306   DT.recalculate(F);
307   return DT;
308 }
309
310 char DominatorTreeAnalysis::PassID;
311
312 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
313
314 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
315                                                 FunctionAnalysisManager &AM) {
316   OS << "DominatorTree for function: " << F.getName() << "\n";
317   AM.getResult<DominatorTreeAnalysis>(F).print(OS);
318
319   return PreservedAnalyses::all();
320 }
321
322 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
323                                                  FunctionAnalysisManager &AM) {
324   AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
325
326   return PreservedAnalyses::all();
327 }
328
329 //===----------------------------------------------------------------------===//
330 //  DominatorTreeWrapperPass Implementation
331 //===----------------------------------------------------------------------===//
332 //
333 // The implementation details of the wrapper pass that holds a DominatorTree
334 // suitable for use with the legacy pass manager.
335 //
336 //===----------------------------------------------------------------------===//
337
338 char DominatorTreeWrapperPass::ID = 0;
339 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
340                 "Dominator Tree Construction", true, true)
341
342 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
343   DT.recalculate(F);
344   return false;
345 }
346
347 void DominatorTreeWrapperPass::verifyAnalysis() const {
348     if (VerifyDomInfo)
349       DT.verifyDomTree();
350 }
351
352 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
353   DT.print(OS);
354 }
355